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Abstract

We put forward an approach that ex-
ploits the knowledge encoded in lexical
resources in order to induce representa-
tions for words that were not encountered
frequently during training. Our approach
provides an advantage over the past work
in that it enables vocabulary expansion
not only for morphological variations, but
also for infrequent domain specific terms.
We performed evaluations in different set-
tings, showing that the technique can pro-
vide consistent improvements on multiple
benchmarks across domains.

1 Introduction

Word representations are a core component in
many natural language processing systems ow-
ing to their generalisation power, i.e., they can
empower a system to share its knowledge across
similar words. The prominent distributional ap-
proach to word representation (Turney and Pan-
tel, 2010) is highly reliant on the availability of
large amounts of training data and falls short of
effectively modeling rare words that appear only
a handful of times in the training corpus. Sev-
eral efforts have been made to address this defi-
ciency by expanding the coverage through induc-
ing representations for rare words. Recent work
has mainly focused on morphologically complex
rare words has often tried to alleviate the prob-
lem by spreading the available knowledge across
words that share the same morpheme (Luong et al.,
2013; Botha and Blunsom, 2014; Soricut and Och,
2015). However, these techniques are unable to in-
duce representations for words whose morphemes
are not seen during training, such as infrequent do-
main specific terms. Importantly, the coverage is-
sue is more evident when representations trained

on abundant generic texts are applied to tasks in
specific domains. As a matter of fact, the target
domain can have dedicated lexical resources, such
as ontologies, which are generally ignored by the
distributional representation approach.

We propose a technique that exploits the knowl-
edge encoded in lexical resources in order to ex-
pand the vocabulary of pre-trained word represen-
tations. Our approach can be applied for induc-
ing representation not only for morphological vari-
ations but also for words whose morphemes are
not seen during training, such as infrequent do-
main specific terms, hence giving it domain spe-
cialisation advantage. We show using different ex-
periments that the proposed approach can provide
significant improvements on multiple general and
specific domain word similarity datasets.

2 Embeddings for Rare Words

The objective is to expand the vocabulary of a
given set of pre-trained word embeddings W by
adding rare words.1 To achieve this goal, we lever-
age a lexical resource S that provides a better cov-
erage of rare words or belongs to a specific domain
and hence can be used to specialiseW to that tar-
get domain. Our approach has two phases for in-
ducing an embedding for a word wr which has not
been seen frequently during the training ofW but
is covered by S. Firstly, it analyzes the lexical re-
source in order to extract the set of semantic land-
marks of wr (Section 2.1). Secondly, it induces an
embedding for wr which places the rare word in
the region of the semantic space in the proximity
of its semantic landmarks (Section 2.2).

Prerequisites. Our approach receives as its in-
puts the pre-trained word embeddings W and the
lexical resource S. Specifically, the resource

1Given their prominence, we use embeddings to refer to
word representations in general.
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should be viewable as a graph S = (V,E), where
V is the set of vertices that correspond to words
or concepts and E is the set of edges that denote
semantic relationships between entities in V .

2.1 Extraction of semantic landmarks
The aim of this phase is to find the set of land-
marks for wr which can best indicate the proxim-
ity of semantic space in which we can position wr.
As landmarks for wr, we take its most semanti-
cally similar words which we extract from S by
viewing the resource as a semantic network and
analyzing its structure. To this end, we use the
Personalized PageRank (Haveliwala, 2002, PPR)
algorithm which has been proven to be a reliable
graph analysis technique in various NLP tasks, in-
cluding Word Sense Disambiguation (Agirre et al.,
2014) and word similarity (Ramage et al., 2009;
Pilehvar and Navigli, 2015).

Let k be the corresponding vertex of wr in S.
We estimate the PPR distribution xT for this ver-
tex. This distribution can be seen as a column vec-
tor (n × 1) whose cells denote the semantic as-
sociation of their corresponding vertices to k. To
compute xT, we first construct a row-stochastic
transition matrix Pn×n where n = |V | and cell
Pij denotes the probability of shifting from vertex
i to vertex j within a single step of random walk.
This probability is equal to 0 if there is no seman-
tic relation between these two vertices and, other-
wise, equal to the inverse of the total number of
edges that connect vertex i to other vertices in the
network (under the assumption that all edges are
equally likely to be taken in a random walk). We
can then obtain the PPR distribution xT by solving
the eigenvector problem xTP = xT (Langville
and Meyer, 2004). This computation has tradi-
tionally been performed using the power method:
x(t)T = α x(t−1)TP + (1 − α)vT

k , where vT
k is

a column vector in which all the probability mass
is assigned to the cell corresponding to vertex k
and α is the scaling factor which is usually set to
0.85 (Langville and Meyer, 2004). Once xT was
computed we can sort its elements according to
their probabilities and obtain the list of most se-
mantically similar words to vertex k, i.e., semantic
landmarks for word wr.

2.2 Embedding induction
Let Lr be the sorted list of semantic landmarks for
wr and d(x) be an embedding for word x in the
space of W . We adopt the approach of Pilehvar

and Collier (2016a) and induce an embedding for
wr in the same semantic space using the following
formula:

d̂(wr) = θ d(w0
r) +

1
Lr

|Lr|∑
i=1

e−id(li,r). (1)

where li,r is the ith word in Lr. The formula
computes an embedding for wr which maps the
word to the weighted centroid of its semantic land-
marks. The exponential weighting assigns more
importance to the top words in the list which are
semantically more representative of wr. Note that
d(w0

r) is the initial embedding for wr. We include
this in our formulation in order to extend the ap-
plication of our approach from induction only to
embedding enrichment, where we tend to improve
an unreliable embedding d(w0

r) obtained for a rare
word by leveraging knowledge encoded in the lex-
ical resource, and to domain adaptation, where the
semantics of d(w0

r) are adapted to a target domain
by using domain specific landmarks that are ex-
tracted from a lexical resource in that domain. Pa-
rameter θ adjusts the contribution of initial embed-
ding. Setting the parameter to zero reduces the for-
mulation to that of inducing an embedding for an
unseen word. In the next section, we discuss how
the parameters were set in our experiments.

3 Experiments

As evaluation framework, we used word similar-
ity. To verify the ability of the approach in induc-
ing embeddings in both general and specific do-
mains, we carried out two different experiments.

Embeddings. We used three different pre-
trained word embeddings: (1) GLOVE embed-
dings trained by Pennington et al. (2014) on
Wikipedia and Gigaword 5 (vocab: 400K, dim:
300), (2) W2V-GN, Word2vec (Mikolov et al.,
2013) trained on the Google News dataset (vo-
cab: 3M, dim: 300), and (3) W2V-250K, the same
Word2vec embeddings with a vocabulary of 250K
most frequent words. We opted for these embed-
dings mainly for their popularity but we note that
the proposed approach is equally applicable to any
other vector representation.

Parameters. In experiments, whenever we had
access to frequency statistics in the training data,
we considered words with frequency < 10K as
rare and induced their representations along with
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Vanilla +Induction

OOV r ρ OOV r ρ

GLOVE 11% 34.9 34.4 0% 38.6 39.7
W2V-250K 34% 31.0 25.9 0% 44.2 47.5
W2V-GN 9% 43.8 45.3 0% 48.3 50.5

Table 1: Spearman (ρ×100) and Pearson (r×100) correlation performance of our approach when using
three different embeddings on the RW dataset.

unseen words. We also limit the size of Lu to
the top 25 words for faster computation. Also, we
set θ in formula 1 to one in order to assign equal
weights to the initial embedding d(w0

r), when-
ever available, and to the one induced based on
the knowledge extracted from the lexical resource.
We did not perform any tuning on these parame-
ters. Notably, θ can be set based on the reliability
of d(w0

r), for instance according to the frequency
of w0

r in the training corpus. We leave the tuning
of these and the evaluation of other word vectors
to future work.

3.1 General domain setting

As our general domain evaluation benchmark we
used the Stanford Rare Word (RW) similarity
dataset (Luong et al., 2013) which is a suitable
framework for evaluating the performance of rep-
resentation induction techniques. The dataset
comprises 2034 word pairs, 173 of which have at
least one of their words not covered in our high-
est coverage embeddings, i.e., W2V-GN with a vo-
cabulary size of 3 million words. As our general
domain lexical resource, we opted for WordNet
(Fellbaum, 1998), the community’s de-facto stan-
dard English lexical resource.

Results. Table 1 lists the performance of our ap-
proach on the RW dataset. Results are shown for
the three initial embeddings. For each of these we
report the percentage of uncovered (OOV) words
in the initial set (“Vanilla”) as well as that after the
induction of new embeddings to expand the vocab-
ulary (“+Induction”). We observe that, irrespec-
tive of the utilized embeddings, our approach pro-
vides consistent improvements according to both
evaluation measures. The improvement is high-
est for W2V-250K that has the smallest vocabu-
lary size, highlighting the ability of our approach
in effective vocabulary expansion.

We also benchmark our system against three

other representation induction techniques (cf. Sec-
tion 4) that have reported performance on the RW
dataset. Results are shown in Table 2.2 To have
a fair comparison, in this setting we used a 500d
set of embeddings trained by the Skipgram model
(Mikolov et al., 2013) on the Wikipedia corpus
(Shaoul and Westbury, 2010), similarly to Sori-
cut and Och (2015). The table also shows results
on RG-65 (Rubenstein and Goodenough, 1965),
which is a standard dataset with relatively high fre-
quency words, to provide a baseline for comparing
the relative quality of the initial embeddings prior
to any induction. We can see that our approach
outperforms all the comparison work, particularly
that of Soricut and Och (2015) which uses the
same initial embeddings. This underlines the ef-
fectiveness of our approach in inducing embed-
dings for morphologically complex rare words.

3.2 Specific domain setting
As was mentioned before, our approach provides
domain specialisation advantage in that it can be
used to induce embeddings not only for mor-
phologically complex forms but also for domain
specific terms for which no subword information
might be available in the training corpus. We
evaluated the ability of our approach in special-
ising general domain embeddings to the medical
domain which provides a challenging benchmark
with its extensive terminology. We performed
experiments on UMNSRS (Liu et al., 2012) and
MayoSRS (Pakhomov et al., 2011) which are two
standard word similarity datasets for the domain.

Lexical resource. We used Medical Subject
Headings3(MeSH) as our medical lexical re-
source. MeSH is a medical thesaurus that was
created mainly for the purpose of indexing jour-
nal articles in the domain. As of December 2016,

2For this experiment, we show Spearman ρ results only as
none of the comparison work reported Pearson correlation.

3https://www.nlm.nih.gov/mesh/
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Approach RW RG-65

OOV ρ OOV ρ

Botha and Blunsom (2014) NA 30.0 NA 41.0
Luong et al. (2013)∗ 0% 34.4 0% 65.5
Soricut and Och (2015)∗ 0% 41.8 0% 75.1
Our approach∗ 0% 43.3 0% 75.1

Number of pairs 2034 65

Table 2: Evaluation results on the RW dataset (and on RG-65 as baseline). Systems marked with ∗ are
trained on the same corpus.

Vanilla +Induction

OOV r ρ OOV r ρ

M
ay

o GLOVE 16% 11.1 11.6 11% 36.7 26.1
W2V-250K 41% 1.2 2.9 21% 27.8 20.1
W2V-GN 12% 15.5 14.0 10% 18.4 10.9

U
M

N GLOVE 17% 31.6 24.4 6% 38.2 33.6
W2V-250K 38% 11.8 3.2 13% 27.8 20.1
W2V-GN 17% 25.8 21.5 7% 32.8 32.4

Table 3: Evaluation results on two biomedical word similarity datasets: MayoSRS (101 pairs) and UMN-
SRS (566 pairs).

the thesaurus comprises 25,186 headings that are
arranged in a hierarchical structure, covering 75%
and 38% of unique words in the UMNSRS and
MayoSRS datasets, respectively.

Results. Table 3 shows the results on the two do-
main specific datasets. On both datasets and for all
the three embeddings, our approach provides con-
siderable raise in vocabulary coverage which re-
sults in significant performance improvements ac-
cording to both evaluation measures. This high-
lights the effectiveness of our approach in induc-
ing representations for terms such as rhonchi, os-
teophyte, and cardura for which no subword in-
formation is available in the training data. It is im-
portant to note that none of the comparison work,
which generally focus on morphologically com-
plex words, can induce representations for such
terms. This advantage enables us to train embed-
dings in general domain, for which text are avail-
able abundantly, and specialise them to specific
domains for which large amounts of training data
might not be available. We also note that our sys-
tem did not provide full coverage of the words
in the two datasets, missing several words which

were not included in MeSH, e.g., dysguesia, heme-
temesis and ceftiaxone. This can be substantially
improved by using larger medical ontologies, such
as SNOMED CT4. We leave this to future work.

4 Related Work

Recent research on representation induction for
rare words has mainly focused on the case of in-
frequent morphological variations (Alexandrescu
and Kirchhoff, 2006) and has tried to address the
problem by resorting to information available for
subword units. A morphological analyzer, such
as Morfessor (Creutz and Lagus, 2007), is usu-
ally used in a pre-processing step to break in-
flected words into their morphological structures.
Representations are then induced for morpholog-
ically complex words from their morphemes ei-
ther by combining recursive neural networks (Lu-
ong et al., 2013) or using log-bilinear language
models (Botha and Blunsom, 2014). Lazaridou et
al. (2013) induced embeddings for complex words
by adapting phrase composition models, whereas
Soricut and Och (2015) automatically constructed

4http://www.ihtsdo.org/snomed-ct
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a morphological graph by exploiting regularities
within a word embedding space. In the latter
case, the representations were inferred by analyz-
ing morphological transformations in the graph.
Also related to our work is the retrofitting (Faruqui
et al., 2015) of pre-trained embeddings by exploit-
ing semantic lexical resources. Despite being ef-
fective in improving the representations for seen
words, the retrofitting approaches are generally
unable to induce new embeddings to address the
unseen words problem. Cotterell et al. (2016) de-
signed an extension of the retrofitting procedure
that uses morphological resources to generate vec-
tors for forms not observed in the training data.

A common strand in all these works is that they
assume that the training corpus covers the mor-
pheme or other morphological variations of an un-
seen word. As a result, they fall short of mod-
elling words whose morphemes are not seen dur-
ing training. The proposed model is different in
that it can induce embeddings not only for in-
flected forms and derivations, but also for words
whose morphemes are not seen during the train-
ing. In (Pilehvar and Collier, 2016b), we proposed
a model that exploited Wikipedia articles in order
to adapt a set of pre-trained embeddings to a spe-
cific domain. Here, we extend that model and ap-
ply it to the task of vocabulary expansion for rare
and unseen words.

5 Conclusions and Future Work

An approach was proposed for inducing embed-
dings for rare words on the basis of the knowl-
edge extracted from external lexical resources. We
showed using different experiments that the ap-
proach is effective in addressing the rare word
problem for morphologically complex words in
the general domain as well as for specialising a
pre-trained set of embeddings to the medical do-
main. As future work, we plan to experiment with
larger lexical resources and representations, such
as that of Camacho-Collados et al. (2016), and
perform evaluations on other domains. We also
intend to extend the model to handle less struc-
tured resources, such as the Paraphrase Database
(Ganitkevitch et al., 2013).
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José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2016. Nasari: Integrating ex-
plicit knowledge and corpus statistics for a multilin-
gual representation of concepts and entities. Artifi-
cial Intelligence, 240:36–64.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016. Morphological smoothing and extrapolation
of word embeddings. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1651–
1660, Berlin, Germany.

Mathias Creutz and Krista Lagus. 2007. Unsuper-
vised models for morpheme segmentation and mor-
phology learning. ACM Transactions on Speech and
Language Processing, 4(1):3:1–3:34.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith.
2015. Retrofitting word vectors to semantic lexi-
cons. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1606–1615, Denver, Colorado.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Database. MIT Press, Cambridge, MA.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of NAACL-HLT, pages
758–764, Atlanta, Georgia.

Taher H. Haveliwala. 2002. Topic-sensitive PageR-
ank. In Proceedings of the 11th International Con-
ference on World Wide Web, pages 517–526, Hon-
olulu, Hawaii, USA.

Amy N. Langville and Carl D. Meyer. 2004. Deeper
inside PageRank. Internet Mathematics, 1(3):335–
380.

Angeliki Lazaridou, Marco Marelli, Roberto Zampar-
elli, and Marco Baroni. 2013. Compositional-
ly derived representations of morphologically com-
plex words in distributional semantics. In Proceed-
ings of the 51st Annual Meeting of the Association

392



for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1517–1526, Sofia, Bulgaria.

Ying Liu, Bridget T. McInnes, Ted Pedersen,
Genevieve Melton-Meaux, and Serguei Pakhomov.
2012. Semantic relatedness study using second or-
der co-occurrence vectors computed from biomedi-
cal corpora, umls and wordnet. In Proceedings of
the 2Nd ACM SIGHIT International Health Infor-
matics Symposium, pages 363–372.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 104–113,
Sofia, Bulgaria.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word repre-
sentations in vector space. In Workshop at Inter-
national Conference on Learning Representations,
Scottsdale, Arizona.

Serguei V.S. Pakhomov, Ted Pedersen, Bridget
McInnes, Genevieve B. Melton, Alexander Rug-
gieri, and Christopher G. Chute. 2011. Towards a
framework for developing semantic relatedness ref-
erence standards. Journal of Biomedical Informat-
ics, 44(2):251–265, April.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP 2014,
pages 1532–1543, Doha, Qatar.

Mohammad Taher Pilehvar and Nigel Collier. 2016a.
De-conflated semantic representations. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1680–1690,
Austin, Texas, November. Association for Computa-
tional Linguistics.

Mohammad Taher Pilehvar and Nigel Collier. 2016b.
Improved semantic representation for domain-
specific entities. In Proceedings of the 15th Work-
shop on Biomedical Natural Language Processing,
pages 12–16, Berlin, Germany, August. Association
for Computational Linguistics.

Mohammad Taher Pilehvar and Roberto Navigli. 2015.
From senses to texts: An all-in-one graph-based ap-
proach for measuring semantic similarity. Artificial
Intelligence, 228:95–128.

Daniel Ramage, Anna N. Rafferty, and Christopher D.
Manning. 2009. Random walks for text semantic
similarity. In Proceedings of the 2009 Workshop on
Graph-based Methods for Natural Language Pro-
cessing, pages 23–31, Suntec, Singapore.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

C. Shaoul and C. Westbury. 2010. The West-
bury Lab Wikipedia Corpus. http://www.
psych.ualberta.ca/˜westburylab/
downloads/westburylab.wikicorp.
download.html. Accessed: 2016-11-10.

Radu Soricut and Franz Och. 2015. Unsuper-
vised morphology induction using word embed-
dings. In Proceedings of NAACL-HLT, pages 1627–
1637, Denver, Colorado.

Peter D. Turney and Patrick Pantel. 2010. From
frequency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37(1):141–188.

393


