
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 785–796,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Nonsymbolic Text Representation

Hinrich Schütze
CIS, LMU Munich, Germany
inquiries@cislmu.org

Abstract

We introduce the first generic text repre-
sentation model that is completely non-
symbolic, i.e., it does not require the avail-
ability of a segmentation or tokenization
method that attempts to identify words or
other symbolic units in text. This applies
to training the representations as well as to
using them in an application. We demon-
strate better performance than prior work
on entity typing and text denoising.

1 Introduction

Character-level models can be grouped into three
classes. (i) End-to-end models learn a separate
model on the raw character (or byte) input for
each task; these models estimate task-specific pa-
rameters, but no representation of text that would
be usable across tasks is computed. Throughout
this paper, we refer to r(x) as the “representa-
tion” of x only if r(x) is a generic rendering of
x that can be used in a general way, e.g., across
tasks and domains. The activation pattern of a
hidden layer for a given input sentence in a mul-
tilayer perceptron (MLP) is not a representation
according to this definition if it is not used out-
side of the MLP. (ii) Character-level models of
words derive a representation of a word w from
the character string of w, but they are symbolic
in that they need text segmented into tokens as
input. (iii) Bag-of-character-ngram models, bag-
of-ngram models for short, use character ngrams
to encode sequence-of-character information, but
sequence-of-ngram information is lost in the rep-
resentations they produce.

Our premise is that text representations are
needed in NLP. A large body of work on word
embeddings demonstrates that a generic text rep-
resentation, trained in an unsupervised fashion on

large corpora, is useful. Thus, we take the view
that group (i) models, end-to-end learning with-
out any representation learning, is not a good gen-
eral approach for NLP.

We distinguish training and utilization of the
text representation model. We use “training” to
refer to the method by which the model is learned
and “utilization” to refer to the application of the
model to a piece of text to compute a representa-
tion of the text. In many text representation mod-
els, utilization is trivial. For example, for word
embedding models, utilization amounts to a sim-
ple lookup of a word to get its precomputed em-
bedding. However, for the models we consider,
utilization is not trivial and we will discuss differ-
ent approaches.

Both training and utilization can be either sym-
bolic or nonsymbolic. We define a symbolic ap-
proach as one that is based on tokenization, i.e., a
segmentation of the text into tokens. Symbol iden-
tifiers (i.e., tokens) can have internal structure – a
tokenizer may recognize tokens like “to and fro”
and “London-based” that contain delimiters – and
may be morphologically analyzed downstream.1

We define a nonsymbolic approach as one that
is tokenization-free, i.e., no assumption is made
that there are segmentation boundaries and that
each segment (e.g., a word) should be represented
(e.g., by a word embedding) in a way that is in-
dependent of the representations (e.g., word em-
beddings) of neighboring segments. Methods for
training text representation models that require to-
kenized text include word embedding models like
word2vec (Mikolov et al., 2013) and most group

1The position-embedding representation of a text intro-
duced below is a sequence of position embeddings. An em-
bedding that represents a single character must be viewed as
symbolic since a character is a symbol – just like a represen-
tation of text as a sequence of word embeddings is symbolic
since each word corresponds to a symbol. But position em-
beddings do not represent single characters. See §4.

785



(ii) methods, i.e., character-level models like fast-
Text skipgram (Bojanowski et al., 2016).

Bag-of-ngram models, group (iii) models, are
text representation utilization models that typ-
ically compute the representation of a text as
the sum of the embeddings of all character
ngrams occurring in it, e.g., WordSpace (Schütze,
1992) and CHARAGRAM (Wieting et al., 2016).
WordSpace and CHARAGRAM are examples of
mixed training-utilization models: training is per-
formed on tokenized text (words and phrases), uti-
lization is nonsymbolic.

We make two contributions in this paper. (i) We
propose the first generic method for training text
representation models without the need for tok-
enization and address the challenging sparseness
issues that make this difficult. (ii) We propose the
first nonsymbolic utilization method that fully rep-
resents sequence information – in contrast to uti-
lization methods like bag-of-ngrams that discard
sequence information that is not directly encoded
in the character ngrams themselves.

2 Motivation

Chung et al. (2016) give two motivations for their
work on character-level models. First, tokeniza-
tion (or, equivalently, segmentation) algorithms
make many mistakes and are brittle: “we do not
have a perfect word segmentation algorithm for
any one language”. Tokenization errors then prop-
agate throughout the NLP pipeline.

Second, there is currently no general solu-
tion for morphology in statistical NLP. For many
languages, high-coverage and high-quality mor-
phological resources are not available. Even for
well resourced languages, problems like ambigu-
ity make morphological processing difficult; e.g.,
“rung” is either the singular of a noun meaning
“part of a ladder” or the past participle of “to ring”.
In many languages, e.g., in German, syncretism, a
particular type of systematic morphological ambi-
guity, is pervasive. Thus, there is no simple mor-
phological processing method that would produce
a representation in which all inflected forms of
“to ring” are marked as having a common lemma;
and no such method in which an unseen form like
“aromatizing” is reliably analyzed as a form of
“aromatize” whereas an unseen form like “anti-
trafficking” is reliably analyzed as the compound
“anti+trafficking”.

Of course, it is an open question whether non-

symbolic methods can perform better than mor-
phological analysis, but the foregoing discussion
motivates us to investigate them.

Chung et al. (2016) focus on problems with
the tokens produced by segmentation algorithms.
Equally important is the problem that tokeniza-
tion fails to capture structure across multiple
tokens. The job of dealing with cross-token struc-
ture is often given to downstream components of
the pipeline, e.g., components that recognize mul-
tiwords and named entitites in English or in fact
any word in a language like Chinese that uses no
overt delimiters. However, there is no linguistic or
computational reason in principle why we should
treat the recognition of a unit like “electromechan-
ical” (containing no space) as fundamentally dif-
ferent from the recognition of a unit like “electrical
engineering” (containing a space). Character-level
models offer the potential of uniform treatment of
such linguistic units.

3 Text representation model: Training

3.1 Methodology

Many text representation learning algorithms can
be understood as estimating the parameters of the
model from a unit-context matrix C where each
row corresponds to a unit ui, each column to a
context cj and each cell Cij measures the degree
of association between ui and cj . For example, the
skipgram model is closely related to an SVD fac-
torization of a pointwise mutual information ma-
trix (Levy and Goldberg, 2014). Many text rep-
resentation learning algorithms are formalized as
matrix factorization (e.g., (Deerwester et al., 1990;
Hofmann, 1999; Stratos et al., 2015)), but there
may be no big difference between implicit (e.g.,
(Pennington et al., 2014)) and explicit factoriza-
tion methods; see also (Mohamed, 2011; Rastogi
et al., 2015).

Our goal in this paper is not to develop new ma-
trix factorization methods. Instead, we will focus
on defining the unit-context matrix in such a way
that no symbolic assumption has to be made. This
unit-context matrix can then be processed by any
existing or still to be invented algorithm.

Definition of units and contexts. How to de-
fine units and contexts without relying on segmen-
tation boundaries? In initial experiments, we sim-
ply generated all character ngrams of length up to
kmax (where kmax is a parameter), including char-
acter ngrams that cross token boundaries; i.e., no

786



segmentation is needed. We then used a skipgram-
type objective for learning embeddings that at-
tempts to predict, from ngram g1, an ngram g2
in g1’s context. Results were poor because many
training instances consist of pairs (g1, g2) in which
g1 and g2 overlap, e.g., one is a subsequence of
the other. So the objective encourages trivial pre-
dictions of ngrams that have high string similarity
with the input and nothing interesting is learned.

In this paper, we propose an alternative way
of defining units and contexts that supports well-
performing nonsymbolic text representation learn-
ing: multiple random segmentation. A pointer
moves through the training corpus. The current
position i of the pointer defines the left boundary
of the next segment. The length l of the next move
is uniformly sampled from [kmin, kmax] where kmin

and kmax are the minimum and maximum segment
lengths. The right boundary of the segment is then
i+l. Thus, the segment just generated is ci,i+l, the
subsequence of the corpus between (and includ-
ing) positions i and i+ l. The pointer is positioned
at i+ l+1, the next segment is sampled and so on.
An example of a random segmentation from our
experiments is “@he@had@b egu n@to@show
@his@cap acity@f” where space was replaced
with “@” and the next segment starts with “or@”.

The corpus is segmented this way m times
(where m is a parameter) and the m random seg-
mentations are concatenated. The unit-context
matrix is derived from this concatenated corpus.

Multiple random segmentation has two advan-
tages. First, there is no redundancy since, in any
given random segmentation, two ngrams do not
overlap and are not subsequences of each other.
Second, a single random segmentation would only
cover a small part of the space of possible ngrams.
For example, a random segmentation of “a rose
is a rose is a rose” might be “[a ros][e is a ros][e
is][a rose]”. This segmentation does not contain
the segment “rose” and this part of the corpus can
then not be exploited to learn a good embedding
for the fourgram “rose”. However, with multiple
random segmentation, it is likely that this part of
the corpus does give rise to the segment “rose” in
one of the segmentations and can contribute infor-
mation to learning a good embedding for “rose”.

We took the idea of random segmentation from
work on biological sequences (Asgari and Mofrad,
2015; Asgari and Mofrad, 2016). Such sequences
have no delimiters, so they are a good model if

one believes that delimiter-based segmentation is
problematic for text.

3.2 Ngram equivalence classes/Permutation

Form-meaning homomorphism premise. Non-
symbolic representation learning does not prepro-
cess the training corpus by means of tokenization
and considers many ngrams that would be ignored
in tokenized approaches because they span token
boundaries. As a result, the number of ngrams
that occur in a corpus is an order of magnitude
larger for tokenization-free approaches than for
tokenization-based approaches. See supplemen-
tary for details.

We will see below that this sparseness impacts
performance of nonsymbolic text representation
negatively. We address sparseness by defining
ngram equivalence classes. All ngrams in an
equivalence class receive the same embedding.

The relationship between form and meaning is
mostly arbitrary, but there are substructures of the
ngram space and the embedding space that are
systematically related by homomorphism. In this
paper, we will assume the following homomor-
phism:

g1 ∼τ g2 ⇔ ~v(g1) ∼= ~v(g2)

where g1 ∼τ g2 iff τ(g1) = τ(g2) for string
transduction τ and ~v(g1) ∼= ~v(g2) iff |~v(g1) −
~v(g2)|2 < ε.

As a simple example consider a transduction
τ that deletes spaces at the beginning of ngrams,
e.g., τ(@Mercedes) = τ(Mercedes). This is an
example of a meaning-preserving τ since for, say,
English, τ will not change meaning. We will pro-
pose a procedure for learning τ below.

We define ∼= as “closeness” – not as identity
– because of estimation noise when embeddings
are learned. We assume that there are no true syn-
onyms and therefore the direction g1 ∼τ g2 ⇐
~v(g1) ∼= ~v(g2) also holds. For example, “car”
and “automobile” are considered synonyms, but
we assume that their embeddings are different be-
cause only “car” has the literary sense “chariot”.
If they were identical, then the homomorphism
would not hold since “car” and “automobile” can-
not be converted into each other by any plausible
meaning-preserving τ .

Learning procedure. To learn τ , we define
three templates that transform one ngram into an-
other: (i) replace character a1 with character a2,

787



(ii) delete character a1 if its immediate predeces-
sor is character a2, (iii) delete character a1 if its
immediate successor is character a2. The learning
procedure takes a set of ngrams and their embed-
dings as input. It then exhaustively searches for all
pairs of ngrams, for all pairs of characters a1/a2,
for each of the three templates. When two match-
ing embeddings exist, we compute their cosine.
For example, for the operation “delete space be-
fore M”, an ngram pair from our embeddings that
matches is “@Mercedes” / “Mercedes” and we
compute its cosine. As the characteristic statistic
of an operation we take the average of all cosines;
e.g., for “delete space before M” the average co-
sine is .7435. We then rank operations according
to average cosine and take the first No as the defi-
nition of τ whereNo is a parameter. For characters
that are replaced by each other (e.g., 1, 2, 3 in Ta-
ble 1), we compute the equivalence class and then
replace the learned operations with ones that re-
place a character by the canonical member of its
equivalence class (e.g., 2→ 1, 3→ 1).

Permutation premise. Tokenization algo-
rithms can be thought of as assigning a particular
function or semantics to each character and mak-
ing tokenization decisions accordingly; e.g., they
may disallow that a semicolon, the character “;”,
occurs inside a token. If we want to learn represen-
tations from the data without imposing such hard
constraints, then characters should not have any
particular function or semantics. A consequence
of this desideratum is that if any two characters
are exchanged for each other, this should not af-
fect the representations that are learned. For ex-
ample, if we interchange space and “A” throughout
a corpus, then this should have no effect on learn-
ing: what was the representation of “NATO” be-
fore, should now be the representation of “N TO”.
We can also think of this type of permutation as
a sanity check: it ensures we do not inadvertantly
make use of text preprocessing heuristics that are
pervasive in NLP.2

Let A be the alphabet of a language, i.e., its set
of characters, π a permutation on A, C a corpus
and π(C) the corpus permuted by π. For example,
if π(a) = e, then all “a” inC are replaced with “e”
in π(C). The learning procedure should learn

2An example of such an inadvertant use of text prepro-
cessing heuristics is that fastText seems to default to low-
ercase ngrams if embeddings of uppercase ngrams are not
available: when fastText is trained on lowercased text and
then applied to uppercased text, it still produces embeddings.

identical equivalence classes on C and π(C).
So, if g1 ∼τ g2 after running the learning proce-
dure on C, then π(g1) ∼τ π(g2) after running the
learning procedure on π(C).

This premise is motivated by our desire to come
up with a general method that does not rely on spe-
cific properties of a language or genre; e.g., the
premise rules out exploiting the fact through fea-
ture engineering that in many languages and gen-
res, “c” and “C” are related. Such a relationship
has to be learned from the data.

3.3 Experiments

We run experiments on C, a 3 gigabyte English
Wikipedia corpus, and train word2vec skipgram
(W2V, (Mikolov et al., 2013)) and fastText skip-
gram (FTX, (Bojanowski et al., 2016)) models on
C and its derivatives. We randomly generate a
permutation π on the alphabet and learn a trans-
duction τ (details below). In Table 2 (left), the
columns “method”, π and τ indicate the method
used (W2V or FTX) and whether experiments in
a row were run on C, π(C) or τ(π(C)). The val-
ues of “whitespace” are: (i) ORIGINAL (white-
space as in the original), (ii) SUBSTITUTE (what
π outputs as whitespace is used as whitespace, i.e.,
π−1(“ ”) becomes the new whitespace) and (iii)
RANDOM (random segmentation with parame-
ters m = 50, kmin = 3, kmax = 9). Before random
segmentation, whitespace is replaced with “@” –
this character occurs rarely in C, so that the ef-
fect of conflating two characters (original “@” and
whitespace) can be neglected. The random seg-
menter then indicates boundaries by whitespace –
unambiguously since it is applied to text that con-
tains no whitespace.

We learn τ on the embeddings learned by W2V
on the random segmentation version of π(C)
(C-RANDOM in the table) as described in §3.2
for No = 200. Since the number of equiva-
lence classes is much smaller than the number of
ngrams, τ reduces the number of distinct char-
acter ngrams from 758M in the random segmen-
tation version of π(C) (C/D-RANDOM) to 96M
in the random segmentation version of τ(π(C))
(E/F-RANDOM).

Table 1 shows a selection of the No operations.
Throughout the paper, if we give examples from
π(C) or τ(π(C)) as we do here, we convert char-
acters back to the original for better readability.
The two uppercase/lowercase conversions shown

788



su
bs

tit
ut

io
n

2→1

pr
ed

el
et

io
n

/r →r

po
st

de
le

tio
n ‡@ →‡

3→1 @‡ →‡ e@ →e
: →. @‡ →‡ l@ →l
; →. @H→H m@→m
E→e @I →I ml →m
C→c

Table 1: String operations that on average do not
change meaning. “@” stands for space. ‡ is the
left or right boundary of the ngram.

in the table (E→e, C→c) were the only ones that
were learned (we had hoped for more). The post-
deletion rule ml→m usefully rewrites “html” as
“htm”, but is likely to do more harm than good.
We inspected all 200 rules and, with a few excep-
tions like ml→m, they looked good to us.

Evaluation. We evaluate the three models on
an entity typing task, similar to (Yaghoobzadeh
and Schütze, 2015), but based on an entity dataset
released by Xie et al. (2016) in which each en-
tity has been assigned one or more types from a
set of 50 types. For example, the entity “Harri-
son Ford” has the types “actor”, “celebrity” and
“award winner” among others. We extract men-
tions from FACC (http://lemurproject.
org/clueweb12/FACC1) if an entity has a
mention there or we use the Freebase name as
the mention otherwise. This gives us a data set
of 54,334, 6085 and 6747 mentions in train, dev
and test, respectively. Each mention is annotated
with the types that its entity has been assigned by
Xie et al. (2016). The evaluation has a strong
cross-domain aspect because of differences be-
tween FACC and Wikipedia, the training corpus
for our representations. For example, of the 525
mentions in dev that have a length of at least 5 and
do not contain lowercase characters, more than
half have 0 or 1 occurrences in the Wikipedia cor-
pus, including many like “JOHNNY CARSON”
that are frequent in other case variants.

Since our goal in this experiment is to eval-
uate tokenization-free learning, not tokenization-
free utilization, we use a simple utilization base-
line, the bag-of-ngram model (see §1). A mention
is represented as the sum of all character ngrams
that embeddings were learned for. Linear SVMs
(Chang and Lin, 2011) are then trained, one for
each of the 50 types, on train and applied to dev
and test. Our evaluation measure is micro F1 on
all typing decisions; e.g., one typing decision is:

“Harrison Ford” is a mention of type “actor”. We
tune thresholds on dev to optimize F1 and then use
these thresholds on test.

3.4 Results

Results are presented in Table 2 (left). Overall
performance of FTX is higher than W2V in all
cases. For ORIGINAL, FTX’s recall is a lot higher
than W2V’s whereas precision decreases slightly.
This indicates that FTX is stronger in both learn-
ing and application: in learning it can generalize
better from sparse training data and in application
it can produce representations for OOVs and better
representations for rare words. For English, pre-
fixes, suffixes and stems are of particular impor-
tance, but there often is not a neat correspondence
between these traditional linguistic concepts and
internal FTX representations; e.g., Bojanowski et
al. (2016) show that “asphal”, “sphalt” and “phalt”
are informative character ngrams of “asphaltic”.

Running W2V on random segmentations can be
viewed as an alternative to the learning mecha-
nism of FTX, which is based on character ngram
cooccurrence; so it is not surprising that for RAN-
DOM, FTX has only a small advantage over W2V.

For C/D-SUBSTITUTE, we see a dramatic loss
in performance if tokenization heuristics are not
used. This is not surprising, but shows how pow-
erful tokenization can be.

C/D-ORIGINAL is like C/D-SUBSTITUTE ex-
cept that we artificially restored the space – so
the permutation π is applied to all characters ex-
cept for space. By comparing C/D-ORIGINAL
and C/D-SUBSTITUTE, we see that the space is
the most important text preprocessing feature em-
ployed by W2V and FTX. If space is restored,
there is only a small loss of performance compared
to A/B-ORIGINAL. So text preprocessing heuris-
tics other than whitespace tokenization in a nar-
row definition of the term (e.g., downcasing) do
not seem to play a big role, at least not for our en-
tity typing task.

For tokenization-free embedding learning on
random segmentation, there is almost no differ-
ence between original data (A/B-RANDOM) and
permuted data (C/D-RANDOM). This confirms
that our proposed learning method is insensitive
to permutations and makes no use of text prepro-
cessing heuristics.

We achieve an additional improvement by ap-
plying the transduction τ . In fact, FTX perfor-

789



whitespace ORIGINAL SUBSTITUTE RANDOM
measure P R F1 P R F1 P R F1

method π τ

A W2V − − .538 .566 .552 .525 .596 .558
B FTX − − .530 .628 .575 .528 .608 .565
C W2V + − .535 .560 .547 .191 .296 .233 .514 .605 .556
D FTX + − .530 .623 .573 .335 .510 .405 .531 .608 .567
E W2V + + .503 .603 .548
F FTX + + .551 .618 .582

query neighbor r
1 Abdulaziz Abdul Azi 2
2 codenamed code name 1
3 Quarterfi uarter-Fi 1
4 worldreco orld-reco 1
5 antibodie stem cell 1
6 eflectors ear wheel 1
7 ommandeer rash land 1
8 reenplays ripts for 1
9 roughfare ugh downt 1

10 ilitating e-to-face 1

Table 2: Left: Evaluation results for named entity typing. Right: Neighbors of character ngrams. Rank
r = 1/r = 2: nearest / second-nearest neighbor.

mance for F-RANDOM (F1 of .582) is better than
tokenization-based W2V and FTX performance.
Thus, our proposed method seems to be an effec-
tive tokenization-free alternative to tokenization-
based embedding learning.

3.5 Analysis of ngram embeddings
Table 2 (right) shows nearest neighbors of ten
character ngrams, for the A-RANDOM space.
Queries were chosen to contain only alphanumeric
characters. To highlight the difference to symbol-
based representation models, we restricted the
search to 9-grams that contained a delimiter at po-
sitions 3, 4, 5, 6 or 7.

Lines 1–4 show that “delimiter variation”, i.e.,
cases where a word has two forms, one with a de-
limiter, one without a delimiter, is handled well:
“Abdulaziz” / “Abdul Azi”, “codenamed” / “code
name”, “Quarterfinal” / “Quarter-Final”, “world-
record” / “world-record”.

Lines 5–9 are cases of ambiguous or polyse-
mous words that are disambiguated through “char-
acter context”. “stem”, “cell”, “rear”, “wheel”,
“crash”, “land”, “scripts”, “through”, “downtown”
all have several meanings. In contrast, the mean-
ings of “stem cell”, “rear wheel”, “crash land”,
“(write) scripts for” and “through downtown” are
less ambiguous. A multiword recognizer may find
the phrases “stem cell” and “crash land” auto-
matically. But the examples of “scripts for” and
“through downtown” show that what is accom-
plished here is not multiword detection, but a more
general use of character context for disambigua-
tion.

Line 10 shows that a 9-gram of “face-to-face” is
the closest neighbor to a 9-gram of “facilitating”.
This demonstrates that form and meaning some-
times interact in surprising ways. Facilitating a
meeting is most commonly done face-to-face. It
is not inconceivable that form – the shared trigram
“fac” or the shared fourgram “faci” in “facilitate”

/ “facing” – is influencing meaning here in a way
that also occurs historically in cases like “ear” ‘or-
gan of hearing’ / “ear” ‘head of cereal plant’, orig-
inally unrelated words that many English speakers
today intuit as one word.

4 Utilization: Tokenization-free
representation of text

4.1 Methodology

The main text representation model that is based
on ngram embeddings similar to ours is the bag-
of-ngram model. A sequence of characters is rep-
resented by a single vector that is computed as
the sum of the embeddings of all ngrams that oc-
cur in the sequence. In fact, this is what we did
in the entity typing experiment. In most work
on bag-of-ngram models, the sequences consid-
ered are words or phrases (see (Schuetze, 2016)
for citations). In a few cases, the model is ap-
plied to longer sequences, including sentences and
documents; e.g., (Schütze, 1992), (Wieting et al.,
2016).

The basic assumption of the bag-of-ngram
model is that sequence information is encoded in
the character ngrams and therefore a “bag-of” ap-
proach (which usually throws away all sequence
information) is sufficient. The assumption is not
implausible: for most bags of character sequences,
there is only a single way of stitching them to-
gether to one coherent sequence, so in that case
information is not necessarily lost (although this
is likely when embeddings are added). But the as-
sumption has not been tested experimentally.

Here, we propose position embeddings,
character-ngram-based embeddings that more
fully preserve sequence information.3 The simple
idea is to represent each position as the sum of all
ngrams that contain that position. When we set

3Position embeddings were independently proposed by
Kalchbrenner et al. (2016), see Section 3.6 of their paper.

790



POS r = 1 r = 2 r = 3 r = 4 r = 5
2 e wealthies accolades bestselle bestselli Billboard
3 s estseller wealthies bestselli accolades bestselle

15 o fortnight afternoon overnight allowance Saturdays
16 n fortnight afternoon Saturdays Wednesday magazines
23 o superhero ntagraphi adventure Astonishi bestselli
24 m superhero ntagraphi anthology Daredevil Astonishi
29 o anthology paperback superhero Lovecraft tagraphic
30 o anthology paperback tagraphic Lovecraft agraphics
34 u antagraph agraphics paperback hardcover ersweekly
35 b ublishing ublishers ublicatio antagraph aperbacks

Table 3: Nearest ngram embeddings (rank r ∈ [1, 5]) of the position embeddings for “POS”, the posi-
tions 2/3 (best), 15/16 (monthly), 23/24 (comic), 29/30 (book) and 34/35 (publications) in the Wikipedia
excerpt “best-selling monthly comic book publications sold in North America”

kmin = 3, kmax = 9, this means that the position
is the sum of (

∑
3≤k≤9 k) ngram embeddings (if

all of these ngrams have embeddings, which gen-
erally will be true for some, but not for most po-
sitions). A sequence of n characters is then rep-
resented as a sequence of n such position embed-
dings.

4.2 Experiments

We again use the embeddings corresponding to
A-RANDOM in Table 2. We randomly selected
2,000,000 contexts of size 40 characters from
Wikipedia. We then created a noise context for
each of the 2,000,000 contexts by replacing one
character at position i (15 ≤ i ≤ 25, uniformly
sampled) with space (probability p = .5) or a
random character otherwise. Finally, we selected
1000 noise contexts randomly and computed their
nearest neighbors among the 4,000,000 contexts
(excluding the noise query). We did this in two
different conditions: for a bag-of-ngram represen-
tation of the context (sum of all character ngrams)
and for the concatenation of 11 position embed-
dings, those between 15 and 25. Our evaluation
measure is mean reciprocal rank of the clean con-
text corresponding to the noise context. This simu-
lates a text denoising experiment: if the clean con-
text has rank 1, then the noisy context can be cor-
rected.

Table 4 shows that sequence-preserving po-
sition embeddings perform better than bag-of-

bag-of-ngram position embeddings
MRR .64 .76

Table 4: Mean reciprocal rank of text denoising
experiment for bag-of-ngram text representation
and position embedding text representation

exchange@f ic@exchang ing@exchan
(in exchange for) (many contexts) (many contexts)

exchange@f 1.000 0.008 -0.056
ic@exchang 0.008 1.000 0.108
ing@exchan -0.056 0.108 1.000

xchange@ra ival@rates rime@rates
(exchange rates) (survival rates) (crime rates)

xchange@ra 1.000 0.036 0.050
ival@rates 0.036 1.000 0.331
rime@rates 0.050 0.331 1.000

Table 6: Cosine similarity of ngrams that cross
word boundaries and disambiguate polysemous
words. The tables show three disambiguating
ngrams for “exchange” and “rates” that have dif-
ferent meanings as indicated by low cosine sim-
ilarity. In phrases like “floating exchange rates”
and “historic exchange rates”, disambiguating
ngrams overlap. Parts of the word “exchange” are
disambiguated by preceding context (ic@exchang,
ing@exchan) and parts of “exchange” provide
context for disambiguating “rates” (xchange@ra).

ngram representations.
Table 5 shows an example of a context in

which position embeddings did better than bag-
of-ngrams, demonstrating that sequence informa-
tion is lost by bag-of-ngram representations, in
this case the exact position of “Seahawks”.

Table 3 gives further intuition about the type of
information position embeddings contain, show-
ing the ngram embeddings closest to selected posi-
tion embeddings; e.g., “estseller” (the first 9-gram
on the line numbered 3 in the table) is closest to
the embedding of position 3 (corresponding to the
first “s” of “best-selling”). The kNN search space
is restricted to alphanumeric ngrams.

5 Discussion

Single vs. multiple segmentation. The motiva-
tion for multiple segmentation is exhaustive cov-

791



rep. space similarity r left context center right context
1 correct ‖s and Seattle S‖eahawks th‖at led to publi‖
2 noise (query) ‖s and Seattle S‖eahawks t ‖at led to publi‖
3 position-emb .761 1 ‖s and Seattle S‖eahawks th‖at led to publi‖
4 bag-of-ngram .904 1 ‖arted 15 games ‖fsr the Se‖ahawks, leading‖
5 bag-of-ngram .864 6 ‖s and Seattle S‖eahawks th‖at led to publi‖

Table 5: Illustration of the result in Table 4. “rep. space” = “representation space”. We want to correct
the error in the corrupted “noise” context (line 2) and produce “correct” (line 1). The nearest neighbor to
line 2 in position-embedding space is the correct context (line 3, r = 1). The nearest neighbor to line 2 in
bag-of-ngram space is incorrect (line 4, r = 1) because the precise position of “Seahawks” in the query
is not encoded. The correct context in bag-of-ngram space is instead at rank r = 6 (line 5). “similarity”
is average cosine (over eleven position embeddings) for position embeddings.

erage of the space of possible segmentations. An
alternative approach would be to attempt to find a
single optimal segmentation.

Our intuition is that in many cases overlap-
ping segments contain complementary informa-
tion. Table 6 gives an example. Historic exchange
rates are different from floating exchange rates
and this is captured by the low similarity of the
ngrams ic@exchang and ing@exchan. Also,
the meaning of “historic” and “floating” is non-
compositional: these two words take on a special-
ized meaning in the context of exchange rates. The
same is true for “rates”: its meaning is not its gen-
eral meaning in the compound “exchange rates”.
Thus, we need a representation that contains over-
lapping segments, so that “historic” / “floating”
and “exchange” can disambiguate each other in
the first part of the compound and “exchange” and
“rates” can disambiguate each other in the second
part of the compound. A single segmentation can-
not capture these overlapping ngrams.

What text-type are tokenization-free ap-
proaches most promising for? The reviewers
thought that language and text-type were badly
chosen for this paper. Indeed, a morphologically
complex language like Turkish and a noisy text-
type like Twitter would seem to be better choices
for a paper on robust text representation.

However, robust word representation methods
like FTX are effective for within-token general-
ization, in particular, effective for both complex
morphology and OOVs. If linguistic variability
and noise only occur on the token level, then a
tokenization-free approach has fewer advantages.

On the other hand, the foregoing discussion
of cross-token regularities and disambiguation ap-
plies to well-edited English text as much as it
does to other languages and other text-types as
the example of “exchange” shows (which is dis-

ambiguated by prior context and provides disam-
biguating context to following words) and as is
also exemplified by lines 5–9 in Table 2 (right).

Still, this paper does not directly evaluate the
different contributions that within-token charac-
ter ngram embeddings vs. cross-token character
ngram embeddings make, so this is an open ques-
tion. One difficulty is that few corpora are avail-
able that allow the separate evaluation of white-
space tokenization errors; e.g., OCR corpora gen-
erally do not distinguish a separate class of white-
space tokenization errors.

Position embeddings vs. phrase/sentence em-
beddings. Position embeddings may seem to
stand in opposition to phrase/sentence embed-
dings. For many tasks, we need a fixed length rep-
resentation of a longer sequence; e.g., sentiment
analysis models compute a fixed-length represen-
tation to classify a sentence as positive / negative.

To see that position embeddings are compatible
with fixed-length embeddings, observe first that,
in principle, there is no difference between word
embeddings and position embeddings in this re-
spect. Take a sequence that consists of, say, 6
words and 29 characters. The initial representation
of the sentence has length 6 for word embeddings
and length 29 for position embeddings. In both
cases, we need a model that reduces the variable
length sequence into a fixed length vector at some
intermediate stage and then classifies this vector as
positive or negative. For example, both word and
position embeddings can be used as the input to
an LSTM whose final hidden unit activations are a
fixed length vector of this type.

So assessing position embeddings is not a ques-
tion of variable-length vs. fixed-length represen-
tations. Word embeddings give rise to variable-
length representations too. The question is solely
whether the position-embedding representation is

792



a more effective representation.

A more specific form of this argument con-
cerns architectures that compute fixed-length rep-
resentations of subsequences on intermediate lev-
els, e.g., CNNs. The difference between position-
embedding-based CNNs and word-embedding-
based CNNs is that the former have access to a
vastly increased range of subsequences, includ-
ing substrings of words (making it easier to learn
that “exchange” and “exchanges” are related) and
cross-token character strings (making it easier to
learn that “exchange rate” is noncompositional).
Here, the questions are: (i) how useful are sub-
sequences made available by position embeddings
and (ii) is the increased level of noise and de-
creased efficiency caused by many useless subse-
quences worth the information gained by adding
useful subsequences.

Independence of training and utilization.
We note that our proposed training and utiliza-
tion methods are completely independent. Posi-
tion embeddings can be computed from any set
of character-ngram-embeddings (including FTX)
and our character ngram learning algorithm could
be used for applications other than position em-
beddings, e.g., for computing word embeddings.

Context-free vs. context-sensitive embed-
dings. Word embeddings are context-free: a given
word w like “king” is represented by the same em-
bedding independent of the context in which w
occurs. Position embeddings are context-free as
well: if the maximum size of a character ngram is
kmax, then the position embedding of the center of
a string s of length 2kmax − 1 is the same indepen-
dent of the context in which s occurs.

It is conceivable that text representations could
be context-sensitive. For example, the hidden
states of a character language model have been
used as a kind of nonsymbolic text representation
(Chrupala, 2013; Evang et al., 2013; Chrupala,
2014) and these states are context-sensitive. How-
ever, such models will in general be a second level
of representation; e.g., the hidden states of a char-
acter language model generally use character em-
beddings as the first level of representation. Con-
versely, position embeddings can also be the basis
for a context-sensitive second-level text represen-
tation. We have to start somewhere when we rep-
resent text. Position embeddings are motivated by
the desire to provide a representation that can be
computed easily and quickly (i.e., without taking

context into account), but that on the other hand is
much richer than the symbolic alphabet.

Processing text vs. speech vs. images. Gillick
et al. (2016) write: “It is worth noting that noise is
often added . . . to images . . . and speech where the
added noise does not fundamentally alter the in-
put, but rather blurs it. [bytes allow us to achieve]
something like blurring with text.” It is not clear
to what extent blurring on the byte level is useful;
e.g., if we blur the bytes of the word “university”
individually, then it is unlikely that the noise gen-
erated is helpful in, say, providing good training
examples in parts of the space that would other-
wise be unexplored. In contrast, the text repre-
sentation we have introduced in this paper can be
blurred in a way that is analogous to images and
speech. Each embedding of a position is a vector
that can be smoothly changed in every direction.
We have showed that the similarity in this space
gives rise to natural variation.

Prospects for completely tokenization-free
processing. We have focused on white-
space tokenization and proposed a whitespace-
tokenization-free method that computes embed-
dings of higher quality than tokenization-based
methods. However, there are many properties of
edited text beyond whitespace tokenization that
a complex rule-based tokenizer exploits. In a
small explorative experiment, we replaced all non-
alphanumeric characters with whitespace and re-
peated experiment A-ORIGINAL for this setting.
This results in an F1 of .593, better by .01 than the
best tokenization-free method. This illustrates that
there is still a lot of work to be done before we can
obviate the need for tokenization.

6 Conclusion

We introduced the first generic text representa-
tion model that is completely nonsymbolic, i.e.,
it does not require the availability of a segmen-
tation or tokenization method that identifies words
or other symbolic units in text. This is true for
the training of the model as well as for apply-
ing it when computing the representation of a
new text. In contrast to prior work that has as-
sumed that the sequence-of-character information
captured by character ngrams is sufficient, posi-
tion embeddings also capture sequence-of-ngram
information. We showed that our model performs
better than prior work on entity typing and text de-
noising.

793



References
Ehsaneddin Asgari and Mohammad R. K. Mofrad.

2015. Protvec: A continuous distributed rep-
resentation of biological sequences. CoRR,
abs/1503.05140.

Ehsaneddin Asgari and Mohammad R. K. Mofrad.
2016. Comparing fifty natural languages and twelve
genetic languages using word embedding language
divergence (WELD) as a quantitative measure of
language distance. CoRR, abs/1604.08561.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
TIST, 2(3):27:1–27:27.

Grzegorz Chrupala. 2013. Text segmentation
with character-level text embeddings. CoRR,
abs/1309.4628.

Grzegorz Chrupala. 2014. Normalizing tweets with
edit scripts and recurrent neural embeddings. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2014,
June 22-27, 2014, Baltimore, MD, USA, Volume 2:
Short Papers, pages 680–686. The Association for
Computer Linguistics.

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without ex-
plicit segmentation for neural machine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1:
Long Papers. The Association for Computer Lin-
guistics.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. JASIS,
41(6):391–407.

Kilian Evang, Valerio Basile, Grzegorz Chrupala, and
Johan Bos. 2013. Elephant: Sequence labeling for
word and sentence segmentation. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2013, 18-21 Oc-
tober 2013, Grand Hyatt Seattle, Seattle, Washing-
ton, USA, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 1422–1426. ACL.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2016. Multilingual language process-
ing from bytes. In Kevin Knight, Ani Nenkova,
and Owen Rambow, editors, NAACL HLT 2016, The
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, San Diego California,
USA, June 12-17, 2016, pages 1296–1306. The As-
sociation for Computational Linguistics.

Thomas Hofmann. 1999. Probabilistic latent seman-
tic indexing. In SIGIR ’99: Proceedings of the
22nd Annual International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, August 15-19, 1999, Berkeley, CA, USA,
pages 50–57. ACM.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aäron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. CoRR, abs/1610.10099.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In
Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, ed-
itors, Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 2177–2185.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Christopher J. C. Burges, Léon Bot-
tou, Zoubin Ghahramani, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural In-
formation Processing Systems 2013. Proceedings of
a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States., pages 3111–3119.

Shakir Mohamed. 2011. Generalised Bayesian ma-
trix factorisation models. Ph.D. thesis, University
of Cambridge, UK.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors
for word representation. In Alessandro Moschitti,
Bo Pang, and Walter Daelemans, editors, Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, Oc-
tober 25-29, 2014, Doha, Qatar, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1532–1543. ACL.

Pushpendre Rastogi, Benjamin Van Durme, and Ra-
man Arora. 2015. Multiview LSA: representation
learning via generalized CCA. In Rada Mihalcea,
Joyce Yue Chai, and Anoop Sarkar, editors, NAACL
HLT 2015, The 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Den-
ver, Colorado, USA, May 31 - June 5, 2015, pages
556–566. The Association for Computational Lin-
guistics.

Hinrich Schuetze. 2016. Nonsymbolic text representa-
tion. CoRR, abs/1610.00479.

Hinrich Schütze. 1992. Word space. In Stephen Jose
Hanson, Jack D. Cowan, and C. Lee Giles, editors,
Advances in Neural Information Processing Sys-
tems 5, [NIPS Conference, Denver, Colorado, USA,
November 30 - December 3, 1992], pages 895–902.
Morgan Kaufmann.

794



Karl Stratos, Michael Collins, and Daniel J. Hsu. 2015.
Model-based word embeddings from decomposi-
tions of count matrices. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume
1: Long Papers, pages 1282–1291. The Association
for Computer Linguistics.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding words and
sentences via character n-grams. In Jian Su, Xavier
Carreras, and Kevin Duh, editors, Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 1504–1515. The
Association for Computational Linguistics.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of
knowledge graphs with entity descriptions. In Dale
Schuurmans and Michael P. Wellman, editors, Pro-
ceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA., pages 2659–2665. AAAI Press.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015.
Corpus-level fine-grained entity typing using con-
textual information. In Lluı́s Màrquez, Chris
Callison-Burch, Jian Su, Daniele Pighin, and Yu-
val Marton, editors, Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 715–725. The Asso-
ciation for Computational Linguistics.

795



5e+05 5e+06 5e+07 5e+08

5
e
+

0
5

5
e
+

0
6

5
e
+

0
7

5
e
+

0
8

number of bytes

n
u

m
b

e
r 

o
f 

n
g

ra
m

s

nonsymbolic

symbolic

Figure 1: The graph shows how many different
character ngrams (kmin = 3, kmax = 10) oc-
cur in the first n bytes of the English Wikipedia
for symbolic (tokenization-based) vs. nonsym-
bolic (tokenization-free) processing. The number
of ngrams is an order of magnitude larger in the
nonsymbolic approach. We counted all segments,
corresponding to m = ∞. For the experiments in
the paper (m = 50), the number of nonsymbolic
character ngrams is smaller.

A Supplementary material

A.1 Related work
The related work section appears in the long ver-
sion of this paper (Schuetze, 2016).

A.2 Acknowledgments
This work was supported by DFG (SCHUE
2246/10-1) and Volkswagenstiftung. We are
grateful for their comments to: the anonymous
reviewers, Ehsan Asgari, Annemarie Friedrich,
Helmut Schmid, Martin Schmitt and Yadollah
Yaghoobzadeh.

A.3 Sparseness in tokenization-free
approaches

Nonsymbolic representation learning does not pre-
process the training corpus by means of tokeniza-
tion and considers many ngrams that would be ig-
nored in tokenized approaches because they span
token boundaries. As a result, the number of
ngrams that occur in a corpus is an order of mag-
nitude larger for tokenization-free approaches than
for tokenization-based approaches. See Figure 1.

A.4 Experimental settings
W2V hyperparameter settings. size of word
vectors: 200, max skip length between words: 5,
threshold for occurrence of words: 0, hierarchi-
cal softmax: 0, number of negative examples: 5,

threads: 50, training iterations: 1, min-count: 5,
starting learning rate: .025, classes: 0

FTX hyperparameter settings. learning rate:
.05, lrUpdateRate: 100, size of word vectors: 200,
size of context window: 5, number of epochs: 1,
minimal number of word occurrences: 5, num-
ber of negatives sampled: 5, max length of word
ngram: 1, loss function: ns, number of buck-
ets: 2,000,000, min length of char ngram: 3, max
length of char ngram: 6, number of threads: 50,
sampling threshold: .0001

We ran some experiments with more epochs,
but this did not improve the results.

A.5 Other hyperparameters
We did not tune No = 200, but results are highly
sensitive to the value of this parameter. IfNo is too
small, then beneficial conflations (collapse punc-
tuation marks, replace all digits with one symbol)
are not found. If No is too large, then precision
suffers – in the extreme case all characters are col-
lapsed into one.

We also did not tune m = 50, but we do not
consider results to be very sensitive to the value of
m if it is reasonably large. Of course, if a larger
range of character ngram lengths is chosen, i.e.,
a larger interval [kmin, kmax], then at some point
m = 50 will not be sufficient and possible seg-
mentations would not be covered well enough in
sampling.

The type of segmentation used in multiple seg-
mentation can also be viewed as a hyperparameter.
An alternative to random segmentation would be
exhaustive segementation, but a naive implemen-
tation of that strategy would increase the size of
the training corpus by several orders of magnitude.
Another alternative is to choose one fixed size,
e.g., 4 or 5 (similar to (Schütze, 1992)). Many
of the nice disambiguation effects we see in Ta-
ble 2 (right) and in Table 6 would not be possi-
ble with short ngrams. On the other hand, a fixed
ngram size that is larger, e.g., 10, would make it
difficult to get 100% coverage: there would be po-
sitions for which no position embedding can be
computed.

796


