
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1044–1052,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Decoding with Finite-State Transducers on GPUs

Arturo Argueta and David Chiang
Department of Computer Science and Engineering

University of Notre Dame
aargueta,dchiang@nd.edu

Abstract

Weighted finite automata and transduc-
ers (including hidden Markov models and
conditional random fields) are widely used
in natural language processing (NLP) to
perform tasks such as morphological anal-
ysis, part-of-speech tagging, chunking,
named entity recognition, speech recog-
nition, and others. Parallelizing finite
state algorithms on graphics processing
units (GPUs) would benefit many areas
of NLP. Although researchers have imple-
mented GPU versions of basic graph al-
gorithms, limited previous work, to our
knowledge, has been done on GPU algo-
rithms for weighted finite automata. We
introduce a GPU implementation of the
Viterbi and forward-backward algorithm,
achieving decoding speedups of up to 5.2x
over our serial implementation running
on different computer architectures and
6093x over OpenFST.

1 Introduction

Weighted finite automata (Mohri, 2009), includ-
ing hidden Markov models and conditional ran-
dom fields (Lafferty et al., 2001), are used to solve
a wide range of natural language processing (NLP)
problems, including phonology and morphology,
part-of-speech tagging, chunking, named entity
recognition, and others. Even models for speech
recognition and phrase-based translation can be
thought of as extensions of finite automata (Mohri
et al., 2002; Kumar et al., 2005).

Although the use of graphics processing units
(GPUs) is now de rigeur in applications of neu-
ral networks and made easy through toolkits like
Theano (Theano Development Team, 2016), there
has been little previous work, to our knowledge,

on acceleration of weighted finite-state compu-
tations on GPUs (Narasiman et al., 2011; Li
et al., 2014; Peng et al., 2016; Chong et al.,
2009). In this paper, we consider the operations
that are most likely to have high speed require-
ments: decoding using the Viterbi algorithm, and
training using the forward-backward algorithm.
We present an implementation of the Viterbi and
forward-backward algorithms for CUDA GPUs.
We release it as open-source software, with the
hope of expanding in the future to a toolkit includ-
ing other operations like composition.

Most previous work on parallel processing of
finite automata (Ladner and Fischer, 1980; Hillis
and Steele, 1986; Mytkowicz et al., 2014) uses
dense representations of finite automata, which is
only appropriate if the automata are not too sparse
(that is, most states can transition to most other
states). But the automata used for natural language
tend to be extremely large and sparse. In addition,
the more recent work in this line assumes deter-
ministic automata, but automata that model natural
language ambiguity are generally nondeterminis-
tic.

Previous work has been done on accelerating
particular NLP tasks on GPUs: in machine trans-
lation, phrase-pair retrieval (He et al., 2013) and
language model querying (Bogoychev and Lopez,
2016); parsing (Hall et al., 2014; Canny et al.,
2013); and speech recognition (Kim et al., 2012).
Our aim here is for a more general-purpose collec-
tion of algorithms for finite automata.

Our work uses concepts from the work of Mer-
rill et al. (2012), who show that GPUs can be
used to accelerate breadth-first search in sparse
graphs. Our approach is simple, but well-suited
to the large, sparse automata that are often found
in NLP applications. We show that it achieves a
speedup of a factor of 5.2 on a GPU relative to a
serial algorithm, and 6093 relative to OpenFST.

1044

2 Graphics Processing Units

GPUs became known for their ability to ren-
der high quality images faster than conventional
multi-core CPUs. Current off-the-shelf CPUs con-
tain 8–16 cores while GPUs contain 1500–2500
simple CUDA cores built into the card. General
Purpose GPUs (GPGPU) contain cores able to ex-
ecute calculations that are not constrained to im-
age processing. GPGPUs are now widely used
across scientific domains to enhance the perfor-
mance of diverse applications.

2.1 Architecture

CUDA cores (also known as scalar processors) are
grouped into different Streaming Multiprocessors
(SM) on the graphics card. The number of cores
per SM varies depending on the GPU’s micro-
architecture, ranging from 8 cores per SM (Tesla)
up to 192 (Kepler). The overall number of SM on
the chip varies, and it can range from 15 (Kepler)
up to 24 (Maxwell). Streaming Multiprocessors
are composed of the following components:

• Special Function units (SFU) These allow
computations of functions such as sine, co-
sine, etc.

• Shared Memory and L1 Cache The size of
the memory varies on the GPU model.

• Warp Schedulers assigns threads in an SM
to be executed in a specific warp.

To execute a workload on the GPU, a kernel
must be launched with a specified grid structure.
The kernel must specify the number of threads
to run on a block and the number of blocks
in a grid before being executed on the device.
The maximum number of threads per block and
blocks per grid can vary depending on the GPU
device. If the kernel is successfully launched,
each block in the grid will get assigned to a
SM. Each SM will execute 32 threads at a time
(also called a warp) in its assigned block. If
the number of threads in a block is not divisible
by 32, the kernel will not launch on the device.
Each SM contains a warp scheduler in charge
of choosing the warps in a block to be executed
in parallel. When the amount of blocks in a
grid surpasses the amount of SM on the device,
the SMs will execute a subset of blocks in parallel.

K40 Specs
Global Memory 11520 MB
L2 cache size 1.57 MB

Shared memory per block 0.049 MB
Multiprocessors 15
Cores per MP 192

Registers per block 65536

Table 1: Device properties of a K40c GPU

The memory hierarchy on the device is laid out
to maximize the data throughput. Table 1 shows
the amount of cores available for execution as well
as the amount of memory available on a Kepler
based GPU. Registers are the fastest type of mem-
ory on the device, and this memory is private to
each thread running on a block. Shared memory is
the second fastest, and is shared by all threads run-
ning in the same block. The next type of memory
is the L2 cache, which is shared among all stream-
ing multiprocessors. The slowest and largest type
of memory is global memory. Directly reading and
writing to global memory affects performance sig-
nificantly. Efficient memory management (reading
and writing to and from contiguous addresses in
memory) is important to fully utilize the memory
hierarchy and increase performance.

2.2 Optimizations

Different factors such as number of threads in a
block or coalesced memory accesses affect the
performance on the GPU. In this section, we will
cover the methods and modifications we used to
improve the performance of our parallel imple-
mentations.

The optimal number of threads per block de-
pends on the device configuration. The number of
multiprocessors and cores per multiprocessor must
be considered before launching a CUDA kernel on
the device. Table 1 shows the number of stream-
ing multiprocessors and the number of cores per
multiprocessor on a K40 GPU. Multiple blocks in
a kernel grid can get scheduled to be executed on
a single streaming multiprocessor if the number of
blocks in a grid exceeds the number of streaming
multiprocessors. Each streaming multiprocessor
will only execute one warp in a block in parallel
during execution, and that is why choosing an ap-
propriate number of blocks is important. For ex-
ample, if two blocks get assigned to a multipro-
cessor and each block contains 192 threads, the

1045

multiprocessor must execute 12 warps total where
1 warp gets executes at a time in parallel.

In our implementations, we take the following
approach. The number of cores per multiproces-
sor is considered first to configure the block size.
The block size is set to contain the same number
of threads as the number of cores per multiproces-
sor of the graphics card used. If the number of
threads needed to perform a computation is not di-
visible by the amount of cores per multiprocessor,
the number of threads is rounded up to the clos-
est dividend. Once the block size and number of
threads are selected, the number of blocks is cho-
sen by dividing the total number of threads by the
block size.

Coalesced memory accesses are essential to
maximize the use of resources running on the
GPU. When data is requested by a warp execut-
ing on a streaming multiprocessor, a block from
global memory will be accessed and allocated in
shared memory. It is crucial to coalesce mem-
ory accesses so the number of blocks of global
memory requested and the global memory access
times decrease. This can be achieved by making
all threads in a warp access contiguous spaces in
memory. A similar speedup can be achieved if
each thread in a block allocates all the data re-
quired from global memory into a compact data
structure allocated in shared memory (size of the
shared memory varies across devices). Section 4
describes the data structure used to coalesce mem-
ory reads. For each input symbol wt the source
states of all possible transitions can be read in a
coalesced form and stored in shared memory al-
lowing faster execution times.

Using special function units on the device can
inhibit the performance of a program running on
the GPU. Performance is affected because the
number of SFU is lower than the amount of regular
cores (e.g. The GK104 Kepler architecture con-
tains 1536 regular cores and 256 special function
units total). Also, the cycle penalty for using SFU
rather than CUDA cores is higher than the penalty
for regular cores on the device. For this work, the
amount of instructions that use a specific SFU are
kept to a minimum to obtain a higher speedup. By
combining the mentioned techniques in this sec-
tion, an application can significantly increase its
performance.

3 Weighted Finite Automata

In this section, we review weighted finite au-
tomata, using a matrix formulation. A weighted fi-
nite automaton is a tuple M = (Q,Σ, s, F, δ), where

• Q is a finite set of states.

• Σ is a finite input alphabet.

• s ∈ RQ is a one-hot vector: if M can start in
state q, then s[q] = 1; otherwise, s[q] = 0.

• f ∈ RQ is a vector of final weights: if M can
accept in state q, then f [q] > 0 is the weight
incurred; otherwise, f [q] = 0.

• δ : Σ → RQ×Q is the transition function: if
M is in state q and the next input symbol is
a, then δ[a][q, q′] is the weight of going to
state q′.

Note that we currently do not allow transitions on
empty strings or epsilon transitions. This defi-
nition can easily be extended to weighted finite
transducers by augmenting the transitions with
output symbols. See Figure 1 for an example FST.

Using this notation, the total weight of a string
w = w1 · · ·wn can be written succinctly as:

weight(w) = s>
 n∏

t=1

δ[wt]

 f . (1)

Matrix multiplication is defined in terms of multi-
plication and addition of weights. It is common to
redefine weights and their multiplication/addition
to make the computation of (1) yield various use-
ful values. When this is done, multiplication is
often written as ⊗ and addition as ⊕. If we define
p1⊗p2 = p1 p2 and p1⊕p2 = p1+p2, then equation
(1) gives the total weight of the string.

Or, we can make Equation (1) obtain the maxi-
mum weight path as follows. The weight of a tran-
sition is (p, k), where p is the probability of the
transition and k is (a representation of) the transi-
tion itself. Then

(p1, k1) ⊗ (p2, k2) ≡ (p1 p2, k1k2)

(p1, k1) ⊕ (p2, k2) ≡
(p1, k1) if p1 > p2

(p2, k2) otherwise.

The Viterbi algorithm simply computes Equation
(1) under the above definition of weights.

1046

0

1

2

3

4

5
le:t
he/0

.48

le:a/0.08

chat:cat/1

chat:cat/1

</s>:</s>/1

</s
>:</
s>/1

Figure 1: Example of a FST that translates the
french string le chat to English.

4 Serial Algorithm

Applications of finite automata use a variety of al-
gorithms, but the most common are the Viterbi,
forward, and backward algorithms. Several of
these automata algorithms are related to one an-
other and used for learning and inference. Speed-
ing up these algorithms will allow faster training
and development of large scale machine learning
systems.

The forward and backward algorithms are used
to compute weights (Eq. 1), in left-to-right (Read-
ing an input utterance from left to right) and right-
to-left order, respectively. Their intermediate val-
ues are used to compute expected counts dur-
ing training by expectation-maximization (Eisner,
2002). They can be computed by Algorithm 2.

Algorithm 1 is one way of computing Viterbi
using Equation (1). It is a straightforward algo-
rithm, but the data structures require a brief expla-
nation.

Throughout this paper, we use zero-based in-
dexing for arrays. Let m = |Σ|, and number the in-
put symbols in Σ consecutively 0, . . . ,m− 1. Then
we can think of δ as a three-dimensional array. In
general, this array is very sparse. We store it using
a combination of compressed sparse row (CSR)
format and coordinate (COO) format, as shown in
Figure 2 where:

• z is the number of transitions with nonzero
weight

• R is an array of length (m + 1) containing off-
sets into the arrays S ,T ,O, and P. if a ∈ Σ,
the transitions on input a can be found at po-
sitions R[a], . . .R[a + 1]− 1 (i.e. to access all
transitions δ[a]). Note that R[m] = z

• S contains the source states for each transi-
tion 0 ≤ k < z ∈ δ[a]

• T contains target states for transitions 0 ≤
k < z ∈ δ[a]

le chat </s>

R 0 2 4 6

S 0 0 1 2 3 4

T 1 2 3 4 5 5

O the a cat cat </s> </s>

P 0.48 0.08 1 1 1 1

Figure 2: CSR/COO representation of FST in Fig-
ure 1.

• O contains the output symbols for transitions
from state S [k] to state T [k]

• P contains the probabilities for transitions
from state S [k] to state T [k]

The vector f of final weights is stored as a
sparse vector: for each k, S f [k] is a final state with
weight P f [k].

Algorithm 1 Serial Viterbi algorithm (using
CSR/COO representation).

1: for q ∈ Q do
2: α[0][q] = 0
3: α[0][s] = 1
4: for t = 1, . . . , n do
5: a← wt

6: for k = R[a], . . . ,R[a + 1] − 1 do
7: p← α[t − 1][S [k]] ⊗ P[k]
8: α[t][T [k]]← α[t][T [k]] ⊕ p
9: return

⊕
k α[n][S f [k]] ⊗ P f [k]

If the transition matrices δ[a] are stored in com-
pressed sparse row (CSR) format, which enables
efficient traversal of a matrix in row-major order,
then these algorithms can be written out as Algo-
rithm 2 for the forward-backward algorithm and
1 for Viterbi. (Using compressed sparse columns
(CSC) format, the loop over q′ would be outside
the loop over q, which is perhaps the more com-
mon way to implement these algorithms.)

5 Parallel Algorithm

Our parallel implementation is based on Algo-
rithm 1 for Viterbi and Algorithm 2 for forward-
backward, but parallelizes the loop over t, that is,
over the transitions on symbol wt. The transitions

1047

Algorithm 2 Forward-Backward algorithm (row-
major).

1: forward[0][s]← 1 . Begin forward pass
2: for t = 0, . . . , n − 1 do
3: for q ∈ Q do
4: for q′ ∈ Q such that δ[wt+1][q, q′] > 0 do
5: p = forward[t][q]δ[wt+1][q, q′]
6: forward[t + 1][q′] += p
7: for q ∈ Q do . backward pass
8: backward[n][q] = f [q]
9: for t = n − 1, . . . , 0 do

10: for q ∈ Q do
11: for q′ ∈ Q such that δ[wt+1][q, q′] > 0 do
12: p = δ[wt+1][q, q′]backward[t][q′]
13: backward[t][q] += p
14: Z =

∑
q∈Q forward[n][q] f [q]

15: for t = 0, . . . , n − 1 do
16: for q, q′ ∈ Q do
17: α = forward[t][q] . Expected counts
18: β = backward[t + 1][q′]
19: count[q, q′] += α × δ[w][q, q′] × β/Z

are stored in CSR/COO format as described above
for Algorithm 1. The S , T , and P arrays are stored
on the GPU in global memory; the R and O arrays
are kept on the host. For each input symbol a, the
transitions on S and T are sorted first by source
state and then by target state; this improves mem-
ory locality slightly. For the forward-backward
algorithm, sorting by target improves the perfor-
mance for the backward pass since the input is
read from right to left.

For each input symbol wt, one thread is
launched per transition, that is, for each nonzero
entry of the transition matrix δ[wt]. Equivalently,
one thread is launched for each transition k such
that R[wt] ≤ k < R[wt + 1], for a total of
R[wt + 1] − R[wt] threads. Each thread looks up
q = S [k], q′ = T [k] and computes its correspond-
ing operation.

For example, in Figure 2, input word “le” has
index 0; since R[0] = 0 and R[1] = 2, two threads

are launched, one for k = 0 (that is, 0
le:the/0.48−−−−−−−−→ 1)

and one for k = 1 (that is, 0
le:a/0.08−−−−−−→ 2).

5.1 Viterbi

At the time of computing a transition δ[wt][q, q′],
if the probability (at line 8 in Algorithm 1) is
higher than α[t][q′], we store the probability in
α[t][q′]. Because this update potentially involves

concurrent reads and writes at the same memory
location, we use an atomic max operation (defined
as atomicMax on the NVIDIA toolkit). However,
atomicMax is not defined for floating-point val-
ues. Additionally, this update needs to store a
back-pointer (k) that will be used afterwards to re-
construct the highest-probability path. The prob-
lem is that the atomicMax provided by NVIDIA
can only update a single value atomically.

We solve both problems with a trick: pack
the Viterbi probability and the back-pointer into
a single 64-bit integer, with the probability in the
higher 32 bits and the back-pointer in the lower 32
bits. In IEEE 754 format, the mapping between
nonnegative real numbers and their bit representa-
tions (viewed as integers) is order-preserving, so
a max operation on this packed representation up-
dates both the probability and the back-pointer si-
multaneously.

The reconstruction of the Viterbi path is not par-
allelizable, but is done on the GPU to avoid copy-
ing α back to the host avoiding a slowdown. This
generates a sequence of transition indices, which
is moved back to the host. There, the output sym-
bols can be looked up in array O.

5.2 Forward-Backward

The forward and backward algorithms 2 are sim-
ilar to the Viterbi algorithm, but do not need to
keep back-pointers. In the forward algorithm,
when a transition δ[wt][q, q′] is processed, we up-
date the sum of probabilities reaching state q′ in
forward[t + 1][q′]. Likewise, in the backward al-
gorithm, we update the sum of probabilities start-
ing from q in backward[t][q]. Both passes require
atomic addition operations, but because we use
log-probabilities to avoid underflow, the atomic
addition must be implemented as:

log(exp a + exp b) = b + log1p(exp(a − b)), (2)

assuming a ≤ b and where log1p(x) = log(1+ x), a
common function in math libraries which is more
numerically stable for small x.

We implemented an atomic version of this
log-add-exp operation. The two transcenden-
tals are expensive, but CUDA’s fast math option
(-use_fast_math) speeds them up somewhat by
sacrificing some accuracy.

1048

6 Other Approaches

6.1 Parallel prefix sum
We have already mentioned a line of work begun
by (Ladner and Fischer, 1980) for unweighted,
nondeterministic finite automata, and continued
by (Hillis and Steele, 1986) and (Mytkowicz et
al., 2014) for unweighted, deterministic finite au-
tomata. These approaches use parallel prefix sum
to compute the weight (1), multiplying each adja-
cent pair of matrices in parallel and repeating until
all the matrices have been multiplied together.

This approach could be combined with ours; we
leave this for future work. A possible issue is that
matrix-vector products are replaced with slower
matrix-matrix products. Another is that prefix sum
might not be applicable in a more general setting
– for example, if a FST is composed with an input
lattice rather than an input string.

6.2 Matrix libraries
The formulation of the Viterbi and forward-
backward algorithms as a sequence of matrix mul-
tiplications suggests two possible easy implemen-
tation strategies. First, if transition matrices are
stored as dense matrices, then the forward algo-
rithm becomes identical to forward propagation
through a rudimentary recurrent neural network.
Thus, a neural network toolkit could be used to
carry out this computation on a GPU. However,
in practice, because our transition matrices are
sparse, this approach will probably be inefficient.

Second, off-the-shelf libraries exist for sparse
matrix/vector operations, like cuSPARSE.1 How-
ever, such libraries do not allow redefinition of the
addition and multiplication operations, making it
difficult to implement the Viterbi algorithm or use
log-probabilities. Also, parallelization of sparse
matrix/vector operations depends heavily on the
sparsity pattern (Bell and Garland, 2008), so that
an off-the-shelf library may not provide the best
solution for finite-state models of language. We
test this approach below and find it to be several
times slower than a non-GPU implementation.

7 Experiment

7.1 Setup
To test our algorithm, we constructed a FST for
rudimentary French-to-English translation. We
trained different unsmoothed bigram language

1http://docs.nvidia.com/cuda/cusparse/

<s>

the

a

cat </s>

th
e/

0.8

a/0.2

cat/1

ca
t/

1

</s>/1

the
:le/0

.6

a:le/0.4

ca
t:
ch
at

/1

</s>:</s>/1

(a) (b)

le chat </s>

(c)

Figure 3: Example automata/transducers for (a)
language model (b) translation model (c) input
sentence. These three composed together form the
transducer in Figure 1.

models on 1k/10k/100k/150k lines of French-
English parallel data from the Europarl corpus and
converted it into a finite automaton (see Figure 3a
for a toy example).

GIZA++ was used to word-align the same data
and generate word-translation tables P(f | e)
from the word alignments, as in lexical weight-
ing (Koehn et al., 2003). We converted this table
into a single-state FST (Figure 3b). The language
model automaton and the translation table trans-
ducer were intersected to create a transducer simi-
lar to the one in Figure 1.

For more details about the transducers (number
of nodes, edges, and percentage of non-zero ele-
ments on the transducer) see Table 4.

We tested on a subset of 100 sentences from
the French corpus with lengths of up to 80 words.
For each experimental setting, we ran on this set
1000 times and report the total time. Our exper-
iments were run on three different systems: (1) a
system with an Intel Core i7-4790 8-core CPU and
an NVIDIA Tesla K40c GPU, (2) a system with an
Intel Xeon E5 16-core CPU and an NVIDIA Titan
X GPU, and (3) a system with an Intel Xeon E5
24-core CPU and an NVIDIA Tesla P100 GPU.

7.2 Baselines
We compared against the following baselines:

Carmel is an FST toolkit developed at USC/ISI.2

OpenFST is a FST toolkit developed by Google
as an open-source successor of the AT&T Finite
State Machine library (Allauzen et al., 2007). For
compatibility, our implementations read the Open-
FST/AT&T text file format.

2https://github.com/graehl/carmel

1049

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60 70 80

tim
e

(s
)

Number of input words

Parallel Viterbi
CuSPARSE

Serial Viterbi

Figure 4: Viterbi decoding times for 1000 individ-
ual test sentences compared for our serial, parallel,
and cuSPARSE implementations (Titan X).

Our serial implementation Algorithm 1 for
Viterbi and Algorithm 2 for forward-backward.

cuSPARSE was used to implement the forward
algorithm, using CSR format instead of COO for
transition matrices. Since we can’t redefine addi-
tion and multiplication, we could not implement
the Viterbi algorithm. To avoid underflow, we
rescaled the vector of forward values at each time
step and kept track of the log of the scale in a sep-
arate variable.

To be fair, it should be noted that Carmel and
OpenFST are much more general than the other
implementations listed here. Both perform FST
composition in order to decode an input string
adding another layer of complexity to the process.
The timings for OpenFST and Carmel on Table 2
include composition

7.3 Results

Table 2 shows the overall performance of our
Viterbi algorithm and the baseline algorithms. Our
parallel implementation does worse than our se-
rial implementation when the transducer used is
small (presumably due to the overhead of kernel
launches and memory copies), but the speedups
increase as the size of the transducer grows, reach-
ing a speedup of 5x. The forward-backward algo-
rithm with expected counts obtains a 5x speedup
over the serial code on the largest transducer (See
Table 3).

CuSPARSE does significantly worse than even
our serial implementation; presumably, it would
have done better if the transition matrices of our

transducers were sparser.
Figure 4 shows decoding times for three algo-

rithms (our serial and parallel Viterbi, and cuS-
PARSE forward) on individual sentences. It can
be seen that all three algorithms are roughly linear
in the sentence length.

Viterbi is faster than either the forward or back-
ward algorithm across the board. This is because
the latter need to add log-probabilities (lines 6 and
13 of Algorithm 2), which involves expensive calls
to transcendental functions.

7.4 Comparison across GPU architectures
Table 2 compares the performance of the Kepler-
based K40, where we did most of our experiments,
with the Maxwell-based Titan X and the Pascal-
based Tesla P100. The performance improvement
is due to different factors, such as a larger num-
ber of active thread blocks per streaming multipro-
cessor on a GPU architecture, the grid and block
size selected to run the kernels, and memory man-
agement on the GPU. After the release of the Ke-
pler architecture, the Maxwell architecture intro-
duced an improved workload balancing, reduced
arithmetic latency, and faster atomic operations.
The Pascal architecture allows speedups over all
the other architectures by introducing an increased
floating point performance, faster data movement
performance (NVLink), larger and more efficient
shared memory, and improved atomic operations.
Also, SMs on the pascal architecture are more
efficient allowing speedups larger speedups than
its predecessors. Our parallel implementations
were compiled using architecture specific flags
(-arch=compute_XX) to take full advantage of
the architectural enhancements described in this
section.

7.5 Comparison against a multi-core
implementation

Table 2 shows how our parallel implementation
on a GPU compares against a multi-core version
of our serial Viterbi algorithm implemented in
MPI. We chose MPI since it supports distributed
and shared memory unlike OpenMP that supports
shared memory only. Results show that a multi-
core implementation of the algorithm leads to
slower performance than the serial code due to
the communication and synchronization overhead.
Several cores must transfer information frequently
and synchronize all messages on a single core.
GPUs perform better than multi-core in this case

1050

Training size (lines)
1000 10000 100000 150000

Method Hardware Time Ratio Time Ratio Time Ratio Time Ratio
OpenFST Core i7 42.06 1.9 2547 87 313800 4085 626700 6093
Carmel Core i7 195.9 9.1 7652 263 224500 2923 376400 3659
our serial Core i7 10.99 0.5 44.16 1.5 374.2 4.9 534.9 5.2
our serial Xeon E5 10.84 0.5 42.05 1.4 375.3 4.9 529.6 5.1
our MPI 4-core Core i7 194.0 9.0 581.2 20 1849 24 2243 21
our parallel K40 27.52 1.3 38.26 1.3 116.5 1.5 131.1 1.3
our parallel Titan X 25.05 1.2 33.92 1.2 94.07 1.2 121.6 1.2
our parallel Tesla P100 21.49 1.0 29.04 1.0 76.79 1.0 102.9 1.0

Table 2: Our GPU implementation of the Viterbi algorithm outperforms all others tested on the medium
and large FSTs. Times (in seconds) are for decoding a set of 100 examples 1000 times using Viterbi.
Ratios are relative to our parallel algorithm on the Tesla P100.

Training size (lines)
method 1k 10k 100k 150k
cuSPARSE forward 646 1846 3555 5948
serial forward 36 251 2297 3346
parallel forward 17 37 236 327
serial backward 13 248 3585 5303
parallel backward 43 80 644 1070
serial combined 47 534 6065 8790
parallel combined 60 120 1111 1773

Table 3: Our GPU implementations of the
forward and backward algorithms, and for-
ward+backward+expected counts combined, out-
perform all others tested, on the medium and large
FSTs. Times (in seconds) are for processing 100
examples 1000 times, on a Core i7 and K40.

Training size States Transitions Non-zero
1000 3505 443527 3.6%
10000 11644 6792487 5.0%
100000 33125 95381368 8.7%
150000 39420 150971615 9.7%

Table 4: FST Comparison. This table shows
the number of states, edges, and percent of non
zero elements of the transducers created using
1k/10k/100k/150k examples.

since all the memory is already on the graphics
card and the cost of using global memory on the
GPU is lower than synchronizing and sharing data
between cores.

8 Conclusion

We have shown that our algorithm outperforms
several serial implementations (our own serial im-
plementation on a Intel Core i7 and Xeon E ma-
chines, Carmel and OpenFST) as well as a GPU
implementation using cuSPARSE.

A system with newer and faster cores might
achieve higher speedups than a GPU on smaller
datasets. However,building a multi-core system
that beats a GPU setup can be more expensive. For
example, a 16 core Intel Xeon E5-2698 V3 can
cost 3,500 USD (Bogoychev and Lopez, 2016).
Newer GPU models offer previous generation
CPU’s the opportunity to obtain speedups for a
lower price (Titan X GPUs sell cheaper than Xeon
E5 setups at US$1,200). Speeding up computation
on a GPU would allow users to speed up applica-
tions cheaper without investing on a newer multi-
core system.

Our implementation has been open-sourced and
is available online. 3 In the future, we plan to ex-
pand this software into a toolkit that includes other
algorithms needed to run a full machine translation
system.

Acknowledgements

This research was supported in part by a gift of a
Tesla K40c GPU card from NVIDIA Corporation.

3https://bitbucket.org/aargueta2/
parallel-decoding

1051

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. OpenFst:
A general and efficient weighted finite-state trans-
ducer library. In Proc. International Conference on
Implementation and Application of Automata (CIAA
2007), pages 11–23.

Nathan Bell and Michael Garland. 2008. Effi-
cient sparse matrix-vector multiplication on CUDA.
Technical Report NVIDIA Technical Report NVR-
2008-004, NVIDIA Corporation.

Nikolay Bogoychev and Adam Lopez. 2016. N-gram
language models for massively parallel devices. In
Proc. ACL, pages 1944–1953.

John Canny, David Hall, and Dan Klein. 2013. A
multi-teraflop constituency parser using GPUs. In
Proc. EMNLP, pages 1898–1907.

Jike Chong, Ekaterina Gonina, Youngmin Yi, and Kurt
Keutzer. 2009. A fully data parallel WFST-based
large vocabulary continuous speech recognition on a
graphics processing unit. In Proc. INTERSPEECH,
pages 1183–1186.

Jason Eisner. 2002. Parameter estimation for proba-
bilistic finite-state transducers. In Proc. ACL, pages
1–8.

David Hall, Taylor Berg-Kirkpatrick, and Dan Klein.
2014. Sparser, better, faster GPU parsing. In Proc.
ACL, pages 208–217.

Hua He, Jimmy Lin, and Adam Lopez. 2013. Mas-
sively parallel suffix array queries and on-demand
phrase extraction for statistical machine translation
using gpus. In Proc. NAACL HLT, pages 325–334.

W. Daniel Hillis and Guy L. Steele, Jr. 1986. Data
parallel algorithms. Communications of the ACM,
29(12):1170–1183.

Jungsuk Kim, Jike Chong, and Ian R Lane. 2012. Ef-
ficient on-the-fly hypothesis rescoring in a hybrid
gpu/cpu-based large vocabulary continuous speech
recognition engine. In Proc. INTERSPEECH, pages
1035–1038.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proc.
NAACL HLT, pages 48–54.

Shankar Kumar, Yonggang Deng, and William Byrne.
2005. A weighted finite state transducer translation
template model for statistical machine translation.
J. Natural Language Engineering, 12(1):35–75.

Richard E. Ladner and Michael J. Fischer. 1980. Par-
allel prefix computation. J. ACM, 27(4):831–838.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proc. ICML, pages 282–289.

Rongchun Li, Yong Dou, and Dan Zou. 2014. Efficient
parallel implementation of three-point viterbi decod-
ing algorithm on CPU, GPU, and FPGA. Concur-
rency and Computation: Practice and Experience,
26(3):821–840.

Duane Merrill, Michael Garland, and Andrew
Grimshaw. 2012. Scalable GPU graph traver-
sal. In Proc. 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 117–128.

Mehryar Mohri, Fernando C. N. Pereira, and Michael
Riley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech and Lan-
guage, 16(1):69–88.

Mehryar Mohri. 2009. Weighted automata algo-
rithms. In Manfred Droste, Werner Kuich, and
Heiko Vogler, editors, Handbook of Weighted Au-
tomata, pages 213–254. Springer.

Todd Mytkowicz, Madanlal Musuvathi, and Wolfram
Schulte. 2014. Data-parallel finite-state ma-
chines. In Proc. Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS),
March.

Veynu Narasiman, Michael Shebanow, Chang Joo Lee,
Rustam Miftakhutdinov, Onur Mutlu, and Yale N
Patt. 2011. Improving GPU performance via large
warps and two-level warp scheduling. In Proc.
IEEE/ACM International Symposium on Microarchi-
tecture, pages 308–317.

Hao Peng, Rongke Liu, Yi Hou, and Ling Zhao.
2016. A Gb/s parallel block-based viterbi decoder
for convolutional codes on gpu. arXiv preprint
arXiv:1608.00066.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv, abs/1605.02688, May.

1052

