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Abstract

In language identification, a common first
step in natural language processing, we
want to automatically determine the lan-
guage of some input text. Monolingual
language identification assumes that the
given document is written in one language.
In multilingual language identification, the
document is usually in two or three lan-
guages and we just want their names. We
aim one step further and propose a method
for textual language identification where
languages can change arbitrarily and the
goal is to identify the spans of each of the
languages.

Our method is based on Bidirectional Re-
current Neural Networks and it performs
well in monolingual and multilingual lan-
guage identification tasks on six datasets
covering 131 languages. The method
keeps the accuracy also for short docu-
ments and across domains, so it is ideal
for off-the-shelf use without preparation of
training data.

1 Introduction

The World Wide Web is an ever growing source
of textual data, especially data generated by web
users. As more people get access to the web,
more languages and dialects start to appear and
need to be processed. In order to be able to use
such data for further natural language processing
(NLP) tasks, we need to know in which languages
they were written. Language identification is thus
a key component for both building various NLP
resources from the web and also for running many
web services.

Techniques of language identification can rely
on handcrafted rules, usually of high precision but

low coverage, or data-driven methods that learn to
identify languages based on sample texts of suffi-
cient quantity.

In this paper, we present a data-driven method
for language identification based on bidirectional
recurrent neural networks called LanideNN (lan-
guage identification by neural networks, NN). The
model is trained on character sliding window of
input texts with the goal of assigning a language
to each character. We show that the method is
applicable for a large number of languages and
across text domains without any adaptation and
that it performs well in monolingual (one lan-
guage per document) as well as multilingual (a few
languages per document) language identification
tasks. Also, the performance does not drop with
shorter texts.

The paper is structured as follows. In Section 2,
we briefly review current approaches to language
identification. Section 3 introduces our method,
including the technical details of the neural net-
work architecture. For the training of our model,
we collect and manually clean a new dataset, as
described in Section 4. The model is evaluated on
standard test sets for monolingual (Section 5) as
well as multilingual (Section 6) language identi-
fication. Section 7 illustrates the behavior of our
method in the motivating setting: identifying lan-
guages in short texts. We conclude and summarize
our plans in Section 8.

2 Related Work

Of the many possible approaches to language
identification Hughes et al. (2006), character n-
gram statistics are among the most popular ones.
Cavnar et al. (1994) were probably the first; they
used the 300 most frequent character n-grams
(with n ranging from 1 to 5, as is also typically
used in other works). All the n-gram-based ap-
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proaches differ primarily in the calculation of the
distance between the n-gram profile of the train-
ing and test text (Selamat, 2011; Yang and Liang,
2010), or by using additional features on top of the
n-gram profiles (Padma et al., 2009; Carter et al.,
2013). One of the fairly robust definitions of the
distance (or similarity) was proposed by Choong
et al. (2009) who simply check the proportion of
n-gram types seen in the tested document of the
most frequent n-gram types extracted from train-
ing documents for each language. The highest-
scoring language is then returned.

Hughes et al. (2006) mention a number of freely
available tools at that time. Since then, one aspect
of the tools became also important: the number of
languages covered.

The language identification tool CLD21 by
Google detects 80 languages and uses a Naive
Bayes classifier, treating specifically unambiguous
scripts such as Greek and using either character
unigrams (Han and similar scripts) or fourgrams.

Another popular tool is Langid.py by Lui and
Baldwin (2012), covering 97 languages out of the
box. Langid.py relies on Naive Bayes classifier
with a multinominal event model and mixture of
byte n-grams for training. The tool includes to-
kenization and fast feature extraction using Aho-
Corasick string matching.

To our knowledge, and also according to the
survey by Garg et al. (2014), neural networks have
not been used often for language identification so
far. One exception is Al-Dubaee et al. (2010), who
combine a feed-forward network classifier with
wavelet transforms of feature vectors to identify
English and Arabic from the Unicode represen-
tation of words, sentences or whole documents.
The benefit of NN in this setting is not very clear
to us because English and Arabic can be distin-
guished by the script. During writing of this pa-
per, we have found a new pre-print paper (Jaech
et al., 2016) which handles language identifica-
tion with NN. Specifically, they employ Convo-
lutional Neural Networks followed by Recurrent
Neural Networks. Their approach labels text on
the word level, which is problematic in languages
without clear word delimiters. In comparison with
our model, they need to pre-process the data and
break long words into smaller chunks, whereas we
simply use text without any preprocessing.

In practice, several tools are often used at once,

1https://github.com/CLD2Owners/cld2

with some form of majority voting. For example,
Twitter internal language detector uses their in-
house tool along with CLD2 and Langid.py, and
this triple agreement is reported to make less than
1 % of errors.2

Multilingual language identification, i.e. iden-
tification of the set of languages used in a docu-
ment, is a less common task, explored e.g. by Lui
et al. (2014) who use a generative mixture model
on multilingual documents and establish the rel-
ative proportion of languages used. Character n-
grams again serve as features, selected by infor-
mation gain.

Solorio et al. (2014) organized a shared task
in language identification at the word level. This
matches our aim, but the task included only four
language pairs and more importantly, the dataset
was collected from Twitter and for copyright rea-
sons it is not available any more.

3 Proposed Method

The method we propose is designed for short text
without relying on document boundaries. Obvi-
ously, if documents are known and if they can be
assumed to be monolingual, this additional knowl-
edge should not be neglected. For the long term,
we however aim at a streamlined processing of
noisy data genuinely appearing in multilingual en-
vironments. For instance, our method could sup-
port the study of switching of languages (“code
switching”) in e-mails or other forms of conver-
sation, or to analyse various online media such as
Twitter, see e.g. Montes-Alcalá (2007) or Solorio
et al. (2014).

Our model takes source letters as input and pro-
vides a language label for each of them. Whenever
we need to recognize the language of a document,
we take the language assigned by our model to the
majority of letters.

The goal of attributing a language tag to the
smallest text units is one of the reasons why we
decided to use neural networks and designed the
model to provide a prediction at every time step
without much overhead.

In the rest of this section, we explain the archi-
tecture and training methods of the model.

2https://blog.twitter.com/2015/
evaluating-language-identification-
performance
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Figure 1: Illustration of our model LanideNN.

3.1 Bidirectional Recurrent Neural Networks
A recurrent neural network RNN (Elman, 1990) is
a variant of neural networks with recurrent con-
nections in time. In principle, the history infor-
mation available to an RNN is not limited (subject
to a processing window, if used), so the network
can condition its output on features from a long
distance. The LSTM, one of the variants of RNN,
makes it particularly suitable for sequential pre-
diction tasks with arbitrary time dependencies, as
shown by Hochreiter and Schmidhuber (1997).

In this work, we use the Elman-type network,
where the hidden layer ht at a time step t is com-
puted based on the current input layer xt and the
previous state of the hidden layer ht−1. The out-
put yt is then derived from the ht by applying the
softmax function f . More formally:

ht = tanh (Wxt + V ht−1 + b1) (1)

yt = f (Uht + b2) (2)

where U , V and W are connection weights to be
computed in training time and bias vectors b1 and
b2.

With the above definition, the RNN has access
only to information preceding the current position
in the text. In our setting, the rest of the text (in a
fixed-size window) is available, so we want to al-
low the model to use also future information, i.e.

letters following the currently examined one. We
therefore define a second RNN which reads the in-
put from the end to the beginning, changing the
definition to:

−→
h t = tanh

(−→
Wxt +

−→
V
−→
h t−1 +

−→
b 1

)
(3)

←−
h t = tanh

(←−
Wxt +

←−
V
←−
h t+1 +

←−
b 1

)
(4)

yt = f
(−→
U
−→
h t +

←−
U
←−
h t + b2

)
(5)

where the left and right arrows indicate the direc-
tion of network.

The simple unit with only tanh non-linearity is
difficult to train and therefore we have selected
the Gated Recurrent Unit (GRU), recently pro-
posed by Cho et al. (2014), as a replacement. We
also considered Long Short-Term Memory cells
(LSTM) but they achieved slightly worse results
in our setting. This changes equations (1), (3) and
(4). The proper equations for the GRU can be
found in Cho et al. (2014).

The model outputs a probability distribution
over all language tags. In order to determine the
language of a character, we take the tag with the
maximum value.

The complete model is sketched in Figure 1.
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3.2 Training, Embeddings and Dropout

We train the model using the first-order stochastic
gradient descent method Adam (Kingma and Ba,
2015). Our training criterion is the cross-entropy
loss function3.

We represent each Unicode character using an
e-dimensional real valued vector, analogously to
word embeddings of Collobert et al. (2011). The
character embeddings are initialized randomly and
are trained together with the rest of the network.

To prevent overfitting, we use dropout (Srivas-
tava et al., 2014) during model training on the
character embedding layer4. The key idea is to
randomly drop (avoid updating of) connections.
This prevents neurons from co-adapting too much,
i.e. starting to depend on outputs of other neurons
too much, which is a typical symptom of overfit-
ting to training data.

3.3 Model Design

Our model operates on a window of 200 charac-
ters of input text, i.e. individual letters, encoded in
Unicode. Each character corresponds to one time
step of the BiRNN in the respective direction, see
Figure 1. The model classifies each character sep-
arately, but quickly learns to classify neighbouring
characters with the same label.

For documents longer than the window size, we
simply move to the next window without any over-
lap. The last window (or the only window if the
document were too short) is filled with a padding
character, so the network always works on win-
dows of the same size.

We set e, the size of the embedding layer, to
200. The BiRNN uses a single hidden layer of 500
GRU cells for each direction.

The main model was trained for over 530,000
steps (each step is the processing of one batch of
inputs) on a single core of the GeForce GTX Ti-
tan Z GPU. The training took around 5 days. The
stopping criterion for the training was the error on
a development set.

4 Training Data

Our goal is to develop an off-the-shelf language
recognizer, with no need for retraining by the user
and covering as many languages as possible. Find-
ing suitable training data is thus an important part

3We set the learning rate to 0.0001 and train with the batch
size of 64 windows.

4We set the dropout to the probability of 0.5 as customary.

afr, amh, ara, arg, asm, ast, aze, bak, bcl, bel, ben, ber,
bpy, bre, bul, cat, ceb, ces, che, chv, cos, cym, dan, deu,
div, ekk, ell, eng, est, eus, fas, fin, fra, fry, gla, gle, glg,
gom, gsw, guj, hat, heb, hif, hin, hrv, hsb, hun, hye, ido,
ilo, ina, ind, isl, ita, jav, jpn, kal, kan, kas, kat, kaz, kir,
kor, kur, lat, lav, lim, lit, ltz, lug, lus, mal, mar, min, mkd,
mlg, mlt, mon, mri, msa, nds, nep, new, nld, nno, nor, nso,
oci, ori, oss, pam, pan, pms, pnb, pol, por, pus, roh, ron,
rus, sah, scn, sin, slk, slv, sna, som, spa, sqi, srp, sun, swa,
swe, tam, tat, tel, tgk, tgl, tha, tur, uig, ukr, urd, uzb, vec,
vie, vol, wln, yid, zho, zul

Figure 2: The 131 languages (and HTML) recog-
nized by our system.

of the endeavour.
We start from Wikipedia, as crawled and con-

verted to a large multilingual corpus W2C by Ma-
jliš and Žabokrtský (2012). W2C contains 106
languages but we had to exclude a few of them5

because they contained too little non-repeating
text.

We then focussed on finding corpora with at
least some languages not covered by the already
collected data. Those corpora were added whole,
including languages that we already had, to im-
prove the variety of our collection. We made use
of the following ones:

Tatoeba6 is a collection of simple sentences for
language learners. Tatoeba contains sen-
tences in 307 languages, but for most lan-
guages it has only a few hundred sentences.

Leipzig corpora collection (Quasthoff et al.,
2006) covers 220 languages with newspaper
text and other various texts collected from
the web.

EMILLE (Baker et al., 2002) contains texts in 14
Indian languages and English.

Haitian Creole training data (Callison-Burch et
al., 2011) were prepared by the organizers
of WMT11 shared task on machine transla-
tion of SMS messages sent to an emergency
hotline in the aftermath of the 2010 Haitian
earthquake. We used only the official docu-
ments from the training data, not the actual
SMS messages because they contained a lot
of noise.

5Specifically, HAT, IDO, MGL, MRI, VOL, as identified
by ISO language codes.

6http://tatoeba.org/
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Test Set Documents Languages Encoding Document Length (bytes) Avg. # characters
EuroGov 1500 10 1 17460.5 ± 39353.4 17037.3

TCL 3174 60 12 2623.2 ± 3751.9 1686.1
Wikipedia 4963 67 1 1480.8 ± 4063.9 1314.2

Table 1: Summary of testsets for monolingual language identification.

Additionally, we wanted our tool to distinguish
HTML tags in the data, since they are the most
frequent markup that needs to be separated from
the processed data. Therefore, we have down-
loaded several Github projects in HTML and col-
lected all strings enclosed with angle brackets, as
a rather permissive approximation of HTML tags.
We have dropped tags which were too long and
we put each tag on a separate line. We have not
deduplicated them for the training set.

The cleanup of the collected data was mostly
manual. We deduplicated each of the sources by
dropping identical lines, regardless of what lines
correspond to in the individual sources (words,
phrases, sentences or even paragraphs). We in-
spected data files for individual languages and re-
moved lines containing English for languages not
using Latin script. We also removed Cyrilic char-
acters from a few languages that should not con-
tain them. This was done mostly in W2C corpora.

For the final dataset, we mixed all sources for
a given language at the line level, keeping only
languages with more than 500k characters in to-
tal. Since the resources for some languages were
huge, we decided to set an upper bound on the
number of characters per language. In order to
roughly reflect the distribution of languages in
the world, we divided languages into three groups
based on the number speakers of the language ac-
cording to Wikipedia. The first group were lan-
guages with more than 75M speakers, the second
with more than 10M speakers and the third group
contained the rest. For the first group, we allowed
at most 10M characters in the training set, the sec-
ond group was capped at 5M characters and the
third group was allowed only 1M characters per
language at most.7

In total, our final training set includes 131 + 1
(HTML) languages, see Figure 2.

We divide the corpus into non-overlapping
training, development and test sections. We re-

7Higher-quality sources such as Tatoeba are generally
smaller and since we mixed the sources by interleaving their
lines, these smaller sources were likely included in full.

leased the test set 8 but the training part cannot
be publicly released because of the restrictive per-
missions of some of the sources used. The test
section is limited to short text. It contains 100
lines for each of the 131 languages (HTML is not
included), with the average line length of 142.3
characters.

Each line of the dataset starts with an ISO-3 la-
bel of the language presented on that line. All lines
were shuffled.

For training and testing, the language labels as
well as all line breaks must be ignored, otherwise
the model could learn to set language boundaries
at the new line character. After dropping all line
breaks, we obtain a multilingual text.

This way, we simulate a multilingual text and
our algorithm has to learn to identify language
boundaries without relying on any particular sym-
bol. We are aware of the fact that the original seg-
mentation of the corpora affects where these lan-
guage switches are expected, and this will mostly
correspond to sentence boundaries.

5 Monolingual Language Identification

Most of related research is focused on monolin-
gual language identification, i.e. recognizing the
single language of an input document.

We compare our method in this setting with sev-
eral other algorithms on the dataset presented by
Baldwin and Lui (2010). The dataset consists of 3
different test sets, each containing a different num-
ber of languages, styles and document lengths col-
lected from different sources, see Table 1 for de-
tails:

EuroGov contains texts in Western European
languages from European government re-
sources.

TCL was extracted by the Thai Computational
Linguistics Laboratory in 2005 from online
news sources and the test set also contains
multiple file encodings. Since our method as-
sumes Unicode input, we converted TCL to
Unicode encoding.

8https://ufal.mff.cuni.cz/tom-kocmi/lanidenn
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System Trained on Supported languages EuroGov TCL Wikipedia
LangDetect* Wikipedia 53 .9929 .818 .867
TextCat* TextCat Dataset 75 .941 .605 .706
CLD* unknown 64 .983 .732 .831
Langid.py* Lui and Baldwin (2011) 97 .987 .904 .913
Langid.py Lui and Baldwin (2011) 97 .987 .931 .913
CLD2 unknown 83 .979 .837 .854
Our model Our dataset 136 .977 .954 .893

Table 2: Results of monolingual language identification on the Baldwin and Lui (2010) test set. Entries
marked with “*” are accuracies reported by Lui and Baldwin (2012), the rest are our measurements.

Wikipedia are texts collected from a Wikipedia
dump.

Table 2 summarizes the accuracies of several
algorithms on the three test sets. For some algo-
rithms, we report values as presented by Lui and
Baldwin (2012) without re-running9. We re-ran
the Langid.py as the best algorithm out of them,
and got the same results except for the TCL test-
set, where we got better results than reported by
Lui and Baldwin (2012). After a discussion with
the authors, we believe the re-run benefited from
the conversion of all texts to Unicode.

We compare our method with two top language
recognizers, Langid.py and CLD2. Our model is
trained on more languages and we do not restrict
it to the languages included in the test set, so we
may be losing on detailed dialect labels.

Despite the considerably higher number of
languages covered, our model performs reason-
ably close to the competitors on EuroGov and
Wikipedia and best on TCL.

5.1 Short-Text Language Identification

In order to demonstrate the ability of our method
to identify language of very short texts such
as tweets, search queries or user messages, we
wanted to use an existing corpus, such as the one
released by Twitter.10 Unfortunately, the corpus
contains only references to the actual tweets and
most of them are no longer available. We thus
have to rely on our own test set, as described in
Section 4.

Results on short texts are reported in Table 3.
The two other systems, Langid.py and CLD2
cover fewer languages and they were trained on
texts unrelated to our collection of data. It is there-

9We should mention that LangDetect used EuroGov as a
validation set, so its score on this test set is not reliable.

10https://blog.twitter.com/2015/
evaluating-language-identification-
performance

System All languages Common languages
Langid.py .567 .912
CLD2 .545 .891
Our model .950 .955

Table 3: Results on our test set for short texts.
The first column shows accuracy over all 131 lan-
guages and the second column shows accuracy
over languages that all systems have in common.

ind↔msa 64 ekk↔est 36 bak↔tat 28
hrv↔srp 17 glg↔por 17 nno↔nor 16
ast↔spa 15 fas↔pus 13 ces↔slk 13
hrv↔slv 10 dan↔nor 10 nep↔new 8
aze↔tur 7 mar↔new 6 ceb↔tgl 6
cat↔spa 6 arg↔spa 6 fra↔oci 5

Table 6: Most frequent confusions on our test set.

fore not surprising that they perform much worse
when averaged over all languages.

For a fairer comparison, we report also accura-
cies on a restricted version of the test set that in-
cluded only languages supported by all the three
tested tools. Both our competitors are meant to
be generally applicable, so they should (and do)
perform quite well. Our system nevertheless out-
performs them, reaching the accuracy of 95.5. Ar-
guably, we can be benefitting from having trained
on (different) texts from the same sources as this
test set.

Table 6 lists the most frequent misclassifications
of our model on our test set (unordered language
pairs) of the 13100 items in the test set. The most
common error is confusing Indonesian with Mod-
ern Standard Arabic, which indicates some noise
in our training data rather than difficulty of sep-
arating these two languages. The following pairs
are expected: Standard Estonian (ekk) vs. Esto-
nian (est, a macro language which includes Stan-
dard Estonian), Bashkir vs. Tatar, Croatian vs.
Serbian, Asturian vs. Spanish, . . .

Finally, our model is trained to distinguish also
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System Training set PM RM FM Pµ Rµ Fµ
VRL (2010) * ALTW2010 .497 .467 .464 .833 .826 .829
ALTW2010 winner * ALTW2010 .718 .703 .699 .932 .931 .932
SEGLANG * ALTW2010 - mono .801 .810 .784 .866 .946 .905
LINGUINI * ALTW2010 - mono .616 .535 .513 .713 .688 .700
Lui et al. (2014) * ALTW2010 - mono .753 .771 .748 .945 .922 .933
Lui et al. (2014) our retrain ALTW2010 - mono .768 .716 .724 .968 .896 .931
Our model ALTW2010 - mono .819 .764 .779 .966 .964 .965
Our model Our dataset .709 .714 .695 .941 .941 .941

Table 4: Results of multilingual language identification on the ALTW2010 test set. * As reported by Lui
et al. (2014)

System PM RM FM Pµ Rµ Fµ
SEGLANG * .809 .975 .875 .771 .975 .861
LINGUINI * .853 .772 .802 .838 .774 .805
Lui et al. (2014) * .962 .954 .957 .963 .955 .959
Lui et al. (2014) our retrain .962 .963 .961 .963 .964 .963
Our model trained on WikipediaMulti .962 .974 .966 .954 .974 .964
Our model trained on our dataset .774 .778 .774 .949 .972 .961
Our model trained on our dataset, restricted .966 .973 .966 .956 .973 .964

Table 5: Results of multilingual language identification on the WikipediaMulti test set. * As reported by
Lui et al. (2014)

HTML as one additional language. We did not in-
clude HTML in our test corpus but to satisfy the
requests of one of our reviewers, we checked the
performance on our development corpus: only one
Portuguese and one Yakut segment was classified
as HTML and none of the 100 HTML segments
were misclassified.

6 Multilingual Language Identification

In multilingual language identification, systems
are expected to report the set of languages used in
each input document. The evaluation criterion is
thus macro- (M) or micro- (µ) averaged precision
(P), recall (R) or F-measure (F).11

We evaluate our model on two existing test sets
for multilingual identification, ALTW2010 shared
task and WikipediaMulti. We are mainly inter-
ested in the performance of our general model,
trained on all our training data, on these test sets.
But since both test sets come with training data,
we also retrain our model to test its in-domain per-
formance. We limit the training of these specific
models to 140,000 training steps for ALTW2010
and 75,000 steps for WikiMulti, keeping other set-
tings identical to the main model. Each training
step amounts to the processing of 64 batches of
200 letters of input. The number of steps for both

11Note that for comparability with results reported in other
works, macro-averaged F-score is calculated as average over
individual F-scores instead of the harmonic mean of PM and
RM . FM can thus fall out of the range between PM and RM .

tasks was established by testing the error on the
development parts of the datasets.

To interpret the character-level predictions by
our model for multilingual identification, we used
the ALTW2010 development data to empirically
set the threshold: if a language is predicted for
more than 3 % of characters in the document, it
is considered as one of the languages of the docu-
ment.

6.1 ALTW 2010 Shared Task

ALTW 2010 shared task (VRL, 2010) provided
10000 bilingual documents divided as follows:
8000 training, 1000 development and 1000 test
documents.

The results on the 1000 test documents are in
Table 4. For algorithms SEGLANG and LIN-
GUINI, we only reproduce the results reported by
Lui et al. (2014). We use the system by Lui et al.
(2014) as a proxy for the comparison: we retrain
their system and obtain results similar to those re-
ported by the original authors. The differences are
probably due to the Gibbs sampling used in their
approach.

Some of the reported methods rely on the fact
that the documents in the dataset are bilingual.
Other methods, including ours, simply break the
bilingual documents into the individual languages
and train on this simplified training set. We indi-
cate this by stating “ALTW2010 - mono” in Ta-
ble 4.
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Figure 3: Illustration of text partitioning. The black triangles indicate true boundaries of languages. The
black part shows probability with which the language written in gray is detected and the gray part shows
complement for the second language, since in this setup we restricted our model to use only the two
languages in question. The misclassification of Italian and German as English in the last two examples
may reflect increased noise in our English training data.

The main criterion of the ALTW2010 shared
task was to maximize the micro-averaged F-score
(Fµ). We see that our model trained on the
ALTW2010 data outperforms all other models in
this criterion (Fµ of .965) and so does our non-
adapted version, reaching Fµ of .941.

6.2 WikipediaMulti

WikipediaMulti (Lui et al., 2014) is a dataset of ar-
tificially prepared multilingual documents, mixed
from monolingual Wikipedia articles from 44 lan-
guages. Each of the artificial documents contains
texts in 1 ≤ k ≤ 5 randomly selected languages.
The average document length is 5500 bytes. The
training set consists of 5000 monolingual docu-
ments, the development set consists of 5000 mul-
tilingual documents and test set consists of 1000
documents for each value of k.

Table 5 shows that our model performs well,
both when trained on the provided data and when
trained on our training corpus. The model trained
on our dataset performs slightly worse in Fµ, but
if we simply prevent it from predicting languages

not present in the test set, the score gets on par
with the adapted version, see the line labelled “re-
stricted” in Table 5.

7 Text Partitioning

Figure 3 illustrates the behaviour of our model
on text with mixed languages. We have selected
very short (50–130 characters) and challenging
segments where the languages mostly share the
same script. Finding the boundary between lan-
guages written in different scripts is quite easy, as
illustrated by the first example.

Only too late, we discovered that King and Ab-
ney (2013) provide a test set for word-level iden-
tification for 30 languages. We thus have to leave
the evaluation of our model on this dataset for fu-
ture.

8 Conclusion

We have developed a language identification algo-
rithm based on bidirectional recurrent neural net-
works. The approach is designed for identifying
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languages on a short texts, allowing to detect code
switching including switches to formal markup
languages like HTML.

We collected a dataset and trained our model
to recognize considerably more languages than
other state-of-the-art tools. Our algorithm and the
trained model is provided for academic and per-
sonal use.12

Since there is no established dataset for the
novel setting of text partitioning by language,
we evaluated our model in several common tasks
(monolingual and multilingual language identifi-
cation for long and short texts) which were pre-
viously handled by separate algorithms. Our ap-
proach performs well, improving over the state of
the art in several cases.

A number of things are planned: (1) improv-
ing the implementation, especially the speed of
application of a trained model, (2) further extend-
ing the set of covered languages and possibly in-
cluding more artificial or programming languages
(e.g. JavaScript, PHP) or common formal nota-
tions (URLs, hashtags), (3) evaluating our method
on the dataset by King and Abney (2013), possibly
extending this dataset to include more languages,
(4) training and testing the model on noisy texts
like Tweets or forum posts, and (5) experimenting
with other network architectures and approaches,
possibly also training the model on bytes instead
of Unicode characters.
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