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Abstract

Automatic post-editing (APE) for machine
translation (MT) aims to fix recurrent er-
rors made by the MT decoder by learn-
ing from correction examples. In con-
trolled evaluation scenarios, the represen-
tativeness of the training set with respect
to the test data is a key factor to achieve
good performance. Real-life scenarios,
however, do not guarantee such favorable
learning conditions. Ideally, to be inte-
grated in a real professional translation
workflow (e.g. to play a role in computer-
assisted translation framework), APE tools
should be flexible enough to cope with
continuous streams of diverse data coming
from different domains/genres. To cope
with this problem, we propose an online
APE framework that is: i) robust to data
diversity (i.e. capable to learn and apply
correction rules in the right contexts) and
ii) able to evolve over time (by contin-
uously extending and refining its knowl-
edge). In a comparative evaluation, with
English-German test data coming in ran-
dom order from two different domains, we
show the effectiveness of our approach,
which outperforms a strong batch system
and the state of the art in online APE.

1 Introduction

Automatic post-editing (APE) systems for ma-
chine translation (MT) aim to correct the errors
present in a machine-translated text before show-
ing it to the user, thereby reducing human work-
load and eventually increase translation produc-
tivity. The choice of having such post-processing
systems is well motivated in (Bojar et al., 2015)
and becomes a must when the MT engine used

to translate is not directly accessible for retrain-
ing or for more radical internal modifications (e.g.
when working with a third party MT system). As
pointed out by (Parton et al., 2012; Chatterjee et
al., 2015b), from the application point of view an
APE system can help to: i) Improve MT output
by exploiting information unavailable to the de-
coder, or by performing deeper text analysis that
is too expensive at the decoding stage; ii) Pro-
vide professional translators with improved MT
output quality to reduce (human) post-editing ef-
fort and iii) Adapt the output of a general-purpose
MT system to the lexicon/style requested in a spe-
cific application domain. Similar to what is usu-
ally done in MT, APE components learn post-
editing rules from “parallel” corpora consisting
of machine-translated text (mt, optionally with its
corresponding source text – src) and its post-edits
(pe) provided by human post-editors. The effec-
tiveness of learning from relatively small amounts
of post-edited data is evident from the impressive
outcomes of the recently held APE shared task at
WMT 2016 (Bojar et al., 2016). Different APE
paradigms, like neural (Junczys-Dowmunt and
Grundkiewicz, 2016), hybrid (Chatterjee et al.,
2016), and phrase-based (Pal et al., 2016) were all
able to significantly improve MT output quality in
the IT domain, with gains ranging from 2.0 to 5.5
BLEU points. Nevertheless, this success and the
positive outcomes of previous work on automatic
MT error correction build on a problem formu-
lation that assumes to operate in a controlled lab
environment, where the systems are trained and
evaluated across a coherent/homogeneous data set.
Moving from this controlled scenario to real-world
translation workflows, where training and test data
can be produced by different MT systems, post-
edited by various translators and belong to several
text genres, makes the task inherently more chal-
lenging, because the APE systems have to adapt to
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all these diversities in real-time. In addition to the
problem that training data provide a fraction of the
possible error correction examples (a normal is-
sue when learning from finite, often small training
data), the additional complexity derives from two
concurrent factors. First, not all the learned er-
ror correction rules are universally applicable: ap-
plying them in the wrong context can damage the
MT output instead of improving it. Second, once
in production, the APE system should be able to
process streams of diverse input data presented in
random order: promptly reacting to such variabil-
ity is hence crucial. We define this more complex
and realistic scenario as a multi-domain translation
environment (MDTE), where a domain is made of
segments belonging to the same text genre and the
MT outputs are generated by the same MT system.

To our knowledge, the evaluation of APE sys-
tems on MDTE data in real-time/online translation
scenarios is still unexplored. This paper represents
a first step along this direction: although a full-
fledged evaluation centered on human translation
in a computer-assisted translation (CAT) frame-
work is out of our reach, we provide a proof of
concept in which we simulate the MDTE scenario
by running different APE solutions on a stream
of data coming from two different domains. By
analysing alternative solutions, we discuss the lim-
itations not only of batch APE methods (insensi-
tive to domain shifts), but also of state-of-the-art
online translation systems evaluated in the APE
task in MDTE conditions. Thot (Ortiz-Martınez
and Casacuberta, 2014), the online system used
as term of comparison, shows in fact the inabil-
ity to discern which of the learned correction rules
is suitable for a specific context. In practice, all
rules are created equal, for any given domain.

To overcome this limitation, we proceed incre-
mentally. First, we propose an approach based
on an instance selection strategy, which learns
local, sentence-specific APE models from small
amounts of relevant data for each translation to
be post-edited. Then, on top of it, we add an
improved way to estimate the parameters of the
sentence-specific APE models. To this aim, we ex-
ploit a dynamic knowledge base that keeps track of
global statistics computed over all the previously
seen data (i.e. it does not rely only on those com-
puted from the selected instances). Finally, the dy-
namic knowledge base gives us the possibility to
experiment with new features in addition to those

used by current APE systems based on the phrase-
based MT paradigm. Such features incorporate
in the translation models also the negative feed-
back collected from human post-editors. Instead
of continuously expanding our knowledge base of
correction rules (i.e. only considering the positive
feedback about how to correct a given error), we
also stepwise refine it by weighing the acquired
correction rules according to their reliability (e.g.
demoting those that led to corrections eventually
modified by the human). Positive evaluation re-
sults reflect this incremental approach. To sum-
marize, our contribution is a fully automated on-
line APE system that does not rely on pre-trained
models or tuned weights (unlike Thot that needs to
be pre-trained and tuned) and incorporates for the
first time both positive and negative post-editors’
feedback to set the state-of-the-art in the difficult
task of APE in the MDTE scenario.

2 Related work

Most of the previous works on APE cast the prob-
lem as a phrase-based statistical MT task1 and op-
erate in a batch framework where systems are eval-
uated on static test sets that are homogeneous with
the training data (Simard et al., 2007; Dugast et
al., 2007; Terumasa, 2007; Pilevar, 2011; Béchara
et al., 2011; Chatterjee et al., 2016). These sys-
tems, however, are not able to leverage the feed-
back of the post-editors in an online translation
scenario. The capability to evolve by learning
from human feedback has been addressed by sev-
eral online translation systems but mainly focusing
on the MT task (Hardt and Elming, 2010; Bertoldi
et al., 2013; Mathur et al., 2013; Simard and Fos-
ter, 2013; Ortiz-Martınez and Casacuberta, 2014;
Denkowski et al., 2014; Wuebker et al., 2015).
From these several online MT systems, we discuss
the two that have been used also for the APE task.

PEPr: Post-Edit Propagation. (Simard and
Foster, 2013) proposed a method for post-edit
propagation (PEPr), which learns post-editors’
corrections and applies them on-the-fly to an MT
output sequence. To perform post-edit propa-
gation, the system is trained incrementally us-

1Only recently, the wave of neural models has also
reached the APE task (Junczys-Dowmunt and Grundkiewicz,
2016), setting the new state of the art at WMT (Bojar et al.,
2016). The problem addressed in this paper (dealing with
MDTE data), as well as the proposed online solution are still
too computationally intensive to experiment with neural mod-
els. We hence leave this aspect as a future work direction.
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ing pairs of machine-translated (mt) and human
post-edited (pe) segments as they were produced.
When receiving a new (mt, pe) pair, word align-
ments are obtained using Damerau-Levenshtein
distance. In the next step, the phrase pairs are
extracted and appended to the existing phrase ta-
ble. The whole process is assumed to take place
within the context of a single document and, for
every new document, the APE system is initialised
with an “empty” model. This represents a possible
limitation of the approach: although document-
specific correction rules show a relatively high
precision, some of them might in fact be useful
also in other contexts and should be retained. Our
approach avoids this limitation by maintaining a
global knowledge base to store all the processed
documents, still being able to retrieve post-editing
rules specific to a document to be translated.2

Thot. The Thot toolkit (Ortiz-Martınez and
Casacuberta, 2014) is developed to support auto-
matic and interactive statistical machine transla-
tion.3 It was also successfully used by Lagarda
et al. (2015) to experiment in an online APE set-
ting with several data sets for multiple language
pairs, with base MT systems built using differ-
ent technologies (rule-based MT, statistical MT).
In order to incorporate user feedback in the un-
derlying translation and language models, the sys-
tems maintains and incrementally updates all the
required statistics. For the language model, it sim-
ply updates n-gram counts. In the case of the
translation model, the process exploits an incre-
mental version of expectation maximization algo-
rithm to obtain word alignments and extract the
phrase pairs whose counts are continuously up-
dated. Other features, like source/target phrase-
length models or the distortion model, are ex-
tracted considering geometric distributions with
fixed parameters. The feature weights of the log-
linear model are static throughout the online learn-
ing process, as opposed to our method that updates
the weights on-the-fly. This makes our online APE
approach independent from any pre-trained model
or pre-tuned feature weights. Moreover, while in
Thot the correction rules are learned in real-time
from all the data processed, our system only learns
from the most relevant data samples. Neverthe-

2In our experiments we do not compare against PEPr
since, being designed for document-level translation it is un-
able to operate in the MDTE scenario.

3https://github.com/daormar/thot

less, considering Thot as the state-of-the-art in on-
line APE, we will use it as a term of comparison
in our experiments.

3 Online APE system

The backbone of our online APE system is sim-
ilar to the state-of-the-art statistical batch APE
approach proposed in (Chatterjee et al., 2015b).
The system is trained on (src, mt, pe) triplets, and
learns correction rules in the form of (mt#src, pe)
pairs. The first element of each pair consists of
MT phrases (single or multiple words) that are as-
sociated to their corresponding source words by
using a word alignment model. This “joint repre-
sentation” helps to restrict the applicability of each
rule to the appropriate context, and was shown
to perform better than using only the mt words
as the left-hand side of the rules (Béchara et al.,
2011). Our migration to the online scenario builds
on incrementally extending this backbone with an
instance selection mechanism (§3.1), a dynamic
knowledge base (§3.2) and new features (§3.3).

3.1 Instance selection

Current batch and online APE methods estimate
parameters of the models over all the available
training data. This strategy may not be effective
in the MDTE scenario, since the model will tend
to become more and more generic by incorporat-
ing knowledge from several domains. In the long-
run, this can complicate the selection of domain-
specific correction rules suitable for a particular
MT segment. One of the possible solutions is to
constrain the system to work at document level as
proposed by Simard and Foster (2013). In their
approach, however, the models are reset back to
their original state once the entire document is pro-
cessed, due to which knowledge gained from the
current document is lost. Our instance selection
technique aims to overcome this issue, allowing
the system to preserve all the knowledge acquired
during the online learning process, still being able
to apply specific post-editing rules when needed.

The instance selection mechanism consists in
retrieving ad-hoc training sentence pairs for each
MT output to be post-edited. In practice, the cre-
ation of the APE model and the estimation of its
parameters are performed on-the-fly by process-
ing relevant instances retrieved from the previ-
ously processed data. In the MDTE scenario, this
will come from heterogeneous domains. The rele-
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vance of a training sample is measured in terms of
a similarity score based on term frequency-inverse
document frequency (tf-idf4) computed using the
Lucene software library.5 Indexing and retrieving
training triplets (src, mt, and pe) in this mechanism
is fast, which makes it perfectly suitable to use
in an online learning scenario. The cut-off simi-
larity score is empirically estimated over a held-
out development set. Input segments not having
training samples above the threshold are left un-
touched to avoid any possible damage resulting
from the application of unreliable correction rules
learned from unrelated contexts. This is in contrast
with the strategy adopted by current APE systems,
which tend to always “translate” the given input
segment, independently from the reliability of the
applicable correction rules.

Once the training samples are selected for an
input segment, several models are built on-the-
fly. A tri-gram local language model (LM) is
built over the target side of the training corpus
with the IRSTLM toolkit (Federico et al., 2008).
Along with the local LM a tri-gram global LM
is also used, which is updated whenever a hu-
man post-edition (pe) is received. Local trans-
lation and reordering models are built with the
Moses toolkit (Koehn et al., 2007), computing
word alignment for each sentence pair using the
incremental GIZA++ software.6

The feature weights of the log-linear model are
optimized over a subset of the selected instances.
The size of this development set is critical: if
it is too large, then parameter optimization will
be expensive. On the other hand, if it is too
small, the tuned weights might not be reliable.
To achieve fast optimization with reliably-tuned
weights, multiple instances of MIRA (Crammer
and Singer, 2003) are run in parallel on mul-
tiple development sets (Tange, 2011). For this
purpose, the retrieved samples are randomly split
three times into training and development. The
tuned weights resulting from the three develop-
ment runs are then averaged and used to decode
the input MT segment.

To summarize, our training/tuning scheme re-
quires a minimum number of retrieved sentence

4In MT, tf-idf was previously used by Hildebrand et al.
(2005) to create a pseudo in-domain corpus from a large out-
of-domain corpus. Our work is the first to investigate it for
the APE task in an online learning scenario.

5https://lucene.apache.org/
6https://code.google.com/archive/p/

inc-giza-pp/

pairs. Following an 80%-20% distribution over
training and development data, and setting to 5 the
minimum number of samples needed for tuning,
the complete process requires the retrieval of at
least 25 samples. If this number is not reached, all
the retrieved samples are used for training, the op-
timization step is skipped and the previously com-
puted weights are used. If no sample is selected,
then the MT output will be left untouched.

3.2 Dynamic knowledge base

The APE system described so far is built by con-
sidering only the most similar retrieved sentences,
which we hypothesize to be the most useful to
learn reliable corrections for a given MT output.
On one hand, this strategy avoids to end up with
correction options that are not appropriate to post-
edit the MT output. On the other hand, it computes
the statistics of the models (i.e. translation and lex-
icalized reordering probabilities) using only few
parallel sentences, resulting in potentially unreli-
able values that can penalise the work of the de-
coder. To address this issue, we complement in-
stance selection with a dynamic knowledge base
able to keep track of all the previous observations
relevant for post-editing. Such a component pro-
vides the decoder with all the translation options
extracted from the retrieved sentences but, instead
of computing the probabilities only on these seg-
ments, it takes advantage of all the occurrences
of a translation option in the previously processed
sentences. This allows our online APE system to
use only the most useful translation options, asso-
ciated with more reliable statistics.

The dynamic knowledge base is implemented
by a distributed, scalable and real-time inverted
index that, after insertion, makes all data imme-
diately available for search and update. The Elas-
ticSearch7 engine is used for this purpose. Once
the post-edit is made available to our system, the
word alignment between the mt and the pe is com-
puted, the sentence pair is split in phrases and then
added to the dynamic model. If a translation op-
tion is already present, then the phrase translation
and the orientation counts are updated, otherwise
it is inserted for the first time. This is run in multi-
threading, by also managing possible conflicts (i.e.
the access to the same translation option by differ-
ent threads). Word lexical information and phrase

7http://www.elastic.co/products/
elasticsearch
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counts are stored apart. At decoding time, the IDs
of the samples retrieved by instance selection and
the mt sentences are used to query the dynamic
knowledge base. The translation options that sat-
isfy the query are retrieved and supplied to the
decoder in the form of translation and reordering
model information. All the feature scores (four
for the translation model and six for the reorder-
ing model) are computed on-the-fly.

Compared to the suffix arrays used to im-
plement MT dynamic models (Germann, 2014;
Denkowski et al., 2014), in which the whole sen-
tence pairs are stored, our technique needs to save
more information (all the translation options) but:
i) the amount of data in APE is much less that in
MT so it can be easily managed by ad hoc solu-
tions, and ii) it allows us to collect global infor-
mation at translation option level that can result in
useful additional features for the model. This last
aspect is explored in the next section, in which the
reliability of the translation options is measured by
looking at the behavior of the post-editors.

3.3 Negative feedback in-the-loop

Similar to the APE systems mentioned in Sec-
tion 2, the one described so far stores only post-
editors’ positive feedback. Its knowledge base of
correction rules and the statistics to estimate the
model parameters are in fact continuously updated
only based on alignment information between (mt,
pe) pairs. Post-edits, however, can also be used to
infer negative feedback and use it to penalize un-
reliable correction options (i.e. those resulting in
post-edits eventually modified by the human). The
dynamic knowledge base allows us to easily inte-
grate this kind of information, in the form of two
additional “negative feedback” features:

• F1. This feature penalizes the correction
rules that are selected by the decoder but
eventually modified by the post-editor. This
can be due to the application of a rule in
the wrong context (e.g. in case of domain
changes in the input stream of data) but, most
likely, to the fact that the learned rule is
wrong (e.g. as the result of ambiguous/wrong
word alignment). It is computed as the ra-
tio of the number of times the post-editors
modified a correction made by the APE de-
coder to the total number of times the de-
coder has made the correction. The informa-
tion about which correction rules have been

applied by the APE system is obtained from
the Moses decoder trace option. The infor-
mation about which of them has been modi-
fied is derived by string matching the target
side of the rule in the final human post-edit.

• F2. This rule penalizes the correction rules
that, even if not used, were available to the
decoder (i.e. translation options discarded
during decoding). Assuming that the applica-
tion of these options would have been eventu-
ally corrected by the post-editor, all the rules
in the phrase table are scanned to check if
their target side (i.e. the correction) is present
in the final human post-edit (again by string
matching). If not, then the corresponding rule
is penalised. This feature is computed as the
ratio of the number of times the correction
in the phrase table is (assumed to be) modi-
fied by the post-editor to the total number of
time the correction rule has been seen in the
local phrase table for all the segments pro-
cessed so far. Since the decoder operates with
a segment-specific local phrase table contain-
ing only the options relevant to the segment
to be post-edited, computing this feature is
not expensive.

We also evaluate system performance by using the
two features together. As we will see in Section 5,
although our use of negative feedback is still at
a preliminary stage, its integration in our online
APE framework yields some improvements.

4 Evaluation setting

Data. We experiment with two English-German
data sets: i) the data released for the APE shared
task organised within the first Conference on Ma-
chine Translation (WMT16) (Bojar et al., 2016),
and ii) the data used in (Chatterjee et al., 2015b),
which is a subset of the Autodesk Post-Editing
Data corpus.8 Although they come from the
same category (IT), they feature variability in
terms of vocabulary, MT engines used for trans-
lation, MT errors and post-editing style. Accord-
ing to our broad notion of “domain”, these vari-
ations contribute to make the two data sets dif-
ferent enough to emulate an MDTE scenario for
testing online APE capabilities. The data are
pre-processed to obtain a joint representation that

8https://autodesk.app.box.com/v/
autodesk-postediting
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Tokens Types Avg. segment length RR
(mt#src)

TER
mt#src pe mt#src pe mt#src pe

Autodesk 153,943 160,801 31,939 15,023 12.57 13.13 4.938 45.35
WMT16 210,573 214,720 32211 16,388 17.54 17.89 4.907 26.22

Table 1: Data statistics

links each MT word with its corresponding source
word/s (mt#src). This representation, proposed
by Béchara et al. (2011), leverages the source in-
formation to disambiguate post-editing rules and
foster their application only in appropriate con-
texts (the matching condition is defined both on
the source and on the target language). The joint
representation is used as a source corpus to train
all the APE systems compared in this paper and it
is obtained by concatenating words in the source
(src) and in the MT (mt) segments after aligning
them with MGIZA++ (Gao and Vogel, 2008).

The Autodesk training and development sets
consist of 12,238, and 1,948 segments respec-
tively, while the WMT16 data contains 12,000,
and 1,000 segments. Table 1 provides additional
statistics of the source (mt#src) and target (pe)
training sets, the repetition rate (RR) to measure
the repetitiveness inside a text (Bertoldi et al.,
2013), and the average TER score for both the data
sets (computed between MT and PE), as an indi-
cator of the original translation quality. Looking
at these statistics, there are several indicators that
suggest that the WMT16 corpus provides a more
difficult scenario for APE than the Autodesk one.
First, the WMT16 corpus has on average longer
sentences, which generally increases the complex-
ity of the rule extraction and decoding processes.
Second, although the two data sets have a similar
repetition rate, the WMT16 has more tokens in-
dicating the higher sparsity of the data. Finally,
the lower TER of WMT16 suggests that there are
less corrections to perform and, in turn, a higher
chance to deteriorate the original MT output if the
learned rules are applied in the wrong context.

To conclude, we measure the diversity of the
two data sets by computing the vocabulary over-
lap between the two joint representations. This is
performed internally to each data set (splitting the
training data in two halves) and across them. As
expected, in the first case the vocabulary overlap
is much larger (> 40%) than in the second case
(∼15%) indicating that the information to share
between the two data sets is minimal.

In our MDTE experiments, the training data is
first merged, then shuffled and then split in two
halves of 12,119 segments. The same procedure is
applied to the development sets.

Evaluation metrics. The performance of the
different systems is evaluated in terms of Transla-
tion Error rate (TER) (Snover et al., 2006), BLEU
(Papineni et al., 2002), and precision (Chatterjee et
al., 2015a). TER and BLEU measure the similar-
ity between the MT output and the corresponding
references (in this case human post-edits) by look-
ing at the word/n-gram overlaps. Precision is the
ratio of the number of sentences an APE system
improves (with respect to the MT output) over all
the sentences it modifies.9 Higher precision indi-
cates that the APE system is able to improve the
quality of most of the sentences it changed. The
statistical significance of BLEU results is com-
puted using paired bootstrap resampling (Koehn,
2004). For TER, we use stratified approximate
randomization (Clark et al., 2011).

Terms of comparison. We evaluate our online
learning approach against: i) the MT baseline (i.e.
the MT output left untouched), ii) the batch APE
system described in Section 3, on top of which we
incrementally add our online learning extensions,
and iii) the Thot toolkit.

5 Experiments and results

The batch APE system is trained on the first half
of the shuffled training set, tuned with the devel-
opment set (2,948 segments), and evaluated over
the second half of the training data. Since the
batch APE only learns from the training set, we
expect its performance to give us a lower bound
estimate, which should be outperformed by the
online APE systems that can learn from the test
data too. To run the online experiments with
Thot, the system first needs to estimate the fea-
ture weights of the log-linear model on a develop-

9For each sentence in the test set, if the TER score of the
APE system is different from the baseline then it is consid-
ered as a modified sentence.
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ment set. For this purpose, it is trained and tuned
off-line like a batch APE system. Three online
extensions of the batch backbone architecture de-
scribed in Section 3 are evaluated. These are: i)
the instance selection system (IS); ii) the dynamic
knowledge base system (IS+DynKB) and iii) the
dynamic knowledge base system enhanced with
the negative feedback features, both alone and in
combination (IS+DynKB+F1, IS+DynKB+F2 and
IS+DynKB+F1+F2). For all of them, the cut-off
similarity score is obtained by grid search and is
set to 0.8. The results achieved by each system are
reported in Table 2.

BLEU↑ TER↓ Prec. (%)

MT 52.31 34.52 N/A
Batch APE 52.52 34.45 42.67
Thot 52.51 34.37 42.22
IS 53.35† 33.36† 58.47
IS+DynKB 53.60† 33.23† 59.69
IS+DynKB+F1 53.56† 33.29† 58.97
IS+DynKB+F2 53.21† 33.48† 54.64
IS+DynKB+F1+F2 53.77† 33.20† 60.93

Table 2: Results on the mixed data. (“†” indi-
cates statistically significant difference wrt. the
MT baseline with p<0.05).

As can be seen from the table, the batch APE
system is able to slightly improve over the base-
line even if it damages most of the translations it
changes (its precision is in fact lower than 45%).
Although it learns also from the test data, Thot
achieves similar results. This is probably due to
its inability to identify domain-specific correction
rules needed to improve the translations, thus end-
ing up with damaging the majority of the modified
MT segments. A significant gain in performance
(+1.04 BLEU, -1.16 TER points) is obtained by
our online IS system that, by using the instance se-
lection technique, is able to isolate only the most
useful training samples. This mechanism also im-
proves precision up to 58.4% (∼16% above Thot),
indicating that the applied post-editing rules are
correct in the majority of the cases. The analy-
sis of the performance of the two online systems
reveals that our approach modifies less segments
compared to Thot, due to the fact that it builds
sentence-specific models only if it finds relevant
data, leaving the MT segment untouched other-
wise. In several cases, when modified by the Thot
system, these untouched segments result in deteri-

orated sentences.
Further performance improvements are yield

by the dynamic knowledge base (IS+DynKB),
which provides the decoder with a better esti-
mation of the APE model parameters. Although
the BLEU and TER gains are minimal, the dy-
namic knowledge base helps to significantly in-
crease the precision of the APE system avoiding
unnecessary changes, thus confirming the effec-
tiveness of keeping track of the whole past his-
tory of each translation option. Our implementa-
tion of the dynamic knowledge base also allows us
to add the two “negative feedback” features that
model the reliability of the translation options by
looking at the changes made by the post-editors.
When used in combination, the two negative feed-
back features (IS+DynKB+F1+F2) yield visible
gains in performance over (IS+DynKB) with small
but statistically significant improvement in BLEU
score, along with a precision gain of 1.24%. This
suggests their possible complementarity with the
translation and reordering features and the need
of further investigation in future work. Overall
our full-fledged system achieves state-of-the-art
results with significant improvement over Thot by
1.26 BLEU, 1.17 TER, and 18.71% Precision.

BLEU↑ TER↓ Prec. (%)

Autodesk

MT 40.01 45.42 N/A
Batch APE 43.13† 43.19† 58.86
Thot 43.40† 42.96† 59.04
IS+DynKB+F1+F2 44.56† 41.86† 73.37

WMT16

MT 61.04 26.24 N/A
Batch APE 59.24† 27.81† 22.18
Thot 59.05† 27.84† 20.06
IS+DynKB+F1+F2 60.39† 26.62† 36.67

Table 3: Performance analysis of each domain.

6 Analysis

To understand and compare the behavior of the
batch APE, Thot and our best online system in the
long-run, the plot in Figure 1 shows the TER mov-
ing average (window of 750 data points) at each
segment of the test set (second half of the shuffled
training data). As can be seen, our approach suc-
cessfully maintains the best performance across
the entire test set. Moreover, looking at the first
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Figure 1: Performance comparison of different online APE systems (TER moving average).

SRC Specifies the value to define the mid-ordinate distance by which to tessellate baseline align-
ment curves .

MT Gibt den Wert für den krzesten Abstand vom Sekantenmittelpunkt zu Kreisbogen für die
Tessellation Basislinienachse Kurven .

MT-Top1 Gibt den Wert für den krzesten Abstand vom Sekantenmittelpunkt zu Kreisbogen für die
Tessellation Basislinienachse Kurven .

PE-Top1 Gibt den Wert zum Definieren des krzesten Abstands vom Sekantenmittelpunkt zum Kreis-
bogen an , um den Basislinienachsen-Bogen ausgerundet werden sollen .

THOT Gibt den Wert für den Versatzzielbogen Abstand vom Sekantenmittelpunkt zu Kreisbogen
für die Tessellation Basislinienachse Kurven .

IS+DynKB
+F1+F2

Gibt den Wert zum Definieren des krzesten Abstands vom Sekantenmittelpunkt zum Kreis-
bogen an , um den Basislinienachse Versatzzielbogen ausgerundet werden sollen .

REF Gibt den Wert zum Definieren des krzesten Abstands vom Sekantenmittelpunkt zum Kreis-
bogen an , um den Basislinienachsen-Bogen ausgerundet werden sollen .

Table 4: Sample outputs where our approach outperform THOT (erroneous words are in bold)

and the last 250 points in the test set, we notice
that the performance gap between our best system
and Thot increases on average from 0.8 to 1.6 TER
points. This shows that, during processing, our ap-
proach is able to self-adapt in real-time towards
the domain-shifts in the input stream of data. To
better understand their behavior with respect to
data coming from the two domains, systems’ out-
put has been separately evaluated per domain. The
results of this evaluation are reported in Table 3.

For the Autodesk and the APE shared task do-
main there are 6,166 and 5,953 segments respec-
tively. It is interesting to see that all the APE
systems improve the translations belonging to the
Autodesk domain by a large margin, with our ap-
proach being the best. The same does not hold
for the other domain, which, as discussed in Sec-

tion 5, is more challenging due to several factors
like longer sentence length, higher data sparsity
and, most of all, lower translation quality. For this
challenging domain, however, our approach has
the least degradation compared to the other APE
methods that severely damage the translations.
Overall, compared to other APE approaches, our
best system has the best performance in both the
domains when evaluated in isolation.

To evaluate the efficiency of our approach, we
computed the average time in seconds to per-
form a full online cycle over the test set (i.e.
the time needed for post-editing the MT out-
put and updating the models) for Thot, IS and
IS+DynKB+F1+F2. Thot spends on average 4.75
seconds per cycle. The IS system, which builds its
models on-the-fly by leveraging only the selected
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SRC Drag to the left and then click to place .
MT Ziehen Sie nach links , und klicken Sie dann , um sie zu platzieren .
MT-Top1 Ziehen Sie nach links , und klicken Sie dann , um sie zu platzieren .
PE-Top1 Ziehen Sie sie nach links , und klicken Sie dann , um sie zu platzieren .
MT-Top4 Ziehen Sie den Cursor nach unten und nach rechts , und klicken Sie dann , um sie zu

platzieren .
PE-Top4 Ziehen Sie nach unten und nach rechts , und klicken Sie dann zum Platzieren .
THOT Ziehen Sie nach links , und klicken Sie dann , um sie zu platzieren .
IS+DynKB
+F1+F2

Ziehen Sie nach links , und klicken Sie dann zum Platzieren .

REF Ziehen Sie sie nach links , und klicken Sie dann , um sie zu platzieren .

Table 5: Sample output where our approach performs poor than THOT (erroneous words are in bold)

data and optimises the weights before post-editing,
is faster than Thot, with a gain of 1.03 seconds
(3.62” on average). The use of the dynamic model,
that is faster in updating and dumping the tables,
allows our best system to perform a full online cy-
cle in 3.05”, showing that our approach is not only
better in terms of performance but also in compu-
tation time.

Tables 4 and 5 respectively show examples
where our approach performs better/worse than
Thot. Both tables report the source sentence
(SRC), the MT output to be post-edited (MT),
the MT and the PE segment of the top training
samples retrieved based on cosine similarity (MT-
TopX/PE-TopX, where X is the rank of the train-
ing sample), the output of Thot, the output of our
best system (IS+DynKB+F1+F2) and the refer-
ence (REF). Table 4 seems to confirm our intu-
ition that learning from the most similar exam-
ples yields better translation quality. An interest-
ing counter example is shown in Table 5, where
despite having access to a training sample (MT-
Top1 and PE-Top1) that is exactly the same as
the MT segment to be post-edited, our system
deteriorates the translation by selecting a transla-
tion option (“zu platzieren”→ “zum Platzieren”)
learned from a lower ranked training sample (MT-
Top4 and PE-Top4), which probably received a
higher weight from the local models. In future
work, we will try to extend our system to address
this issue by prioritizing the translation rules ac-
cording to the rank of the training samples.

7 Conclusion

In recent years, APE systems achieved impres-
sive results in fixing recurrent errors in machine-
translated texts. Such gains, however, were mostly

observed in controlled lab environments, where
systems are trained, tuned, and evaluated with
repetitive and homogeneous training/test data.
These favorable learning conditions may not hold
in real-world professional translation workflow, in
which streams of data to be processed in real-time
may feature a high diversity in terms of domain,
post-editing style and MT systems that generated
the translations. In this paper, we investigated for
the first time the challenges posed to APE tech-
nology by such multi-domain translation environ-
ments. Our study revealed that the existing online
and batch solutions are not robust enough for this
scenario due to their inability to discern which of
the learned rules is suitable for a specific context
(in fact, a correction rule learned from one domain
may not be valid for other domains). We addressed
this problem incrementally, first by proposing an
instance selection technique that learns rules from
contexts that are similar to the MT segment to be
post-edited. The gains achieved by this solution
over the existing batch APE methods were fur-
ther increased by the addition of a dynamic knowl-
edge base that stores more reliable statistics about
the learned translation options, also improving the
computation time. The adoption of this dynamic
knowledge base allowed us to further extend our
online approach by including features that capture
negative human feedback, giving to the system the
capability to learn from the mistakes it made in
the past. Our evaluation results indicate that our
approach improves state of the art performance on
an English-German MDTE data set.
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