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Abstract

We develop a novel cross-lingual word
representation model which injects syn-
tactic information through dependency-
based contexts into a shared cross-lingual
word vector space. The model, termed CL-
DEPEMB, is based on the following as-
sumptions: (1) dependency relations are
largely language-independent, at least for
related languages and prominent depen-
dency links such as direct objects, as ev-
idenced by the Universal Dependencies
project; (2) word translation equivalents
take similar grammatical roles in a sen-
tence and are therefore substitutable within
their syntactic contexts. Experiments with
several language pairs on word similarity
and bilingual lexicon induction, two fun-
damental semantic tasks emphasising se-
mantic similarity, suggest the usefulness of
the proposed syntactically informed cross-
lingual word vector spaces. Improvements
are observed in both tasks over standard
cross-lingual “offline mapping” baselines
trained using the same setup and an equal
level of bilingual supervision.

1 Introduction

In recent past, NLP as a field has seen tremendous
utility of distributed word representations (or word
embeddings, termed WEs henceforth) as features in
a variety of downstream tasks (Turian et al., 2010;
Collobert et al., 2011; Baroni et al., 2014; Chen
and Manning, 2014). The quality of these repre-
sentations may be further improved by leveraging
cross-lingual (CL) distributional information, as
evidenced by the recent body of work focused on
learning cross-lingual word embeddings (Klemen-
tiev et al., 2012; Zou et al., 2013; Hermann and

Blunsom, 2014; Gouws et al., 2015; Coulmance et
al., 2015; Duong et al., 2016, inter alia).1 The inclu-
sion of cross-lingual information results in a shared
cross-lingual word vector space (SCLVS), which
leads to improvements on monolingual tasks (typ-
ically word similarity) (Faruqui and Dyer, 2014;
Rastogi et al., 2015; Upadhyay et al., 2016), and
also supports cross-lingual tasks such as bilingual
lexicon induction (Mikolov et al., 2013a; Gouws et
al., 2015; Duong et al., 2016), cross-lingual infor-
mation retrieval (Vulić and Moens, 2015; Mitra et
al., 2016), entity linking (Tsai and Roth, 2016), and
cross-lingual knowledge transfer for resource-lean
languages (Søgaard et al., 2015; Guo et al., 2016).

Another line of work has demonstrated that
syntactically informed dependency-based (DEPS)
word vector spaces in monolingual settings (Lin,
1998; Padó and Lapata, 2007; Utt and Padó, 2014)
are able to capture finer-grained distinctions com-
pared to vector spaces based on standard bag-of-
words (BOW) contexts. Dependency-based vector
spaces steer the induced WEs towards functional
similarity (e.g., tiger:cat) rather than topical simi-
larity/relatedness (e.g., tiger:jungle), They support
a variety of similarity tasks in monolingual settings,
typically outperforming BOW contexts for English
(Bansal et al., 2014; Hill et al., 2015; Melamud et
al., 2016). However, despite the steadily growing
landscape of CL WE models, each requiring a dif-
ferent form of cross-lingual supervision to induce
a SCLVS, syntactic information is still typically
discarded in the SCLVS learning process.

To bridge this gap, in this work we develop a new
cross-lingual WE model, termed CL-DEPEMB,
which injects syntactic information into a SCLVS.
The model is supported by the recent initiatives
on language-agnostic annotations for universal lan-

1For a comprehensive overview of cross-lingual word em-
bedding models, we refer the reader to two recent survey
papers (Upadhyay et al., 2016; Vulić and Korhonen, 2016b).
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guage processing (i.e., universal POS (UPOS) tag-
ging and dependency (UD) parsing) (Nivre et al.,
2015). Relying on cross-linguistically consistent
UD-typed dependency links in two languages plus
a word translation dictionary, the model assumes
that one-to-one word translations are substitutable
within their syntactic contexts in both languages. It
constructs hybrid cross-lingual dependency trees
which could be used to extract monolingual and
cross-lingual dependency-based contexts (further
discussed in Sect. 2 and illustrated by Fig. 1).

In summary, our focused contribution is a new
syntactically informed cross-lingual WE model
which takes advantage of the normalisation pro-
vided by the Universal Dependencies project to
facilitate the syntactic mapping across languages.
We report results on two semantic tasks, monolin-
gual word similarity (WS) and bilingual lexicon
induction (BLI), which evaluate the monolingual
and cross-lingual quality of the induced SCLVS.
We observe consistent improvements over baseline
CL WE models which require the same level of
bilingual supervision (i.e., a word translation dic-
tionary). For this supervision setting, we show a
clear benefit of joint online training compared to
standard offline models which construct two sepa-
rate monolingual BOW-based or DEPS-based WE
spaces, and then map them into a SCLVS using
dictionary entries as done in (Mikolov et al., 2013a;
Dinu et al., 2015; Lazaridou et al., 2015; Vulić and
Korhonen, 2016b, inter alia)

2 Methodology
Representation Model In all experiments, we
opt for a standard and robust choice in vector
space modeling: skip-gram with negative sam-
pling (SGNS) (Mikolov et al., 2013b; Levy et al.,
2015). We use word2vecf, a reimplementation
of word2vec which is capable of learning from
arbitrary (word, context) pairs2, thus clearly em-
phasising the role of context in WE learning.

(Universal) Dependency-Based Contexts A
standard procedure to extract dependency-based
contexts (DEPS) (Padó and Lapata, 2007; Utt
and Padó, 2014) from monolingual data is as
follows. Given a parsed training corpus, for
each target w with modifiers m1, . . . ,mk and
a head h, w is paired with context elements

2https://bitbucket.org/yoavgo/word2vecf
For details concerning the implementation and learning, we
refer the interested reader to (Levy and Goldberg, 2014a)

m1 r1, . . . ,mk rk, h r
−1
h , where r is the type of

the dependency relation between the head and the
modifier (e.g., amod), and r−1 denotes an inverse
relation.3 When extracting DEPS, we adopt the
post-parsing prepositional arc collapsing procedure
(Levy and Goldberg, 2014a) (see Fig. 1a-1b).

Cross-Lingual DEPS: CL-DEPEMB First, a
UD-parsed monolingual training corpus is obtained
in both languages L1 and L2. The use of the inter-
lingual UD scheme enables linking dependency
trees in both languages (see the structural similar-
ity of the two sentences in English (EN) and Italian
(IT), Fig. 1a-1b). For instance, the link between EN

words Australian and scientist as well as IT words
australiano and scienzato is typed amod in both
trees. This link generates the following monolin-
gual EN DEPS: (scientist, Australian amod), (Aus-
tralian, scientist amod−1) (similar for IT).

Now, assume that we possess an EN-IT transla-
tion dictionary D with pairs [w1, w2] which con-
tains entries [Australian, australiano] and [scien-
tist, scienzato]. Given the observed similarity in the
sentence structure, and the fact that words from a
translation pair tend to take similar UPOS tags and
similar grammatical roles in a sentence, we can sub-
stitute w1 with w2 in all DEPS in which w1 partici-
pates (and vice versa, replace w2 with w1). Using
the substitution idea, besides the original monolin-
gual EN and IT DEPS contexts, we now generate
additional hybrid cross-lingual EN-IT DEPS con-
texts: (scientist, australiano amod), (australiano,
scientist amod−1), (scienzato, Australian amod),
(Australian, scienzato amod−1) (again, we can also
generate such hybrid IT-EN DEPS contexts).

CL-DEPEMB then trains jointly on such ex-
tended DEPS contexts containing both monolin-
gual and cross-lingual (word, context) dependency-
based pairs. With CL-DEPEMB, words are con-
sidered similar if they often co-occur with similar
words (and their translations) in the same depen-
dency relations in both languages. For instance,
words discovers and scopre might be considered
similar as they frequently co-occur as predicates for
the nominal subjects (nsubj) scientist and scien-
zato, and stars and stelle are their frequent direct
objects (dobj). An illustrative example of the core
idea behind CL-DEPEMB is provided in Fig. 1.

3Given an example from Fig. 1, the DEPS contexts of dis-
covers are: scientist nsubj, stars dobj, telescope nmod. Com-
pared to BOW, DEPS capture longer-range relations (e.g., tele-
scope) and filter out “accidental contexts” (e.g., Australian).
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Australian scientist discovers stars with telescope

amod nsubj
dobj case

nmod

prep:with(a) T1
Scienziato australiano scopre stelle con telescopio

amod

nsubj

dobj case

nmod

prep:con(b) T2

Australian scienzato discovers stars with telescope

amod nsubj
dobj

nmod

prep:with(c) T3
Scientist australiano scopre stelle con telescopio

amod

nsubj

dobj

nmod

prep:con(d) T4

Australian scientist discovers stelle with telescope

amod nsubj
dobj

nmod

prep:with(e) T5
Scienziato australiano scopre stars con telescopio

amod

nsubj

dobj

nmod

prep:con(f) T6

Figure 1: An example of extracting mono and CL DEPS contexts from UD parses in EN and IT assuming
two dictionary entries [scientist, scienzato], [stars, stelle]. (T1): the example EN sentence taken from
(Levy and Goldberg, 2014a), UD-parsed. (T2): the same sentence in IT, UD-parsed; Note the very similar
structure of the two parses and the use of prepositional arc collapsing (e.g., the typed link prep with). (T3):
the hybrid EN-IT dependency tree where the EN word scientist is replaced by its IT translation scienzato.
(T4): the hybrid IT-EN tree using the same translation pair. (T5) and (T6): the hybrid EN-IT and IT-EN

trees obtained using the lexicon entry (stars, stelle). While monolingual dependency-based representation
models use only monolingual trees T1 and T2 for training, our CL-DEPEMB model additionally trains on
the (parts of) hybrid trees T3-T6, combining monolingual (word, context) training examples with cross-
lingual training examples such as (discovers, stelle dobj) or (australiano, scientist amod−1). Although
the two sentences (T1 and T2) are direct translations of each other for illustration purposes, we stress that
the proposed CL-DEPEMB model does not assume the existence of parallel data nor requires it.

Offline Models vs CL-DEPEMB (Joint) CL-
DEPEMB uses a dictionary D as the bilingual sig-
nal to tie two languages into a SCLVS. A standard
CL WE learning scenario in this setup is as fol-
lows (Mikolov et al., 2013a; Vulić and Korhonen,
2016b): (1) two separate monolingual WE spaces
are induced using SGNS; (2) dictionary entries
from D are used to learn a mapping function mf
from the L1 space to the L2 space; (3) when mf
is applied to all L1 word vectors, the transformed
L1 space together with the L2 space is a SCLVS.
Monolingual WE spaces may be induced using dif-
ferent context types (e.g., BOW or DEPS). Since
the transformation is done after training, these mod-
els are typically termed offline CL WE models.

On the other hand, given a dictionary link
[w1, w2], between an L1 word w1 and an L2 word
w2, our CL-DEPEMB model performs an online
training: it uses the word w1 to predict syntactic
neighbours of the word w2 and vice versa. In fact,
we train a single SGNS model with a joint vocabu-
lary on two monolingual UD-parsed datasets with
additional cross-lingual dependency-based training
examples fused with standard monolingual DEPS
pairs. From another perspective, the CL-DEPEMB

model trains an extended dependency-based SGNS

model now composed of four joint SGNS models
between the following language pairs: L1 → L1,
L1 → L2, L2 → L1, L2 → L2 (see Fig. 1).4

3 Experimental Setup

We report results with two language pairs: English-
German/Italian (EN-DE/IT) due to the availability
of comprehensive test data for these pairs (Leviant
and Reichart, 2015; Vulić and Korhonen, 2016a).

Training Setup and Parameters For all lan-
guages, we use the Polyglot Wikipedia data (Al-
Rfou et al., 2013).5 as monolingual training data.
All corpora were UPOS-tagged and UD-parsed us-
ing the procedure of Vulić and Korhonen (2016a):
UD treebanks v1.4, TurboTagger for tagging (Mar-
tins et al., 2013), Mate Parser v3.61 with suggested
settings (Bohnet, 2010).6 The SGNS preprocessing
scheme is standard (Levy and Goldberg, 2014a):

4A similar idea of extended joint CL training was discussed
previously by (Luong et al., 2015; Coulmance et al., 2015).
In this work, we show that expensive parallel data and word
alignment links are not required to produce a SCLVS. Further,
instead of using BOW contexts, we demonstrate how to use
DEPS contexts for joint training in the CL settings.

5https://sites.google.com/site/rmyeid/projects/polyglot
6LAS scores on the TEST portion of each UD treebank are:

0.852 (EN), 0.884 (IT), 0.802 (DE).
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all tokens were lowercased, and words and contexts
that appeared less than 100 times were filtered out.7

We report results with d = 300-dimensional WEs,
as similar trends are observed with other d-s.

Implementation The code for generating mono-
lingual and cross-lingual dependency-based (word,
context) pairs for the word2vecf SGNS train-
ing using a bilingual dictionary D is available at:
https://github.com/cambridgeltl/
cl-depemb/.

Translation Dictionaries We report results with
a dictionary D labelled BNC+GT: a list of 6,318
most frequent EN lemmas in the BNC corpus (Kil-
garriff, 1997) translated to DE and IT using Google
Translate (GT), and subsequently cleaned by native
speakers. A similar setup was used by (Mikolov et
al., 2013a; Vulić and Korhonen, 2016b). We also
experiment with dict.cc, a freely available large
online dictionary (http://www.dict.cc/),
and find that the relative model rankings stay the
same in both evaluation tasks irrespective to the
chosen D.

Baseline Models CL-DEPEMB is compared
against two relevant offline models which also learn
using a seed dictionaryD: (1) OFF-BOW2 is a linear
mapping model from (Mikolov et al., 2013a; Dinu
et al., 2015; Vulić and Korhonen, 2016b) which
trains two SGNS models with the window size
2, a standard value (Levy and Goldberg, 2014a);
we also experiment with more informed positional
BOW contexts (Schütze, 1993; Levy and Goldberg,
2014b) (OFF-POSIT2); (2) OFF-DEPS trains two
DEPS-based monolingual WE spaces and linearly
maps them into a SCLVS. Note that OFF-DEPS uses
exactly the same information (i.e., UD-parsed cor-
pora plus dictionary D) as CL-DEPEMB.

4 Results and Discussion

Evaluation Tasks Following Luong et al. (2015)
and Duong et al. (2016), we argue that good cross-
lingual word representations should preserve both
monolingual and cross-lingual representation qual-
ity. Therefore, similar to (Duong et al., 2016; Upad-
hyay et al., 2016), we test cross-lingual WEs in two
core semantic tasks: monolingual word similarity
(WS) and bilingual lexicon induction (BLI).

7Exactly the same vocabularies were used with all mod-
els (∼ 185K distinct EN words, 163K DE words, and 83K
IT words). All word2vecf SGNS models were trained us-
ing standard settings: 15 epochs, 15 negative samples, global

IT DE EN (with IT)

Model All — Verbs All — Verbs All — Verbs

MONO-SGNS 0.235 — 0.318 0.305 — 0.259 0.331 — 0.281
OFF-BOW2 0.254 — 0.317 0.306 — 0.263 0.328 — 0.279
OFF-POSIT2 0.227 — 0.323 0.283 — 0.194 0.336 — 0.316
OFF-DEPS 0.199 — 0.308 0.258 — 0.214 0.334 — 0.311

CL-DEPEMB 0.287 — 0.358 0.306 — 0.319 0.356 — 0.308

Table 1: WS results on multilingual SimLex-999.
All scores are Spearman’s ρ correlations. MONO-
SGNS refers to the best scoring monolingual SGNS

model in each language (BOW2, POSIT2 or DEPS).
Verbs refers to the verb subset of each SimLex-999.

IT-EN DE-EN

Model SL-TRANS VULIC1K SL-TRANS UP1328

OFF-BOW2 0.328 [0.457] 0.405 0.218 [0.246] 0.317
OFF-POSIT2 0.219 [0.242] 0.272 0.115 [0.056] 0.185
OFF-DEPS 0.169 [0.065] 0.271 0.108 [0.051] 0.162

CL-DEPEMB 0.541 [0.597] 0.532 0.503 [0.385] 0.436

Table 2: BLI results (Top 1 scores). For SL-TRANS

we also report results on the verb translation sub-
task (numbers in square brackets).

Word Similarity Word similarity experiments
were conducted on the benchmarking multilin-
gual SimLex-999 evaluation set (Leviant and Re-
ichart, 2015) which provides monolingual similar-
ity scores for 999 word pairs in English, German,
and Italian.8 The results for the three languages are
displayed in Tab. 1.

These results suggest that CL-DEPEMB is the
best performing and most robust model in our com-
parison across all three languages, providing the
first insight that the online training with the ex-
tended set of DEPS pairs is indeed beneficial for
modeling true (functional) similarity.

We also carry out tests in English using another
word similarity metric: QVEC,9 which measures
how well the induced word vectors correlate with
a matrix of features from manually crafted lexical
resources and is better aligned with downstream
performance (Tsvetkov et al., 2015). The results are
again in favour of CL-DEPEMB with a QVEC score
of 0.540 (BNC+GT) and 0.543 (dict.cc), com-
pared to those of OFF-BOW2 (0.496), OFF-POSIT2
(0.510), and OFF-DEPS (0.528).

Bilingual Lexicon Induction BLI experiments
were conducted on several standard test sets: IT-

(decreasing) learning rate 0.025, subsampling rate 1e− 4.
8http://technion.ac.il/∼ira.leviant/MultilingualVSMdata.html
9https://github.com/ytsvetko/qvec
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OFF-DEPS 0.259
BEST-BASELINE 0.271

CL-DEPEMB (+IT) 0.285
CL-DEPEMB (+DE) 0.310

Table 3: WS EN results on SimVerb-3500 (Spear-
man’s ρ correlation scores). BEST-BASELINE refers
to the best score across all baseline modeling
variants. We report results of CL-DEPEMB with
dict.cc after multilingual training with Italian
(+IT) and German (+DE).

EN was evaluated on VULIC1K (Vulić and Moens,
2013a), containing 1,000 IT nouns and their EN

translations, and DE-EN was evaluated on UP1328
(Upadhyay et al., 2016), containing 1,328 test pairs
of mixed POS tags. In addition, we evaluate both
language pairs on SimLex-999 word translations
(Leviant and Reichart, 2015), containing ∼ 1K test
pairs (SL-TRANS). We report results using a stan-
dard BLI metric: Top 1 scores. The same trends are
visible with Top 5 and Top 10 scores. All test word
pairs were removed from D for training.

The results are summarised in Tab. 2, indicat-
ing significant improvements with CL-DEPEMB

(McNemar’s test, p < 0.05). The gap between the
online CL-DEPEMB model and the offline base-
lines is now even more prominent,10 and there is a
huge difference in performance between OFF-DEPS

and CL-DEPEMB, two models using exactly the
same information for training.

Experiments on Verbs Following prior work,
e.g., (Bansal et al., 2014; Melamud et al., 2016;
Schwartz et al., 2016), we further show that WE
models which capture functional similarity are es-
pecially important for modelling particular “more
grammatical” word classes such as verbs and ad-
jectives. Therefore, in Tab. 1 and Tab. 2 we also
report results on verb similarity and translation.
The results indicate that injecting syntax into cross-
lingual word vector spaces leads to clear improve-
ments on modelling verbs in both evaluation tasks.

We further verify the intuition by running exper-
iments on another word similarity evaluation set,
which targets verb similarity in specific: SimVerb-
3500 (Gerz et al., 2016) contains similarity scores
for 3,500 verb pairs. The results of the CL-

10We also experimented with other language pairs repre-
sented in VULIC1K (Spanish/Dutch-English) and UP1328
(French/Swedish-English). The results also show similar im-
provements with CL-DEPEMB, not reported for brevity.

DEPEMB on SimVerb-3500 with dict.cc are
provided in Tab. 3, further indicating the usefulness
of syntactic information in multilingual settings for
improved verb representations.

Similar trends are observed with adjectives: e.g.,
CL-DEPEMB with dict.cc obtains a ρ correla-
tion score of 0.585 on the adjective subset of DE

SimLex while the best baseline score is 0.417; for
IT these scores are 0.334 vs. 0.266.

5 Conclusion and Future Work

We have presented a new cross-lingual word em-
bedding model which injects syntactic information
into a cross-lingual word vector space, resulting
in improved modeling of functional similarity, as
evidenced by improvements on word similarity and
bilingual lexicon induction tasks for several lan-
guage pairs. More sophisticated approaches involv-
ing the use of more accurate dependency parsers
applicable across different languages (Ammar et
al., 2016), selection and filtering of reliable dic-
tionary entries (Peirsman and Padó, 2010; Vulić
and Moens, 2013b; Vulić and Korhonen, 2016b),
and more sophisticated approaches to constructing
hybrid cross-lingual dependency trees (Fig. 1) may
lead to further advances in future work. Other cross-
lingual semantic tasks such as lexical entailment
(Mehdad et al., 2011; Vyas and Carpuat, 2016) or
lexical substitution (Mihalcea et al., 2010) may also
benefit from syntactically informed cross-lingual
representations. We also plan to test the portability
of the proposed framework, relying on the abstrac-
tive assumption of language-universal dependency
structures, to more language pairs, including the
ones outside the Indo-European language family.
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