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Abstract

Universal Dependencies (UD) is becom-
ing a standard annotation scheme cross-
linguistically, but it is argued that this
scheme centering on content words is
harder to parse than the conventional one
centering on function words. To improve
the parsability of UD, we propose a back-
and-forth conversion algorithm, in which
we preprocess the training treebank to in-
crease parsability, and reconvert the parser
outputs to follow the UD scheme as a post-
process. We show that this technique con-
sistently improves LAS across languages
even with a state-of-the-art parser, in par-
ticular on core dependency arcs such as
nominal modifier. We also provide an
in-depth analysis to understand why our
method increases parsability. 1

1 Introduction

As shown in Figure 1 there are several variations
in annotations of dependencies. A famous exam-
ple is a head choice in a prepositional phrase (e.g,
to a bar), which diverges in the two trees. Though
various annotation schemes have been proposed
so far (Hajic et al., 2001; Johansson and Nugues,
2007; de Marneffe and Manning, 2008; McDon-
ald et al., 2013), recently the Universal Dependen-
cies (UD) (de Marneffe et al., 2014) gains much
popularity and is becoming the annotation stan-
dard across languages. The upper tree in Figure
1 is annotated in UD.

Practically, however, UD may not be the opti-
mal choice. In UD a content word consistently
dominates a function word, but past work points
out that this makes some parser decisions more

1Our conversion script is available at
https://github.com/kohilin/MultiBFConv
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Figure 1: Dependency trees with content head
(above) and function head (below).

difficult than the conventional style centering on
function words, e.g., the tree in the lower part of
Figure 1 (Schwartz et al., 2012; Ivanova et al.,
2013).

To overcome this issue, in this paper, we
show the effectiveness of a back-and-forth conver-
sion approach where we train a model and parse
sentences in an anontation format with higher
parsability, and then reconvert the parser output
into the UD scheme. Figure 1 shows an example
of our conversion. We use the function head trees
(below) as an intermediate representation.

This is not the first attempt to improve depen-
dency parsing accuracy with tree conversions. The
positive result is reported in Nilsson et al. (2006)
using the Prague Dependency Treebank. For the
conversion of content and function head in UD,
however, the effect is still inconclusive. Using En-
glish UD data, Silveira and Manning (2015) report
the negative result, which they argue is due to error
propagation at backward conversions, in particu-
lar in copula constructions that often incur drastic
changes of the structure. Rosa (2015) report the
advantage of funcion head in the adposition con-
struction, but the data is HamleDT (Zeman et al.,
2012) rather than UD and the conversion target is
conversely too restrictive.

Our main contribution is to show that the back-
and-forth conversion can bring consistent accu-
racy improvements across languages in UD, by
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POS Label Example

ADP
case ... a post about fault ...
dep (ja) Taro ni ha ...
mark ... opinions on how it ...

SCONJ mark I think that ...
ADV mark ... feet when you ...

PART case Elena ’s motor cycle ...
mark ... Sharon to make ...

Table 1: The set of conversion targets. (ja) is an
example in Japanese.

limiting the conversion targets to simpler ones
around function words while covering many lin-
guistic phenomena. Another limitation in previous
work is the parsers: MSTParser or MaltParser is
often used, but they are not state-of-the-art today.
We complement this by showing the effectiveness
of our approach even with a modern parser with
rich features. We also provide an in-dpeth analy-
sis to explore when and why our conversion brings
higher parsability than the orignal UD.

2 Conversion method

Let us define notations first. For the i-th word wi

in a sentence, pi denotes its POS tag, hi the head
index, li the dependency label, and lefti (righti) the
list of indexes of left (right) children for wi. For
instance in the upper tree in Figure 1, w5 = went,
p5 = VERB, h5 = 2, l5 = ccomp, and left5 = [3, 4].

Forward Conversion The forward algorithm
receives the original UD tree and converts it to a
function head tree by modifying hi. Figure 1 is
an example, and Algorithm 1 is the pseudo-code;
root(y) returns the root word index of tree y.

The algorithm traverses the tree in a top-down
fashion and modifies the deepest node first. The
modifications such as changing the mark arc from
went to that in Figure 1 occur when it detects a
word wi (that, in this case), for which the pair
(pi, li) exists in the set of conversion targets, which
is listed in Table 1 and is denoted by T in Algo-
rithm 1. Let wj be the head of the detected word
wi. Then, we reattach the arcs so that wi’s head
becomes wj’s head and wj’s new head becomes
wi. Note that we modify heads (hi) only and keep
labels (li). We skip the children of the root word
(line 13); otherwise, an arc with root label will ap-
pear at an intermediate node. We operate only on
the outermost child when multiple candidates are
found (line 11).

Backward Conversion In contrast, the back-
ward algorithm receives a function head tree and

Algorithm 1 Forward conversion
Input: a dependency tree y and the set of targets T .
Output: modified y after applying CONV(root(y)).

1: procedure CONV(j)
2: for i in leftj do
3: CONV(i)
4: CHANGEDEP(SEARCH(leftj), j)
5: for i in rightj do
6: CONV(i)
7: CHANGEDEP(SEARCH(reverse(rightj)), j)
8: procedure SEARCH(children)
9: for i in children do

10: if (pi, li) ∈ T then . T is the set of targets.
11: return i . The first found candidate is

outermost. We only change this.
12: procedure CHANGEDEP(i, j)
13: if lj 6= root then . We skip the root.
14: hi ← hj ; hj ← i

reconverts it to a UD-style tree. Algorithm 2 is the
pseudo-code.

There are two main differences between the for-
ward and backward algorithms. The first is the
relative position of a target node (one of Table 1)
among the operated nodes; in the forward algo-
rithm they are the target node, its parent (head),
and its grandparent, while in the backward algo-
rithm they are the target node, its head, and its
children. The second is how we reattach the nodes
at the CHANGEDEP operation, in particular when
the target node has multiple children. While the
forward algorithm modifies only two arcs at once,
the backward algorithm may modify more than
two arcs considering possible parse errors at pre-
diction. Specifically, when we find a target node
having multiple children, we change the head of
all these children to the head of the target (exclud-
ing those with the mwe label)2. We choose the
intermost child as the new head of the target word
(line 17).

Remarks The target list in Table 1 is developed
for covering main constructions in English and
Japanese while keeping the backward conversion
accuracy high. We do not argue this list is perfect,
and seeking better one is an important future work.
Note also that we use this list across all languages.

One possible drawback of our method is that it
may introduce additional non-projective arcs. In
fact, we found that the ratio of non-projective arcs
in the training sets increases by 10% points on av-

2In the original UD, tokens with mwe label sometimes at-
tach to a function word, which may be the current target. To
avoid flipping the relationship of mwe components, our back-
ward algorithm skips them in the CHANGEDEP operation.
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Algorithm 2 Backward conversion
Input: a dependency tree y and the set of targets T .
Output: reconverted y after applying CONV(root(y)).

1: procedure CONV(j)
2: for i in leftj do
3: CONV(i)
4: if (pj , lj) ∈ T then
5: CHANGEDEP(leftj , j)
6: for i in rightj do
7: CONV(i)
8: if (pj , lj) ∈ T then
9: CHANGEDEP(reverse(rightj), j)

10: procedure CHANGEDEP(children, j)
11: lastchild← −1 . -1 is dummy.
12: for i in children do
13: if li 6= mwe then . We skip mwes.
14: lastchild← i
15: hi ← hj

16: if lastchild 6= −1 then
17: hj ← lastchild . The last chid is innermost.

erage. We argue this is not a serious restriction
since UD already contains moderate amount of
non-projective arcs and the parser should be able
to handle them. In practice, this complication does
not lead to performance degradation; when we em-
ploy non-projective parsers, the scores increase re-
gardless of the increased non-projectivity.

3 Experiment

3.1 Experimental Setting

For each treebank and parser, we train two differ-
ent models: one with the original trees (UD) and
another with the converted trees (CONV). Recon-
verting CONV’s output into the UD scheme by the
backward algorithm, we can evaluate the outputs
of both models against the same UD test set.

For parsers, we use two non-projective parsers:
second-order MSTParser (MST) (McDonald et al.,
2005) 3 and RBGParser (RBG) (Lei et al., 2014) 4

with the default settings, which utilizes the third-
order features and is much stronger .

We choose 19 langueges from UD ver.1.3 con-
sidering the sizes and typological variations.5 The
ratio of converted tokens is 6.3% on average
(2.3%-15.6%). The failed backward conversions
rarely occur at most 0.01% (0.002% on average)
in the training data. We use gold POS tags, and
exclude punctuations from evaluation.

3https://sourceforge.net/projects/mstparser/
4https://github.com/taolei87/RBGParser
5We exclude Arabic and French since they caused prob-

lems in training with RBG in a preliminary study.

3.2 Result

Attachment scores Table 2 shows the main re-
sult and we can see that the improvements are re-
markable in the labeled attachment score (LAS):
For MST, the scores increase more than 1.0 point
in many languages (11 out of 19), and for RBG,
though the changes are smaller, more than 0.5
points improvements are still observed in 10 lan-
guages. The differences in the unlabelled attach-
ment score (UAS) are modest, implying that our
conversion contributes in particular to find correct
arc labels rather than head words themselves. On
the other hand, LAS of Hindi decreases with RBG.
One possible explanation for this is that the score
of original UD is sufficiently high (91.74) and our
conversion may impede parsability in such cases.

These overall improvements are not observed in
past work (Silveira and Manning, 2015). One rea-
son of our success seems that we restrict our con-
version to simpler constructions and operations.
We do not modify copula and auxiliary construc-
tions, which involve more complex changes, am-
plifying error propagation in backward conver-
sion. Our conversion also suffers from such prop-
agation (see below) but in a lesser extent, suggst-
ing that it may achieve a good balance between
parsability and simplicity.

As the whole trends of the two parsers are simi-
lar, we mainly foucs on RBG in the analysis below.

What kinds of errors are reduced by our con-
version? To inspect this, we compare F1-scores
of each arc label. Table 3 summarizes the results
for the frequent labels, and interestingly we can
see that the improvements are observed for more
semantically crucial, core relations such as dobj
(+0.81), nmod (+2.34), and nsubj (+2.01).6 This
is not surprising as these relations are involved in
most of our conversion. See Figure 1, on which
in the original tree, nmod arc connects two con-
tent words (went and bar) while in the converted
tree, they are connected via a function word to.
The result suggests that this latter structure is more
parsable than the original one, possibly because
directly connecting content words is harder due to
the sparsity. We further investigate this hypothesis
quantitatively later.

The F1-scores degrade in some functional
lables, such as mark (-2.74) and case (-0.85). In-

6In the following, by core labels we mean the labels in the
“core” row at Table 3 while by functional labels we mean the
other labels (func).
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L.
UAS LAS CNC

MST RBG MST RBG RBG

UD CONV UD CONV UD CONV UD CONV UD CONV

bg 88.39 88.86 90.33 90.74 81.63 82.63 84.85 85.64 80.74 81.92
cs 86.65 87.20 91.40 91.67 79.85 80.65 87.25 87.22 85.23 85.21
da 82.03 83.46 86.08 86.51 76.81 78.52 82.13 82.65 78.42 79.54
de 84.69 84.66 87.19 86.68 75.47 77.69 79.39 80.63 72.03 74.10
en 85.97 86.30 89.69 89.65 80.67 81.89 86.32 86.50 82.30 82.83
es 85.98 86.47 89.02 89.21 80.13 81.95 84.98 85.75 77.33 79.00
et 81.04 80.81 87.67 87.60 71.28 71.56 83.84 84.07 82.58 82.99
fa 83.26 84.25 82.83 84.37 78.43 80.10 78.64 80.56 74.53 77.47
fi 76.76 76.42 85.57 85.80 68.24 68.55 81.69 82.46 80.46 81.22
hi 89.80 92.14 95.10 94.99 84.11 87.20 91.74 90.76 87.96 87.22
hu 79.31 79.94 84.53 84.15 66.47 67.26 79.53 79.94 77.19 78.06
it 88.82 89.48 92.14 92.83 83.90 85.94 89.22 90.25 83.31 85.27
ja 87.67 90.20 91.58 92.24 79.96 85.41 87.70 87.62 81.09 81.14
no 89.14 89.44 91.57 91.57 84.06 85.23 88.31 88.32 84.81 85.14
pl 88.10 87.71 92.25 92.47 80.20 80.73 87.51 87.70 85.08 85.64
pt 85.82 85.34 90.51 91.04 80.16 80.53 86.79 87.47 80.30 81.90
ru 81.46 81.91 86.76 87.13 74.79 75.86 83.15 83.92 81.01 82.04
tr 79.02 78.90 85.10 85.13 62.56 62.66 75.33 75.57 73.70 74.19
zh 79.28 79.07 85.75 85.48 73.44 74.72 80.91 81.68 79.43 80.45

Avg. 84.38 84.87 88.69 88.91 76.96 78.37 84.17 84.67 80.40 81.33

Table 2: Comparison of unlabelled (UAS) and labelled (LAS) attachment scores. See body for CNC. A
bold score means that the difference is more than 0.1 points.

Type Label Ratio UD CONV

core

advmod 4.9% 79.24 79.15
amod 6.3% 92.41 92.46
conj 4.4% 66.56 68.07
dobj 5.7% 81.92 82.73

nmod 14.6% 76.52 78.86
nsubj 7.3% 80.19 82.20

func

case 11.4% 95.54 94.69
cc 3.3% 79.47 80.00
det 6.6% 94.99 94.95

mark 2.9% 87.39 84.65

Table 3: F1-scores (UD and CONV) and the av-
erage ratio in the test set (Ratio) of the frequent
labels.

specting the outputs, we find that this essentially
arises in our backward conversion, which induces
errors on these arcs even when they are correctly
attached in the (CONV) parser output, if another
core label arc following them, such as nmod, at-
taches wrong. Figure 2 describes the situation.
In the initial parser output (above), the case arc
to in is correct although it misattaches groups as
a child of in (the correct head is provides). By

... provides in a single glass all four essential groups
case

nmod

case

nmod

Figure 2: A failed output of CONV model (above),
which induces an additional error on case with the
backward conversion (below).

the backward conversion, then, it induces a wrong
case arc from groups to in, which hurts both pre-
cision and recall. In summary, we can say that
just predicting correct functional arcs (e.g., case)
is equally easy for both representations, but our
method needs correct analysis on both functional
and core arcs, to recover the true functional arcs.

Although this additional complexity seems de-
ficiency, the oveall scores (FAS) increase, which
suggests that the majority case is successful pre-
dictions of both arcs thanks to our conversion.
In other words, though our method slightly drops
scores of functional arcs, it saves much more arcs
of core relations, which are generally harder.

CNC To further verify the intuition above, now
we introduce another metric called the CNC score,
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which is recently proposed in Nivre (2016) for UD
evaluation purpose and calculates LAS excluding
functional arcs7. The last column in Table 2 shows
the results, where the improvements are clearer
than LAS, +0.9 points on average. The results
confirm the above observation that our method fa-
cilitates to find core grammatical arcs at a slight
sacrifice of functional arcs.

Head word vocabulary entropy Finally, we
provide an analysis to answer the question why our
method improves the scores of core dependency
arcs. As we mentioned above, this may be rel-
evant to the ease of sparseness by placing func-
tion words between two content words. We verify
this intuition quantitatively in terms of the entropy
reduction of head word vocabulary. Schwartz et
al. (2012) hypothesize about such correlation be-
tween entropy and parsability, although no qunati-
tative verification has been carried out yet.

For each dependency hyl
w from h to w with

label l in the training data, we extract a pair
((p, l, w), h) where p is the POS tag of w. We then
discard the pairs such that a tuple (p, l, w) appears
less than five times, and calculate the entropy of
head word, Hl(h) from the conditional probablity
P (h|p, l, w). We perform this both for the original
UD and converted data, and calculate the differ-
ence for each label Horig

l (h)−Hconv
l (h).

See Figure 3 above, where many nmods appear
on the upper left side, meaning that the reduction
of entropy contributes to the larger improvements
cross-linguistically. Other points on this area in-
clude dobjs of Japanese and Persian, both of which
employ case constructions for expressing objects.

We also explore the correlation between LAS
and the averaged reduction of entropy per a to-
ken in each language. Figure 3 below shows
a negative correlation, which means the reduc-
tion of entropy as a whole by the conversion re-
lates with the overall improvement. In particu-
lar in MST, we find a strong negative correlation
(r = −.75; p < .01). RBG, on the other hand,
has a weaker, non-significant negative correlation
(r = −.35; p = .14) when excluding Hindi, which
seems an outlier. These correlations imply that the
variation of entropy can be a metric of assessing
an annotation framework, or a conversion method.

7Arcs with the following relations: aux, auxpass, case,
cc, cop, det, mark, and neg.
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Figure 3: The reduction of entropy and the im-
provement of F1-score (above) and LAS (below)

4 Conclusion and Future Work

We have shown that our back-and-forth conversion
around function words reduces head word vocab-
ulary, leading to improvements of parsability and
labelled attachment scores. This is the first empir-
ical result on UD showing the parser preference to
the function head scheme across languages. The
method is modular, and can be combined with any
parsing systems as pre- and post-processing steps.

Recently there has been a big success in the
transition-based neural dependency parsers, which
we have not tested mainly because the most such
systems currently available, such as SyntaxNet
(Andor et al., 2016) and LSTMParser (Dyer et al.,
2015), do not support non-projective parsing. The
neural parsers are advantageous in that the bilex-
ical sparsity problem, the main challenge in UD
parsing for the ordinary feature-based systems,
might be alleviated thanks to word embeddings. It
is thus an interesting and important future work to
develop a neural dependency parser designed for
non-projective parsing and see whether our con-
version is still effective for such stronger system.
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