
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 383–387,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Neural Machine Translation with Recurrent Attention Modeling

Zichao Yang, Zhiting Hu, Yuntian Deng, Chris Dyer, Alex Smola
Carnegie Mellon University

{zichaoy,zhitingh,yuntiand,cdyer}@cs.cmu.edu
alex@smola.org

Abstract

Knowing which words have been attended
to in previous time steps while generating
a translation is a rich source of information
for predicting what words will be attended
to in the future. We improve upon the at-
tention model of Bahdanau et al. (2014)
by explicitly modeling the relationship be-
tween previous and subsequent attention
levels for each word using one recurrent
network per input word. This architecture
easily captures informative features, such
as fertility and regularities in relative dis-
tortion. In experiments, we show our pa-
rameterization of attention improves trans-
lation quality.

1 Introduction

In contrast to earlier approaches to neural ma-
chine translation (NMT) that used a fixed vec-
tor representation of the input (Sutskever et al.,
2014; Kalchbrenner and Blunsom, 2013), atten-
tion mechanisms provide an evolving view of the
input sentence as the output is generated (Bah-
danau et al., 2014). Although attention is an intu-
itively appealing concept and has been proven in
practice, existing models of attention use content-
based addressing and have made only limited use
of the historical attention masks. However, lessons
from better word alignment priors in latent vari-
able translation model suggests value for model-
ing attention dependent of content.

A challenge in modeling dependencies between
previous and subsequent attention decisions is that
source sentences are of different lengths, so we
need models that can deal with variable numbers
of predictions across variable lengths. While other
work has sought to address this problem (Cohn et
al., 2016; Tu et al., 2016; Feng et al., 2016), these

models either rely on explicitly engineered fea-
tures (Cohn et al., 2016), resort to indirect model-
ing of the previous attention decisions as by look-
ing at the content-based RNN states that gener-
ated them (Tu et al., 2016), or only model cov-
erage rather than coverage together with ordering
patterns (Feng et al., 2016). In contrast, we pro-
pose to model the sequences of attention levels for
each word with an RNN, looking at a fixed win-
dow of previous alignment decisions. This enables
us both to learn long range information about cov-
erage constraints, and to deal with the fact that in-
put sentences can be of varying sizes.

In this paper, we propose to explicitly model
the dependence between attentions among target
words. When generating a target word, we use a
RNN to summarize the attention history of each
source word. The resultant summary vector is con-
catenated with the context vectors to provide a rep-
resentation which is able to capture the attention
history. The attention of the current target word is
determined based on the concatenated representa-
tion. Alternatively, in the viewpoint of the mem-
ory networks framework (Sukhbaatar et al., 2015),
our model can be seen as augmenting the static en-
coding memory with dynamic memory which de-
pends on preceding source word attentions. Our
method improves over plain attentive neural mod-
els, which is demonstrated on two MT data sets.

2 Model

2.1 Neural Machine Translation

NMT directly models the condition probability
p(y|x) of target sequence y = {y1, ..., yT } given
source sequence x = {x1, ..., xS}, where xi, yj

are tokens in source sequence and target sequence
respectively. Sutskever et al. (2014) and Bahdanau
et al. (2014) are slightly different in choosing the
encoder and decoder network. Here we choose the

383



RNNSearch model from (Bahdanau et al., 2014)
as our baseline model. We make several modifica-
tions to the RNNSearch model as we find empiri-
cally that these modification lead to better results.

2.1.1 Encoder
We use bidirectional LSTMs to encode the source
sentences. Given a source sentence {x1, ..., xS},
we embed the words into vectors through an em-
bedding matrix WS , the vector of i-th word is
WSxi. We get the annotations of word i by sum-
marizing the information of neighboring words us-
ing bidirectional LSTMs:

−→
h i =

−−−−→
LSTM(

−−→
hi−1,WSxi) (1)

←−
h i =

←−−−−
LSTM(

←−−
hi+1,WSxi) (2)

The forward and backward annotation are concate-
nated to get the annotation of word i as hi =
[
−→
h i,
←−
h i]. All the annotations of the source words

form a context set, C = {h1, ..., hS}, conditioned
on which we generate the target sentence. C can
also be seen as memory vectors which encode all
the information from the source sequences.

2.1.2 Attention based decoder
The decoder generates one target word per time
step, hence, we can decompose the conditional
probability as

log p(y|x) =
∑

j

p(yj |y<j , x). (3)

For each step in the decoding process, the LSTM
updates the hidden states as

sj = LSTM(sj−1,WT yj−1, cj−1). (4)

The attention mechanism is used to select the most
relevant source context vector,

eij =vT
a tanh(Wahi + Uasj), (5)

αij =
exp(eij)∑
i exp(eij)

, (6)

cj =
∑

i

αijhi. (7)

This can also seen as memory addressing and
reading process. Content based addressing is used
to get weights αij . The decoder then reads the
memory as weighted average of the vectors. cj is
combined with sj to predict the j-th target word.

−→
h i
−→
h i

←−
h i
←−
h i

dijdij

…

…

sjsj

static

memory

dynamic

memory

+

…

…

αi,j−1αi,j−1αi−k,j−1αi−k,j−1 αi+k,j−1αi+k,j−1… …

αi,j−2αi,j−2 αi+k,j−2αi+k,j−2αi−k,j−2αi−k,j−2
… …

αi,1αi,1αi−k,1αi−k,1 αi+k,1αi+k,1……

attention

matrix

yj−2yj−2

y1y1

yj−1yj−1

xixi xi+kxi+kxi−kxi−k

Figure 1: Model diagram

In our implementation we concatenate them and
then use one layer MLP to predict the target word:

s̃j = tanh(W1[sj , cj ] + b1) (8)

pj =softmax(W2s̃j) (9)

We feed cj to the next step, this explains the
cj−1 term in Eq. 4.

The above attention mechanism follows that of
Vinyals et al. (2015). Similar approach has been
used in (Luong et al., 2015a). This is slightly dif-
ferent from the attention mechanism used in (Bah-
danau et al., 2014), we find empirically it works
better.

One major limitation is that attention at each
time step is not directly dependent of each other.
However, in machine translation, the next word to
attend to highly depends on previous steps, neigh-
boring words are more likely to be selected in next
time step. This above attention mechanism fails
to capture these important characteristics. In the
following, we attach a dynamic memory vector to
the original static memory hi, to keep track of how
many times this word has been attended to and
whether the neighboring words are selected at pre-
vious time steps, the information, together with hi,
is used to predict the next word to select.

2.2 Dynamic Memory
For each source word i, we attach a dynamic mem-
ory vector di to keep track of history attention
maps. Let α̃ij = [αi−k,j , ...αi+k,j ] be a vector
of length 2k+1 that centers at position i, this vec-
tor keeps track of the attention maps status around

384



word i, the dynamic memory dij is updated as fol-
lows:

dij = LSTM(di,j−1, α̃i,j−1),∀i (10)

The model is shown in Fig. 1. We call the vec-
tor dij dynamic memory because at each decoding
step, the memory is updated while hi is static. dij

is assumed to keep track of the history attention
status around word i. We concatenate the dij with
hi in the addressing and the attention weight vec-
tor is calculated as:

eij =vT
a tanh(Wa[hi, dij ] + Uasj), (11)

αij =
exp(eij)∑
i exp(eij)

, (12)

cj =
∑

i

αijhi. (13)

Note that we only use dynamic memory dij in the
addressing process, the actual memory cj that we
read does not include dij . We also tried to get the
dij through a fully connected layer or a convo-
lutional layer. We find empirically LSTM works
best.

3 Experiments & Results

3.1 Data sets

We experiment with two data sets: WMT English-
German and NIST Chinese-English.

• English-German The German-English data
set contains Europarl, Common Crawl and
News Commentary corpus. We remove the
sentence pairs that are not German or En-
glish in a similar way as in (Jean et al.,
2015). There are about 4.4 million sen-
tence pairs after preprocessing. We use new-
stest2013 set as validation and newstest2014,
newstest2015 as test.

• Chinese-English We use FIBS and
LDC2004T08 Hong Kong News data
set for Chinese-English translation. There
are about 1.5 million sentences pairs. We use
MT 02, 03 as validation and MT 05 as test.

For both data sets, we tokenize the text with
tokenizer.perl. Translation quality is evalu-
ated in terms of tokenized BLEU scores (Papineni
et al., 2002) with multi-bleu.perl.

Model test1 test2

RNNSearch 19.0 21.3
RNNSearch + UNK replace 21.6 24.3

RNNSearch + window 1 18.9 21.4
RNNSearch + window 11 19.5 22.0
RNNSearch + window 11 +
UNK replace

22.1 25.0

(Jean et al., 2015)
RNNSearch 16.5 -
RNNSearch + UNK replace 19.0 -

(Luong et al., 2015a)
Four-layer LSTM + attention 19.0 -
Four-layer LSTM + attention +
UNK replace

20.9 -

RNNSearch + character
(Chung et al., 2016) 21.3 23.4
(Costa-jussà and Fonollosa,
2016)

- 20.2

Table 2: English-German results.

3.2 Experiments configuration

We exclude the sentences that are longer than 50
words in training. We set the vocabulary size to
be 50k and 30k for English-German and Chinese-
English. The words that do not appear in the vo-
cabulary are replaced with UNK.

For both RNNSearch model and our model, we
set the word embedding size and LSTM dimension
size to be 1000, the dynamic memory vector dij

size is 500. Following (Sutskever et al., 2014), we
initialize all parameters uniformly within range [-
0.1, 0.1]. We use plain SGD to train the model and
set the batch size to be 128. We rescale the gradi-
ent whenever its norm is greater than 3. We use an
initial learning rate of 0.7. For English-German,
we start to halve the learning rate every epoch af-
ter training for 8 epochs. We train the model for a
total of 12 epochs. For Chinese-English, we start
to halve the learning rate every two epochs after
training for 10 epochs. We train the model for a
total of 18 epochs.

To investigate the effect of window size 2k+ 1,
we report results for k = 0, 5, i.e., windows of size
1, 11.

3.3 Results

The results of English-German and Chinese-
English are shown in Table 2 and 3 respectively.

385



src She was spotted three days later by a dog walker trapped in the quarry
ref Drei Tage später wurde sie von einem Spaziergänger im Steinbruch in ihrer misslichen Lage entdeckt

baseline Sie wurde drei Tage später von einem Hund entdeckt .
our model Drei Tage später wurde sie von einem Hund im Steinbruch gefangen entdeckt .

src At the Metropolitan Transportation Commission in the San Francisco Bay Area , officials say Congress could very simply deal with the bankrupt Highway
Trust Fund by raising gas taxes .

ref Bei der Metropolitan Transportation Commission für das Gebiet der San Francisco Bay erklärten Beamte , der Kongress könne das Problem des bankrotten
Highway Trust Fund einfach durch Erhöhung der Kraftstoffsteuer lsen .

baseline Bei der Metropolitan im San Francisco Bay Area sagen offizielle Vertreter des Kongresses ganz einfach den Konkurs Highway durch Steuererhöhungen .
our model Bei der Metropolitan Transportation Commission in San Francisco Bay Area sagen Beamte , dass der Kongress durch Steuererhöhungen ganz einfach

mit dem Konkurs Highway Trust Fund umgehen könnte .

Table 1: English-German translation examples

Model MT 05

RNNSearch 27.3
RNNSearch + window 1 27.9
RNNSearch + window 11 28.8
RNNSearch + window 11 + UNK replace 29.3

Table 3: Chinese-English results.

We compare our results with our own baseline and
with results from related works if the experimental
setting are the same. From Table 2, we can see that
adding dependency improves RNNSearch model
by 0.5 and 0.7 on newstest2014 and newstest2015,
which we denote as test1 and test2 respectively.
Using window size of 1, in which coverage prop-
erty is considered, does not improve much. Fol-
lowing (Jean et al., 2015; Luong et al., 2015b),
we replace the UNK token with the most proba-
ble target words and get BLEU score of 22.1 and
25.0 on the two data sets respectively. We com-
pare our results with related works, including (Lu-
ong et al., 2015a), which uses four layer LSTM
and local attention mechanism, and (Costa-jussà
and Fonollosa, 2016; Chung et al., 2016), which
uses character based encoding, we can see that
our model outperform the best of them by 0.8 and
1.6 BLEU score respectively. Table 1 shows some
English-German translation examples. We can see
the model with dependent attention can pick the
right part to translate better and has better transla-
tion quality.

The improvement is more obvious for Chinese-
English. Even only considering coverage property
improves by 0.6. Using a window size of 11 im-
proves by 1.5. Further using UNK replacement
trick improves the BLEU score by 0.5, this im-
provement is not as significant as English-German
data set, this is because English and German share
lots of words while Chinese and English don’t.

4 Conclusions & Future Work

In this paper, we propose a new attention mecha-
nism that explicitly takes the attention history into
consideration when generating the attention map.
Our work is motivated by the intuition that in at-
tention based NMT, the next word to attend is
highly dependent on the previous steps. We use
a recurrent neural network to summarize the pre-
ceding attentions which could impact the attention
of the current decoding attention. The experiments
on two MT data sets show that our method outper-
forms previous independent attentive models. We
also find that using a larger context attention win-
dow would result in a better performance.

For future directions of our work, from the
static-dynamic memory view, we would like to
explore extending the model to a fully dynamic
memory model where we directly update the rep-
resentations for source words using the attention
history when we generate each target word.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without ex-
plicit segmentation for neural machine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1693–1703, Berlin, Germany,
August. Association for Computational Linguistics.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment
biases into an attentional neural translation model.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 876–885, San Diego, California, June. Asso-
ciation for Computational Linguistics.

386



Marta R. Costa-jussà and José A. R. Fonollosa. 2016.
Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 357–361, Berlin, Germany, August.
Association for Computational Linguistics.

Shi Feng, Shujie Liu, Nan Yang, Mu Li, Ming Zhou,
and Kenny Q. Zhu. 2016. Improving attention mod-
eling with implicit distortion and fertility for ma-
chine translation. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 3082–3092,
Osaka, Japan, December. The COLING 2016 Orga-
nizing Committee.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large
target vocabulary for neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1–10, Beijing, China, July. Association for Compu-
tational Linguistics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA, October. Association for Compu-
tational Linguistics.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015a. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015b. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 11–19,
Beijing, China, July. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA, July. Association for Computa-
tional Linguistics.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. arXiv preprint arXiv:1503.08895.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–85,
Berlin, Germany, August. Association for Computa-
tional Linguistics.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2755–2763.

387


