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Abstract

Emojis are ideograms which are natu-
rally combined with plain text to visually
complement or condense the meaning of
a message. Despite being widely used
in social media, their underlying seman-
tics have received little attention from a
Natural Language Processing standpoint.
In this paper, we investigate the relation
between words and emojis, studying the
novel task of predicting which emojis are
evoked by text-based tweet messages. We
train several models based on Long Short-
Term Memory networks (LSTMs) in this
task. Our experimental results show that
our neural model outperforms two base-
lines as well as humans solving the same
task, suggesting that computational mod-
els are able to better capture the underly-
ing semantics of emojis.

1 Introduction

The advent of social media has brought along a
novel way of communication where meaning is
composed by combining short text messages and
visual enhancements, the so-called emojis. This
visual language is as of now a de-facto standard
for online communication, available not only in
Twitter, but also in other large online platforms
such as Facebook, Whatsapp, or Instagram.

Despite its status as language form, emojis have
been so far scarcely studied from a Natural Lan-
guage Processing (NLP) standpoint. Notable ex-
ceptions include studies focused on emojis’ se-
mantics and usage (Aoki and Uchida, 2011; Barbi-
eri et al., 2016a; Barbieri et al., 2016b; Barbieri et
al., 2016c; Eisner et al., 2016; Ljubešic and Fišer,
2016), or sentiment (Novak et al., 2015). How-
ever, the interplay between text-based messages

and emojis remains virtually unexplored. This pa-
per aims to fill this gap by investigating the rela-
tion between words and emojis, studying the prob-
lem of predicting which emojis are evoked by text-
based tweet messages.

Miller et al. (2016) performed an evaluation
asking human annotators the meaning of emojis,
and the sentiment they evoke. People do not al-
ways have the same understanding of emojis, in-
deed, there seems to exist multiple interpretations
of their meaning beyond their designer’s intent or
the physical object they evoke1. Their main con-
clusion was that emojis can lead to misunderstand-
ings. The ambiguity of emojis raises an interesting
question in human-computer interaction: how can
we teach an artificial agent to correctly interpret
and recognise emojis’ use in spontaneous conver-
sation?2 The main motivation of our research is
that an artificial intelligence system that is able
to predict emojis could contribute to better natu-
ral language understanding (Novak et al., 2015)
and thus to different natural language processing
tasks such as generating emoji-enriched social me-
dia content, enhance emotion/sentiment analysis
systems, and improve retrieval of social network
material.

In this work, we employ a state of the art clas-
sification framework to automatically predict the
most likely emoji a Twitter message evokes. The
model is based on Bidirectional Long Short-term
Memory Networks (BLSTMs) with both standard
lookup word representations and character-based
representation of tokens. We will show that the
BLSTMs outperform a bag of words baseline, a
baseline based on semantic vectors, and human
annotators in this task.

1https://www.washingtonpost.com/news/the-
intersect/wp/2016/02/19/the-secret-meanings-of-emoji/

2http://www.dailydot.com/debug/emoji-
miscommunicate/
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100.7 89.9 59 33.8 28.6 27.9 22.5 21.5 21 20.8

19.5 18.6 18.5 17.5 17 16.1 15.9 15.2 14.2 10.9

Table 1: The 20 most frequent emojis that we use
in our experiments and the number of thousand
tweets they appear in.

2 Dataset and Task

Dataset: We retrieved 40 million tweets with the
Twitter APIs3. Tweets were posted between Oc-
tober 2015 and May 2016 geo-localized in the
United States of America. We removed all hyper-
links from each tweet, and lowercased all textual
content in order to reduce noise and sparsity. From
the dataset, we selected tweets which include one
and only one of the 20 most frequent emojis, re-
sulting in a final dataset4 composed of 584,600
tweets. In the experiments we also consider the
subsets of the 10 (502,700 tweets) and 5 most fre-
quent emojis (341,500 tweets). See Table 1 for the
20 most frequent emojis that we consider in this
work.
Task: We remove the emoji from the sequence of
tokens and use it as a label both for training and
testing. The task for our machine learning models
is to predict the single emoji that appears in the
input tweet.

3 Models

In this Section, we present and motivate the mod-
els that we use to predict an emoji given a tweet.
The first model is an architecture based on Recur-
rent Neural Networks (Section 3.1) and the sec-
ond and third are the two baselines (Section 3.2.1
and 3.2.2). The two major differences between the
RNNs and the baselines, is that the RNNs take into
account sequences of words and thus, the entire
context.

3.1 Bi-Directional LSTMs
Given the proven effectiveness and the impact
of recurrent neural networks in different tasks
(Chung et al., 2014; Vinyals et al., 2015; Dzmitry
et al., 2014; Dyer et al., 2015; Lample et al., 2016;
Wang et al., 2016, inter-alia), which also includes
modeling of tweets (Dhingra et al., 2016), our
emoji prediction model is based on bi-directional

3https://dev.twitter.com
4Available at http://sempub.taln.upf.edu/tw/eacl17

Long Short-term Memory Networks (Hochreiter
and Schmidhuber, 1997; Graves and Schmidhu-
ber, 2005). The B-LSTM can be formalized as
follows:

s = max {0,W[fw;bw] + d}
where W is a learned parameter matrix, fw is the
forward LSTM encoding of the message, bw is
the backward LSTM encoding of the message, and
d is a bias term, then passed through a component-
wise ReLU. The vector s is then used to compute
the probability distribution of the emojis given the
message as:

p(e | s) =
exp

(
g>e s + qe

)∑
e′∈E exp

(
g>e′s + qe′

)
where ge′ is a column vector representing the (out-
put) embedding5 of the emoji e, and qe is a bias
term for the emoji e. The set E represents the list
of emojis. The loss/objective function the network
aims to minimize is the following:

Loss = −log(p(em | s))
where m is a tweet of the training set T , s is the

encoded vector representation of the tweet and em

is the emoji contained in the tweet m . The inputs
of the LSTMs are word embeddings6. Following,
we present two alternatives explored in the exper-
iments presented in this paper.
Word Representations: We generate word em-
beddings which are learned together with the up-
dates to the model. We stochastically replace
(with p = 0.5) each word that occurs only once in
the training data with a fixed represenation (out-
of-vocabulary words vector). When we use pre-
trained word embeddings, these are concatenated
with the learned vector representations obtaining
a final representation for each word type. This is
similar to the treatment of word embeddings by
Dyer et al. (2015).
Character-based Representations: We compute
character-based continuous-space vector embed-
dings (Ling et al., 2015b; Ballesteros et al., 2015)
of the tokens in each tweet using, again, bidi-
rectional LSTMs. The character-based approach
learns representations for words that are ortho-
graphically similar, thus, they should be able to
handle different alternatives of the same word type
occurring in social media.

5The output embeddings of the emojis have 100 dimen-
sions.

6100 dimensions.
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3.2 Baselines

In this Section we describe the two baselines. Un-
like the previous model, the baselines do not take
into account the word order. However, in the sec-
ond baseline (Section 3.2.2) we abstract on the
plain word representation using semantic vectors,
previously trained on Twitter data.

3.2.1 Bag of Words
We applied a bag of words classifier as baseline,
since it has been successfully employed in se-
veral classification tasks, like sentiment analysis
and topic modeling (Wallach, 2006; Blei, 2012;
Titov and McDonald, 2008; Maas et al., 2011;
Davidov et al., 2010). We represent each mes-
sage with a vector of the most informative to-
kens (punctuation marks included) selected using
term frequency−inverse document frequency (TF-
IDF). We employ a L2-regularized logistic regres-
sion classifier to make the predictions.

3.2.2 Skip-Gram Vector Average
We train a Skip-gram model (Mikolov et al., 2013)
learned from 65M Tweets (where testing instances
have been removed) to learn Twitter semantic vec-
tors. Then, we build a model (henceforth, AVG)
which represents each message as the average of
the vectors corresponding to each token of the
tweet. Formally, each message m is represented
with the vector Vm :

V m =

∑
t∈Tm

St

|Tm|
Where Tm are the set of tokens included in the
message m , St is the vector of token t in the Skip-
gram model, and |Tm | is the number of tokens in
m . After obtaining a representation of each mes-
sage, we train a L2-regularized logistic regression,
(with ε equal to 0.001).

4 Experiments and Evaluation

In order to study the relation between words and
emojis, we performed two different experiments.
In the first experiment, we compare our machine
learning models, and in the second experiment, we
pick the best performing system and compare it
against humans.

4.1 First Experiment

This experiment is a classification task, where
in each tweet the unique emoji is removed and

5 10 20
P R F1 P R F1 P R F1

BOW .59 .60 .58 .43 .46 .41 .32 .34 .29
AVG .60 .60 .57 .44 .47 .40 .34 .36 .29

W .59 .59 .59 .46 .46 .46 .35 .36 .33
C .61 .61 .61 .44 .44 .44 .36 .37 .32

W+P .61 .61 .61 .45 .45 .45 .34 .36 .32
C+P .63 .63 .63 .48 .47 .47 .42 .39 .34

Table 2: Results of 5, 10 and 20 emojis. Precision,
Recall, F-measure. BOW is bag of words, AVG
is the Skipgram Average model, C refers to char-
BLSTM and W refers to word-BLSTM. +P refers
to pretrained embeddings.

used as a label for the entire tweet. We use
three datasets, each containing the 5, 10 and 20
most frequent emojis (see Section 2). We ana-
lyze the performance of the five models described
in Section 3: a bag of words model, a Bidirec-
tional LSTM model with character-based repre-
sentations (char-BLSTM), a Bidirectional LSTM
model with standard lookup word representa-
tions (word-BLSTM). The latter two were trained
with/without pretrained word vectors. To pretrain
the word vectors, we use a modified skip-gram
model (Ling et al., 2015a) trained on the English
Gigaword corpus7 version 5.

We divide each dataset in three parts, train-
ing (80%), development (10%) and testing (10%).
The three subsets are selected in sequence start-
ing from the oldest tweets and from the training
set since automatic systems are usually trained on
past tweets, and need to be robust to future topic
variations.

Table 2 reports the results of the five models
and the baseline. All neural models outperform
the baselines in all the experimental setups. How-
ever, the BOW and AVG are quite competitive,
suggesting that most emojis come along with spe-
cific words (like the word love and the emoji ).
However, considering sequences of words in the
models seems important for encoding the mean-
ing of the tweet and therefore contextualize the
emojis used. Indeed, the B-LSTMs models always
outperform BOW and AVG. The character-based
model with pretrained vectors is the most accurate
at predicting emojis. The character-based model
seems to capture orthographic variants of the same
word in social media. Similarly, pretrained vec-
tors allow to initialize the system with unsuper-

7https://catalog.ldc.upenn.edu/LDC2003T05
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vised pre-trained semantic knowledge (Ling et al.,
2015a), which helps to achieve better results.

Emoji P R F1 Rank Num
0.48 0.74 0.58 2.12 783
0.32 0.74 0.45 1.59 757
0.35 0.22 0.27 3.58 470
0.31 0.15 0.21 4.2 260
0.24 0.1 0.14 4.39 212
0.46 0.49 0.47 3.76 207

1 0 0.01 4.69 206
0.44 0.19 0.27 5.15 200
0.44 0.54 0.48 4.71 165
0.33 0.11 0.17 5.79 150
0.3 0.12 0.17 5.78 148

0.54 0.11 0.18 6.73 131
0.45 0.19 0.27 6.43 120
0.56 0.09 0.15 7.58 112
0.2 0.01 0.02 9.01 110

0.46 0.33 0.39 5.83 108
0.5 0.08 0.13 4.9 105

0.32 0.25 0.28 6.13 89
0.44 0.53 0.48 5.35 34
0.22 0.67 0.33 1.67 3

Table 3: Precision, Recall, F-measure, Ranking
and occurrences in the test set of the 20 most fre-
quent emojis using char-BLSTM + Pre.

Qualitative Analysis of Best System: We an-
alyze the performances of the char-BLSTM with
pretrained vectors on the 20-emojis dataset, as it
resulted to be the best system in the experiment
presented above. In Table 3 we report Precision,
Recall, F-measure and Ranking8 of each emoji.
We also added in the last column the occurrences
of each emoji in the test set.

The frequency seems to be very relevant. The
Ranking of the most frequent emojis is lower than
the Ranking of the rare emojis. This means that if
an emoji is frequent, it is more likely to be on top
of the possible choices even if it is a mistake. On
the other hand, the F-measure does not seem to de-
pend on frequency, as the highest F-measures are
scored by a mix of common and uncommon emo-
jis ( , , , and ) which are respectively the

8The Ranking is a number between 1 and 20 that repre-
sents the average number of emojis with higher probability
than the gold emoji in the probability distribution of the clas-
sifier.

first, second, the sixth and the second last emoji in
terms of frequencies.

The frequency of an emoji is not the only im-
portant variable to detect the emojis properly; it is
also important whether in the set of emojis there
are emojis with similar semantics. If this is the
case the model prefers to predict the most frequent
emojis. This is the case of the emoji that is al-
most never predicted, even if the Ranking is not
too high (4.69). The model prefers similar but
most frequent emojis, like (instead of ). The
same behavior is observed for the emoji, but
in this case the performance is a bit better due
to some specific words used along with the blue
heart: “blue”, “sea” and words related to child-
hood (e.g. “little” or “Disney”).

Another interesting case is the Christmas tree
emoji , that is present only three times in the
test set (as the test set includes most recent tweets
and Christmas was already over; this emoji is
commonly used in tweets about Christmas). The
model is able to recognize it twice, but missing
it once. The correctly predicted cases include the
word “Christmas”; and it fails to predict: “get-
ting into the holiday spirit with this gorgeous pair
of leggings today ! #festiveleggings”, since there
are no obvious clues (the model chooses instead
probably because of the intended meaning of “hol-
iday” and “gorgeous”.).

In general the model tends to confuse similar
emojis to and , probably for their higher fre-
quency and also because they are used in multiple
contexts. An interesting phenomenon is that is
often confused with . The first one represent a
small face crying, and the second one a small face
laughing, but the results suggest that they appear
in similar tweets. The punctuation and tone used is
often similar (many exclamation marks and words
like “omg” and “hahaha”). Irony may also play a
role to explain the confusion, e.g. “I studied jour-
nalism and communications , I’ll be an awesome
speller! Wrong. haha so much fun”.

4.2 Second Experiment

Given that Miller et al. (2016) pointed out that
people tend to give multiple interpretations to
emojis, we carried out an experiment in which
we evaluated human and machine performances
on the same task. We randomly selected 1,000
tweets from our test set of the 5 most frequent
emojis used in the previous experiment, and asked
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Humans B-LSTM
Emo P R F1 P R F1

0.73 0.56 0.63 0.7 0.84 0.77
0.53 0.51 0.52 0.61 0.78 0.69
0.43 0.38 0.4 0.52 0.3 0.38
0.19 0.4 0.26 0.62 0.26 0.37
0.24 0.26 0.25 0.66 0.51 0.58

Avg 0.53 0.48 0.50 0.65 0.65 0.65

Table 4: Precision, Recall and F-Measure of hu-
man evaluation and the character-based B-LSTM
for the 5 most frequent emojis and 1,000 tweets.

humans to predict, after reading a tweet (with the
emoji removed), the emoji the text evoked. We
opted for the 5 emojis task to reduce annotation
efforts. After displaying the text of the tweet, we
asked the human annotators “What is the emoji
you would include in the tweet?”, and gave the
possibility to pick one of 5 possible emojis ,

, , , and . Using the crowdsourcing plat-
form ‘’CrowdFlower”, we designed an experiment
where the same tweet was presented to four anno-
tators (selecting the final label by majority agree-
ment). Each annotator assessed a maximum of
200 tweets. The annotators were selected from
the United States of America and of high qual-
ity (level 3 of CrowdFlower). One in every ten
tweets, was an obvious test question, and anno-
tations from subjects who missed more than 20%
of the test questions were discarded. The overall
inter-annotator agreement was 73% (in line with
previous findings (Miller et al., 2016)). After cre-
ating the manually annotated dataset, we com-
pared the human annotation and the char-BLSTM
model with the gold standard (i.e. the emoji used
in the tweet).

We can see in Table 4, where the results of the
comparison are presented, that the char-BLSTM
performs better than humans, with a F1 of 0.65
versus 0.50. The emojis that the char-BLSTM
struggle to predict are and , while the human
annotators mispredict and mostly. We can
see in the confusion matrix of Figure 1 that is
misclassified as by both human and LSTM, and
the emoji is mispredicted as and . An in-
teresting result is the number of times was cho-
sen by human annotators; this emoji occurred 100
times (by chance) in the test set, but it was chosen
208 times, mostly when the correct label was the
laughing emoji . We do not observe the same be-

Figure 1: Confusion matrix of the second experi-
ment. On the left the human evaluation and on the
right the char-BLSTM model.

havior in the char-BLSTMs, perhaps because they
encoded information about the probability of these
two emojis and when in doubt, the laughing emoji
was chosen as more probable.

5 Conclusions

Emojis are used extensively in social media, how-
ever little is known about their use and seman-
tics, especially because emojis are used differently
over different communities (Barbieri et al., 2016a;
Barbieri et al., 2016b). In this paper, we provide
a neural architecture to model the semantics of
emojis, exploring the relation between words and
emojis. We proposed for the first time an auto-
matic method to, given a tweet, predict the most
probable emoji associated with it. We showed
that the LSTMs outperform humans on the same
emoji prediction task, suggesting that automatic
systems are better at generalizing the usage of
emojis than humans. Moreover, the good accuracy
of the LSTMs suggests that there is an important
and unique relation between sequences of words
and emojis.

As future work, we plan to make the model able
to predict more than one emoji per tweet, and ex-
plore the position of the emoji in the tweet, as
close words can be an important clue for the emoji
prediction task.
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