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Abstract

Traditional learning-based approaches to
sentiment analysis of written text use
the concept of bag-of-words or bag-of-n-
grams, where a document is viewed as
a set of terms or short combinations of
terms disregarding grammar rules or word
order. Novel approaches de-emphasize
this concept and view the problem as a
sequence classification problem. In this
context, recurrent neural networks (RNNs)
have achieved significant success. The
idea is to use RNNs as discriminative bi-
nary classifiers to predict a positive or neg-
ative sentiment label at every word posi-
tion then perform a type of pooling to get
a sentence-level polarity. Here, we investi-
gate a novel generative approach in which
a separate probability distribution is esti-
mated for every sentiment using language
models (LMs) based on long short-term
memory (LSTM) RNNs. We introduce a
novel type of LM using a modified version
of bidirectional LSTM (BLSTM) called
contextual BLSTM (cBLSTM), where the
probability of a word is estimated based
on its full left and right contexts. Our ap-
proach is compared with a BLSTM binary
classifier. Significant improvements are
observed in classifying the IMDB movie
review dataset. Further improvements are
achieved via model combination.

1 Introduction

Sentiment analysis of text (also known as opinion
mining) is the process of computationally identify-
ing and categorizing opinions expressed in a piece
of text in order to determine the writer’s attitude
towards a particular topic. Due to the tremendous

increase in web content, many organizations be-
came increasingly interested in analyzing this big
data in order to monitor the public opinion and as-
sist decision making. Therefore, sentiment analy-
sis attracted the interest of many researchers.

The task of sentiment analysis can be seen as a
text classification problem. Depending on the tar-
get of the analysis, the classes can be described by
continuous primitives such as valence, a polarity
state (positive or negative attitude), or a subjectiv-
ity state (objective or subjective). In this work, we
are interested in the binary classification of doc-
uments into a positive or negative attitude. Such
detection of polarity is a non-trivial problem due
to the existence of noise, comparisons, vocabulary
changes, and the use of idioms, irony, and domain
specific terminology (Schuller et al., 2015).

Traditional approaches to sentiment analysis
rely on the concept of bag-of-words or bag-of-n-
grams, where a document is viewed as a set of
terms or short combinations of terms disregarding
grammar rules or word order. In this case, usually,
the analysis involves: tokenization and parsing of
text documents, careful selection of important fea-
tures (terms), dimensionality reduction, and clas-
sification of the documents into categories. For ex-
ample, Pang et al. (2002) have considered different
classifiers, such as Naive Bayes (NB), maximum
entropy (MaxEnt), and support vector machines
(SVM) to detect the polarity of movie reviews.
Pang and Lee (2004) have combined polarity and
subjectivity analysis and proposed a technique to
filter out objective sentences of movie reviews
based on finding minimum cuts in graphs. In
(Taboada et al., 2011; Ding et al., 2008), lexicon-
based techniques are examined, where word-level
sentimental orientation scores are used to evaluate
the polarity of product reviews. More advanced
approaches utilize word or n-gram vectors, like in
(Maas et al., 2011; Dahl et al., 2012).
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Novel approaches are mainly based on artifi-
cial neural networks (ANNs). These approaches
de-emphasize the concept of bag-of-words or bag-
of-n-grams. A document is viewed as a set of
sentences, each sentence is a sequence of words.
The sentiment problem is rather considered as a
sequence classification problem. For example, in
(Dong et al., 2014; Dong et al., 2016), RNN clas-
sifiers are used with an adaptive method to select
relevant semantic composition functions for ob-
taining vector representations of sentences. This
is found to improve sentiment classification on the
Stanford Sentiment Treebank (SST). Rong et al.
(2014) have used a RNN model to learn word rep-
resentation simultaneously with the sentiment dis-
tribution. Santos and Gatti (2014) have proposed a
convolutional neural network (CNN) that exploits
from character- to sentence-level information to
perform sentiment analysis on the Stanford Twit-
ter Sentiment (STS) corpus. Kalchbrenner et al.
(2014) have used a dynamic convolutional neu-
ral network (DCNN) with a dynamic k-max pool-
ing to perform sentiment analysis on the SST and
Twitter sentiment datasets. Lai et al. (2015) have
utilized a combination of RNNs and CNNs called
recurrent convolutional neural network (RCNN) to
perform text classification on multiple datasets in-
cluding sentiment analysis on the SST dataset.

Other novel approaches use tree structured neu-
ral models instead of sequential models (like
RNNs) in order to capture complex semantic re-
lationships that relate words to phrases. Despite
their good performance, these models rely on
existing parse trees of the underlying sentences
which are, in most cases, not readily available or
not trivial to generate. For example, Socher et
al. (2013) have introduced a recursive neural ten-
sor network (RNTN) to predict the compositional
semantic effects in the SST dataset. In (Tai et
al., 2015; Le and Zuidema, 2015), tree-structured
LSTMs are used to improve the earlier models.

Another perspective to the sentiment problem
is to assume that each sentence with a positive or
negative class is drawn from a particular proba-
bility distribution related to that class. Then, in-
stead of estimating a discriminative model that
learns how to separate sentiment classes in sen-
tence space, we estimate a generative model that
tells us how these sentences are generated. This
generative approach can be better or complemen-
tary in some sense to the discriminative approach.

The probability distributions over word se-
quences are well known as language models
(LMs). They have also been used for sentiment
analysis. However, no trial is made to go beyond
simple bigram models. For example, Hu et al.
(2007b) have estimated two separate positive and
negative LMs from training collections. Tests are
performed by computing the Kullback-Leibler di-
vergence between the LM estimated from the test
document and the sentiment LMs. Therein, uni-
and bigram models are shown to outperform SVM
models in classifying a movie review dataset. In
(Hu et al., 2007a), a batch of terms in a domain
are identified. Then, two different unigram LMs
representing classifying knowledge for every term
are built up from subjective sentences. A classi-
fying function based on the generation of a test
document is defined for the sentiment classifica-
tion. This approach has outperformed SVM on a
Chinese digital product review dataset. Liu et al.
(2012) have employed an emoticon smoothed un-
igram LM to perform sentiment classification.

In this paper, we compare the generative LM
approach with the discriminative binary classifi-
cation approach. We estimate a separate proba-
bility distribution for each sentiment using long-
span LMs based on unidirectional LSTMs (Sun-
dermeyer et al., 2012) trained to predict a word
depending on its full left context. The probability
scores from positive and negative LMs are used to
classify unseen sentences. In addition, we intro-
duce a novel type of LM using a modified version
of the standard bidirectional LSTM called contex-
tual bidirectional LSTM (cBLSTM). In contrast to
the unidirectional model, this model is trained to
predict a word depending on its full left and right
contexts. Moreover, we combine the LM approach
with the binary classification approach using lin-
ear interpolation of probabilities. We observe that
the cBLSTM LM outperforms both the LSTM
LM and the BLSTM binary classifier. Combining
approaches together yields further improvements.
Models are evaluated on the IMDB large movie
review dataset1 (Maas et al., 2011).

2 Language Models

A statistical LM is a probability distribution over
word sequences that assigns a probability p(wM

1 )
to any word sequence wM

1 of length M . Thus, it
provides a way to estimate the relative likelihood

1http://ai.stanford.edu/∼amaas/data/sentiment/
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of different phrases. It is a widely used model in
many natural language processing tasks, like au-
tomatic speech recognition, machine translation,
and information retrieval. Usually, to estimate a
LM, the assumption of the (n−1)th order Markov
process is used (Bahl et al., 1983), in which a cur-
rent word wm is assumed conditionally dependent
on the preceding (n− 1) history words, such that:

p(wM
1 ) ≈

M∏
m=1

p(wm|wm−1
m−n+1). (1)

This is called an n-gram LM. A conventional ap-
proach to estimate these probabilities is the back-
off LM which is based on count statistics col-
lected from the training text. In addition to the
initial n-gram approximation, a major drawback
of this model is that it backs-off to a shorter his-
tory whenever insufficient statistics are observed
for a given n-gram. Novel state-of-the-art LMs are
based on ANNs like RNNs that provide long-span
probabilities conditioned on all predecessor words
(Mikolov et al., 2010; Kombrink et al., 2011).

3 Unidirectional RNN Models

3.1 Standard RNN
A RNN maps from a sequence of input observa-
tions to a sequence of output labels. The mapping
is defined by a set of activation weights and a non-
linear activation function. Recurrent connections
allow to access activations from past time steps.
For an input sequence xT

1 , a RNN computes the
hidden sequence hT

1 and the output sequence yT
1

by performing the following operations for time
steps t = 1 to T (Graves et al., 2013):

ht = H(Wxhxt +Whhht−1 + bh) (2)

yt = Whyht + by, (3)

where H is the hidden layer activation function,
Wxh is the weight matrix between the input and
hidden layer, Whh is the recurrent weight ma-
trix between the hidden layer and itself, Why is
the weight matrix between the hidden and output
layer, bh and by are the hidden and output layer
bias vectors respectively. H is usually an element-
wise application of the sigmoid function.
3.2 LSTM RNN
In (Hochreiter and Schmidhuber, 1997), an al-
ternative RNN called Long Short-Term Memory
(LSTM) is introduced where the conventional neu-
ron is replaced with a so-called memory cell con-
trolled by input, output and forget gates in order to

overcome the vanishing gradient problem of tradi-
tional RNNs. In this case, H can be described by
the following composite function:

it=σ(Wxixt +Whiht−1 +Wcict−1 + bi) (4)

ft=σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )(5)

ct=ftct−1+it tanh(Wxcxt+Whcht−1+bc)(6)

ot=σ(Wxoxt +Whoht−1 +Wcoct + bo) (7)

ht=ot tanh(ct), (8)

where σ is the sigmoid function, i,f ,o, and c are
respectively the input, forget, output gates, and
cell activation vectors (Graves et al., 2013).

3.3 LSTM LM

In a LSTM LM, the time steps correspond to the
word positions in a training sentence. At every
time step, the network takes as input the word at
the current position encoded as a 1-hot binary vec-
tor. The input vector is then passed to one or more
recurrent hidden layers with self connections that
implicitly take into account all the previous his-
tory words presented to the network. The output of
the final hidden layer is passed to an output layer
with a softmax activation function to produce a
correctly normalized probability distribution. The
target output at each word position is the next word
in the sentence. A cross-entropy loss function is
used which is equivalent to maximizing the likeli-
hood of the training data. At the end, the network
can predict the long-span conditional probability
p(wm|wm−1

1 ) for any word wm ∈ V and a given
history wm−1

1 , where V is the vocabulary. Fig. 1
shows an unfolded example of a LSTM LM over a
sentence <s> w1 w2 w3 </s>, where <s> and
</s> are the sentence start and end symbols.
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Figure 1: Architecture of a LSTM LM predicting
a word given its full previous history.

4 Bidirectional RNN Models

4.1 BLSTM RNN

A BLSTM processes input sequences in both di-
rections with two sub-layers in order to account
for the full input context. These two sub-layers
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compute forward and backward hidden sequences−→
h ,
←−
h respectively, which are then combined to

compute the output sequence y (see Fig. 2), thus:

−→
h t = H(W

x
−→
h
xt +W−→

h
−→
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−→
h t−1 + b−→

h
) (9)

←−
h t = H(W

x
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h
)(10)

yt = W−→
h y
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h t +W←−

h y

←−
h t + by (11)
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Figure 2: Architecture of a BLSTM, every output
depends on the whole input sequence.

4.2 Contextual BLSTM LM
The standard BLSTM described in Section 4.1 is
not suitable for estimating LMs. This is because
it predicts every output symbol depending on the
whole input sequence. Since a LM indeed uses the
same word sequence in both input and target sides
of the network, it would be incorrect to predict a
word given the whole input sentence. Rather, it is
required to predict a word given the full left and
right context while excluding the predicted word
itself from the conditional dependence. To allow
for this, we modify the architecture of the standard
BLSTM such that it accounts for a contextual de-
pendence rather than a full sequence dependence.
The new model is called a contextual BLSTM or
cBLSTM in short. The architecture of this model
is illustrated in Fig. 3.
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Figure 3: Architecture of a cBLSTM LM predict-
ing a word given its full left and right contexts.

The model consists of a forward and a backward
sub-layer. The forward sub-layer receives the en-
coded input words staring from the sentence start
symbol up to the last word before the sentence
end symbol (sequence < s> w1 w2 w3 in Fig.
3). The forward hidden states are used to predict
words starting from the first word after the sen-
tence start symbol up to the sentence end symbol
(sequence w1 w2 w3 </s> in Fig. 3). The back-
ward sub-layer does exactly the reverse operation.
The two sub-layers are interleaved together in or-
der to adjust the conditional dependence such that
the prediction of any target word depends on the
full left and right contexts. Note that the hidden
state at the first as well as the last time step needs
to be padded by zeros so that the size of the hid-
den vector is consistent across all time steps. At
the end, the model can effectively predict the con-
ditional probability p(wm|wm−1

1 , wM
m+1) for any

word wm ∈ V , left context wm−1
1 and right con-

text wM
m+1, where V is the vocabulary and M is

the length of the sentence. Table 1 shows the pre-
dicted probability at each time step of Fig. 3. Note
that one direction dependence is maintained at the
start and end of sentence (time steps 1 and 5).

time step predicted conditional prob.
1 p(<s> | w1 w2 w3 </s>)
2 p(w1 | <s> , w2 w3 </s>)
3 p(w2 | <s> w1 , w3 </s>)
4 p(w3 | <s> w1 w2 , </s>)
5 p(</s> | <s> w1 w2 w3)

Table 1: Predicted conditional probabilities at ev-
ery time step of the cBLSTM shown in Fig. 3.

Our implementation of the novel cBLSTM
RNN model is integrated into our publicly avail-
able CURRENNT2 toolkit initially introduced by
Weninger et al. (2014). A new version of the
toolkit with the novel implementations is planned
to be available by the date of publication.

Here, it is worth noting that deep cBLSTM
models can not be easily constructed by stacking
multiple hidden bidirectional layers together. The
reason is that the hidden states obtained after the
first bidirectional layer are dependent on the full
left and right contexts. If these states are utilized
as inputs to a second bidirectional layer that identi-
cally repeats the same operation again, then the de-
sired conditional dependence will not be correctly

2http://sourceforge.net/p/currennt
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maintained. One method to solve this problem is
to create deeper models by stacking multiple for-
ward and backward sub-layers independently. The
fusion of both sub-layers takes place and the end
of the deep stack. The implementation of such a
deep cBLSTM model is not yet available.

5 Dataset

Our experiments on sentiment analysis are per-
formed on the IMDB large movie review dataset
(v1.0) introduced by Maas et al. (2011). The la-
beled partition of the dataset consists of 50k bal-
anced full-length movie reviews with 25k positive
and 25k negative reviews extracted from the Inter-
net Movie Database (IMDB)3.

Since the reviews are in a form of long para-
graphs which are difficult to handle directly with
RNNs, we break down these paragraphs into rela-
tively short sentences based on punctuation clues.
After breaking down the paragraphs, the average
number of sentences per review is around 13 sen-
tences. We randomly selected 1000 positive and
1000 negative reviews as our test set. A similar
number of random reviews are selected as a devel-
opment set. The remaining reviews are used as a
training set. Note that this is not the official dataset
division provided by Maas et al. (2011), where 25k
balanced reviews are dedicated for training and the
other 25k balanced reviews are dedicated for test-
ing. The reasons not to follow the official divi-
sion are firstly that, it does not provide a devel-
opment set; secondly, our proposed models need
much data to train well as revealed by initial exper-
iments; thirdly, it would be very time consuming
to use the whole data as one partition and perform
multi-fold cross validation as usually adopted with
large sentiment datasets (Schuller et al., 2015). A
preprocessed version of the IMDB dataset with the
modified partitioning is planned to be available for
download by the date of publication.

A word list of the 10k most frequent words is se-
lected as our vocabulary. This covers around 95%
of the words in our development and test sets. Any
out-of-vocabulary word is mapped to a special unk
symbol. We use the classification accuracy as our
evaluation measure. The unweighted average F1
scores over positive and negative classes are also
calculated. However, their values are found almost
similar to the classification accuracies. Therefore,
only classification accuracies are reported.

3http://www.imdb.com

6 Related Work

The work of this paper is closely related to several
previous publications that report sentiment classi-
fication accuracy on the same dataset. For exam-
ple, in (Maas et al., 2011), the IMDB dataset is
introduced and a semi-supervised word vector in-
duction framework is used, where an unsupervised
probabilistic model similar to latent Dirichlet allo-
cation (LDA) is proposed to learn word vectors.
Another supervised model is utilized to constrain
words expressing similar sentiment to have sim-
ilar representations in vector space. In (Dahl et
al., 2012), documents are treated as bags of n-
grams. Restricted Boltzmann machines (RBMs)
are used to extract vector representations for n-
grams. Then, a linear SVM model is utilized to
classify documents based on the resulting feature
vectors. Wang and Manning (2012) have used a
variant of SVM with Naive Bayes log-count ratios
as well as word bigrams as features. This modi-
fied SVM model is referred to as NBSVM. In our
previous publication (Schuller et al., 2015), LSTM
LMs trained on 40% of the whole IMDB dataset
are used for performing sentiment analysis. How-
ever, a carefully tuned MaxEnt classifier is found
to perform better. Le and Mikolov (2014) have
used a paragraph vector methodology with an un-
supervised algorithm based on feed-forward neu-
ral networks that learns fixed-length vector rep-
resentations from variable-length texts. All these
publications use the official IMDB dataset division
except for (Schuller et al., 2015), where a similar
division as in this paper is used. To give a compre-
hensive idea about the aforementioned techniques,
we show in Table 2 the classification results as re-
ported in the related publications. Note that only
the results of (Schuller et al., 2015) are directly
comparable to our results.

experiment Accuracy [%]
Maas et al. (2011) 88.89
Dahl et al. (2012) 89.23
Wang and Manning (2012) 91.22
Schuller et al. (2015)∗ 91.55
Le and Mikolov (2014) 92.58

Table 2: Sentiment classification accuracies from
previous publications on the IMDB dataset.

In relation to our novel cBLSTM LM, previ-
ous trials have been made to estimate bidirectional
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LMs. For example, in (Frinken et al., 2012), dis-
tinct forward and backward LMs are estimated
for handwriting recognition. However, no trial is
made to go beyond 4-gram models. In (Xiong et
al., 2016), standard forward and backward RNN
LMs are separately estimated for a conversational
speech recognition task. The log probabilities
from both models are added. In (Arisoy et al.,
2015), bidirectional RNNs and LSTMs are used
to estimate LMs for an English speech recogni-
tion task. Therein, the standard bidirectional ar-
chitecture (as in Fig. 2) is used without modifica-
tions. This causes circular dependencies to arise
when combining probabilities from multiple time
steps. Therefore, pseudo-likelihoods are utilized
rather than true likelihoods which is not perfect
from the mathematical point of view. Not sur-
prisingly, the BLSTM LMs do not yield any gain
over the LSTM LMs. In addition, the perplexity
of such a model becomes invalid. More impor-
tantly, in (Peris and Casacuberta, 2015), bidirec-
tional RNN LMs are used for a statistical machine
translation task. However, only standard RNNs
but not LSTMs are utilized. Furthermore, no de-
tails are provided about how the model is exactly
modified and how the left and right dependencies
are maintained over time steps.

7 Sentiment Classification

7.1 Generative LM-based classifier

Our first approach to sentiment classification is the
generative approach based on LMs. We either use
LSTM LMs described in Section 3.3 or cBLSTM
LMs described Section 4.2. Two separate LMs
are estimated from positive and negative training
data. We use networks with a single hidden layer
that consists of 300 memory cells followed by a
softmax layer with a dimension of 10k + 3. This
is equal to the full vocabulary size in addition to
<s>, </s>, and unk symbols representing sen-
tence start, sentence end, and unknown word sym-
bols respectively. In case of using cBLSTM net-
works, a single hidden layer of 600 memory cells
is used (300 cells for each forward and backward
sub-layer). A cross-entropy loss function is used
with a momentum of 0.9. We use sentence-level
mini-batches of size 100 sentences computed in
parallel. The learning rate is set initially to 10−3

and then decreased gradually to 10−6. The train-
ing process is controlled by monitoring the cross-
entropy error over the development set.

In addition, we use a data sub-sampling
methodology during training. For this purpose,
a traditional 5-gram backoff LM is created out of
the development data, we call this a ranking LM.
Then, all training sentences are ranked according
to their perplexities with the ranking LM. Using
these ranks, we divide our training sentences into
three partitions that reflect the relative importance
of the data, such that the first partition contains
the 100k sentences with the lowest perplexities,
the second partition contains the 100k sentences
with next lowest perplexities. The third partition
contains all the other sentences. Instead of using
the whole training data in each epoch, we use a
random sample with more sentences from the first
two partitions than the third one. After a suffi-
cient number of epochs, the whole training data
is covered. The sub-sampling approach speeds up
the training and makes it feasible with any size of
training data. At the same time, the training is fo-
cused on the relatively more important examples.
In addition, it adds a useful regularization to the
training process. Yet, it leads to a less smoother
convergence. To show the efficiency of our sen-
tence ranking methodology, Table 3 shows exam-
ples of the highest and lowest ranked sentences
from positive and negative training data.

most +ve this is one of the best films
ever made.

least +ve cheap laughs but great value.
most -ve this is one of the worst movies

i have ever seen.
least -ve life’s too short.

Table 3: Examples of the highest/lowest ranked
sentences from positive/negative training data.

After training the neural networks, each of the
positive and negative sentiment LM estimates a
probability distribution for the corresponding sen-
timent, we call these probability distributions p+

and p−. To evaluate the sentiment of some test
review, we calculate the perplexity of each model
p+ and p− with respect to the whole review. Thus,
given a probability distribution p, and a review text
S composed of K sentences S = s1, ..., sK , each
sentence sk : 1 ≤ k ≤ K is composed of a se-
quence of Mk words sk = wk

1 , w
k
2 , ..., w

k
Mk

; we
calculate the perplexity PPp(S) of a model p with
respect to text S. It is a very common measure-
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ment of how well a probability distribution pre-
dicts a sample. A low perplexity indicates that the
probability distribution is good at predicting the
sample. Perplexity is defined as the exponentiated
negative average log-likelihood, or in other words,
the inverse of the geometric average probability
assigned by the model to each word in the sam-
ple. We calculate the Perplexity using Equation
12 if the model p is based on LSTM, and using
Equation 13 if the model is based on cBLSTM:

PPp(S)=
[ K∏

k=1

Mk∏
m=1

p(wk
m|wk

1, w
k
2, ..., w

k
m−1)

]−1
N

(12)

PPp(S) =
[ K∏

k=1

Mk∏
m=1

p(wk
m|wk

1, w
k
2, ..., w

k
m−1;

wk
m+1, w

k
m+2, ..., w

k
Mk

)
]−1

N

,(13)

where N =
∑K

k=1Mk is the total number of
words in text S. Then, a sentiment polarity P ∈
{−1,+1} is assigned to S according to the follow-
ing decision rule:

P(S) =
{

+1 if PPp+(S) < PPp−(S)
−1 otherwise

.

(14)

7.2 Discriminative BLSTM-based Binary
Classifier

Our second approach to sentiment classification
is the discriminative approach based on BLSTM
RNNs described in Section 4.1. We use BLSTM
networks with a single hidden layer that consists of
600 memory cells (300 cells for each forward and
backward sub-layer). Since the BLSTM performs
a binary classification task, only a single output
neuron is used with a sigmoid activation function.
A cross-entropy loss function is used with a mo-
mentum of 0.9. The same training settings like
the case of LSTM/cBLSTM LMs are used includ-
ing sub-sampling with the same partitioning of the
training data. However, a single training dataset
with all positive and negative reviews is used. For
a sentence with a positive sentiment, the target out-
puts are set to ones at all time steps. For a sentence
with a negative sentiment, the target outputs are set
to zeros at all time steps. Since the sigmoid func-
tion provides output values in the interval [0,1],

the network is trained to produce the probability
of the positive class at every time step. Although
the output of the BLSTM network at a given time
step is dependent on the whole input sequence, it
is widely known that every output is more affected
by the inputs at closer time steps in both direc-
tions. Therefore, a sentence-level sentiment can
be deduced by comparing the average probability
mass assigned to the positive class over all time
steps with the average probability mass assigned
to the negative class. Thus, similar to Section 7.1,
given a review text S composed of K sentences,
each sentence is a sequence of Mk words, we cal-
culate two probabilities p+(S) and p−(S) that the
review S has a positive or negative sentiment us-
ing Equations 15 and 16 respectively:

p+(S) =
1
N

K∑
k=1

Mk∑
m=1

p+(wk
m) (15)

p−(S) =
1
N

K∑
k=1

Mk∑
m=1

(1− p+(wk
m)), (16)

where N is the total number of words in text S,
and p+(wk

m) is the probability that a positive class
is assigned to the word at position m of the kth

sentence of the review S. Then, a sentiment po-
larity P ∈ {−1,+1} is assigned to S according to
the following decision rule:

P(S) =
{

+1 if p+(S) > p−(S)
−1 otherwise

. (17)

7.3 Model Combination
The probability scores of the generative LM-based
classifier and the discriminative BLSTM-based bi-
nary classifier discussed in Sections 7.1 and 7.2
can be combined together via linear interpolation.
This is achieved by first normalizing the probabil-
ities from the LMs such that the probabilities of
positive and negative classes for a given review are
summed up to 1.0. Note that this normalization
property holds by default for the BLSTM-based
binary classifier. Then, the probabilities of both
models are linearly interpolated to obtain a single
probability score. The interpolation weights are
optimized on the development data.

8 Experimental Results

Table 4 shows the results of our experiments.
All the neural networks in this work are trained
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and optimized using our own CURRENNT toolkit
(Weninger et al., 2014). Both the LSTM and
cBLSTM LMs are linearly interpolated with two
additional LMs, namely a 5-gram backoff LM
smoothed with modified Kneser-Ney smoothing
(Kneser and Ney, 1995), and another 5-gram Max-
Ent LM (Alumäe and Kurimo, 2010). These two
models are estimated using the SRILM language
modeling toolkit (Stolcke, 2002).

classification model Acc.
[%]

LSTM LM 89.58
+ 5-grm backoff LM 91.05
+ 5-grm MaxEnt LM 91.23

cBLSTM LM 89.88
+ 5-grm backoff LM 91.38
+ 5-grm MaxEnt LM 91.48

BLSTM binary classifier 90.15
LSTM LM + BLSTM binary classifier 92.35
cBLSTM LM + BLSTM binary classifier 92.83
Schuller et al. (2015) LSTM + 5-grm LM 90.50
Schuller et al. (2015) MaxEnt classifier 91.55

Table 4: Sentiment classification accuracies mea-
sured on the IMDB dataset.

We observe that the use of cBLSTM LM
as a generative sentiment classifier significantly
outperforms the use of both LSTM LM and
BLSTM discriminative binary classifiers. The
statistical significance is verified using a boot-
strap method of significance analysis described by
Bisani and Ney (2004). The probability of im-
provement (POIboot) is around 95%. Combining
LM-based classifiers with BLSTM-based binary
classifiers via linear interpolation of probabilities
achieves further improvements. Our best accuracy
(92.83%) is obtained by combining the cBLSTM
LM classifier with the BLSTM binary classifier.
These results reveal that both the generative and
discriminative approaches are complementary in
solving the sentiment classification problem.

Finally, our best result is better than the best
previously published result in (Schuller et al.,
2015) on the same IMDB dataset with the same
dataset partitioning. Even though they are not di-
rectly comparable, our results are better than other
previously published results reported in Table 2
where a different dataset partitioning is used.

For illustration, Table 5 shows two examples
of positive and negative reviews that could not be

correctly classified by the discriminative BLSTM
binary classifier, however they are correctly clas-
sified by the cBLSTM LM classifier. We can ob-
serve the implicit indication of the writer’s attitude
towards the movie which can not be easily cap-
tured by simple approaches. In this case, learning
a separate long-span bidirectional probability dis-
tribution for each sentiment seems to help.

+ve low budget mostly no name actors.
this is what a campy horror flick
is supposed to be all about. these
are the types of movies that kept
me on the edge of my seat as a kid
staying up too late to watch cable.
if you liked the eighties horror
scene this is the movie for you.

-ve i and a friend rented this movie.
we both found the movie soundtrack
and production techniques to be
lagging. the movie’s plot appeared
to drag on throughout with little
surprise in the ending. we both
agreed that the movie could have
been compressed into roughly an
hour giving it more suspense and
moving plot.

Table 5: Examples of reviews correctly classified
by the cBLSTM LM classifier.

9 Conclusions

We have introduced a generative approach to senti-
ment analysis in which a novel contextual BLSTM
(cBLSTM) LM is used as a sentiment classifier.
Separate LM probability distributions are esti-
mated for positive and negative sentiment from the
training data. Then, probability scores from these
LMs are utilized to classify test data. Results have
been compared with a discriminative sentiment
classification approach that uses a BLSTM-based
binary classifier. We have observed that the gener-
ative cBLSTM LM approach significantly outper-
forms other approaches. Models have been eval-
uated on the IMDB large movie review dataset.
The proposed models have achieved better results
than the previously published results on the same
dataset with the same partitioning. In addition,
indicative comparisons have been made with the
previously published results on the same dataset
with different partitioning. Using model combi-
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nation, we could achieve further performance im-
provement indicating that both the generative and
discriminative approaches are complementary in
solving the sentiment analysis problem. More-
over, we have introduced an efficient methodol-
ogy based on perplexity calculation to partition
the training data according to relative importance
to the learning task. This partitioning methodol-
ogy has been combined with a sub-sampling tech-
nique to efficiently train the neural networks on
large data. As a future work, we plan to investi-
gate deeper cBLSTM as well as hybrid recurrent
and convolutional models. Another direction is to
experiment with pre-trained word vectors.
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