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Abstract

We propose a novel hierarchical Recurrent
Neural Network (RNN) for learning se-
quences of Dialogue Acts (DAs). The in-
put in this task is a sequence of utterances
(i.e., conversational contributions) com-
prising a sequence of tokens, and the out-
put is a sequence of DA labels (one label
per utterance). Our model leverages the hi-
erarchical nature of dialogue data by using
two nested RNNs that capture long-range
dependencies at the dialogue level and the
utterance level. This model is combined
with an attention mechanism that focuses
on salient tokens in utterances. Our exper-
imental results show that our model out-
performs strong baselines on two popular
datasets, Switchboard and MapTask; and
our detailed empirical analysis highlights
the impact of each aspect of our model.

1 Introduction

The sequence-labeling task involves learning a
model that maps an input sequence to an output
sequence. Many NLP problems can be treated as
sequence-labeling tasks, e.g., part-of-speech (PoS)
tagging (Toutanova et al., 2003; Toutanova and
Manning, 2000), machine translation (Brown et
al., 1993) and automatic speech recognition (Gales
and Young, 2008). Recurrent Neural Nets (RNNs)
have been the workhorse model for many NLP
sequence-labeling tasks, e.g., machine transla-
tion (Sutskever et al., 2014) and speech recogni-
tion (Amodei et al., 2015), due to their ability to
capture long-range dependencies inherent in natu-
ral language.

In this paper, we propose a hierarchical RNN
for labeling a sequence of utterances (i.e., con-
tributions) in a dialogue with their Dialogue Acts

(DAs). This task is particularly useful for dialogue
systems, as knowing the DA of an utterance sup-
ports its interpretation, and the generation of an
appropriate response. The DA classification prob-
lem differs from the aforementioned tasks in the
structure of the input and the immediacy of the
output. The input in these tasks is a sequence of
tokens, e.g., a sequence of words in PoS tagging;
while in DA classification, the input is hierarchi-
cal, i.e., a conversation comprises a sequence of
utterances, each of which has a sequence of to-
kens (Figure 1). In addition, to be useful for dia-
logue systems, the DA of an utterance must be de-
termined immediately, hence a bi-directional ap-
proach is not feasible.

As mentioned above, RNNs are able to capture
long-range dependencies. This ability was har-
nessed by Shen and Lee (2016) for DA classifica-
tion. However, they ignored the conversational di-
mension of the data, treating the utterances in a di-
alogue as separate instances — an assumption that
results in loss of information. To overcome this
limitation, we designed a two-layer RNN model
that leverages the hierarchical nature of dialogue
data: an outer-layer RNN encodes the conversa-
tional dimension, and an inner-layer RNN encodes
the utterance dimension.

One of the difficulties of sequence labeling is
that different elements of an input sequence have
different degrees of importance for the task at
hand (Shen and Lee, 2016), and the noise intro-
duced by less important elements might degrade
the performance of a labeling model. To address
this problem, we incorporate into our model the
attention mechanism described in (Shen and Lee,
2016), which has yielded performance improve-
ments in DA classification compared to traditional
RNNs.

Our empirical results show that our hierarchical
RNN model with an attentional mechanism out-
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Figure 1: Switchboard data example.

performs strong baselines on two popular datasets:
Switchboard (Jurafsky et al., 1997; Stolcke et al.,
2000) and MapTask (Anderson et al., 1991). In
addition, we provide an empirical analysis of the
impact of the main aspects of our model on per-
formance: utterance RNN, conversation RNN, and
information source for the attention mechanism.

This paper is organised as follows. In the next
section, we discuss related research in DA classi-
fication. In Section 3, we describe our RNN. Our
experiments and results are presented in Section 4,
followed by our analysis and concluding remarks.

2 Related Research

Independent DA classification. In this ap-
proach, each utterance is treated as a separate in-
stance, which allows the application of general
classification algorithms. Julia et al. (2010) em-
ployed a Support Vector Machine (SVM) with
n-gram features obtained from an utterance-level
Hidden Markov Model (HMM) to ascribe DAs
to audio signals and textual transcriptions of the
MapTask corpus. Webb et al. (2005) used a simi-
lar approach, employing cue phrases as features.

Sequence-based DA classification. This ap-
proach takes advantage of the sequential nature of
conversations. In one of the earliest works in DA
classification, Stolcke et al. (2000) used an HMM
with a trigram language model to classify DAs in
the Switchboard corpus, achieving an accuracy of
71.0%. In this work, the trigram language model
was employed to calculate the symbol emission
probability of the HMM. Surendran et al. (2006)
also used an HMM, but employed output sym-
bol probabilities produced by an SVM classifier,
instead of emission probabilities obtained from

a trigram language model. More recently, the
Recurrent Convolutional Neural Network model
proposed by Kalchbrenner and Blunsom (2013)
achieved an accuracy of 73.9% on the Switch-
board corpus. In this work, a Convolutional Neu-
ral Network encodes each utterance into a vector,
which is then treated as input to a conversation-
level RNN. The DA is then classified using a
softmax layer applied on top of the hidden states
of the RNN.

Attention in Neural Models. Attentional Neu-
ral Models have been successfully applied to
sequence-to-sequence mapping tasks, notably ma-
chine translation and DA classification. Bah-
danau et al. (2014) proposed an attentional
encoder-decoder architecture for machine trans-
lation. The encoder encodes the input sequence
into a sequence of hidden vectors; the decoder
decodes the information stored in the hidden se-
quence to generate the output; and the attentional
mechanism is used to summarize a sentence into
a context vector dynamically, helping the decoder
decide which part of the sequence to attend to
when generating a target word. As mentioned
above, Shen and Lee (2016) employed an atten-
tional RNN for independent DA classification;
they achieved an accuracy of 72.6% on textual
transcriptions of the Switchboard corpus.

3 Model Description

Suppose we have a sequence of observations ooo :=
{ooo1, ooo2, . . . , ooom} and the corresponding sequence
of labels yyy := {y1, y2, . . . , ym}, where each ob-
servation ooot is a sequence. Our hierarchical-
attentional model, denoted HA-RNN, learns the
conditional probability P (yyy|ooo) relating the ob-
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Figure 2: HA-RNN – Hierarchical-attentional RNN model.

served sequence to its label sequence, based on the
following decomposition:

P ({y1, y2, ..., ym}|{ooo1, ooo2, ..., ooom})

=
m∏

t=1

P (yt|yyy<t, ooo≤t)
(1)

Note that our model conditions on the full his-
tory, rather than a finite history as done in Markov
models, such as maximum entropy Markov mod-
els (McCallum et al., 2000).

We employ neural networks to model the con-
stituent conditional distributions. Our model com-
prises three main elements (Figure 2): (1) an
utterance-level RNN that encodes the information
within the utterances; (2) an attentional mecha-
nism that highlights the important parts of an input
utterance, and summarizes the information within
the utterance into a real-valued vector; and (3) a
conversation-level RNN that encodes the informa-
tion of the whole dialogue sequence. As discussed
in Section 1, our hierarchical-RNN design was
motivated by the structure of the input data, while
the attentional mechanism has proven to be effec-
tive in DA classification (Shen and Lee, 2016).

Utterance-level RNN. This RNN was imple-
mented using LSTM (Hochreiter and Schmidhu-
ber, 1997; Graves, 2013). First, an embedding
matrix maps each token (e.g., word or punctua-
tion marker) into a dense vector representation.
Let us denote the sequence of tokens in the t-
th utterance as ooot := {o1t , o2t , . . . , on

t }, which is

mapped into the sequence of embedding vectors
xxxt := {xxx1

t ,xxx
2
t , . . . ,xxx

n
t } using the token embed-

ding tablewww:
xxxi

t = ewewew(oi
t) (2)

The utterance RNN then takes as input this se-
quence of vectors, and produces a sequence of cor-
responding hidden vectors hhht = {hhh1

t ,hhh
2
t , . . . ,hhh

n
t },

which capture the information within the tokens,
and put the tokens in their sentential context:

hhhi
t = RNNutter(hhhi−1

t ,xxxi
t) (3)

The parameters of the utterance RNN and the
token embeddings are learned during training.

Attentional mechanism. This mechanism sum-
marizes the hidden vectors of the utterance-level
RNN into a single vector representing the whole
utterance. The attention vector is a sequence of
positive numbers that sum to 1, where each num-
ber corresponds to a token in an utterance, and rep-
resents the importance of the token for understand-
ing the DA associated with the utterance. The final
representation zzzt of the t-th utterance is the sum of
the corresponding elements of its hidden vectors
weighted by attention weights:

zzzt =
∑

i

αi
thhh

i
t (4)

We posit that the main factors for determining
the importance of a token for DA classification
are: (1) the meaning of the token, as represented
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by its embedding vector; and (2) the full context
of the conversation, particularly the previous DA.
For example, if the DA of an utterance is Yes-No-
Question, and there is a “yes” or “no” token in the
next utterance, this token is likely to be important.
Equation 5 integrates these factors to compute at-
tention scores:

si
t = UUU · tanh

(
W (in) · xxxi

t +W (co) · gggt−1

+ eaeaea(yt−1) + bbb(in)) (5)

where vector eaeaea(yt−1) denotes the embedding of
the previous DA, which is similar to the embed-
ding of tokens; and vector gggt−1 is the previous
hidden vector of the conversation-level RNN, de-
tailed below, which summarizes the conversation
so far. W (in) and W (co) are parameter matrices for
the input tokens and the conversational context re-
spectively, and UUU and bbb(in) are parameter vectors
— all of which are learned during training. The
scores si

t are mapped into a probability vector by
means of a softmax function:

αααt = softmax(ssst) (6)

Conversation-level RNN. This RNN is struc-
turally similar to the utterance-level RNN. The in-
put to the conversation-level RNN is the sequence
of vectors zzz generated for the utterances in a con-
versation, which is then encoded by the RNN into
a sequence of hidden vectors ggg:

gggt = RNNconvers(gggt−1, zzzt) (7)

This information is then used in the generation of
the output DA:

yt|yyy<t, ooo≤t∼softmax(WWW (out) ·gggt + bbb(out)) (8)

where the matrix WWW (out), vector bbb(out) and the
parameters of the conversation-level network
RNNconvers are learned during the training.

During testing, ideally a given sequence of ob-
served utterances ooo should be decoded to a label
sequence yyy that maximizes the conditional prob-
ability P (yyy|ooo) according to the model. How-
ever, finding the highest-scoring label sequence
is a computationally hard problem, since the
conversation-level RNN does not lend itself to dy-
namic programming. Therefore, we employ a
greedy decoding approach, where, going left-to-
right, at each step we choose the yt with the high-
est probability in the local DA distribution. This

method is common practice in sequence-labeling
RNNs, e.g., in neural machine translation (Bah-
danau et al., 2014; Sutskever et al., 2014; Luong
et al., 2015).

4 Experiments

4.1 Data sets
We tested our models on the Switchboard cor-
pus (Jurafsky et al., 1997; Stolcke et al., 2000)
and the MapTask corpus (Anderson et al., 1991)
— two popular datasets used for DA classification.
At this stage of our research, we consider only
transcriptions of the conversations in both corpora
(the incorporation of phonetic input (Taylor et al.,
1998; Wright Hastie et al., 2002; Julia et al., 2010)
is the subject of future work). Thus, we compare
our results only with those obtained by systems
that employ transcriptions exclusively.

Switchboard corpus. This corpus contains DA-
annotated transcriptions of 1155 telephone con-
versations with no specific topic, which have an
average of 176 utterances. Originally, there were
approximately 226 DA tags in the corpus, but in
the DA classification literature, the tags are usu-
ally clustered into 42 tags.1 Table 1(a) shows per-
centages of the seven most frequent tags in the
data. Following (Stolcke et al., 2000), in our ex-
periments we use 1115 conversations for training,
21 for development and 19 for testing.

MapTask corpus. This is a richly annotated cor-
pus that comprises 128 dialogues about instruction
following, containing 212 utterances on average.
Each conversation has an instruction giver and an
instruction follower. The instruction giver gives
directions with reference to a map, which the in-
struction follower must follow. The MapTask cor-
pus has 13 DA tags, including the “unclassifiable”
tag. Table 1(b) shows percentages of the seven
most frequent tags in the data. We randomly split
this data into 80% training, 10% development and
10% test sets, which contain 103, 12 and 13 con-
versations respectively.

4.2 Results
We experimented with different embedding sizes
and hidden layer dimensions for our model HA-
RNN, and selected the following, which yielded

1The official manual stated that there were originally 220
tags. We follow the tag-clustering procedure by Christopher
Potts described in compprag.christopherpotts.
net/swda.html.
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DA tag Example Percentage
Statement-non-opinion I’m twenty-eight 36%
Acknowledge (Backchannel) Uh-huh 19%
Statement-opinion I think it’s great 13%
Agree/Accept That’s exactly it 5%
Abandoned or Turn-Exit So, 5%
Appreciation I can imagine. 2%
Yes-No-Question Do you? 2%

DA tag Example Percentage
Acknowledge Mmhmm 21%
Instruct And we’re finished 16%
Reply y Yeah 12%
Explain I’ve got a bridge 8%
Check Is that it 8%
Ready And then 8%
Align See what i mean 7%

(a) Switchboard (b) MapTask

Table 1: Seven most frequent DAs and examples for (a) Switchboard and (b) MapTask.

Model Accuracy
RCNN 73.9%
RNN-Attentional-C 72.6%
HMM-trigram-C 71.0%
HA-RNN 74.5%

Table 2: Performance on Switchboard.

Model Accuracy
HMM-trigram-C 52.3%
Random Forest 52.5%
Random Forest + prev DA 55.3%
HA-RNN 63.3%

Table 3: Performance on MapTask.

the best performance with reasonable run times.
The word-embedding size was set to 250, and the
DA-embedding size to 180. The hidden dimen-
sion of the utterance-level RNN was set to 160,
and the hidden dimension of the conversation-
level RNN was set to 250. Our model was im-
plemented with the CNN package.2 During train-
ing, the negative log-likelihood was optimized us-
ing Adagrad (Duchi et al., 2011), with dropout rate
0.5 to prevent over-fitting (Srivastava et al., 2014).
Training terminated when the log-likelihood of the
development set did not improve. As mentioned in
Section 3, during testing, the sequence of output
labels was generated with greedy decoding. Sta-
tistical significance was computed on the MapTask
test data using McNemar’s test with α = 0.05 (we
could not compute statistical significance for the
Switchboard results, because they were obtained
from the literature, and we did not have access to
per-conversation labels).

Switchboard. We compare our model’s perfor-
mance with that of the following strong base-
lines: (RCNN) the recurrent convolutional neu-
ral network model from (Kalchbrenner and Blun-
som, 2013); (RNN-Attentional-C) the attention-
based RNN classifier from (Shen and Lee, 2016);
and (HMM-trigram-C) the HMM-based classifier
from (Stolcke et al., 2000).

The results in Table 2 show that our model
outperforms these baselines.3 The higher ac-

2github.com/clab/cnn.
3Two other works on Switchboard DA classification

(Gambäck et al., 2011; Webb and Ferguson, 2010) used ex-
perimental setups that differ from ours, respectively obtaining

curacy of our model compared to classifier-
based approaches (i.e., RNN-Attentional-C and
HMM-trigram-C) confirms that taking into ac-
count dependencies among the DAs through the
conversation-level RNN improves accuracy. Fur-
thermore, the better performance of our model
compared to RCNN shows that summarizing utter-
ances with an RNN augmented with an attention
architecture is more effective than using a convo-
lution architecture for DA sequence labeling.

MapTask. Due to the unavailability of standard
training/development/test sets for this dataset, we
compare the results obtained by our model with
those obtained by our implementation of the
following independent DA classifiers: HMM-
trigram-C (Stolcke et al., 2000); Random Forest
– an instance-based random forest classifier; and
Random Forest + prev DA – a random forest clas-
sifier that uses the previous DA tag.

The results in Table 3 show that our model
outperforms these baselines (statistically signifi-
cant). These results reinforce the insights from
the Switchboard corpus, whereby taking into ac-
count conversational dependencies between DAs
substantially improves DA-labeling performance.4

accuracies of 77.85% and 80.72%. However, these results are
not directly comparable to Stolcke et al.’s (2000) or ours, and
are therefore excluded from our comparison.

4Two studies on MapTask DA classification were per-
formed under experimental setups that differ from ours: Ju-
lia et al. (2010) employed HMM+SVM on text transcrip-
tions and audio signals, obtaining an accuracy of 55.4%
for transcriptions only. Surendran and Levow (2006) used
Viterbi+SVM, posting a classification accuracy of 59.1% for
transcriptions — the best result among systems that employ
transcription data exclusively. Unfortunately, Julia et al.’s de-
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5 Analysis

5.1 Architectural analysis

We investigate the influence of the main compo-
nents of our model on performance by creating
variants of our model through the addition or re-
moval of connections or layers. We then compare
the performance of these variants with that of the
original model in terms of DA-classification accu-
racy and negative log-likelihood on the test, devel-
opment and training partitions of our datasets. As
done in Section 4, statistical significance is calcu-
lated for the test partitions of both datasets using
McNemar’s test with α = 0.05.

Does an RNN at the utterance level help? To
answer this question, we create a variant, denoted
woUttRNN, where attentional coefficients are ap-
plied directly to the token embeddings. Thus,
Equation 4 is changed to Equation 9:

zzzt =
∑

i

αi
txxx

i
t (9)

As seen in Tables 4 and 5, removing the
utterance-level RNN (woUttRNN) reduces the ac-
curacy and increases the negative log likelihood
for the training, development and test partitions of
both datasets. These changes are statistically sig-
nificant for the test set.

Which sources of information are critical for
computing the attentional component? In our
main model, HA-RNN, we calculate the atten-
tional signal using information from the previ-
ous DA, the previous hidden vector representa-
tion of the conversation-level RNN, and the em-
beddings of the tokens. To determine the con-
tribution of the first two resources to the perfor-
mance of the model, we create two variants of
HA-RNN: woDA2Attn, which employs only the
previous conversation-level RNN hidden vector;
and woHid2Attn, which employs only the previ-
ous DA. Thus, in woDA2Attn, Equation 5 becomes
Equation 10, and in woHid2Attn, Equation 5 be-
comes Equation 11:

si
t =UUU·tanh(W (in) ·xxxi

t+W
(co) ·gggt−1+bbb(in)) (10)

si
t =UUU·tanh(W (in) ·xxxi

t+eaeaea(yt−1)+bbb(in)) (11)

scription of their MapTask subset is not sufficient to replicate
their experiment, and Surendran and Levow’s data split is not
accessible. Notwithstanding the difference in conditions, our
model’s accuracy is superior to theirs.

As seen in Tables 4 and 5, both of these
resources provide valuable information, but the
changes in performance due to the omission of
these resources are smaller than those obtained
with woUttRNN. Removing the DA connection
(woDA2Attn) or the previous conversation-level
RNN hidden vector (woHid2Attn) leads to statis-
tically significant drops in accuracy and increases
in negative log-likelihood on the test partitions of
both datasets. The changes in performance with
respect to the development and training sets vary
across the datasets. As seen in Table 4, both mod-
els exhibit accuracy drops (and small increases in
negative log-likelihood) on the Switchboard de-
velopment set, but small accuracy increases (and
negative log-likelihood drops) on the Switchboard
training set — an indication of over-fitting. In con-
trast, as seen in Table 5, both models yield a neg-
ligible or no drop in accuracy on the MapTask de-
velopment set, while both yield a drop in accuracy
on the training set.

How important is the RNN at the conversation
level? To answer this question, we create a vari-
ant of our HA-RNN model, denoted woConvRNN,
where the recurrent connections between the units
in the conversation-level RNN are removed. The
LSTM basis function is calculated with a fixed
vector ggg0 instead of the previous time step’s vec-
tor. Thus Equation 7 becomes Equation 12:

gggt = fff(ggg0, zzzt) (12)

As seen in Tables 4 and 5, HA-RNN outperforms
woConvRNN on the training/development/test par-
titions of both datasets. The difference between
the performance of HA-RNN and woConvRNN is
statistically significant for the test set.

How effective are the DA connections? We
have seen that the DA connections improve our
model’s performance when they are used to cal-
culate the attentional signal. However, intuitively,
the previous DA can also directly provide informa-
tion about the current DA. For example, it is often
the case that a Yes-No-Question is followed by Re-
ply y or Reply n. To reflect this observation, we
create another model, denoted wDA2DA, that has
an additional direct connection between the previ-
ous DA and the current DA. That is, Equation 8
becomes Equation 13:

yt|yyy<t, ooo≤t∼softmax(WWW (out)·gggt+eoeoeo(yt−1)+bbb(out))
(13)
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Accuracy Neg log likelihood
Test Dev Train Test Dev Train

HA-RNN 74.5% 76.2% 80.0% 3770 2819 130333
woUttRNN 71.8% 73.3% 77.4% 4542 3474 163350
woDA2Attn 72.7% 74.3% 80.5% 3835 2932 127445
woHid2Attn 72.8% 75.0% 81.0% 4024 2917 124483
woConvRNN 71.8% 74.1% 76.7% 4537 3648 165734
wDA2DA 71.0% 72.7% 79.2% 4737 3884 150436

Table 4: Performance of variants of the HA-RNN model on Switchboard.

Accuracy Neg log likelihood
Test Dev Train Test Dev Train

HA-RNN 63.3% 61.9% 73.4% 3486 3228 18191
woUttRNN 56.9% 58.0% 62.2% 3823 3445 25074
woDA2Attn 61.4% 61.7% 70.1% 3539 3212 19780
woHid2Attn 62.2% 61.9% 71.8% 3487 3248 19132
woConvRNN 58.9% 60.0% 66.9% 3579 3248 20961
wDA2DA 58.2% 58.4% 69.3% 4014 3663 21135

Table 5: Performance of variants of the HA-RNN model on MapTask.

As seen in Tables 4 and 5, wDA2DA performs
much worse than HA-RNN. We posit that this hap-
pens due to the exposure bias problem (Ranzato et
al., 2015). That is, during training, the model has
access to the correct DA of the previous utterance.
However, during testing, the decoding process has
access only to predicted DAs, which may lead to
the propagation of errors. To quantify the effect of
this problem on our model, we designed another
experiment where the variants of our model can
access the correct DA even during testing; the re-
sults for the test partitions of both datasets appear
in Table 6.

The results in Table 6 show that exposure bias
has different effects on the different variants of our
model. As expected, woDA2Attn, which does not
consider the previous DA, exhibits no change in
performance between the oracle and greedy con-
ditions. The models that employ a DA connection
to compute the attention signal (HA-RNN, woUt-
tRNN, woHid2Attn, woConvRNN) show a slight
improvement in accuracy when using the correct
DA as input, instead of the predicted DA. In con-
trast, wDA2DA shows large improvements when
using the correct DA (3.5% on Switchboard and
6.8% on MapTask), becoming the best-performing
model for both datasets. This improvement may

be attributed to the direct connection between the
DAs in this model, which increases the influence
of previous DAs on the prediction of the current
DA — previous DA predictions that are largely
correct will substantially improve the performance
of wDA2DA, while noisy DA predictions will have
the opposite effect.

5.2 Attentional Analysis

We analyze how our model HA-RNN distributes
attention over the tokens in an utterance in order
to identify tokens in focus.

Figure 3 shows how the attentional vector high-
lights the most important tokens in sample utter-
ances in the context of the DA-classification task.
For example, in “yes I do”, the most important to-
ken that identifies the Reply y class is the token
“yes”, which receives most of the probability mass
from the attention mechanism.

Table 7 shows the most attended tokens for
four classes of DA in MapTask. We compiled
these lists by computing the average attention that
a token received for all the utterances in a DA
class (we excluded tokens that appear less than 5
times). As shown in Table 7, both important to-
kens “move” and “yes” in Figure 3 appear in their
respective DA columns. Two of the most common
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Switchboard MapTask
Oracle Greedy Oracle Greedy

HA-RNN 74.6% 74.5% 64.1% 63.3%
woUttRNN 73.2% 71.8% 56.9% 57.1%
woDA2Attn 73.7% 73.7% 61.4% 61.4%
woHid2Attn 73.8% 72.8% 62.4% 62.2%
woConvRNN 72.2% 71.8% 58.9% 58.9%
wDA2DA 75.0% 71.5% 65.0% 58.2%

Table 6: Performance of oracle and greedy decoding on Switchboard and MapTask test data.

Figure 3: Sample DAs with highlighted attention vectors for MapTask.

Acknowledge Instruct Reply y Reply n
mmhmm move mmhmm nope
uh-huh continue uh-huh i’ve

yes drop yes no
yeah starting yep it’s
see pass aye you
go reach i’ve go
aye stop yeah don’t
no coming i’m not
you go you haven’t
i’m whatever go just

Table 7: Sample DA-specific high-focus tokens
for MapTask.

labels, Acknowledge and Reply y, have very simi-
lar attended tokens. In fact, many utterances in Ac-
knowledge and Reply y have the same text form.
Thus, the distinction between the two classes is

highly dependent upon the conversational context.
Also, note that although Reply n is not one of the
most common DAs in MapTask, our model can
still learn the most important tokens for this DA.

6 Conclusions

In this paper, we proposed a novel hierarchical
RNN for learning sequences of DAs. Our model
leverages the hierarchical nature of dialogue data
by using two nested RNNs that capture long-range
dependencies at the conversation level and the ut-
terance level. We further combine the model with
an attention mechanism to focus on salient tokens
in utterances. Our experimental results show that
our model outperforms strong baselines on two
popular datasets: Switchboard and MapTask. In
the future, we plan to address the exposure bias
problem, and incorporate acoustic features and
speaker information into our model.
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