
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 397–407,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Neural Semantic Encoders

Tsendsuren Munkhdalai and Hong Yu
University of Massachusetts, MA, USA

tsendsuren.munkhdalai@umassmed.edu, hong.yu@umassmed.edu

Abstract

We present a memory augmented neural
network for natural language understand-
ing: Neural Semantic Encoders. NSE is
equipped with a novel memory update rule
and has a variable sized encoding memory
that evolves over time and maintains the
understanding of input sequences through
read, compose and write operations. NSE
can also access1 multiple and shared mem-
ories. In this paper, we demonstrated the
effectiveness and the flexibility of NSE
on five different natural language tasks:
natural language inference, question an-
swering, sentence classification, document
sentiment analysis and machine transla-
tion where NSE achieved state-of-the-art
performance when evaluated on publically
available benchmarks. For example, our
shared-memory model showed an encour-
aging result on neural machine translation,
improving an attention-based baseline by
approximately 1.0 BLEU.

1 Introduction

Recurrent neural networks (RNNs) have been suc-
cessful for modeling sequences (Elman, 1990).
Particularly, RNNs equipped with internal short
memories, such as long short-term memories
(LSTM) (Hochreiter and Schmidhuber, 1997)
have achieved a notable success in sequential tasks
(Cho et al., 2014; Vinyals et al., 2015). LSTM is
powerful because it learns to control its short term
memories. However, the short term memories in
LSTM are a part of the training parameters. This
imposes some practical difficulties in training and
modeling long sequences with LSTM.

1By access we mean changing the memory states by the
read, compose and write operations.

Recently several studies have explored ways of
extending the neural networks with an external
memory (Graves et al., 2014; Weston et al., 2015;
Grefenstette et al., 2015). Unlike LSTM, the short
term memories and the training parameters of such
a neural network are no longer coupled and can be
adapted. In this paper we propose a novel class of
memory augmented neural networks called Neu-
ral Semantic Encoders (NSE) for natural language
understanding. NSE offers several desirable prop-
erties. NSE has a variable sized encoding memory
which allows the model to access entire input se-
quence during the reading process; therefore ef-
ficiently delivering long-term dependencies over
time. The encoding memory evolves over time
and maintains the memory of the input sequence
through read, compose and write operations. NSE
sequentially processes the input and supports word
compositionality inheriting both temporal and hi-
erarchical nature of human language. NSE can
read from and write to a set of relevant encod-
ing memories simultaneously or multiple NSEs
can access a shared encoding memory effectively
supporting knowledge and representation sharing.
NSE is flexible, robust and suitable for practical
NLU tasks and can be trained easily by any gradi-
ent descent optimizer.

We evaluate NSE on five different real tasks.
For four of them, our models set new state-of-
the-art results. Our results suggest that a NN
model with the shared memory between encoder
and decoder is a promising approach for sequence
transduction problems such as machine translation
and abstractive summarization. In particular, we
observe that the attention-based neural machine
translation can be further improved by shared-
memory models. We also analyze memory access
pattern and compositionality in NSE and show that
our model captures semantic and syntactic struc-
tures of input sentence.

397

Memory

Read

Input

Output

Shared memory

Input

(a) (b)

Compose Write

Memory

Read

Output
Compose Write

Figure 1: High-level architectures of the Neural Semantic Encoders. NSE reads and writes its own
encoding memory in each time step (a). MMA-NSE accesses multiple relevant memories simultaneously
(b).

2 Related Work

One of the pioneering work that attempts to ex-
tend deep neural networks with an external mem-
ory is Neural Turing Machines (NTM) (Graves et
al., 2014). NTM implements a centralized con-
troller and a fixed-sized random access memory.
The NTM memory is addressable by both con-
tent (i.e. soft attention) and location based access
mechanisms. The authors evaluated NTM on al-
gorithmic tasks such as copying and sorting se-
quences.

Comparison with Neural Turing Machines:
NSE addresses certain drawbacks of NTM. NTM
has a single centralized controller, which is usu-
ally an MLP or RNN while NSE takes a modular
approach. The main controller in NSE is decom-
posed into three separate modules, each of which
performs for read, compose or write operation. In
NSE, the compose module is introduced in addi-
tion to the standard memory update operations (i.e.
read-write) in order to process the memory entries
and input information.

The main advantage of NSE over NTM is in its
memory update. Despite its sophisticated address-
ing mechanism, the NTM controller does not have
mechanism to avoid information collision in the
memory. Particularly the NTM controller emits
two separate set of access weights (i.e. read weight
and erase and write weights) that do not explic-
itly encode the knowledge about where informa-
tion is read from and written to. Moreover the
fixed-size memory in NTM has no memory allo-
cation or de-allocation protocol. Therefore unless
the controller is intelligent enough to track the pre-
vious read/write information, which is hard for an
RNN when processing long sequences, the mem-
ory content is overlapped and information is over-

written throughout different time scales. We think
that this is a potential reason that makes NTM hard
to train and makes the training not stable. We also
note that the effectiveness of the location based ad-
dressing introduced in NTM is unclear. In NSE,
we introduce a novel and systematic memory up-
date approach based on the soft attention mech-
anism. NSE writes new information to the most
recently read memory locations. This is accom-
plished by sharing the same memory key vector
between the read and write modules. The NSE
memory update is scalable and potentially more
robust to train. NSE is provided with a variable
sized memory and thus unlike NTM, the size of the
NSE memory is more relaxed. The novel memory
update mechanism and the variable sized memory
together prevent NSE from the information colli-
sion issue and avoid the need of the memory allo-
cation and de-allocation protocols. Each memory
location of the NSE memory stores a token repre-
sentation in input sequence during encoding. This
provides NSE with an anytime-access to the entire
input sequence including the tokens from the fu-
ture time scales, which is not permitted in NTM,
RNN and attention-based encoders.

Lastly, NTM addresses small algorithmic prob-
lems while NSE focuses on a set of large-scale lan-
guage understanding tasks.

The RNNSearch model proposed in (Bahdanau
et al., 2015) can be seen as a variation of memory
augmented networks due to its ability to read the
historic output states of RNNs with soft attention.
The work of Sukhbaatar et al. (2015) combines the
soft attention with Memory Networks (MemNNs)
(Weston et al., 2015). Similar to RNNSearch,
MemNNs are designed with non-writable mem-
ories. It constructs layered memory representa-

398

tions and showed promising results on both arti-
ficial and real question answering tasks. We note
that RNNSearch and MemNNs avoid the memory
update and management overhead by simply using
a non-writable memory storage. Another variation
of MemNNs is Dynamic Memory Network (Ku-
mar et al., 2016) that is equipped with an episodic
memory and seems to be flexible in different set-
tings.

Although NSE differs from other memory-
augumented NN models in many aspects, they all
use soft attention mechanism with a type of sim-
ilarity measures to retrieve relevant information
from the external memory. For example, NTM im-
plements cosine similarity and MemNNs use vec-
tor dot product. NSE uses the vector dot prod-
uct for the similarity measure in NSE because it is
faster to compute.

Other related work includes Neural Program-
Interpreters (Reed and de Freitas, 2016), which
learns to run sub-programs and to compose them
for high-level programs. It uses execution traces
to provide the full supervision. Researchers have
also explored ways to add unbounded memory to
LSTM (Grefenstette et al., 2015) using a particu-
lar data structure. Although this type of architec-
ture provides a flexible capacity to store informa-
tion, the memory access is constrained by the data
structure used for the memory bank, such as stack
and queue.

Overall it is expensive to train and to scale the
previously proposed memory-based models. Most
models required a set of clever engineering tricks
to work successfully. Most of the aforementioned
memory augmented neural networks have been
tested on synthetic tasks whereas in this paper we
evaluated NSE on a wide range of real and large-
scale natural language applications.

3 Proposed Approach

Our training set consists of N examples
{Xi, Y i}Ni=1, where the input Xi is a sequence
wi1, w

i
2, . . . , w

i
Ti

of tokens while the output Y i can
be either a single target or a sequence. We trans-
form each input token wt to its word embedding
xt.

Our Neural Semantic Encoders (NSE) model
has four main components: read, compose and
write modules and an encoding memory M ∈
Rk×l with a variable number of slots, where k
is the embedding dimension and l is the length

of the input sequence. Each memory slot vector
mt ∈ Rk corresponds to the vector representation
of information about word wt in memory. In par-
ticular, the memory is initialized by the embedding
vectors {xt}lt=1 and is evolved over time, through
read, compose and write operations. Figure 1 (a)
illustrates the architecture of NSE.

3.1 Read, Compose and Write
NSE performs three main operations in every time
step. After initializing the memory slots with
the corresponding input representations, NSE pro-
cesses an embedding vector xt and retrieves a
memory slot mr,t that is expected to be associa-
tively coherent (i.e. semantically associated) with
the current input word wt.2 The slot location r
(ranging from 1 to l) is defined by a key vector zt
which the read module emits by attending over the
memory slots. The compose module implements a
composition operation that combines the memory
slot with the current input. The write module then
transforms the composition output to the encoding
memory space and writes the resulting new repre-
sentation into the slot location of the memory. In-
stead of composing the raw embedding vector xt,
we use the hidden state ot produced by the read
module at time t

Concretely, let el ∈ Rl and ek ∈ Rk be vectors
of ones and given a read function fLSTMr , a com-
position fMLP

c and a write fLSTMw NSE in Figure
1 (a) computes the key vector zt, the output state
ht, and the encoding memory Mt in time step t as

ot = fLSTMr (xt) (1)

zt = softmax(o>t Mt−1) (2)

mr,t = z>t Mt−1 (3)

ct = fMLP
c (ot,mr,t) (4)

ht = fLSTMw (ct) (5)

Mt = Mt−1(1− (zt⊗ek)>)+(ht⊗el)(zt⊗ek)>
(6)

where 1 is a matrix of ones, ⊗ denotes the outer
product which duplicates its left vector l or k times
to form a matrix. The read function fLSTMr se-
quentially maps the word embeddings to the inter-
nal space of the memory Mt−1. Then Equation 2
looks for the slots related to the input by comput-
ing association degree between each memory slot

2Such a coherence is calculated by a soft attention with
dot product similarity.

399

and the hidden state ot. We calculate the associa-
tion degree by the dot product and transform this
scores to the fuzzy key vector zt by normalizing
with softmax function. Since our key vector is
fuzzy, the slot to be composed is retrieved by tak-
ing weighted sum of the all slots as in Equation 3.
This process can also be seen as the soft attention
mechanism (Bahdanau et al., 2015). In Equation 4
and 5, we compose and process the retrieved slot
with the current hidden state and map the result-
ing vector to the encoder output space. Finally, we
write the new representation to the memory loca-
tion pointed by the key vector in Equation 6 where
the key vector zt emitted by the read module is
reused to inform the write module of the most re-
cently read slots. First the slot information that
was retrieved is erased and then the new represen-
tation is located. NSE performs this iterative pro-
cess until all words in the input sequence are read.
The encoding memories {M}Tt=1 and output states
{h}Tt=1 are further used for the tasks.

Although NSE reads a single word at a time,
it has an anytime-access to the entire sequence
stored in the encoding memory. With the encoding
memory, NSE maintains a mental image of the in-
put sequence. The memory is initialized with the
raw embedding vector at time t = 0. We term such
a freshly initialized memory a baby memory. As
NSE reads more input content in time, the baby
memory evolves and refines the encoded mental
image.

The read fLSTMr , the composition fMLP
c and

the write fLSTMw functions are neural networks
and are the training parameters in our NSE. As the
name suggests, we use LSTM and multi-layer per-
ceptron (MLP) in this paper. Since NSE is fully
differentiable, it can be trained with any gradient
descent optimizer.

3.2 Shared and Multiple Memory Accesses

For sequence to sequence transduction tasks like
question answering, natural language inference
and machine translation, it is beneficial to access
other relevant memories in addition to its own one.
The shared or the multiple memory access allows
a set of NSEs to exchange knowledge represen-
tations and to communicate with each other to ac-
complish a particular task throughout the encoding
memory.

NSE can be extended easily, so that it is able
to read from and write to multiple memories si-

multaneously or multiple NSEs are able to access
a shared memory. Figure 1 (b) depicts a high-
level architectural diagram of a multiple memory
access-NSE (MMA-NSE). The first memory (in
green) is the shared memory accessed by more
than one NSEs. Given a shared memory Mn ∈
Rk×n that has been encoded by processing a rele-
vant sequence with length n, MMA-NSE with the
access to one relevant memory is defined as

ot = fLSTMr (xt) (7)

zt = softmax(o>t Mt−1) (8)

mr,t = z>t Mt−1 (9)

znt = softmax(o>t M
n
t−1) (10)

mn
r,t = zn>t M

n
t−1 (11)

ct = fMLP
c (ot,mr,t,m

n
r,t) (12)

ht = fLSTMw (ct) (13)

Mt = Mt−1(1− (zt⊗ek)>)+(ht⊗el)(zt⊗ek)>
(14)

Mn
t = Mn

t−1(1−(znt ⊗ek)>)+(ht⊗en)(znt ⊗ek)>
(15)

and this is almost the same as standard NSE. The
read module now emits the additional key vector
znt for the shared memory and the composition
function fMLP

c combines more than one slots.
In MMA-NSE, the different memory slots are

retrieved from the shared memories depending on
their encoded semantic representations. They are
then composed together with the current input and
written back to their corresponding slots. Note
that MMA-NSE is capable of accessing a variable
number of relevant shared memories once a com-
position function that takes in dynamic inputs is
chosen.

4 Experiments

We describe in this section experiments on five dif-
ferent tasks, in order to show that NSE can be ef-
fective and flexible in different settings.3 We re-
port results on natural language inference, ques-
tion answering (QA), sentence classification, doc-
ument sentiment analysis and machine translation.
All five tasks challenge a model in terms of lan-
guage understanding and semantic reasoning.

The models are trained using Adam (Kingma
and Ba, 2014) with hyperparameters selected on

3Code for the experiments and NSEs is available at
https://bitbucket.org/tsendeemts/nse.

400

Model d |θ|M Train Test
Classifier with handcrafted features (Bowman et al., 2015) - - 99.7 78.2
LSTM encoders (Bowman et al., 2015) 300 3.0M 83.9 80.6
Dependency Tree CNN encoders (Mou et al., 2016) 300 3.5M 83.3 82.1
SPINN-PI encoders (Bowman et al., 2016) 300 3.7M 89.2 83.2
NSE 300 3.4M 86.2 84.6
MMA-NSE 300 6.3M 87.1 84.8
LSTM attention (Rocktäschel et al., 2016) 100 242K 85.4 82.3
LSTM word-by-word attention (Rocktäschel et al., 2016) 100 252K 85.3 83.5
MMA-NSE attention 300 6.5M 86.9 85.4
mLSTM word-by-word attention (Wang and Jiang, 2015) 300 1.9M 92.0 86.1
LSTMN with deep attention fusion (Cheng et al., 2016) 450 3.4M 89.5 86.3
Decomposable attention model (Parikh et al., 2016) 200 582K 90.5 86.8
Full tree matching NTI-SLSTM-LSTM global attention (Munkhdalai and Yu, 2017) 300 3.2M 88.5 87.3

Table 1: Training and test accuracy on natural language inference task. d is the word embedding size and
|θ|M the number of model parameters.

development set. We chose two one-layer LSTM
for read/write modules on the tasks other than
QA on which we used two-layer LSTM. The pre-
trained 300-D Glove 840B vectors and 100-D
Glove 6B vectors (Pennington et al., 2014) were
obtained for the word embeddings.4 The word
embeddings are fixed during training. The embed-
dings for out-of-vocabulary words were set to zero
vector. We crop or pad the input sequence to a
fixed length. A padding vector was inserted when
padding. The models were regularized by using
dropouts and an l2 weight decay.5

4.1 Natural Language Inference
The natural language inference is one of the main
tasks in language understanding. This task tests
the ability of a model to reason about the seman-
tic relationship between two sentences. In order to
perform well on the task, NSE should be able to
capture sentence semantics and be able to reason
the relation between a sentence pair, i.e., whether
a premise-hypothesis pair is entailing, contradic-
tory or neutral. We conducted experiments on
the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015), which consists of
549,367/9,842/9,824 premise-hypothesis pairs for
train/dev/test sets and target label indicating their
relation.

Following the setting in (Mou et al., 2016; Bow-
man et al., 2016) the NSE output for each sen-
tence was the input to a MLP, where the input layer
computes the concatenation [hpl ;h

h
l], absolute dif-

ference hpl − hhl and elementwise product hpl · hhl
of the two sentence representations. In addition,
the MLP has a hidden layer with 1024 units with

4http://nlp.stanford.edu/projects/glove/
5More detail on hyper-parameters can be found in code.

ReLU activation and a softmax layer. We set the
batch size to 128, the initial learning rate to 3e-4
and l2 regularizer strength to 3e-5, and train each
model for 40 epochs. The write/read neural nets
and the last linear layer were regularized by using
30% dropouts.

We evaluated three different variations of NSE
show in Table 1. The NSE model encodes each
sentence simultaneously by using a separate mem-
ory for each sentence. The second model - MMA-
NSE first encodes the premise and then the hy-
pothesis sentence by sharing the premise encoded
memory in addition to the hypothesis memory. For
the third model, we use inter-sentence attention
which selectively reconstructs the premise repre-
sentation.

Table 1 shows the results of our models along
with the results of published methods for the task.
The classifier with handcrafted features extracts a
set of lexical features. The next group of models
are based on sentence encoding. While most of
the sentence encoder models rely solely on word
embeddings, the dependency tree CNN and the
SPINN-PI models make use of sentence parser
output. The SPINN-PI model is similar to NSE in
spirit that it also explicitly computes word compo-
sition. However, the composition in the SPINN-
PI is guided by supervisions from a dependency
parser. NSE outperformed the previous sentence
encoders on this task. The MMA-SNE further
slightly improved the result, indicating that read-
ing the premise memory is helpful while encoding
the hypothesis.

The last set of methods designs inter-sentence
relation with parameterized soft attention (Bah-
danau et al., 2015). Our MMA-NSE attention
model is similar to the LSTM attention model.

401

Particularly, it attends over the premise encoder
outputs {hp}Tt=1 in respect to the final hypothe-
sis representation hhl and constructs an attentively
blended vector of the premise. This model ob-
tained 85.4% accuracy score. The best performing
model for this task performs tree matching with
attention mechanism and LSTM.

4.2 Answer Sentence Selection

Answer sentence selection is an integral part of the
open-domain question answering. For this task, a
model is trained to identify the correct sentences
that answer a factual question, from a set of candi-
date sentences. We experiment on WikiQA dataset
constructed from Wikipedia (Yang et al., 2015).
The dataset contains 20,360/2,733/6,165 QA pairs
for train/dev/test sets.

The MLP setup used in the language inference
task is kept same, except that we now replace the
softmax layer with a sigmoid layer and model
the following conditional probability distribution.

pθ(y = 1|hql , hal) = sigmoid(oQA) (16)

where hql and hal are the question and the answer
encoded vectors and oQA denotes the output of the
hidden layer of the MLP. We trained the MMA-
NSE attention model to minimize the sigmoid
cross entropy loss. MMA-NSE first encodes the
answers and then the questions by accessing its
own and the answer encoding memories. In our
preliminary experiment, we found that the multi-
ple memory access and the attention over answer
encoder outputs {ha}Tt=1 are crucial to this prob-
lem. Following previous work, we adopt MAP and
MRR as the evaluation metrics for this task.6

We set the batch size to 4 and the initial learning
rate to 1e-5, and train the model for 10 epochs. We
used 40% dropouts after word embeddings and no

6We used trec eval script to calculate the evaluation met-
rics

Model MAP MRR
Classifier with features (2013) 0.5993 0.6068
Paragraph Vector (2014) 0.5110 0.5160
Bigram-CNN (2014) 0.6190 0.6281
3-layer LSTM (2016) 0.6552 0.6747
3-layer LSTM attention (2016) 0.6639 0.6828
NASM (2016) 0.6705 0.6914
MMA-NSE attention 0.6811 0.6993

Table 2: Experiment results on answer sentence
selection.

l2 weight decay. The word embeddings are pre-
trained 300-D Glove 840B vectors. For this task,
a linear mapping layer transforms the 300-D word
embeddings to the 512-D LSTM inputs.

Table 2 presents the results of our model and
the previous models for the task.7 The classifier
with handcrafted features is a SVM model trained
with a set of features. The Bigram-CNN model is a
simple convolutional neural net. While the LSTM
and LSTM attention models outperform the pre-
vious best result by nearly 5-6% by implement-
ing deep LSTM with three hidden layers, NASM
improves it further and sets a strong baseline by
combining variational auto-encoder (Kingma and
Welling, 2014) with the soft attention. Our MMA-
NSE attention model exceeds the NASM by ap-
proximately 1% on MAP and 0.8% on MRR for
this task.

4.3 Sentence Classification

We evaluated NSE on the Stanford Sentiment
Treebank (SST) (Socher et al., 2013). This dataset
comes with standard train/dev/test sets and two
subtasks: binary sentence classification or fine-
grained classification of five classes. We trained
our model on the text spans corresponding to la-
beled phrases in the training set and evaluated the
model on the full sentences.

The sentence representations were passed to a
two-layer MLP for classification. The first layer
of the MLP has ReLU activation and 1024 or
300 units for binary or fine-grained setting. The
second layer is a softmax layer. The read/write
modules are two one-layer LSTM with 300 hidden
units and the word embeddings are the pre-trained
300-D Glove 840B vectors. We set the batch size
to 64, the initial learning rate to 3e-4 and l2 regu-
larizer strength to 3e-5, and train each model for
25 epochs. The write/read neural nets and the last
linear layer were regularized by 50% dropouts.

Table 3 compares the result of our model with
the state-of-the-art methods on the two subtasks.
Most best performing methods exploited the parse
tree provided in the treebank on this task with
the exception of the DMN. The Dynamic Memory
Network (DMN) model is a memory-augmented
network. Our model outperformed the DMN and
set the state-of-the-art results on both subtasks.

7Inclusion of simple word count feature improves the per-
formance by around 0.15-0.3 across the board

402

Model Bin FG
RNTN (Socher et al., 2013) 85.4 45.7
Paragraph Vector (Le and Mikolov, 2014) 87.8 48.7
CNN-MC (Kim, 2014) 88.1 47.4
DRNN (Irsoy and Cardie, 2015) 86.6 49.8
2-layer LSTM(Tai et al., 2015) 86.3 46.0
Bi-LSTM(Tai et al., 2015) 87.5 49.1
CT-LSTM(Tai et al., 2015) 88.0 51.0
DMN (Kumar et al., 2016) 88.6 52.1
NSE 89.7 52.8

Table 3: Test accuracy for sentence classification.
Bin: Binary, FG: fine-grained 5 classes.

4.4 Document Sentiment Analysis

We evaluated our models for document-level sen-
timent analysis on two publically available large-
scale datasets: the IMDB consisting of 335,018
movie reviews and 10 different classes and Yelp
13 consisting of 348,415 restaurant reviews and 5
different classes. Each document in the datasets
is associated with human ratings and we used
these ratings as gold labels for sentiment classifi-
cation. Particularly, we used the pre-split datasets
of (Tang et al., 2015).

We stack a NSE or LSTM on the top of an-
other NSE for document modeling. The first NSE
encodes the sentences and the second NSE or
LSTM takes sentence encoded outputs and con-
structs document representations. The document
representation is given to a output softmax layer.
The whole network is trained jointly by backprop-
agating the cross entropy loss. We used one-layer
LSTM with 100 hidden units for the read/write
modules and the pre-trained 100-D Glove 6B vec-
tors for this task. We set the batch size to 32,
the initial learning rate to 3e-4 and l2 regular-
izer strength to 1e-5, and trained each model
for 50 epochs. The write/read neural nets and
the document-level NSE/LSTM were regularized
by 15% dropouts and the softmax layer by 20%
dropouts. In order to speedup the training, we cre-
ated document buckets by considering the number
of sentences per document, i.e., documents with
the same number of sentences were put together
in the same bucket. The buckets were shuffled
and updated per epoch. We did not use curricu-
lum scheduling (Bengio et al., 2009), although it
is observed to help sequence training.

Table 4 shows our results. We report two per-
formance metrics: accuracy and MSE. The best
results on the task were previously obtained by
Conv-GRNN and LSTM-GRNN, which are also

Model Yelp 13 IMDB
Acc MSE Acc MSE

Classifier (2015) 59.8 0.68 40.5 3.56
PV (2015) 57.7 0.86 34.1 4.69
CNN (2015) 59.7 0.76 37.6 3.30
Conv-GRNN (2015) 63.7 0.56 42.5 2.71
LSTM-GRNN (2015) 65.1 0.50 45.3 3.00
NSE-NSE 66.6 0.48 48.3 1.94
NSE-LSTM 67.0 0.47 48.1 1.98

Table 4: Results of document-level sentiment clas-
sification. PV: paragraph vector, Acc: accuracy,
and MSE: mean squared error.

Model Train Dev Test
Baseline LSTM-LSTM 28.06 17.96 17.02
NSE-LSTM 28.73 17.67 17.13
NSE-NSE 29.89 18.53 17.93

Table 5: BLEU scores for English-German trans-
lation task.

stacked models. These models first learn the sen-
tence representations with a CNN or LSTM and
then combine them for document representation
using a gated recurrent neural network (GRNN).
Our NSE models outperformed the previous state-
of-the-art models in terms of both accuracy and
MSE, by approximately 2-3%. On the other hand,
all systems tend to show poor results on the IMDB
dataset. That is, the IMDB dataset contains longer
documents than the Yelp 13 and it has 10 classes
while the Yelp 13 dataset has five classes to distin-
guish.8 The stacked NSEs (NSE-NSE) performed
slightly better than the NSE-LSTM on the IMDB
dataset. This is possibly due to the encoding mem-
ory of the document level NSE that preserves the
long dependency in documents with a large num-
ber of sentences.

4.5 Machine Translation
Lastly, we conducted an experiment on neural ma-
chine translation (NMT). The NMT problem is
mostly defined within the encoder-decoder frame-
work (Kalchbrenner and Blunsom, 2013; Cho et
al., 2014; Sutskever et al., 2014). The encoder
provides the semantic and syntactic information
about the source sentences to the decoder and the
decoder generates the target sentences by condi-
tioning on this information and its partially pro-
duced translation. For an efficient encoding, the
attention-based NTM was introduced (Bahdanau
et al., 2015).

8The average number of sentences and words in a docu-
ment for IMDB: 14, 152 and Yelp 13: 9, 326

403

For NTM, we implemented three different mod-
els. The first model is a baseline model and is
similar to the one proposed in (Bahdanau et al.,
2015) (RNNSearch). This model (LSTM-LSTM)
has two LSTM for the encoder/decoder and has
the soft attention neural net, which attends over
the source sentence and constructs a focused en-
coding vector for each target word. The second
model is an NSE-LSTM encoder-decoder which
encodes the source sentence with NSE and gen-
erates the targets with the LSTM network by us-
ing the NSE output states and the attention net-
work. The last model is an NSE-NSE setup,
where the encoding part is the same as the NSE-
LSTM while the decoder NSE now uses the out-
put state and has an access to the encoder mem-
ory, i.e., the encoder and the decoder NSEs ac-
cess a shared memory. The memory is encoded
by the first NSEs and then read/written by the de-
coder NSEs. We used the English-German trans-
lation corpus from the IWSLT 2014 evaluation
campaign (Cettolo et al., 2012). The corpus con-
sists of sentence-aligned translation of TED talks.
The data was pre-processed and lowercased with
the Moses toolkit.9 We merged the dev2010 and
dev2012 sets for development and the tst2010,
tst2011 and tst2012 sets for test data10. Sentence
pairs with length longer than 25 words were fil-
tered out. This resulted in 110,439/4,998/4,793
pairs for train/dev/test sets. We kept the most fre-
quent 25,000 words for the German dictionary.
The English dictionary has 51,821 words. The
300-D Glove 840B vectors were used for embed-
ding the words in the source sentence whereas a
lookup embedding layer was used for the target
German words. Note that the word embeddings
are usually optimized along with the NMT mod-
els. However, for the evaluation purpose we in this
experiment do not optimize the English word em-
beddings. Besides, we do not use a beam search to
generate the target sentences.

The LSTM encoder/decoders have two layers
with 300 units. The NSE read/write modules are
two one-layer LSTM with the same number of
units as the LSTM encoder/decoders. This en-
sures that the number of parameters of the mod-
els is roughly the equal. The models were trained
to minimize word-level cross entropy loss and
were regularized by 20% input dropouts and the

9https://github.com/moses-smt/mosesdecoder
10We modified prepareData.sh script:

https://github.com/facebookresearch/MIXER

30% output dropouts. We set the batch size to
128, the initial learning rate to 1e-3 for LSTM-
LSTM and 3e-4 for the other models and l2 regu-
larizer strength to 3e-5, and train each model for
40 epochs. We report BLEU score for each mod-
els.11

Table 5 reports our results. The baseline LSTM-
LSTM encoder-decoder (with attention) obtained
17.02 BLEU on the test set. The NSE-LSTM im-
proved the baseline slightly. Given this very small
improvement of the NSE-LSTM, it is unclear
whether the NSE encoder is helpful in NMT. How-
ever, if we replace the LSTM decoder with another
NSE and introduce the shared memory access to
the encoder-decoder model (NSE-NSE), we im-
prove the baseline result by almost 1.0 BLEU. The
NSE-NSE model also yields an increasing BLEU
score on dev set. The result demonstrates that the
attention-based NMT systems can be improved by
a shared-memory encoder-decoder model. In ad-
dition, memory-based NMT systems should per-
form well on translation of long sequences by pre-
serving long term dependencies.

5 Qualitative Analysis

5.1 Memory Access and Compositionality
NSE is capabable of performing multiscale com-
position by retrieving associative slots for a partic-
ular input at a time step. We analyzed the memory
access order and the compositionality of memory
slot and the input word in the NSE model trained
on the SNLI data.

Figure 2 shows the word association graphs for
the two sentence picked from SNLI test set. The
association graph was constructed by inspecting
the key vector z. For an input word, we connect
it to the most active slot pointed by z12.

Note the graph components clustered around
the semantically rich words: ”sits”, ”wall” and
”autumn” (a) and ”Three”, ”puppies”, ”tub” and
”vet” (b). The memory slots corresponding to
words that are semantically rich in the current con-
text are the most frequently accessed. The graph is
able to capture certain syntactic structures includ-
ing phrases (e.g., ”hand built rock wall”) and mod-
ifier relations (between ”sits” and ”quietly” and

11We computed the BLEU score with multi-bleu.perl script
of the Moses toolkit

12Since z is fuzzy, we visualize the highest scoring slot.
For a few inputs, z pointed to a slot corresponding to the same
word. In this case, we masked out those slots and showed the
second best scoring slot.

404

(a) (b)

Figure 2: Word association or composition graphs produced by NSE memory access. The directed arcs
connect the words that are composed via compose module. The source nodes are input words and the
destination nodes (pointed by the arrows) correspond to the accessed memory slots. < S > denotes the
beginning of sequence.

between ”tub” and ”sprayed with water”). An-
other interesting property is that the model tends
to perform sensible compositions while process-
ing the input sentence. For example, NSE re-
trieved the memory slot corresponding to ”wall”
or ”Three” when reading the input ”rock” or
”are”.

In Appendix A, we show a step-by-step visu-
alization of NSE memory states for the first sen-
tence. Note how the encoding memory is evolved
over time. In time step four (t = 4), the mem-
ory slot for ”quietly” encodes information about
”quiet(ly) little child”. When t = 6, the model
forms another composition involving ”quietly”,
”quietly sits”. In the last time step, we are
able to find the most or the least frequently ac-
cessed slots in the memory. The least accessed
slots correspond to function words while the fre-
quently accessed slots are content words and tend
to carry out rich semantics and intrinsic compo-
sitions found in the input sentence. Overall the
model is less constrained and is able to compose
multiword expressions.

6 Conclusion

Our proposed memory augmented neural net-
works have achieved the state-of-the-art results
when evaluated on five representative NLP tasks.
NSE is capable of building an efficient architec-
ture of the single, shared and multiple memory
accesses for a specific NLP task. For example,
for the NLI task NSE accesses premise encoded
memory when processing hypothesis. For the QA
task, NSE accesses answer encoded memory when
reading question for QA. In machine translation,
NSE shares a single encoded memory between en-
coder and decoder. Such flexibility in the architec-
tural choice of the NSE memory access allows for

the robust models for a better performance.
The initial state of the NSE memory stores in-

formation about each word in the input sequence.
We in this paper used word embeddings to rep-
resent the words in the memory. Different vari-
ations of word representations such as character-
based models are left to be evaluated for memory
initialization in the future. We plan to extend NSE
so that it learns to select and access a relevant sub-
set from a memory set. One could also explore
unsupervised variations of NSE, for example, to
train them to produce encoding memory and repre-
sentation vector of entire sentences or documents
using either new or existing models such as the
skip-gram model (Mikolov et al., 2013).

Acknowledgments

We would like to thank Abhyuday Jagannatha and
the anonymous reviewers for their insightful com-
ments and suggestions. This work was supported
in part by the grant HL125089 from the National
Institutes of Health (NIH). Any opinions, findings
and conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect those of the sponsor.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48. ACM.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

405

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. 2016. A fast unified model
for parsing and sentence understanding. CoRR,
abs/1603.06021.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Wit3: Web inventory of transcribed
and translated talks. In EAMT, Trento, Italy.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. CoRR, abs/1601.06733.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive science, 14(2):179–211.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
transduce with unbounded memory. In NIPS 2015,
pages 1819–1827.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ozan Irsoy and Claire Cardie. 2015. Modeling compo-
sitionality with multiplicative recurrent neural net-
works. In ICLR 2015.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In EMNLP, vol-
ume 3, page 413.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In ICLR.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In ICLR 2014.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Brad-
bury, Robert English, Brian Pierce, Peter Ondruska,
Ishaan Gulrajani, and Richard Socher. 2016. Ask
me anything: Dynamic memory networks for natu-
ral language processing. CoRR, abs/1506.07285.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In
ICML 2014.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural
variational inference for text processing. In ICLR
2016.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS, pages 3111–3119.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui
Yan, and Zhi Jin. 2016. Recognizing entailment
and contradiction by tree-based convolution. In ACL
2016.

Tsendsuren Munkhdalai and Hong Yu. 2017. Neural
tree indexers for text understanding.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. arXiv preprint
arXiv:1606.01933.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, volume 14, pages
1532–1543.

Scott Reed and Nando de Freitas. 2016. Neural
programmer-interpreters. In ICLR 2016.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In ICLR 2016.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP 2013.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In NIPS 2015,
pages 2431–2439.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In ACL 2015.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In EMNLP.

Wen tau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013. Question answering using
enhanced lexical semantic models. In ACL 2013.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In NIPS.

Shuohang Wang and Jing Jiang. 2015. Learning
natural language inference with LSTM. CoRR,
abs/1512.08849.

406

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In ICML 2015.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In EMNLP 2015.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep learning for answer
sentence selection. In NIPS Deep Learning Work-
shop 2014.

A Step-by-step visualization of memory
states in NSE

Each small table represents the memory state at a
single time step. The current time step and input
token are listed on the top of the table. The mem-
ory slots pointed by the query vector is highlighted
in red color. The brackets represent the word com-
position order in each slot.

t=0
input:
<S>
A
little
child
sits
quietly
on
a
hand
built
rock
wall
in
autumn

t=1
input: <S>
<S>
(<S>A)
little
child
sits
quietly
on
a
hand
built
rock
wall
in
autumn

t=2
input: A
(A <S>)
(<S>A)
little
child
sits
quietly
on
a
hand
built
rock
wall
in
autumn

t=3
input: little
(A <S>)
(<S>A)
little
child
sits
(little quietly)
on
a
hand
built
rock
wall
in
autumn

t=4
input: child
(A <S>)
(<S>A)
little
child
sits
(child (little quietly))
on
a
hand
built
rock
wall
in
autumn

t=5
input: sits
(A <S>)
(<S>A)
little
child
sits
(child (little quietly))
on
a
hand
built
rock
wall
in
(sits autumn)

t=6
input: quietly
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
built
rock
wall
in
(sits autumn)

t=7
input: on
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
built
rock
wall
in
(on (sits autumn))

t=8
input: a
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
(a built)
rock
wall
in
(on (sits autumn))

t=9
input: hand
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
(a built)
rock
(hand wall)
in
(on (sits autumn))

t=10
input: built
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
(a built)
rock
(built (hand wall))
in
(on (sits autumn))

t=11
input: rock
(A <S>)
(<S>A)
little
child
(quietly sits)
(child (little quietly))
on
a
hand
(a built)
rock
(rock (built (hand wall)))
in
(on (sits autumn))

t=12
input: wall
(A <S>)
(<S>A)
little
child
(wall (quietly sits))
(child (little quietly))
on
a
hand
(a built)
rock
(rock (built (hand wall)))
in
(on (sits autumn))

t=13
input: in
(A <S>)
(<S>A)
little
child
(wall (quietly sits))
(child (little quietly))
on
a
hand
(a built)
(in rock)
(rock (built (hand wall)))
in
(on (sits autumn))

t=14
input: autumn
(A <S>)
(<S>A)
little
child
(wall (quietly sits))
(child (little quietly))
on
a
hand
(autumn (a built))
(in rock)
(rock (built (hand wall)))
in
(on (sits autumn))

407

