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Abstract

The use of distributional language repre-
sentations have opened new paths in solv-
ing a variety of NLP problems. However,
alternative approaches can take advantage
of information unavailable through pure
statistical means. This paper presents a
method for building vector representations
from meaning unit blocks called concept
definitions, which are obtained by extract-
ing information from a curated linguistic
resource (Wiktionary). The representa-
tions obtained in this way can be compared
through conventional cosine similarity and
are also interpretable by humans. Eval-
uation was conducted in semantic simi-
larity and relatedness test sets, with re-
sults indicating a performance compara-
ble to other methods based on single lin-
guistic resource extraction. The results
also indicate noticeable performance gains
when combining distributional similarity
scores with the ones obtained using this
approach. Additionally, a discussion on
the proposed method’s shortcomings is
provided in the analysis of error cases.

1 Introduction

Vector-based language representation schemes
have gained large popularity in Natural Language
Processing (NLP) research in the recent years.
Their success comes from both the asserted ben-
efits in several NLP tasks and from the ability to
built them from unannotated textual data, widely
available in the World Wide Web. The tasks bene-
fiting from vector representations include Part-of-
Speech (POS) tagging (dos Santos and Zadrozny,
2014), dependency parsing (Bansal et al., 2014),
Named Entity Recognition (NER) (Seok et al.,

2016), Machine Translation (Sutskever et al.,
2014), among others.

Such representation schemes are, however, not
an all-in-one solution for the many NLP appli-
cation scenarios. Thus, different representation
methods were developed, each one focusing in a
limited set of concerns, e.g., semantic relatedness
measurement (Mikolov et al., 2013; Pennington
et al., 2014) and grammatical dependencies (Levy
and Goldberg, 2014). Most of the popular meth-
ods are based on a distributional approach: the
meaning of a word is defined by the context of
its use, i.e., the neighboring words. However,
distributional representations carry no explicit lin-
guistic information and cannot easily represent
some important semantic relationships, such as
synonymy and antonymy (Nguyen et al., 2016).
Further problems include the difficulty in obtain-
ing representations for out-of-vocabulary (OOV)
words and complex constructs (collocations, id-
iomatic expressions), the lack of interpretable rep-
resentations (Faruqui and Dyer, 2015), and the ne-
cessity of specific model construction for cross-
language representation.

This paper presents a linguistically motivated
language representation method, aimed at captur-
ing and providing information unavailable on dis-
tributional approaches. Our contributions are: (i)
a technique for building conceptual representa-
tions of linguistic elements (morphemes, words,
collocations, idiomatic expressions) from a single
collaborative language resource (Wiktionary 1);
(ii) a method of combining said representations
and comparing them to obtain a semantic sim-
ilarity measurement. The conceptual represen-
tations, called Term Definition Vectors, address
more specifically the issues of semantic relation-
ship analysis, out-of-vocabulary word interpreta-

1www.wiktionary.org
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tion and cross-language conceptual mapping. Ad-
ditionally, they have the advantages of being in-
terpretable by humans and easy to operate, due to
their sparsity. Experiments were conducted with
the SimLex-999 (Hill et al., 2015) test collection
for word similarity, indicating a good performance
in this task and exceeding the performance of other
single information source studies, when combined
with a distributional representation and Machine
Learning. Error analysis was also conducted to un-
derstand the strengths and weaknesses of the pro-
posed method.

The remainder of this paper is organized as fol-
lows: Section 2 presents relevant related works
and highlights their similarities and differences to
this research. Section 3 explains our approach in
detail, covering its linguistic motivation and the
characteristics of both representation model and
comparison method. Section 4 describes the ex-
perimental evaluation and discusses the evaluation
results and error analysis. Finally, Section 5 offers
a summary of the findings and some concluding
remarks.

2 Related Work

In order to address the limitations of the most
popular representation schemes, approaches for
all-in-one representation models were also devel-
oped (Pilehvar and Navigli, 2015; Derrac and
Schockaert, 2015). They comprise a combination
of techniques applied over different data sources
for different tasks. Pilehvar and Navigli (2015)
presented a method for combining Wiktionary and
Wordnet (Fellbaum and others, 1998) sense in-
formation into a semantic network and a corre-
sponding relatedness similarity measurement. The
method is called ADW (Align, Disambiguate,
Walk), and works by first using a Personalized
PageRank (PPR) (Haveliwala, 2002) algorithm for
performing a random walk on the semantic net-
work and compute a semantic signature of a lin-
guistic item (sense, word or text): a probability
distribution over all entities in the network where
the weights are estimated on the basis of the net-
work’s structural properties. Two linguistic items
are then aligned and disambiguated by finding
their two closest senses, comparing their seman-
tic signatures under a set of vector and rank-based
similarity measures (JensenShannon divergence,
cosine, Rank-Biased Overlap, and Weighted Over-
lap). ADW achieved state-of-the-art performance

in several semantic relatedness test sets, covering
words, senses and entire texts.

Recski et al. (2016) presented a hybrid sys-
tem for measuring the semantic similarity of word
pairs, using a combination of four distributional
representations (SENNA (Collobert and Weston,
2008), (Huang et al., 2012), word2vec (Mikolov
et al., 2013), and GloVe (Pennington et al., 2014)),
WordNet-based features and 4lang (Kornai, 2010)
graph-based features to train a RBF kernel Sup-
port Vector Regression on the SimLex-999 (Hill et
al., 2015) data set. This system achieved state-of-
the-art performance in SimLex-999.

The work presented in this paper takes a similar
approach to Pilehvar and Navigli (2015), but stops
short on obtaining a far reaching concept graph.
Instead, it focuses on exploring the details of each
sense definition. This includes term etymolo-
gies, morphological decomposition and transla-
tion links, available in Wiktionary. Another differ-
ence is that the translation links are used to map
senses between languages in this work, whereas
they are used for bridging gaps between sense
sets on monolingual text in Pilehvar and Navigli
(2015).

Another concern regarding distributional repre-
sentations is their lack of interpretability from a
linguistic standpoint. Faruqui and Dyer (2015)
addresses this point, relying on linguistic infor-
mation from Wordnet, Framenet (F. Baker et
al., 1998), among other sources (excluding Wik-
tionary), to build interpretable word vectors. Such
vectors accommodate several types of informa-
tion, ranging from Part-of-Speech (POS) tags to
sentiment classification and polarity. The obtained
linguistic vectors achieved very good performance
in a semantic similarity test. Those vectors, how-
ever, do not include morphological and translation
information, offering discrete, binary features.

Regarding the extraction of definition data from
Wiktionary, an effective approach is presented
by Zesch et al. (2008a), which is also used for
building a semantic representation (Zesch et al.,
2008b). However, the level of detail and structure
format obtained by such method was not deemed
adequate for this work and an alternative extrac-
tion method was developed (Sections 3.2 and 3.3).

3 Term Definition Vectors

The basic motivation for the representation model
here described is both linguistic and epistemic:
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trying to represent knowledge as a set of individual
concepts that relate to one another and are related
to a set of terms. This idea is closely related to
the Ogden/Richards triangle of reference (Ogden
et al., 1923) (Figure 1), which describes a relation-
ship between linguistic symbols and the objects
they represent. The following notions are then de-
fined:
• Concept: The unit of knowledge. Represents

an individual meaning, e.g., rain (as in the
natural phenomenon), and can be encoded
into a term (symbol). It corresponds to the
“thought or reference” from the triangle of
reference.

• Term: A unit of perception. In text, it can
be mapped to fragments ranging from mor-
phemes to phrases. Each one can be decoded
into one or more concepts. Stands for the
“symbol” in the triangle of reference.

• Definition: A minimal, but complete explic-
itation of a concept. It comprises the tex-
tual explanation of the concept (sense) and its
links to other concepts in a knowledge base,
corresponding to the “symbolizes” relation-
ship in the triangle of reference. The sim-
plest case is a dictionary definition, consist-
ing solely of a short explanation (typically
a single sentence), with optional term high-
lights, linking to other dictionary entries. The
information used for building definitions in
this work is described in Section 3.3.

Figure 1: Ogden/Richards triangle of reference,
also known as semiotic triangle. Describes a re-
lationship between linguistic symbols and the ob-
jects they represent. (Ogden et al., 1923)

3.1 Distributional & Definitional Semantics

Distributional approaches for language represen-
tation, also known as latent or statistical seman-
tics, are rooted in what is called the distributional
hypothesis (Sahlgren, 2008). This concept stems
from the notion that words are always used in
a context, and it is the context that defines their
meaning. Thus, the meaning of a term is con-
cealed, i.e. latent, and can be revealed by look-
ing at its context. In this sense, it is possible to
define the meaning of a term to be a function of
its neighboring term frequencies (co-occurrence).
Using different definitions for “neighbor”, e.g.,
adjacent words in word2vec (Mikolov et al., 2013)
and “modifiers in a dependency tree” (Levy and
Goldberg, 2014), it is possible to produce a va-
riety of vector spaces, called embeddings. Good
embeddings enable the use of vector operations
on words, such as comparison by cosine similar-
ity. They also solve the data sparsity problem of
large vocabularies, working as a dimensionality
reduction method. There are, however, semantic
elements that are not directly related to context,
and thus are not well represented by distributional
methods, e.g., the antonymy and hypernymy re-
lations. Furthermore, polysemy can bring poten-
tial ambiguity problems in cases where the vectors
are only indexed by surface form (word→ embed-
ding).

An alternative line of thinking is to define the
meanings first and then associate the correspond-
ing terms (reference → symbol). In this notion,
meanings are explicit and need only to be resolved,
i.e., disambiguated, for any given term. Concepts
are thus represented by prior definitions instead of
distributions over corpora, hence the name “defini-
tional semantics” is used in this work to generalize
such approaches.

To illustrate the difference between both ap-
proaches, a simple analogy can be made, where a
person reads a book with difficult or new vocabu-
lary. The distributional approach would be akin to
reading the book while trying to guess the mean-
ing of the unknown words by context. If the book
is long, as the reading progresses, the guesses tend
to become more accurate, as a human will try to
piece together the information patterns surround-
ing the new words. On the other hand, the defi-
nitional approach would be equivalent to reading
the entire contents of a dictionary before reading
the book. The main advantage of the former is in-
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dependence from any previously compiled knowl-
edge base, e.g, a dictionary, which are subject to
completeness and correctness concerns. The latter
offers answers for the rarer words that are difficult
to guess and the possibility to explain exactly how
a certain meaning was inferred (interpretability).

The proposed definitional representation is then
obtained through the following strategy:

1. Formalization of the basic unit of knowledge:
the concept.

2. Information extraction from a linguistic re-
source into a set of concepts.

3. Lexical association: term↔ concept.

4. Definition of a term as a composition (mix-
ture) of concepts, allowing partial or com-
plete disambiguation.

Figure 2 illustrates the process. A term is said
ambiguous if it is composed by more than one con-
cept. Therefore in this context, disambiguation is
the action of reducing the number of concepts in
a term’s composition. This can be done by col-
lecting additional information about the term, such
as Part-of-Speech. A complete disambiguation re-
duces the composition to a single concept.

Figure 2: Process of definitional representation.
Given a set of concepts obtained from a linguis-
tic resource, a term can be defined as a composi-
tion of concepts. A term is said ambiguous if it is
composed by more than one concept.

3.2 Linguistic Information Extraction

Wiktionary 2 was used as the single linguistic re-
source. Wiktionary is a collaborative lexical re-
source, comprising millions of vocabulary entries
from several languages. It includes contextual in-
formation, etymology, semantic relations, transla-
tions, inflections, among other types of informa-
tion for each entry. Its contents are actively cu-
rated by a large, global community. This choice
was motivated by a several reasons, more impor-
tantly:

• It is the largest lexical resource openly avail-
able for the public, covering more than 10
million lexical entries from 172 languages.

• It is constantly updated. Daily changes are
consolidated in monthly releases.

• Entries are organized in a way that separates
each meaning of a term, simplifying defini-
tion extraction.

• Entries include range from morphemes, e.g.,
“pre-”, to idiomatic expressions, e.g., “take
matters into one’s own hands”.

The data available from Wiktionary is semi-
structured, composed of a set of markup docu-
ments, one for each entry, following a reasonably
consistent standard of annotations for each lan-
guage covered. In order to extract the linguistic
information, an application was developed to con-
vert the markup into a structured (JSON + schema)
representation. The structured data was optimized
for the retrieval of Wiktionary senses and link
types were categorized to produce concept defini-
tions.

3.3 Concept Definitions

Formalization of the knowledge unit used in this
work was done by firstly mapping each concept to
a single Wiktionary sense. The concept is repre-
sented as a lexical/semantic graph, where a main
addressing term, the root node, is connected to
other terms through a set of edges. Each edge de-
notes a different type of lexical/semantic relation-
ship, e.g. prefixation, synonymy/antonymy. The
edges are also weighted, denoting the intensity of
a relationship. Figure 3 shows a simplified visu-
alization of a pair of different concept graphs for

2www.wiktionary.org
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Figure 3: A simplified visualization of two concept graphs for the term “mouse”. The leftmost one
denotes the concept of the small rodent and the other denotes the computer input device. The edge labels
represent the relationship type and the thickness represent the its intensity.

Table 1: Link types used for the construction of concept graphs. They comprise both lexical (morphol-
ogy, etymology) and semantic relationships between the root term, i.e., the Wiktionary entry title, and
the terms used to describe the meaning.

Type Description
weak A term included in the description of the meaning on the Wiktionary entry.
strong A term linked to another entry, i.e. a {highlight}, included in the description of the meaning.
context A Wiktionary context link, explaining a specific situation in which the meaning described occurs.
synonym A synonym relation. If it is an antonym, the sign of the link is reversed.
hypernym A hypernym relation.
homonym A homonym relation.
abbreviation If the meaning described is given by interpreting the root term as an abbreviation.
etymology Used to describe the origin of the root term of this meaning.
prefix Denotes a prefixation (morphological) relationship of the root term.
suffix Denotes a suffixation relationship. Same as above.
confix Denotes a confixing relationship. Same as above.
affix Denotes an affixation relationship. Same as above.
stem Denotes a morphological stem relationship of the root term.
inflection Denotes an inflectional relationship of the root term.

Figure 4: Representation of one Wiktionary sense definition for ”mouse” as an encoded matrix: the
concept definition. Each Wiktionary link is categorized and mapped to a vector space.

a single lexical entry of Wiktionary. The differ-
ent link types are used to create a vector space, in
which the edges of the definition graph are repre-
sented. Table 1 describes the link types used in
this work.

Each concept graph is represented by a ML×T

matrix called concept definition, where L is the

number of link types and T is the vocabulary
size. The link intensities are defined for each
type, by multiplying a manually defined constant
link base (a model parameter) by the TF-IDF
score calculated for the vocabulary with respect to
the type. Figure 4 illustrates the process.

Wiktionary entries also cover foreign terms,
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listing senses in the source language, e.g., English
meanings of the French word “avec” in the English
language section. Definitions for these terms are
also included into the concept definition set. Ad-
ditionally, translation links are provided for many
sense definitions. Such links, as well as term redi-
rections, i.e., distinct terms pointing to the same
Wiktionary entry, are mapped to a single concept.
This allows foreign terms to take advantage of the
same concept graphs as the source language equiv-
alents.

3.4 Definition Vectors

Finally, association between the concept defini-
tions and terms is established by composition.
This is done by simple element-wise sum and av-
erage of all concept definition matrices mapped to
a Wiktionary entry. The resulting matrix is flat-
tened in its row axis, i.e, rows are concatenated
in order, producing a L × T -dimensional sparse
vector called term definition vector. If the term is
not a Wiktionary entry, i.e., is out-of-vocabulary
(OOV), a character n-gram-based attempt of mor-
phological decomposition is done and if a com-
plete morpheme match is found in the concept def-
inition set, the matched concepts are composed
for the OOV term. This decomposition attempt is
done as follows:

1. For each character ci, i ∈ [0, n] in a OOV
term of length n:

i Create empty list morph cand of mor-
pheme candidates.

ii Set index j = i.
iii Find Wiktionary entries that match c and

add them to morph cand. For the first
and last characters, include prefixes and
suffixes in the search, respectively.

iv Concatenate cj+1 to c.
v Increment j.

vi Repeat from iii.

This will produce a sequence of n morpheme
candidate lists. If a sequence produced by taking a
single morpheme candidate from each list matches
the entire OOV term, it is considered a candidate
decomposition. If there are multiple candidate de-
compositions, the one with the shortest stem is se-
lected.

Figure 5 illustrates an OOV composition for
the nonexistent term “unlockability”, which has

a complete morpheme match in the concept def-
inition set. If a complete morpheme match is not
found, the term is considered a proper noun (if no
POS is provided), and given a null (zero) vector.

Figure 5: Morpheme match in concept definitions
for the OOV term “unlockability”.

Similarity comparison between two terms is
done by measuring the cosine similarity between
their definition vectors. A value closer to 1 in-
dicates high similarity, a value closer to −1 in-
dicates opposition and a value closer to 0 indi-
cates unrelatedness. Table 2 shows a compari-
son table between semantic matches obtained us-
ing this method, word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014).

Table 2: Top closest and farthest to the term
“happy” by Term Definition Vector, and clos-
est Word2Vec (GoogleNews corpus), and GloVe
(Wikipedia2014 + Gigaword) cosine similarities.

Def.Vec Def.Vec (-) Word2Vec GloVe
joyous sad glad glad
dexterous unhappy pleased good
content joyless ecstatic sure
felicitous somber overjoyed proud
lucky depressed thrilled excited

The definition vectors obtained in this way
are also human interpretable to a certain extent.
Each dimension corresponds to a link from the
concept graphs used to compose a term definition.
The values correspond to the strengths of such
links. A human readable representation of the
definition vector for the word “sunny”, containing
a maximum of two values per link type, can be
written in the form: weak@(a:0.0006, lot:0.003);
strong@(cheerful:0.032, radiant:0.032); syn-
onym@(bright:1.11, sunlit:1.11); suffix@(-y:1);
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stem@(sun:1); pos@(adjective:0.11, noun:0.11).
In this example, strong@radiant is a single vec-
tor dimension and the term is not disambiguated
(multiple POS).

4 Experiments

4.1 Experimental setup

The definition vector representations obtained in
this work were evaluated in the SimLex-999 test
collection for semantic similarity benchmark (Hill
et al., 2015). This test collection contains a set
of 999 English word pairs, associated to a sim-
ilarity score given by a group of human annota-
tors. The set is divided in 666 nouns pairs, 222
verb pairs and 111 adjective pairs. The Part-of-
Speech (POS) information allows partial or com-
plete disambiguation of the definition vectors. The
choice of SimLex-999 was due to the type of sim-
ilarity measured by this set, which excludes re-
latedness and is closer to the type of information
captured by the concept definitions. Addition-
ally, the WordSim-353 (Finkelstein et al., 2001),
RG-65 (Rubenstein and Goodenough, 1965) and
MEN (Bruni et al., 2014) test collections for se-
mantic relatedness were also included in the eval-
uation, to verify the representation performance in
measuring relatedness. While the MEN test col-
lection also includes POS information, WordSim-
353 and RG-65 do not include it, so sense dis-
tinction was not applied for the latter. Unfortu-
nately, the test collections used in this work did
not contain foreign words, so the translation-link
features presented in Section 3.3 are solely pre-
sented as part of the method’s description, and are
not evaluated. This is due to the method being de-
veloped without focus on a specific test. The se-
mantic similarity measurement was consequence
of the method’s design, but not its main target.

Evaluation is done by computing the Spear-
man’s rank correlation coefficient (ρ) between the
human annotators’ similarity or relatedness scores
and the scores given by the automated methods.
A coefficient of value 1 means a perfect match
between the relative positions of the pairs, when
ranked by their similarity scores.

For the SimLex-999 test, the cosine similarity
between the term definition vectors was set as the
similarity score. For the WordSim-353, RG-65
and MEN tests, the absolute value of the cosine
similarity was used instead, since opposite words
are related. An additional test was performed to

explore the possibility of combining distributional
and definitional approaches. In this test, a small
set of features was created to train a Learning-
to-Rank model, in order to improve the similarity
scores. The features were as follows:

• Presence of synonym, hypernym, strong and
weak links 3 between the pair of words. Each
link type is a separate feature.

• Term definition vector similarity.

• Word2vec similarity.

The features were computed for each pair and
passed to SVMrank (Joachims, 2006) for training
and validation. A 10-fold cross-validation test us-
ing random pairs without replacement was run for
the entire sets (5-fold for RG-65), except MEN.
The MEN test collection is separated into train-
ing and testing sets, with 2K and 1K word pairs
respectively, so these were used in place of the
cross-validation. For each fold, the ranking scores
provided by the trained ranker were used as simi-
larity scores for calculating ρ. The average of all
folds was considered the final result.

Experimental data and model parameters were
set as follows:

• Linguistic information source: Wiktionary
English database dump (XML + Wiki
markup), 2015-12-26, containing more than
4 million entries. A reduced set, with only
English, French, Greek, Japanese, Latin and
Vietnamese language entries was used in the
experiments. This set had about 734K en-
tries, from which approx. 1 million concepts
where extracted.

• link base constants were set as: weak =
0.2, strong = 2.0, context = 0.5,
synonym = 10.0, hypernym = 5.0,
homonym = 7.0, etymology = 1.0 (also
applied to morphological links) and pos =
1.0. The constants were adjusted by increas-
ing or decreasing their values individually in
intervals of 0.2, and observing the effect in ρ
for SimLex-999 in the first fold of the cross-
validation. The optimal values were selected
and kept constant for the remaining folds and
for the other tests. This was done because

3See Table 1
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Table 3: Performance of different methods for the SimLex-999, WordSim-353, RG-65, and MEN test
sets, reported as Spearman’s rank correlation coefficient rho. The methods marked with � use a single
information source. Fields marked with “-” indicate that the results were not available for assessment.

Method ρ@SimLex-999 ρ@WordSim-353 ρ@RG-65 ρ@MEN-1K
Word2Vec (W2V) � 0.38 0.78 0.84 0.73
GloVe � 0.40 0.76 0.83 -
Term Def. Vectors (TDV) � 0.56 0.36 0.68 0.42
Ling Dense 0.58 0.45 0.67 -
dLCE � 0.59 - - -
TDV + W2V + SVMrank 0.62 0.75 0.72 0.78
Recski et al. (2016) 0.76 - - -
ADW - 0.75 0.92 -

changing link base for each fold would cre-
ate an unrealistic use scenario for our sys-
tem, which cannot change link base online.
The cross-validation was repeated two times,
with very minor differences between both test
runs. The constant values reported here are
from the last run.

• SVMrank was set with a default linear ker-
nel and C parameter (training error trade-off)
was set to 8 for MEN and 5 for the other test
collections. The value was increased in unit
intervals, until convergence was longer than a
time threshold (10 minutes). This parameter
was adjusted using the training set for MEN,
or inside each CV fold for the rest.

• Both Word2Vec and GloVe were used with
pre-trained, 300-dimensional models: 100
billion words GoogleNews corpus and Com-
mon Crawl 42 billion token corpus respec-
tively.

dLCE (Nguyen et al., 2016) was chosen as base-
line, for being the best single information source
method in the SimLex-999 test collection. Fur-
ther results include Recski et al. (2016) (state-of-
the-art), Ling Dense (Faruqui and Dyer, 2015),
Word2Vec (Mikolov et al., 2013), and GloVe (Pen-
nington et al., 2014). For WordSim-353, GloVe,
Word2Vec, Ling Dense, and ADW (Pilehvar and
Navigli, 2015) were included. For RG-65, Ling
Dense, GloVe, and ADW (state-of-the-art), were
included.

4.2 Results

The experimental results are presented in Table 3,
where they are compared to other methods.

The results indicate that in the semantic similar-
ity test, the term definition vectors perform closely
to other representation models taking advantage
of curated data, such as WordNet. It also outper-
forms the most popular distributional representa-
tions. However, they are clearly outclassed in the
semantic relatedness test, for which the distribu-
tional approaches show superior performance.

An interesting observation can be made when
combining word2vec similarity with term defini-
tion features through the use of Machine Learning.
A performance trade-off seems to exist at the se-
mantic relatedness tests, but the same is not true
for the similarity test. This allowed the combined
model to improve considerably at little cost. Fur-
ther analysis helped in understanding the reason
for this particularity (Section 4.3).

Lastly, the experiments have also shown that
the method for extracting concept definitions is
not computationally expensive. The developed
implementation took about 6 minutes to extract
all concept definitions from the structured Wik-
tionary data used in the tests, using a modern desk-
top computer (3GHz processor and at least 8GB
RAM). Structuring Wiktionary data took less than
20 minutes with the same equipment, and was
done a single time.

4.3 Error analysis

Identifying the flaws in a method is a fundamental
step in improving it and also in understanding the
problem it tries to solve. With this in mind, the
error cases identified in measuring similarity from
the SimLex-999 set were observed in detail. In
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this analysis we considered as error any word pair
that was put among the top 15% similarity scores
by the human annotators, but was ranked in the
lower 50% using the definition vectors. The same
applies for the bottom 15% scored by humans, that
are ranked in the upper half by our approach.

The errors found were classified in four cate-
gories:

• Insufficient links in Wiktionary: this type of
error occurs when the wiktionary sense cor-
responding to a concept lacks annotations.
Typical cases contain only a short descrip-
tion, with no links. The concept graph is
then left with only weak links, which have lit-
tle impact on similarity calculation. The pair
drizzle–rain (noun) is one example of this.

• Undeclared hypernymy: certain cases of hy-
pernymy are not solved in the concept extrac-
tion, since they require multiple hops in the
definition links to be found. The pairs cop–
sheriff and alcohol–gin (noun) are instances
of such problem.

• Casual vs. formal language semantics: not a
flaw in the method per se, but an error caused
by the differences in formal description of a
language (in a dictionary), when compared to
casual use. The pair noticeable–obvious (ad-
jective) illustrates this.

• Other: flaws in the extraction process or an-
notation problems in Wiktionary.

Those errors affect the pairs in the top 15% hu-
man similarity scores 7 times more than the lower
15%. They are distributed as shown in Table 4.

Table 4: Distribution of definition vector error
types in SimLex-999.

Type of error Proportion
Insufficient links 21.4%
Undeclared hypernymy 38.1%
Casual semantics 14.3%
Other 26.2%

Having about one quarter of the errors in the
“other” category shows that there is some space
for improvement in the concept extraction pro-
cess. The insufficient links and undeclared hyper-
nymy categories are cases in which distributional
approaches may do better if similarity is high, due
to the words intrinsic relatedness.

Analysis of SVMrank scores showed that the in-
sufficient links category benefited the most from
the combination with word2vec. The reason is that
the features chosen for use with the ranker made
such cases distinguishable and more likely to re-
ceive a larger weight from the word2vec similarity
score after training. The undeclared hypernymy
cases, on the other hand, are not so evident and
would require a more complex approach on the
concept extraction process.

5 Conclusion

Alternative approaches to distributional language
representations can take advantage of information
unavailable through pure statistical means. Taking
advantage of large curated linguistic resources is a
popular way of obtaining such information and of-
fers large room for exploration. With this in mind,
we propose a novel method for obtaining vector
representations of lexical items using Wiktionary
sense definitions. The lexical item representations
are composed from basic meaning units called
concept definitions, which are extracted from the
linguistic resource. Results obtained from a se-
mantic similarity evaluation test indicate perfor-
mance comparable to other methods based on lin-
guistic resource extraction. Furthermore, a notice-
able performance gain was obtained by applying a
Machine Learning approach to combine word2vec
similarity scores with the ones obtained using this
approach, exceeding both methods’ results.

Planned improvements include the use of a
graph traversal approach to capture deeper se-
mantic links and also the inclusion of translation
links as separate dimensions in the concept vec-
tor space, in order to facilitate the use of obtained
representations as a machine translation resource.
The inclusion of distributional similarity measures
as separate dimensions is also under study and
provides an alternative way of combining the dis-
tributional and definitional approaches.
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