
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 291–297,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Cutting-off Redundant Repeating Generations
for Neural Abstractive Summarization

Jun Suzuki and Masaaki Nagata
NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan
{suzuki.jun, nagata.masaaki}@lab.ntt.co.jp

Abstract

This paper tackles the reduction of re-
dundant repeating generation that is often
observed in RNN-based encoder-decoder
models. Our basic idea is to jointly esti-
mate the upper-bound frequency of each
target vocabulary in the encoder and con-
trol the output words based on the estima-
tion in the decoder. Our method shows
significant improvement over a strong
RNN-based encoder-decoder baseline and
achieved its best results on an abstractive
summarization benchmark.

1 Introduction

The RNN-based encoder-decoder (EncDec) ap-
proach has recently been providing signifi-
cant progress in various natural language gen-
eration (NLG) tasks, i.e., machine translation
(MT) (Sutskever et al., 2014; Cho et al., 2014)
and abstractive summarization (ABS) (Rush et al.,
2015). Since a scheme in this approach can be
interpreted as a conditional language model, it is
suitable for NLG tasks. However, one potential
weakness is that it sometimes repeatedly generates
the same phrase (or word).

This issue has been discussed in the neural MT
(NMT) literature as a part of a coverage prob-
lem (Tu et al., 2016; Mi et al., 2016). Such re-
peating generation behavior can become more se-
vere in some NLG tasks than in MT. The very
short ABS task in DUC-2003 and 2004 (Over et
al., 2007) is a typical example because it requires
the generation of a summary in a pre-defined lim-
ited output space, such as ten words or 75 bytes.
Thus, the repeated output consumes precious lim-
ited output space. Unfortunately, the coverage ap-
proach cannot be directly applied to ABS tasks
since they require us to optimally find salient ideas

from the input in a lossy compression manner, and
thus the summary (output) length hardly depends
on the input length; an MT task is mainly loss-less
generation and nearly one-to-one correspondence
between input and output (Nallapati et al., 2016a).

From this background, this paper tackles this is-
sue and proposes a method to overcome it in ABS
tasks. The basic idea of our method is to jointly
estimate the upper-bound frequency of each tar-
get vocabulary that can occur in a summary during
the encoding process and exploit the estimation to
control the output words in each decoding step.
We refer to our additional component as a word-
frequency estimation (WFE) sub-model. The
WFE sub-model explicitly manages how many
times each word has been generated so far and
might be generated in the future during the decod-
ing process. Thus, we expect to decisively prohibit
excessive generation. Finally, we evaluate the ef-
fectiveness of our method on well-studied ABS
benchmark data provided by Rush et al. (2015),
and evaluated in (Chopra et al., 2016; Nallapati
et al., 2016b; Kikuchi et al., 2016; Takase et al.,
2016; Ayana et al., 2016; Gulcehre et al., 2016).

2 Baseline RNN-based EncDec Model

The baseline of our proposal is an RNN-based
EncDec model with an attention mechanism (Lu-
ong et al., 2015). In fact, this model has al-
ready been used as a strong baseline for ABS
tasks (Chopra et al., 2016; Kikuchi et al., 2016) as
well as in the NMT literature. More specifically,
as a case study we employ a 2-layer bidirectional
LSTM encoder and a 2-layer LSTM decoder with a
global attention (Bahdanau et al., 2014). We omit
a detailed review of the descriptions due to space
limitations. The following are the necessary parts
for explaining our proposed method.

Let X = (xi)I
i=1 and Y = (yj)J

j=1 be input
and output sequences, respectively, where xi and

291

Input: Hs = (hs
i)

I
i=1 . list of hidden states generated by encoder

Initialize: s← 0 . s: cumulative log-likelihood

Ŷ ← ‘BOS′ . Ŷ : list of generated words
Ht ←Hs . Ht: hidden states to process decoder

1: h← (s, Ŷ ,Ht) . triplet of (minimal) info for decoding process
2: Qw ← push(Qw, h) . set initial triplet h to priority queueQw

3: Qc ← {} . prepare queue to store complete sentences
4: Repeat
5: Õ ← () . prepare empty list
6: Repeat
7: h← pop(Qw) . pop a candidate history
8: õ← calcLL(h) . see Eq. 2

9: Õ ← append(Õ, õ) . append likelihood vector
10: UntilQw = ∅ . repeat untilQw is empty

11: {(m̂, k̂)z}K−C
z=1 ← findKBest(Õ)

12: {hz}K−C
z=1 ← makeTriplet({(m̂, k̂)z}K−C

z=1)
13: Q′ ← selectTopK(Qc, {hz}K−C

z=1)
14: (Qw,Qc)← SepComp(Q′) . separateQ′ intoQc orQw

15: UntilQw = ∅ . finish ifQw is empty
Output: Qc

Figure 1: Algorithm for a K-best beam search de-
coding typically used in EncDec approach.

yj are one-hot vectors, which correspond to the
i-th word in the input and the j-th word in the out-
put. Let Vt denote the vocabulary (set of words)
of output. For simplification, this paper uses the
following four notation rules:
(1) (xi)I

i=1 is a short notation for representing
a list of (column) vectors, i.e., (x1, . . . ,xI) =
(xi)I

i=1.
(2) v(a,D) represents a D-dimensional (column)
vector whose elements are all a, i.e., v(1, 3) =
(1, 1, 1)>.
(3) x[i] represents the i-th element of x, i.e., x =
(0.1, 0.2, 0.3)>, then x[2] = 0.2.
(4) M = |Vt| and, m always denotes the index of
output vocabulary, namely, m ∈ {1, . . . ,M}, and
o[m] represents the score of the m-th word in Vt,
where o ∈ RM .

Encoder: Let Ωs(·) denote the overall process
of our 2-layer bidirectional LSTM encoder. The
encoder receives input X and returns a list of final
hidden states Hs = (hs

i)
I
i=1:

Hs = Ωs(X). (1)

Decoder: We employ aK-best beam-search de-
coder to find the (approximated) best output Ŷ
given input X . Figure 1 shows a typical K-
best beam search algorithm used in the decoder
of EncDec approach. We define the (minimal) re-
quired information h shown in Figure 1 for the j-
th decoding process is the following triplet, h =
(sj−1, Ŷj−1,H

t
j−1), where sj−1 is the cumula-

tive log-likelihood from step 0 to j − 1, Ŷj−1

is a (candidate of) output word sequence gener-
ated so far from step 0 to j − 1, that is, Ŷj−1 =
(y0, . . . ,yj−1) and Ht

j−1 is the all the hidden
states for calculating the j-th decoding process.
Then, the function calcLL in Line 8 can be writ-
ten as follows:

õj = v
(
sj−1,M

)
+ log

(
Softmax(oj)

)
oj = Ωt

(
Hs,Ht

j−1, ŷj−1

)
, (2)

where Softmax(·) is the softmax function for a
given vector and Ωt(·) represents the overall pro-
cess of a single decoding step.

Moreover, Õ in Line 11 is a (M × (K − C))-
matrix, where C is the number of complete sen-
tences in Qc. The (m, k)-element of Õ repre-
sents a likelihood of them-th word, namely õj [m],
that is calculated using the k-th candidate in Qw

at the (j − 1)-th step. In Line 12, the function
makeTriplet constructs a set of triplets based
on the information of index (m̂, k̂). Then, in Line
13, the function selectTopK selects the top-K
candidates from union of a set of generated triplets
at current step {hz}K−C

z=1 and a set of triplets of
complete sentences in Qc. Finally, the function
sepComp in Line 13 divides a set of tripletsQ′ in
two distinct sets whether they are complete sen-
tences, Qc, or not, Qw. If the elements in Q′
are all complete sentences, namely, Qc = Q′ and
Qw = ∅, then the algorithm stops according to the
evaluation of Line 15.

3 Word Frequency Estimation

This section describes our proposed method,
which roughly consists of two parts: (1) a sub-
model that estimates the upper-bound frequencies
of the target vocabulary words in the output, and
(2) architecture for controlling the output words in
the decoder using estimations.

3.1 Definition
Let â denote a vector representation of the fre-
quency estimation. � denotes element-wise prod-
uct. â is calculated by:

â = r̂ � ĝ

r̂ = ReLU(r), ĝ = Sigmoid(g), (3)

where Sigmoid(·) and ReLu(·) represent the
element-wise sigmoid and ReLU (Glorot et al.,
2011), respectively. Thus, r̂ ∈ [0,+∞]M , ĝ ∈
[0, 1]M , and â∈ [0,+∞]M .

292

We incorporate two separated components, r̂
and ĝ, to improve the frequency fitting. The pur-
pose of ĝ is to distinguish whether the target words
occur or not, regardless of their frequency. Thus,
ĝ can be interpreted as a gate function that re-
sembles estimating the fertility in the coverage (Tu
et al., 2016) and a switch probability in the copy
mechanism (Gulcehre et al., 2016). These ideas
originated from such gated recurrent networks as
LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Chung et al., 2014). Then, r̂ can much fo-
cus on to model frequency equal to or larger than
1. This separation can be expected since r̂[m] has
no influence if ĝ[m]=0.

3.2 Effective usage
The technical challenge of our method is effec-
tively leveraging WFE â. Among several possible
choices, we selected to integrate it as prior knowl-
edge in the decoder. To do so, we re-define õj in
Eq. 2 as:

õj = v
(
sj−1,M

)
+ log (Softmax(oj)) + ãj .

The difference is the additional term of ãj , which
is an adjusted likelihood for the j-th step origi-
nally calculated from â. We define ãj as:

ãj = log (ClipReLU1(r̃j)� ĝ) . (4)

ClipReLU1(·) is a function that receives a vec-
tor and performs an element-wise calculation:
x′[m] = max (0,min(1,x[m])) for all m if it re-
ceives x. We define the relation between r̃j in
Eq. 4 and r̂ in Eq. 3 as follows:

r̃j =
{

r̂ if j = 1
r̃j−1 − ŷj−1 otherwise

. (5)

Eq. 5 is updated from r̃j−1 to r̃j with the estimated
output of previous step ŷj−1. Since ŷj ∈{0, 1}M
for all j, all of the elements in r̃j are monoton-
ically non-increasing. If r̃j′ [m] ≤ 0 at j′, then
õj′ [m]=−∞ regardless of o[m]. This means that
the m-th word will never be selected any more at
step j′ ≤ j for all j. Thus, the interpretation of
r̃j is that it directly manages the upper-bound fre-
quency of each target word that can occur in the
current and future decoding time steps. As a result,
decoding with our method never generates words
that exceed the estimation r̂, and thus we expect
to reduce the redundant repeating generation.

Note here that our method never requires
r̃j [m]≤ 0 (or r̃j [m] = 0) for all m at the last de-
coding time step j, as is generally required in the

Input: Hs = (hs
i)

I
i=1 . list of hidden states generated by encoder

Parameters: W r
1 ,W g

1 ∈ RH×H , W r
2 ∈ RM×H , W g

2 ∈
RM×2H ,

1: Hr
1 ←W r

1 H
s . linear transformation for frequency model

2: hr
1 ←Hr

1v(1, M) . hr
1 ∈ RH , Hr

1 ∈ RH×I

3: r ←W r
2 h

r
1 . frequency estimation

4: Hg
1 ←W g

1 H
s . linear transformation for occurrence model

5: hg+
2 ← RowMax(Hg

1) . hg+
2 ∈ RH , and Hg

1 ∈ RH×I

6: hg−
2 ← RowMin(Hg

1) . hg−
2 ∈ RH , and Hg

1 ∈ RH×I

7: g ←W g
2

(
concat(hg+

2 ,hg−
2)

)
. occurrence estimation

Output: (g, r)

Figure 2: Procedure for calculating the compo-
nents of our WFE sub-model.

coverage (Tu et al., 2016; Mi et al., 2016; Wu et
al., 2016). This is why we say upper-bound fre-
quency estimation, not just (exact) frequency.

3.3 Calculation
Figure 2 shows the detailed procedure for calcu-
lating g and r in Eq. 3. For r, we sum up all of the
features of the input given by the encoder (Line 2)
and estimate the frequency. In contrast, for g, we
expect Lines 5 and 6 to work as a kind of voting
for both positive and negative directions since g
needs just occurrence information, not frequency.
For example, g may take large positive or nega-
tive values if a certain input word (feature) has
a strong influence for occurring or not occurring
specific target word(s) in the output. This idea is
borrowed from the Max-pooling layer (Goodfel-
low et al., 2013).

3.4 Parameter estimation (Training)
Given the training data, let a∗ ∈ PM be a
vector representation of the true frequency of
the target words given the input, where P =
{0, 1, . . . ,+∞}. Clearly a∗ can be obtained by
counting the words in the corresponding output.
We define loss function Ψwfe for estimating our
WFE sub-model as follows:

Ψwfe
(
X,a∗,W)

= d · v(1,M) (6)

d = c1 max
(
v(0,M), â− a∗ − v(ε,M)

)b

+ c2 max
(
v(0,M),a∗ − â− v(ε,M)

)b
,

where W represents the overall parameters. The
form of Ψwfe(·) is closely related to that used
in support vector regression (SVR) (Smola and
Schölkopf, 2004). We allow estimation â[m] for
all m to take a value in the range of [a∗[m] −
ε,a∗[m] + ε] with no penalty (the loss is zero). In
our case, we select ε = 0.25 since all the elements

293

Source vocabulary † 119,507
Target vocabulary † 68,887

Dim. of embedding D 200
Dim. of hidden state H 400

Encoder RNN unit 2-layer bi-LSTM
Decoder RNN unit 2-layer LSTM with attention

Optimizer Adam (first 5 epoch)
+ SGD (remaining epoch) ?

Initial learning rate 0.001 (Adam) / 0.01 (SGD)
Mini batch size 256 (shuffled at each epoch)

Gradient clipping 10 (Adam) / 5 (SGD)
Stopping criterion max 15 epoch w/ early stopping

based on the val. set
Other opt. options Dropout = 0.3

Table 1: Model and optimization configurations in
our experiments. †: including special BOS, EOS,
and UNK symbols. ?: as suggested in (Wu et al.,
2016)

of a∗ are an integer. The remaining 0.25 for both
the positive and negative sides denotes the margin
between every integer. We select b = 2 to pe-
nalize larger for more distant error, and c1 < c2,
i.e., c1 = 0.2, c2 = 1, since we aim to obtain
upper-bound estimation and to penalize the under-
estimation below the true frequency a∗.

Finally, we minimize Eq. 6 with a standard neg-
ative log-likelihood objective function to estimate
the baseline EncDec model.

4 Experiments

We investigated the effectiveness of our method
on ABS experiments, which were first performed
by Rush et al., (2015). The data consist of ap-
proximately 3.8 million training, 400,000 valida-
tion and 400,000 test data, respectively2. Gener-
ally, 1951 test data, randomly extracted from the
test data section, are used for evaluation3. Addi-
tionally, DUC-2004 evaluation data (Over et al.,
2007)4 were also evaluated by the identical models
trained on the above Gigaword data. We strictly
followed the instructions of the evaluation setting
used in previous studies for a fair comparison. Ta-
ble 1 summarizes the model configuration and the
parameter estimation setting in our experiments.

4.1 Main results: comparison with baseline

Table 2 shows the results of the baseline EncDec
and our proposed EncDec+WFE. Note that the

2The data can be created by the data construction scripts
in the author’s code: https://github.com/facebook/NAMAS.

3As previously described (Chopra et al., 2016) we re-
moved the ill-formed (empty) data for Gigaword.

4http://duc.nist.gov/duc2004/tasks.html

G: china success at youth world
championship shows preparation for
olympics

A: china germany germany germany
germany and germany at world youth
championship

B: china faces germany at world youth
championship

G: British and Spanish governments leave
extradition of Pinochet to courts

A: spain britain seek shelter from
pinochet ’s pinochet case over
pinochet ’s

B: spain britain seek shelter over
pinochet ’s possible extradition from
spain

G: torn UNK : plum island juniper duo
now just a lone tree

A: black women black women black in
black code

B: in plum island of the ancient

Figure 3: Examples of generated summary. G:
reference summary, A: baseline EncDec, and
B: EncDec+WFE. (underlines indicate repeating
phrases and words)

DUC-2004 data was evaluated by recall-based
ROUGE scores, while the Gigaword data was
evaluated by F-score-based ROUGE, respec-
tively. For a validity confirmation of our EncDec
baseline, we also performed OpenNMT tool5.
The results on Gigaword data with B = 5
were, 33.65, 16.12, and 31.37 for ROUGE-
1(F), ROUGE-2(F) and ROUGE-L(F), respec-
tively, which were almost similar results (but
slightly lower) with our implementation. This sup-
ports that our baseline worked well as a strong
baseline. Clearly, EncDec+WFE significantly out-
performed the strong EncDec baseline by a wide
margin on the ROUGE scores. Thus, we conclude
that the WFE sub-model has a positive impact
to gain the ABS performance since performance
gains were derived only by the effect of incorpo-
rating our WFE sub-model.

4.2 Comparison to current top systems
Table 3 lists the current top system results. Our
method EncDec+WFE successfully achieved the
current best scores on most evaluations. This re-
sult also supports the effectiveness of incorporat-
ing our WFE sub-model.

MRT (Ayana et al., 2016) previously provided
the best results. Note that its model structure is
nearly identical to our baseline. On the contrary,
MRT trained a model with a sequence-wise min-

5http://opennmt.net

294

DUC-2004 (w/ 75-byte limit) Gigaword (w/o length limit)
Method Beam ROUGE-1(R) ROUGE-2(R) ROUGE-L(R) ROUGE-1(F) ROUGE-2(F) ROUGE-L(F)
EncDec B=1 29.23 8.71 25.27 33.99 16.06 31.63
(baseline) B=5 29.52 9.45 25.80 †34.27 †16.68 †32.14
our impl.) B=10 † 29.60 † 9.62 † 25.97 34.18 16.51 31.97

EncDec+WFE B=1 31.92 9.36 27.22 36.21 16.87 33.55
(proposed) B=5 ?32.28 ?10.54 ?27.80 ?36.30 ?17.31 ?33.88

B=10 31.70 10.34 27.48 36.08 17.23 33.73
(perf. gain from † to ?) +2.68 +0.92 +1.83 +2.03 +0.63 +1.78

Table 2: Results on DUC-2004 and Gigaword data: ROUGE-x(R): recall-based ROUGE-x, ROUGE-
x(F): F1-based ROUGE-x, where x ∈ {1, 2, L}, respectively.

DUC-2004 (w/ 75-byte limit) Gigaword (w/o length limit)
Method ROUGE-1(R) ROUGE-2(R) ROUGE-L(R) ROUGE-1(F) ROUGE-2(F) ROUGE-L(F)
ABS (Rush et al., 2015) 26.55 7.06 22.05 30.88 12.22 27.77
RAS (Chopra et al., 2016) 28.97 8.26 24.06 33.78 15.97 31.15
BWL (Nallapati et al., 2016a)1 28.35 9.46 24.59 32.67 15.59 30.64

(words-lvt5k-1sent†) 28.61 9.42 25.24 35.30 †16.64 32.62
MRT (Ayana et al., 2016) †30.41 †10.87 †26.79 †36.54 16.59 †33.44
EncDec+WFE [This Paper] 32.28 10.54 27.80 36.30 17.31 33.88

(perf. gain from †) +1.87 -0.33 +1.01 -0.24 +0.72 +0.44

Table 3: Results of current top systems: ‘*’: previous best score for each evaluation. †: using a larger
vocab for both encoder and decoder, not strictly fair configuration with other results.

True a∗ \ Estimation â 0 1 2 3 4 ≥
1 7,014 7,064 1,784 16 4
2 51 95 60 0 0
3 ≥ 2 4 1 0 0

Table 4: Confusion matrix of WFE on Gigaword
data: only evaluated true frequency ≥ 1.

imum risk estimation, while we trained all the
models in our experiments with standard (point-
wise) log-likelihood maximization. MRT essen-
tially complements our method. We expect to fur-
ther improve its performance by applying MRT
for its training since recent progress of NMT has
suggested leveraging a sequence-wise optimiza-
tion technique for improving performance (Wise-
man and Rush, 2016; Shen et al., 2016). We leave
this as our future work.

4.3 Generation examples

Figure 3 shows actual generation examples. Based
on our motivation, we specifically selected the re-
dundant repeating output that occurred in the base-
line EncDec. It is clear that EncDec+WFE suc-
cessfully reduced them. This observation offers
further evidence of the effectiveness of our method
in quality.

4.4 Performance of the WFE sub-model

To evaluate the WFE sub-model alone, Table 4
shows the confusion matrix of the frequency esti-

mation. We quantized â by bâ[m]+0.5c for allm,
where 0.5 was derived from the margin in Ψwfe.
Unfortunately, the result looks not so well. There
seems to exist an enough room to improve the esti-
mation. However, we emphasize that it already has
an enough power to improve the overall quality as
shown in Table 2 and Figure 3. We can expect to
further gain the overall performance by improving
the performance of the WFE sub-model.

5 Conclusion

This paper discussed the behavior of redundant
repeating generation often observed in neural
EncDec approaches. We proposed a method for
reducing such redundancy by incorporating a sub-
model that directly estimates and manages the fre-
quency of each target vocabulary in the output.
Experiments on ABS benchmark data showed the
effectiveness of our method, EncDec+WFE, for
both improving automatic evaluation performance
and reducing the actual redundancy. Our method
is suitable for lossy compression tasks such as im-
age caption generation tasks.

Acknowledgement

We thank three anonymous reviewers for their
helpful comments.

295

References
Ayana, Shiqi Shen, Zhiyuan Liu, and Maosong Sun.

2016. Neural headline generation with minimum
risk training. CoRR, abs/1604.01904.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations (ICLR 2015).

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2014), pages 1724–1734.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive Sentence Summarization with At-
tentive Recurrent Neural Networks. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
93–98, San Diego, California, June. Association for
Computational Linguistics.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence
Modeling. CoRR, abs/1412.3555.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep Sparse Rectifier Neural Networks.
In Geoffrey J. Gordon and David B. Dunson, ed-
itors, Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics
(AISTATS-11), volume 15, pages 315–323. Journal
of Machine Learning Research - Workshop and Con-
ference Proceedings.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron C. Courville, and Yoshua Bengio. 2013.
Maxout Networks. In Proceedings of the 30th In-
ternational Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, pages
1319–1327.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Point-
ing the Unknown Words. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
140–149, Berlin, Germany, August. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780, November.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hi-
roya Takamura, and Manabu Okumura. 2016. Con-
trolling output length in neural encoder-decoders.

In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1328–1338, Austin, Texas, November. Association
for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1412–1421,
Lisbon, Portugal, September. Association for Com-
putational Linguistics.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016. Coverage embedding models
for neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 955–960, Austin,
Texas, November. Association for Computational
Linguistics.

Ramesh Nallapati, Bing Xiang, and Bowen Zhou.
2016a. Sequence-to-sequence rnns for text summa-
rization. CoRR, abs/1602.06023.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016b. Ab-
stractive Text Summarization using Sequence-to-
sequence RNNs and Beyond. In Proceedings of The
20th SIGNLL Conference on Computational Natural
Language Learning, pages 280–290, Berlin, Ger-
many, August. Association for Computational Lin-
guistics.

Paul Over, Hoa Dang, and Donna Harman. 2007. DUC
in context. Information Processing and Manage-
ment, 43(6):1506–1520.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A Neural Attention Model for Abstrac-
tive Sentence Summarization. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2015), pages 379–
389.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Mini-
mum risk training for neural machine translation. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1683–1692, Berlin, Germany,
August. Association for Computational Linguistics.

Alex J Smola and Bernhard Schölkopf. 2004. A tu-
torial on support vector regression. Statistics and
computing, 14(3):199–222.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems 27 (NIPS 2014), pages 3104–3112.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu
Hirao, and Masaaki Nagata. 2016. Neural head-
line generation on abstract meaning representation.

296

In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1054–1059, Austin, Texas, November. Association
for Computational Linguistics.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling Coverage for Neural
Machine Translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–85,
Berlin, Germany, August. Association for Computa-
tional Linguistics.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search opti-
mization. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1296–1306, Austin, Texas, November.
Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

297

