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Abstract

Up to date, the majority of computational
models still determines the semantic relat-
edness between words (or larger linguis-
tic units) on the type level. In this pa-
per, we compare and extend multi-sense
embeddings, in order to model and utilise
word senses on the token level. We focus
on the challenging class of complex verbs,
and evaluate the model variants on various
semantic tasks: semantic classification;
predicting compositionality; and detecting
non-literal language usage. While there is
no overall best model, all models signifi-
cantly outperform a word2vec single-sense
skip baseline, thus demonstrating the need
to distinguish between word senses in a
distributional semantic model.

1 Introduction

In recent years, a considerable number of semantic
tasks and datasets have been developed, in order
to evaluate the semantic quality of computational
models. These tasks include general predictions
of semantic similarity (e.g., relying on WordSim-
353 (Finkelstein et al., 2001) or SimLex-999 (Hill
et al., 2015)); more specific predictions of seman-
tic relation types (e.g., relying on BLESS (Baroni
and Lenci, 2011) or the SemRel database (Scheible
and Schulte im Walde, 2014)); predicting the de-
gree of compositionality for complex nouns and
verbs; etc. Computational semantic models pre-
dominantly make use of the distributional hypoth-
esis in some way or the other, assuming that words
with similar distributions have related meanings
(Harris, 1954; Firth, 1957). Distributional models
thus offer a means to represent meaning vectors of
words, and to determine their semantic relatedness
(Turney and Pantel, 2010).

Up to date, most distributional semantic mod-
els (DSMs) that addressed specific semantic tasks
have worked on the type level (e.g., Baroni et al.
(2014), Köper et al. (2015), Levy et al. (2015),
Pennington et al. (2014)). I.e., each word lemma
is represented by a weighted feature vector, where
features typically correspond to words that co-
occur in particular contexts. When using word em-
beddings to overcome the problematic sparsity of
word vectors, the models rely on neural methods
to represent words as low-dimensional vectors.

In contrast, distributional semantic models that
break down word type vectors to word sense
vectors, have predominantly be applied to Word
Sense Disambiguation/Discrimination or (Cross-
lingual) Lexical Substitution (McCarthy and Nav-
igli, 2007; Mihalcea et al., 2010; Jurgens and
Klapaftis, 2013). As to our knowledge, there
is little work on DSMs that distinguishes be-
tween word senses and addresses various seman-
tic relatedness tasks. Among the few exceptions
are Li and Jurafsky (2015) who evaluated multi-
sense embeddings on semantic relation identifica-
tion (for nouns only) and semantic relatedness be-
tween sentences, and Iacobacci et al. (2015) who
applied multi-sense embeddings to word and rela-
tional similarity.

In this paper, we compare and extend ap-
proaches to obtain multi-sense embeddings, in or-
der to model word senses on the token level. We
focus on the challenging class of complex verbs,
and evaluate the model variants on various seman-
tic tasks: semantic verb classification; the predic-
tion of compositionality; and the detection of non-
literal language usage. While there is no over-
all best model, all models significantly outper-
form a word2vec single-sense skip baseline, thus
demonstrating the need to distinguish between
word senses in a distributional semantic model.
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2 Multi-Sense Embeddings
We implemented and applied several variants of
state-of-the-art methods for obtaining multi-sense
embeddings. In this paper, we restrict the selec-
tion to models that perform unsupervised and non-
parametric sense learning, i.e., methods that learn
potentially different numbers of senses per word,
using only a corpus but no sense inventory.

(1) Joint learning of sense representations and
application of sense disambiguation From this
advanced family of multi-sense embedding in-
duction, we applied the non-parametric multiple-
sense skip-grams (NP-MSSG), cf. Neelakantan
et al. (2014), and skip-grams extended by the Chi-
nese Restaurant Process (CHINRESTP), cf. Li
and Jurafsky (2015).

(2) Successive learning of single-sense represen-
tations and sense disambiguation This class of
approaches also relies on skip-grams but learns
senses only in a later stage. Pelevina et al.
(2016) introduced a non-parametric method that
computes a graph relying on cosine-based near-
est neighbors, after learning single-sense represen-
tations. The graph-clustering algorithm Chinese
Whispers (Biemann, 2006) identifies senses in the
graph, to induce multi-sense embeddings by ap-
plying a composition function to word senses. We
refer to this approach as CHINWHISP.

(3) Single-sense representations for multi-sense
corpus annotations In this class of techniques,
multi-sense embeddings are also learned in a two-
stage procedure: In a first stage, a corpus is au-
tomatically sense-annotated by appending a sense
index to every word token (e.g., apple1, apple2,
etc.). In a second stage, standard techniques are
applied to learn single-sense representations for
the annotated senses in the corpus. Since the an-
notations distinguish between senses, the “single-
sense” representations effectively represent multi-
sense embeddings. For example, Iacobacci et al.
(2015) perform the first step by using an off-the-
shelf word sense disambiguation tool, and the sec-
ond step by applying Mikolov’s word2vec tool
(Mikolov et al., 2013b; Mikolov et al., 2013a).

We investigate several variants regarding the au-
tomatic corpus sense annotation.

(i) Rather than applying an off-the-shelf WSD
tool, we apply the topic-based sense learning
method from (Lau et al., 2012), the Hierarchical
Dirichlet process (HDP) (Teh et al., 2004). The

HDP mixture model is a natural non-parametric
generalization of the Latent Dirichlet allocation
(Blei et al., 2003), where the number of topics
can be unbounded and learned directly from the
data. We apply HDP by extracting every sentence
for each verb type from our corpus. We then train
HDP individually for each verb. In the last train-
ing iteration we mark each occurrence of a verb
type in the corpus with the number of the topic
that provided the largest membership value for the
respective sentence and that topic.

(ii) As an alternative to the topic model, we
apply different clustering algorithms, which not
only allows more flexibility in the sense classifi-
cation technique but also regarding the verb fea-
tures: we represent each verb token by a vector:
We look up the individual vector representations
of the verb’s context words, and create the verb
token vector as the average vector of these con-
text words, ignoring the target verb. This simple
kind of phrase/sentence representation has been
shown to work well on a variety of tasks (e.g., Mi-
lajevs et al. (2014), Hill et al. (2016)). In addi-
tion, it allows us to compare different types of con-
text features: (a) all nouns in the sentence (NN),
and (b) all words in a symmetrical window of size
10, weighted by the exponential decay function
(W10EXP), cf. Iacobacci et al. (2016).

For the actual clustering, we compare non-
parametric flat and hierarchical methods. As for
HDP, we cluster verb tokens separately, and then
mark each verb token with a tag corresponding to
a cluster number. The number of clusters contain-
ing a specific verb type corresponds to its number
of senses. For flat clustering, we use X-MEANS
(Pelleg and Moore, 2000), which extends the stan-
dard hard k-means clustering approach into a non-
parametric soft clustering. The algorithm includes
a search over the number of clusters k, scores
each cluster analysis using the Bayesian Informa-
tion Criterion (BIC), and chooses the model with
k clusters based on the best BIC. For hierarchi-
cal clustering, we use balanced iterative reducing
and clustering using hierarchies BIRCH (Zhang
et al., 1996), a clustering method that makes use
of an internal dendrogram tree structure. Incom-
ing data points are inserted into the tree, and then
assigned to the closest sub-trees until they arrive at
a leaf node. The entire tree structure changes dy-
namically over time, while new items are added.
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3 Experiments

Corpus & Target Verbs As corpus resource for
our target verbs as well as for the experimen-
tal setup, we use DECOW14AX, a German web
corpus containing 12 billion tokens (Schäfer and
Bildhauer, 2012; Schäfer, 2015). The corpus
sentences were morphologically annotated and
parsed using SMOR (Faaß et al., 2010), Mar-
MoT (Müller et al., 2013) and the MATE depen-
dency parser (Bohnet, 2010). Based on the mor-
phological annotation, we extracted the lemmas
of all verb types from the corpus with frequencies
>100 (regarding base verbs) and >200 (regarding
complex verbs), and all their sentence contexts.
The total selection of German verb types contains
11 869 lemmas, including 6 998 complex verbs.

Experiment Setup The different models have
multiple parameters. We set the initial vocabulary
to the 200K most frequent word types, without re-
moving any of the target verb types. The maxi-
mum number of senses per verb type was set to
20. We enabled the multi-sense learning only for
our target verbs while all other words obtain only a
single sense per model. Regarding the skip-gram
architecture, we relied on a symmetrical window
of size 10, negative sampling with 15 samples,
vector dimensionality of 400 and one corpus iter-
ation. Regarding x-Means and BIRCH, we used
a maximum of 5 000 randomly chosen contexts to
learn the initial centroids/trees, due to the high-
dimensional representations of the sentences. All
other individual model-specific parameters were
set to the default. Our baseline model is a single-
sense skip-gram model as obtained by word2vec.

Implementations For HDP, we relied on the
python implementation from gensim1. For x-
Means, we used the java implementation Clod-
Hopper2. For BIRCH we used the java implemen-
tation JBIRCH3.

4 Evaluation

We evaluate our models on various semantic tasks:
general predictions of semantic similarity, and
specific tasks regarding complex German verbs,

1https://radimrehurek.com/gensim/
models/hdpmodel.html

2https://github.com/rscarberry-wa/
clodhopper

3https://github.com/perdisci/jbirch

i.e. semantic classification; prediction of composi-
tionality; detection of non-literal language usage.
The goal of the evaluation is to explore whether
the distinction of verb senses in our multi-sense
embedding models leads to an improvement of
model predictions across semantic tasks.

Similarity Traditionally, distributional word
representations are predominantly evaluated on
their ability to predict the degree of similarity for
word pairs in existing benchmarks. The predicted
degrees of similarity are compared against human
similarity ratings. For our German targets, we
use the German versions of WordSim-353 and
SimLex-999 (Leviant and Reichart, 2015). We
predict cosine similarity for multi-sense embed-
dings by computing a sense-weighted average
vector for each word. To assess the predictions,
we compare them against the gold standard
scores using Spearman’s Rank-Order Correlation
Coefficient ρ (Siegel and Castellan, 1988).

The results are presented in Table 1. For this
general semantic task, the multi-sense embeddings
do not provide significant improvements. The best
results are achieved by CHINRESTP for GerSim-
Lex and X-MEANS(W10EXP) for GerWS353, but
these results are close to the baselines.

Model GerWS353 GerSimLex
NP-MSSGR .62 .42
ChinRestP .64 .46
ChinWhisp .64 .36
HDP .63 .45
x-Means(NN) .64 .43
x-Means(w10Exp) .65 .44
BIRCH(NN) .63 .44
BIRCH(w10Exp) .64 .45
Baseline .65 .45

Table 1: Results for the word similarity datasets.

Compositionality Addressing the composition-
ality of complex words is a crucial ingredient
for lexicography and NLP applications, to know
whether the expression should be treated as a
whole, or through its constituents, and what the
expression means. In this evaluation, we predict
the degree of compositionality of German com-
plex verbs, i.e., the degree of relatedness between
a complex verb and its corresponding base verb
(such as abnehmen–nehmen ’take over–take’, and
anfangen–fangen ’begin–catch’). The predictions
are evaluated against an existing dataset of human
ratings on compositionality (Bott et al., 2016),
containing a total of 400 German particle verbs
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across 11 particle types. The results are presented
in Table 2. CHINWHISP performs significantly
better than the baseline, while most other models
are performing equally to or even inferior to the
baseline.

Model Prediction
NP-MSSGR .20
ChinRestP .30
ChinWhisp .32
HDP .19
x-Means(NN) .19
x-Means(w10Exp) .26
BIRCH(NN) .28
BIRCH(w10Exp) .26
Baseline .26

Table 2: Results for predicting compositionality.

Semantic Verb Classification Semantic verb
classifications are of great interest to NLP, specif-
ically regarding the pervasive problem of data
sparseness in the processing of natural language.
Such classifications have been used in applications
such as word sense disambiguation (Dorr and
Jones, 1996; Kohomban and Lee, 2005; McCarthy
et al., 2007), parsing (Carroll et al., 1998; Carroll
and Fang, 2004), machine translation (Prescher et
al., 2000; Koehn and Hoang, 2007; Weller et al.,
2014), and information extraction (Surdeanu et al.,
2003; Venturi et al., 2009).

We target the semantic classification of Ger-
man complex verbs by applying hard clustering
to multi-sense embeddings, rather than using soft
clustering. Focusing on particle verbs across three
particles (ab, an, auf ), we aim to obtain clus-
ter analyses that resemble existing manual sense
classifications based on formal semantic defini-
tions (Kliche, 2011; Lechler and Roßdeutscher,
2009; Springorum, 2011). All datasets represent
fuzzy gold standards. The ab classification con-
tains 205 particle verbs in 9 classes; the an clas-
sification contains 188 particle verbs in 8 classes;
the auf classification contains 234 particle verbs
in 11 classes. All refers to the concatenation of all
tasks.

Using multi-sense embeddings in a hard clus-
tering (rather than single-sense embeddings in a
soft clustering) avoids the usage of a cluster mem-
bership threshold, which most soft clustering al-
gorithms require. In contrast, the clustering al-
gorithm outputs a membership degree for each
element and each cluster, i.e., a fuzzy member-
ship. We rely on k-Means for clustering our multi-
sense embeddings, and compare against a fuzzy

c-Means baseline with single-sense embeddings.
(using every possible threshold within a range of
[0.01, 0.99] to determine the memberships, and re-
porting the one providing the highest score). As
evaluation measure we relied on B-Cubed (Bagga
and Baldwin, 1998) and report f-score between the
soft extension of precision and recall.

Table 3 presents the results. Overall, CHIN-
RESTP works best, and CHINWHISP and the
BIRCH variants work similarly well. NP-
MSSGR is worst. A manual inspection revealed
that NP-MSSGR assigns many verbs to multiple
clusters, resulting in too large and fuzzy clusters.

Model ab an auf all
NP-MSSGR .12 .18 .15 .05
ChinRestP .24 .31 .27 .13
ChinWhisp .26 .30 .28 .11
HDP .24 .28 .25 .10
x-Means(NN) .17 .25 .18 .09
x-Means(w10Exp) .17 .24 .20 .09
BIRCH(NN) .26 .30 .26 .12
BIRCH(w10Exp) .26 .32 .25 .12
Baseline .25 .26 .19 .11

Table 3: Results for semantic classification.

Detecting Non-Literal Meaning We explore
the prediction of literal vs. non-literal language
usage of German complex verbs, relying on an ex-
isting dataset containing 159 particle verbs within
6 436 sentences (Köper and Schulte im Walde,
2016). Each sentence is annotated on literal vs.
non-literal language usage, comprising 4 174 lit-
eral and 2 262 non-literal uses across the 159 par-
ticle verbs. Köper and Schulte im Walde (2016)
relied on the Multinomial Naive Bayes (MNB)
classifier by McCallum and Nigam (1998). We
applied the same experimental setup using ten-
fold cross validation. Further we re-implemented
their system as a baseline, using bag-of-words un-
igram context features, and added sense informa-
tion based on the embeddings. For a given sen-
tence, we compare which sense vector fits best to
the specific context. This is done by computing a
cosine similarity score between a verb sense vec-
tor verbi and the vectors of all context words in
the sentence. We then add a verb-sense specific
token based on the most similar sense embedding
to the unigram list. The underlying assumption is
that a specific sense is used either in literal or in
non-literal usage. When feeding the training data
to the classifier, it should thus automatically assign
a high probability for features that predominantly
occur for the respective classes.
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Figure 1: Cosine similarity between all sense pairs within a specific embedding model: many senes are
highly similar to each other.

A major difference between our setup and the
one by Köper and Schulte im Walde (2016) is the
information about the verb itself. In our experi-
ments, the classifier has knowledge about the verb
in a sentence, while in their setup the verb has
been removed, to avoid learning a verb-specific
majority baseline (since some verbs have only
literal/non-literal sentences). For this reason, our
baseline (i.e., one sense per verb) is already higher
than their reported baseline. The remaining parts
of our experimental setting are however done as by
Köper and Schulte im Walde (2016). To evaluate
the classifiers, we calculate the precision, recall
and f-score values regarding the non-literal class.

Table 4 shows the results. All multi-sense
embedding models clearly outperform the single-
sense baseline model. The overall best models are
the clustering models X-MEANS and BIRCH.

Model P R F1
NP-MSSGR 90.1 80.3 84.9
ChinRestP 89.0 79.7 84.1
ChinWhisp 90.1 81.2 85.4
HDP 90.8 80.1 85.1
x-Means(NN) 93.2 83.7 88.2
x-Means(w10Exp) 91.9 81.4 86.3
BIRCH(NN) 91.4 81.6 86.2
BIRCH(w10Exp) 91.1 82.7 86.7
Baseline (K&SiW) 91.1 66.0 76.5

Table 4: Results for non-literal language.

5 Discussion & Conclusions

Overall, our experiments demonstrated that the
variants of multi-sense embeddings we applied
across semantic tasks are successful in comparison
to single-sense baselines. In all the tasks we pre-
sented, some, most or even all of the multi-sense
embeddings outperformed the single-sense base-
lines, thus demonstrating the need to distinguish

between word senses in a distributional semantic
model.

The best multi-sense embeddings varied across
the semantic tasks. I.e., there was no type of multi-
sense embedding that performed superior to all
other multi-sense embedding types. Even CHIN-
WHISP, which was among the most successful
embeddings across many tasks, exhibited a weak-
ness on one task (i.e., compositionality). We also
looked into the inter-sense similarity within the
embedding models. Figure 1 presents box-plots on
the cosine similarity between all sense pairs within
a specific embedding model. The plot shows that
overall, the identified senses in the models are
quite similar to each other. The strongest inter-
sense similarity can be found for CHINRESTP.

Looking into the embeddings across multi-
sense approaches, we found that –even though the
embeddings were trained on the same data– the av-
erage number of senses differs strongly across the
embedding models: NP-MSSGR, CHINRESTP
and CHINWHISP have an average number of less
than 2 senses per word, while the X-MEANS and
BIRCH models have an average number between
3.2 and 7.6 senses. Most senses are obtained
by HDP (15.4), but many senses received little
weight.

This diversity of success across embedding
types and semantic tasks demonstrates that an
evaluation of semantic models on a general task
such as semantic similarity is not sufficient.
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Canada.

Marco Baroni and Alessandro Lenci. 2011. How we
BLESSed Distributional Semantic Evaluation. In
Proceedings of the EMNLP Workshop on Geometri-
cal Models for Natural Language Semantics, pages
1–10, Edinburgh, UK.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! A
Systematic Comparison of Context-counting and
Context-predicting Semantic Vectors. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics, pages 238–247,
Baltimore, MD.

Chris Biemann. 2006. Chinese Whispers: An Efficient
Graph Clustering Algorithm and Its Application to
Natural Language Processing Problems. In Pro-
ceedings of the 1st Workshop on Graph Based Meth-
ods for Natural Language Processing, TextGraphs-
1, pages 73–80, Stroudsburg, PA, USA.

David Blei, Andrew Ng, and Michael Jordan. 2003.
Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3:993–1022.

Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics, pages 89–97, Beijing, China.

Stefan Bott, Nana Khvtisavrishvili, Max Kisselew, and
Sabine Schulte im Walde. 2016. Ghost-PV: A Rep-
resentative Gold Standard of German Particle Verbs.
In Proceedings of the 5th Workshop on Cognitive As-
pects of the Lexicon, pages 125–133, Osaka, Japan.

John Carroll and Alex C. Fang. 2004. The Auto-
matic Acquisition of Verb Subcategorisations and
their Impact on the Performance of an HPSG Parser.
In Proceedings of the 1st International Joint Confer-
ence on Natural Language Processing, pages 107–
114, Sanya City, China.

John Carroll, Guido Minnen, and Ted Briscoe. 1998.
Can Subcategorisation Probabilities Help a Statisti-
cal Parser? In Proceedings of the 6th ACL/SIGDAT
Workshop on Very Large Corpora, pages 118–126,
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