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Abstract

This paper discusses some central caveats
of summarisation, incurred in the use of
the ROUGE metric for evaluation, with re-
spect to optimal solutions. The task is NP-
hard, of which we give the first proof. Still,
as we show empirically for three central
benchmark datasets for the task, greedy al-
gorithms empirically seem to perform op-
timally according to the metric. Addition-
ally, overall quality assurance is problem-
atic: there is no natural upper bound on
the quality of summarisation systems, and
even humans are excluded from perform-
ing optimal summarisation.

1 Introduction
Research in automatic summarisation today has
reached a stalemate. Despite continuing innova-
tion of promising algorithms for carrying out au-
tomatic summarisation, recent research over con-
ventional benchmark datasets has suggested the
following: according to the most widely accepted
automatic evaluation metric, ROUGE, there has
been no substantial improvement in performance
on central datasets in the field in the last decade
(Hong et al., 2014). Additionally, according to
ROUGE, there seems to be little significant ben-
efit to supervised over unsupervised learning, or
to exact over greedy approximate algorithmic so-
lutions. Moreover, there is little understanding as
to what a perfect score is according to ROUGE, or
how naturally this describes a human’s idea of an
optimal summary.

In this paper we substantiate these issues with
evidence, observing that by ROUGE numbers:
(1) Perfect scores for extractive summari-

sation are theoretically computationally
hard to achieve. We provide the first proof

of NP-hardness for optimisation of extractive
summarisation with respect to ROUGE. Yet
empirically the metric shows that greedy and
exact global decoding method performances
are similar.

(2) 100% perfect scores are impossible for
higher quality datasets. The metric returns
an average of ROUGE scores over multi-
ple reference summaries in order to avoid
bias (Nenkova and Passonneau, 2004). This
means that it is impossible to obtain 100%
ROUGE-n scores unless the reference sum-
maries contain precisely the same n-grams.

(3) Relative perfect scores are highly diverse
and unattainable by humans. ROUGE
scores are generally rather low for short sum-
maries and seem to get higher for datasets
with longer summary length budgets, even
when document length also substantially in-
creases. We know that 100% perfect scores
are impossible, so what is a perfect score
according to ROUGE? How do we know
when no improvement is possible? Previous
research on evaluation metrics for automatic
summarisation has tried to empirically show
a correlation between human judgments and
system output quality (Lin, 2004; Lin and
Hovy, 2003; Liu and Liu, 2008; Graham,
2015). But this does not address the upper
bound issue. Indeed, we demonstrate there
is no possible relative perfect score, even if
one has access to the sentences of the refer-
ence summaries. So, for example, even hu-
mans are doomed to perform sub-optimally
(Cf. Marujo et al. (2016)).

(4) State-of-the-art automatic summarisation
is unsupervised. There have been recent ad-
vances in supervised summarisation mainly
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with respect to supervised learning using
neural networks (for example (Rush et al.,
2015; Chopra et al., 2016)). However, due
to data size requirements, these systems are
constrained to title generation systems and
therefore not in the scope of this work. Hong
et al. (2014) survey the state-of-the-art us-
ing the central DUC 2004 dataset. Of these,
ICSISum (Gillick and Favre, 2009) is the
only global summariser using an exact al-
gorithm; it obtains the best ROUGE-2 score
without supervision. All the other approaches
use greedy strategies/approximations, even
if they intend to model global optimisation.
This raises the following important question:
If one shifts from a greedy strategy to an ex-
act global one, does supervision give substan-
tial system performance improvement?

In this paper, we do not consider or compare
evaluation metrics. This work is all under the as-
sumption that ROUGE (under its currently used
parameters) provides an accurate account of sum-
marisation quality.1

Throughout, we refer to as reference sum-
maries the gold standard that accompanies the
summarisation dataset. Reference summaries are
probably abstractive. On the other hand, by gold
summaries, we refer to optimal summaries con-
sisting of sentences from the input document.

2 Preliminaries
ROUGE. Let g be an n-gram and R and S be
multiset representations of reference and system
summaries, respectively. We define the intersec-
tion A ∩ B of two multisets A, B as a multiset
containing all multiples of their shared elements.

ROUGE-n(S) :=

∑
g∈S |{g|g ∈ S} ∩ {g|g ∈ R}|∑

g∈R |{g|g ∈ R}|
(1)

When there is more than one reference sum-
mary, then the individual ROUGE scores are cal-
culated per reference and the average is returned.

The data. Empirical results of this paper are cal-
culated over datasets from three separate domains.
duc04: 30 newswire article set-summary set pairs
first used in the DUC 2004 summarisation task 2.2

1We use the current version ROUGE-1.5.5 http://
www.berouge.com, with the following parameters unless
otherwise stated: -n 2 -m -x -f A -t 0 {-b|-l}
[length] -a -r 1000 -c 95.

2http://duc.nist.gov/duc2004/

We use both the original 665 bytes summary bud-
get as well as the 100 word summary budget used
by (Hong et al., 2014).
echr: judgment-summary pairs scraped from the
European Court of Human Rights case-law web-
site, HUDOC.3 The test set consists of 138 pairs.
We adopt the same summary budget length: 805
words used by Schluter and Søgaard (2015).
wiki: Wikipedia leading paragraphs-article pairs
(all labeled “good article”) from a comprehen-
sive dump of English language Wikipedia arti-
cles.4 The test set consists of 111 pairs. We use
the same summary budget of 335 used by Schluter
and Søgaard (2015).

3 ROUGE optimisation for extraction
We now provide a proof of NP-hardness of ex-
act oracle extractive summarisation with respect to
ROUGE. We first prove the result for ROUGE-1
and later extend the result to ROUGE-n.

Theorem 1. Given a document, its manually writ-
ten non-extractive summary, and the ROUGE-1
metric for N ∈ Z+, building an extractive sum-
mary that maximises the ROUGE-1 metric is NP-
hard.

Proof. The objective is to optimise ROUGE-1 by
maximising the number of word tokens paired up
between system and reference summaries. That is,
one is trying to choose the sentences, within bud-
get, that cumulatively maximise the number of un-
igram tokens that can be paired with those of refer-
ence summaries. We can reduce the NP-hard max
k-weighted dominating set problem to the oracle
extractive summarisation problem with ROUGE-1
as the metric.

Given a graph G = (V,E), the max k-
dominating set problem requires a solution of k
vertices that are adjacent to the maximum num-
ber of vertices in G. The max k-dominating set
problem is NP-hard, even for cubic graphs (graphs
in which the degree of all vertices is equal to 3)
(Garey and Johnson, 1979).

Suppose further that each vertex s ∈ V is as-
sociated with a weight wv. The max k′-weighted
dominating set problem consists in determining a
subset of vertices of total weight k′ that are adja-
cent with the maximum number of vertices in G.

3http://hudoc.echr.coe.int/
4https://dumps.wikimedia.org/

enwiki/latest/enwiki-latest-pages
-articles-multistream.xml.bz2
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In particular, if we set wv = 1 for each vertex, then
the two problems are identical, showing the corre-
sponding NP-hardness of this weighted version of
the problem.

Let G = (V,E) be a cubic graph. Let N(v)
be the neighbourhood of vertex v. Now let the
weight of each vertex wv be |N(v) ∪ {v}| = 4.
With k′ = 4k it is easy to see that the max
k′-weighted dominating set problem is equivalent
to the max k-dominating set problem for cubic
graphs. A solution is a dominating set S′ such that
|{u | u ∈ (N(v) ∪ {v}), v ∈ S′}| is maximised
for

∑
v∈S′ w(v) = 4k.

We reduce the 4k-weighted dominating set
problem to the problem of exact summarisation
with respect to ROUGE-1 as follows.

We create an input document D = {sv | v ∈
V }, where sv := N(v) ∪ {v} is a sentence (its
components written in any order). Evaluation is
carried out against a single reference summary V
(the set of vertices of our original graph written out
in any order). Let S be an output extractive sum-
mary from D within our budget of size 4k. We
want to maximise

ROUGE-1(S) =

=

∑
w |{w|w ∈

⋃
sv∈S sv} ∩ {w|w ∈ V }|∑

w{w|w ∈ V }

=
|(⋃sv∈S sv) ∩ V |

|V | =
|(⋃sv∈S sv)|
|V |

=
|{u | u ∈ (N(v) ∪ {v}), sv ∈ S}|

|V | (2)

where the second equality follows from the fact
that no vertex occurs more than once in the refer-
ence summary V .

Maximising the last term (2) is the same as
maximising without its denominator. Take S′ :=
{v | sv ∈ S} for the solution of the original 4k-
weighted dominating set problem. Suppose S′ was
not a maximum solution. Then there is a better so-
lution Ŝ of weight 4k. But then {sv | v ∈ Ŝ} is
a better solution for summarisation. This gives the
result.

We can extend the reduction in the proof of The-
orem 1 from 4k-weighted dominating set to ex-
tractive summarisation with respect to ROUGE-
n with budget 2 · (4k) by introducing a dummy
symbol d into our documents and summaries for

padding sentences. We first introduce some nota-
tion for the new sentences of documents and refer-
ence summaries.

We will now write sentences sv from the proof
of Theorem 1 with the superscript 1, s1

v, corre-
sponding to the type of gram (1-gram) measured
in ROUGE-1. We set an ordering on V , numbering
the vertices so that V := {v1, . . . , v|V |} (though
this ordering is purely for ease in description). In-
stead of simply choosing any order to write the
nodes from N(vi1) ∪ {vi1} = {vi1 , vi2 , vi3 , vi4},
we write s1

vi1
according to the ordering of the

node indices. So, if i1 < i2 < i3 < i4, then
s1
vi1

= vi1vi2vi3vi4 .
We generalise this to order-n sentences. The

order-n sentence sn
v is just s1

v (first order sen-
tence) with each vertex padded to the right
by the string d(n−1), and prefixed with d(n−1)

to the resulting string, where d is a dummy
symbol not in V . For example, s2

vi1
=

dvi1dvi2dvi3dvi4d, and in general, sn
vi1

=

d(n−1)vi1d
(n−1)vi2d

(n−1)vi3d
(n−1)vi4d

(n−1). So
order-n sentences have length 4 + 5(n − 1).
Order-n sentences will be used for creating doc-
uments Dn and reference summaries Vn for the
NP-hardness proof of exact oracle summarisa-
tion with respect to ROUGE-n, with a budget of
k(4 + 5(n− 1)).

Note how if v occurs in a first order sentence
s1, then there are exactly 2 bigrams containing
v in the corresponding second order sentence s2:
dv and vd. Similarly, there are exactly n n-grams
containing v in the corresponding sentence sn:
d(n−1)v, d(n−2)vd, . . . , dvd(n−2), vd(n−1). This is
the set-up for the document Dn in the reduction of
(4k)-weighted dominating set to exact extractive
summarisation with respect to ROUGE-n.

We set up the reference summary in a similar
way. For V = V1, we write the vertices in or-
der. For Vn we pad the right of each symbol in V1

with the string d(n−1) and attach the same string
as a prefix. So, once again, a 1-gram in V1 corre-
sponds to exactly n n-grams in Vn. ROUGE-n is
maximised when the number of matched n-grams
of Vn is maximised, which is precisely when the
number of 1-grams of V1 is maximised. The reduc-
tion from (4k)-weighted dominating set to exact
extractive summarisation with respect to ROUGE-
n and with budget (4+5(n−1))k follows, yielding
the following generalisation of Theorem 1.

Theorem 2. Given a document, its manually writ-
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ten non-extractive summary, and the ROUGE-n
metric for n ∈ Z+, building an extractive sum-
mary that maximises the ROUGE-n metric is NP-
hard.

Because the ROUGE optimisation problem is
NP-hard, one may suspect that exchanging a
greedy strategy out for an exact global approach
would lead to substantial improvements in system
performance. Therefore, for our three datasets, we
generate gold extractive summaries using both ex-
act and greedy global oracle approaches. If our
suspicions are true, then we expect these ap-
proaches to generate poor quality gold extractive
summaries with the greedy algorithm in compari-
son to exact one.

opt Greedy Exact
w.r.t. R1 R2 R1 R2

duc04 R1 50.5 13.87 49.91 13.98
R2 48.27 19.61 46.92 16.79

wiki R1 64.14 22.49 63.41 21.81
R2 59.68 27.81 59.43 27.11

echr R1 83.57 51.01 84.17 50.34
R2 81.38 57.31 82.04 56.67

Table 1: Exact and greedy oracle summarisation
ROUGE-n scores in percentages, for n ∈ [2].

We use an open source solver to find exact op-
timal solutions.5 Note that in the exact set-up sen-
tences cannot be clipped to meet the boundary
budget constraint, which is a more natural setting
for automatic summarisation. To build an extrac-
tive summary greedily, we iteratively add the sen-
tence with highest ROUGE score to the summary,
normalising by sentence length. The measure au-
tomatically chops sentences that otherwise bring
summary lengths over the limit. Table 1 gives the
results for greedy and exact oracle gold extractive
summaries across our three domains.

Greedy is good. We observe that across the
board, the greedy strategy performs comparably to
the exact strategy for global optimisation. With the
shorter summaries required by the duc04 dataset,
the greedy strategy yields higher ROUGE scores,
possibly by chopping the last sentence of sum-
maries. This chopping reward lessens, it seems, as
summary budgets increase, but the two methods

53gnu.org/software/glpk

stay competitive with each other.

No data necessary. This also provides good ev-
idence that is no substantial benefit in switch-
ing from unsupervised exact global state-of-the-
art approaches to supervised exact global ap-
proaches for extractive summarisation on conven-
tional datasets.

Far from perfection. For extractive summarisa-
tion, the perfect scores (in Table 1) are far from
100% as well as diverse, according to dataset.

Evaluation against multiple, rather than sin-
gle reference summaries is generally recognised
as leading to fairer, better quality, evaluation:
different human summaries appear to be good
even though they do not have identical content
(Nenkova and Passonneau, 2004). However, aver-
aging ROUGE scores across multiple summaries,
as is standard practice, makes a perfect 100%
score unattainable, even for abstractive systems.
This is because the word frequencies required by
ROUGE suddenly become unattainable.

Figure 1: Stemmed word frequencies for refer-
ence summary set d30001t from duc04: averaged
across all reference summaries and for single ref-
erence summaries.

As illustration, consider the frequencies re-
quired by the reference summaries for a duc2004
document set in Figure 1. The number of 1-grams
to match has increased: this was the original in-
tent—to allow for equally important but different
content. We have gone from around 60 stemmed
words to 160 stemmed words. However, for ex-
ample, in the case of our example summary set,
136/160 matches are really only part matches
(with weight < 1).

This leads to the contradictory situation where,
according to the ROUGE metric, humans cannot
summarise well (though they are thought to be
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able to judge summary quality accurately). In-
deed, evaluating one reference summary against
the other three for the duc04 dataset achieves
39.92 ROUGE-1 and 9.39 ROUGE-2—far below
optimal performance. Since humans are generally
abstractive summarisers this provides a sort of up-
per bound on abstractive summarisation perfor-
mance according to ROUGE.

4 Concluding remarks
Previous work on summarisation evaluation has
mainly considered the positive aspects of ROUGE;
namely correlation to human judgments. In this
paper we hope to have raised some concerns with
respect to ROUGE and our expectations for op-
timal summarisers. We have also given the first
NP-hardness proof for global optimisation with
respect to ROUGE.
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