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Abstract

Automated discourse analysis tools based
on Natural Language Processing (NLP)
aiming at the diagnosis of language-
impairing dementias generally extract sev-
eral textual metrics of narrative transcripts.
However, the absence of sentence bound-
ary segmentation in the transcripts pre-
vents the direct application of NLP meth-
ods which rely on these marks to func-
tion properly, such as taggers and parsers.
We present the first steps taken towards
automatic neuropsychological evaluation
based on narrative discourse analysis, pre-
senting a new automatic sentence segmen-
tation method for impaired speech. Our
model uses recurrent convolutional neu-
ral networks with prosodic, Part of Speech
(PoS) features, and word embeddings. It
was evaluated intrinsically on impaired,
spontaneous speech, as well as, normal,
prepared speech, and presents better re-
sults for healthy elderly (CTL) (F1 = 0.74)
and Mild Cognitive Impairment (MCI) pa-
tients (F1 = 0.70) than the Conditional
Random Fields method (F1 = 0.55 and
0.53, respectively) used in the same con-
text of our study. The results suggest that
our model is robust for impaired speech
and can be used in automated discourse
analysis tools to differentiate narratives
produced by MCI and CTL.

1 Introduction

Mild Cognitive Impairment (MCI) has recently re-
ceived much attention, as it may represent a pre-
clinical state of Alzheimer’s disease (AD). MCI
can affect one or multiple cognitive domains (e.g.
memory, language, visuospatial skills and the ex-

ecutive function); the kind that affects memory,
called amnestic MCI, is the most frequent and that
which most often converts to AD (Janoutová et al.,
2015). As dementias are chronic progressive dis-
eases, it is important to identify them in the early
stages, because early detection yields a greater
chance of success for non-pharmacological treat-
ment strategies such as cognitive training, physical
activity and socialization (Teixeira et al., 2012).
The definition of MCI diagnostic criteria is con-
ducted mainly by the cognitive symptoms pre-
sented by patients in standardized tests and by
functional impairments in daily life (McKhann et
al., 2011). Difficulties related with narrative dis-
course deficits (e.g. repetitions or gaps during
the narrative) may lead an elderly individual to
look for a specialist. Narrative discourse is the re-
production of an experienced episode (necessarily
evoking memory), respecting temporal and causal
relations among events. Although MCI is clini-
cally characterized by episodic memory deficits,
language impairment may also occur.

Certain widely used neuropsychological tests
require patients to retell or understand a story.
This is the case of the logical memory test, where
one reproduces a story after listening to it. The
higher the number of recalled elements from the
narrative, the higher the memory score (Wech-
sler, 1997; Bayles and Tomoeda, 1991; Morris et
al., 2006). However, the main difficulties in ap-
plying these tests are: (i) time required, since it
is a manual task; and (ii) the subjectivity of the
clinician. Therefore, automatic analysis of dis-
course production is seen as a promising solution
for MCI diagnosis, because its early detection en-
sures a greater chance of success in addressing
potentially reversible factors (Muangpaisan et al.,
2012). Since discourse is a natural form of com-
munication, it favors the observation of the pa-
tient’s functionality in everyday life. Moreover, it
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provides data for observing the language-cognitive
skills interface, such as executive functions (plan-
ning, organizing, updating and monitoring data).

With regard to the Wechsler Logical Memory
(WLM) test, the original narrative used is short,
allowing for the use of Automatic Speech Recog-
nition (ASR) output even without capitalization
and sentence segmentation, as shown by Lehr et
al. (2012) for English. They based their method
on automatic alignment of the original and patient
transcripts in order to calculate the number of re-
called elements.

The evaluation of narrative discourse pro-
duction from the standpoint of linguistic im-
pairment is an attractive alternative as it al-
lows for linguistic microstructure analysis, includ-
ing phonetic-phonological, morphosyntactic and
semantic-lexical components, as well as semantic-
pragmatic macrostructures. Automated discourse
analysis tools based on Natural Language Pro-
cessing (NLP) resources and tools aiming at the
diagnosis of language-impairing dementias via
machine learning methods are already available
for the English language (Fraser et al., 2015b;
Yancheva et al., 2015; Roark et al., 2011) and
also for Brazilian Portuguese (BP) (Aluı́sio et al.,
2016). The latter study used a publicly available
tool, Coh-Metrix-Dementia1, to extract 73 textual
metrics of narrative transcripts, comprising several
levels of linguistic analysis from word counts to
semantics and discourse. However, the absence
of sentence boundary segmentation in transcripts
prevents the direct application of NLP methods
that rely on these marks in order for the tools
to function properly. To our knowledge, only
one study evaluating automatic sentence segmen-
tation in English transcripts of elderly aphasic ex-
ists (Fraser et al., 2015a).

The purpose of this paper is to present our
method, DeepBond, for automatic sentence seg-
mentation of spontaneous speech of healthy el-
derly (CTL) and MCI patients. Although it was
evaluated for BP data, it can be adapted to other
languages as well.

2 Related Work

The sentence boundary detection task has been
treated by many researchers. Liu et al. (2006)
investigated the imbalanced data problem, since
there are more non-boundary words than not; their

1http://143.107.183.175:22380/

study was carried out using two speech corpora:
conversational telephone and broadcast news, both
for English.

More recent studies have focused on Condi-
tional Random Field (CRF) and Neural Network
models. Wang et al. (2012) and Hasan et
al. (2014) use CRF based methods to iden-
tify word boundaries in speech corpora datasets,
more specifically on English broadcast news data
and English conversational speech (lecture record-
ings), respectively. Khomitsevich et al. (2015),
similar to our work, used a combination of two
models, one based on Support Vector Machines to
deal with prosodic information, and other based
on CRF to deal with lexical information. They
combine the two models using a logistic regres-
sion classifier.

Xu et al. (2014) uses a combination of CRF
and a Deep neural network (DNN) to detect sen-
tence boundaries on broadcast news data. Che et
al. (2016) uses two different convolutional neural
network (CNN), one which moves in only one di-
mension and another which moves in two. They
achieved good results on a TED talks dataset. Tilk
and Alumäe (2015) use a recurrent neural net-
work (RNN) with long short-term memory units
to restore punctuation in speech transcripts from
broadcast news and conversations.

Although there are proposed methods for
sentence segmentation of Portuguese datasets
(Silla Jr. and Kaestner, 2004; Batista and Mamede,
2011; López and Pardo, 2015), none of them
are used for transcriptions produced in a clini-
cal setting for the elderly with dementia and re-
lated syndromes. The study most similar to our
scenario is (Fraser et al., 2015a), which proposes
a segmentation method for aphasic speech based
on lexical, PoS and prosodic features using tools
and a generic acoustic model trained for English.
Their approach is based on a CRF model, and the
best results for this study were obtained for non-
spontaneous broadcast news data.

Our method uses recurrent convolutional neu-
ral networks with prosodic, PoS features, and also
word embeddings and was evaluated intrinsically
on impaired, spontaneous speech and normal, pre-
pared speech. Although DNNs have already been
used for this task, our work was the first, to the
best of our knowledge, to evaluate them on im-
paired speech.
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3 Datasets

A total of 60 participants from a research project
on diagnostic tools for language impaired de-
mentias produced narratives used to evaluate our
method. Two datasets were used to train our model
(Sections 3.1 and 3.2). As a preprocessing step
we have removed capitalization information and
in order to simulate high-quality ASR, we left all
speech disfluences intact. Demographic informa-
tion for participants in our study is presented in
Table 1. A third dataset was used in robustness
tests (Section 3.3).

Info CTL MCI AD

Avg. Age 74.8 73.3 78.2
Avg. Education 11.4 10.8 8.6
No. of Male/Female 4/16 6/14 10/10

Table 1: Demographic information of participants
in the Cinderella dataset. The Avg. Education is
given in years.

3.1 The Cinderella Dataset
The Cinderella dataset consists of spontaneous
speech narratives produced during a test to elicit
narrative discourse with visual stimuli, using a
book consisting of sequenced pictures based on
the Cinderella story. In the test, an individual ver-
bally tells the story to the examiner based on the
pictures. The narrative is manually transcribed by
a trained annotator who scores the narrative by
counting the number of recalled propositions.

This dataset consists of 60 narrative texts from
BP speakers, 20 controls, 20 with AD, and 20 with
MCI, diagnosed at the Medical School of Uni-
versity of São Paulo and also used in Aluı́sio et
al. (2016). Counting all patient groups, this dataset
has an audio duration of 4h and 11m, an average
of 1843/60 = 30.72 sentences per narrative, and
sentence averages of 23807/1843 = 12.92 words.
AD narratives were only used for training the lex-
ical model.

3.2 The Brazilian Constitution Dataset
This dataset was made available by the LaPS (Sig-
nal Processing Laboratory) at the Federal Univer-
sity of Pará (Batista, 2013), and is composed of
articles from Brazil’s 1988 constitution, in which
the speech is prepared and read. Each file has an
averages 30 seconds.

A preprocessing step removed lexical tips
which indicate the beginning of the articles, sec-
tions and paragraphs. This removal was carried
out on both the transcripts and audio. In addition,
we separated the new dataset organized by articles,
totaling 357 texts. Then, we marked the end of
each article and paragraph and inserted punctua-
tion at the end. Titles and chapters have been ig-
nored during this process. We randomly selected
60 texts from this dataset, forcing only the con-
dition that the number of sentences of each text
sentence was greater than 12. We refer to the large
dataset as Constitution L, and the dataset with the
60 texts as Constitution S.

The average number of sentences in each text
of Constitution L is 2698/357 = 7.56, and the av-
erage size of these sentences have 63275/2698 =
23.45 words while Constitution S has on average
1409/60 = 23.48 sentences, and these sentences
average 30521/1409 = 21.66 words. The total
audio duration of Constitution L is 7h 39m, and
Constitution S is 3h 43m.

3.3 The Dog Story Dataset

The Dog Story dataset is available from the BALE
(Battery of Language Assessment in Aging, in En-
glish) instrument, described in (Jerônimo, 2016).
It is composed of transcriptions from the narrative
production test based on the presentation of a set
of seven pictures telling a story of a boy who hides
a dog that he found on the street (Le Boeuf, 1976).
This battery was chosen because its aim is to al-
low for its administration to elderly people who
are illiterate and/or of low educational level, who
represent the majority of the aged sample assisted
by the public health system in Brazil.

This dataset consists of 10 narratives transcripts
(6 CTL and 4 MCI), where the average number
of sentences and the average size of the sentences
are 16.60 and 6.58, respectively. When compared
with the Cinderella dataset, the dataset is com-
posed of less sentences and the sentences have
fewer words on average.

4 Features

4.1 Lexical features

We divide our lexical features into two groups:
PoS features and word embeddings, where every
word is represented in a high dimensionality con-
tinuous vector.

The PoS features where extracted using a BP
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Figure 1: Architecture of the RCNN for both lexical and prosodic model.

morphosyntatic tagger called nlpnet2 trained on a
revised version of the Mac-Morpho corpus (Fon-
seca et al., 2015), which contains a set of 25 tags.

The word embeddings used in this work have
50 dimensions and were trained by Fonseca et
al. (2015) with articles from the BP version of
Wikipedia and a large journalistic corpus with ar-
ticles from the news site G13, totaling 240 million
tokens and a vocabulary of 160,270 words. All
of these tokens were made lowercase and trained
with a neural language model described in (Col-
lobert et al., 2011).

4.2 Prosodic features
We used three prosodic features: F0, intensity and
duration which were extracted at the phonetic level
using PRAAT (Boersma and others, 2002) from
forced alignment output. Alignment was done us-
ing using the HTK toolkit (Young et al., 2002)
with clean speech corpora and a pronunciation dic-
tionary phonetically transcribed by Petrus (Ser-
rani, 2015) and augmented by our rule-based al-
gorithm to insert multiple pronunciations, render-
ing a suitable model for ASR. The features were
calculated for the first, last, penultimate and an-
tepenultimate vowels of each word and pauses.
These vowels were chosen based on knowledge
of the BP which typically exhibits stress on the
penultimate vowel, with notable patterns observed
for final vowel stressing, for example words end-
ing in “i” (“Barueri”) or a nasal consonant (“Re-
nan”), and the antepenultimate vowel (usually in-
dicated by a stress diacritic) like “helicóptero”
(“helicopter”), “espı́rito” (“spirit”) and “árvore”
(“tree”). Also, Portuguese, like most western lan-
guages, distinguishes sentence types by rising and
falling pitch patterns, giving the listener a clue as

2nilc.icmc.usp.br/nlpnet/
3g1.globo.com/

to whether the speaker has finished a sentence or
not. Pause duration was also calculated since the
length of a pause can be indicative of the presence
of a punctuation mark (Beckman and Ayers Elam,
1997).

5 Model description

To automatically extract features from the in-
put and also deal with the problem of long de-
pendencies between words, we propose a model
based on recurrent convolutional neural networks
(RCNN), which was inspired by the work of Lai
et al. (2015). The architecture of our model can be
seen in Figure 1. First, we show how to prepare the
input for the network, then we go through the net-
works layers and describe the training procedure,
finally, we discuss the experimental settings.

5.1 Input preparation
In our approach, the input to the network is a
transcribed narrative which is categorized as CTL
(healthy elderly individuals) and MCI (MCI pa-
tients). The narratives contain a sequence of words
w1, w2, . . . , wm. Each word is annotated with a
label, to indicate whether it precedes a bound-
ary (y = B) or not (y = NB). We do not
make a distinction between punctuation marks, so
a boundary is defined as a period, exclamation
mark, question mark, colon or semicolon. With
this approach, we can see this task as a binary clas-
sification problem.

5.2 Representation
Our input contains transcribed narratives with m
words in it. We represent the narrative i as Xi ∈
Rm×n, Xi = {x1, x2, . . . , xm×n}, where n is the
number of features. We represent the boundaries
as Yi ∈ R2, Yi = {0, 1}, where 0 stands for NB
and 1 denotes B. Our final model consists of a
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combination of two models. The first model is
responsible for treating only lexical information,
while the second treats only prosodic information.
Both models have the same architecture shown in
Figure 1. This strategy is based on the idea that we
can train the lexical model with even more data,
since textual information is easily found on the
web. In order to obtain the most probable class y
for the wj word, a linear combination was created
between these two models, where one receives the
weighted complement of the other:

α·Plexical(y |wj)+(1−α)·Pprosodic(y |wj) (1)

Then, the most probable class is the one that max-
imizes the linear combination from previous equa-
tion.

5.2.1 Embedding layer
The data input for the lexical model is divided into
two features: word embeddings with dimensions
|ew|, and the PoS tags with dimensions |et|. Given
a word w, the respective embedding ew ∈ Eword

is fetched and concatenated with the word’s PoS
vector et ∈ Etag, thus obtaining a new vector size
d = |ew| + |et|. Out of vocabulary words share
a single and randomly generated vector that repre-
sents an unknown word.

In the prosodic model we directly feed informa-
tion about pitch, intensity and duration from the
first, last, penultimate and ante-penultimate vow-
els of each word. Moreover, we feed the informa-
tion about pause duration after each word, where
duration of zero seconds denotes no pause. There-
fore, for the prosodic model, we have a vector with
dimensions d = 4 · 3 + 1 = 13.

5.2.2 Convolutional and pooling layer
Once we have a matrix formed by the features of
the words in the text, the convolutional layer re-
ceives it, which, in turn, is responsible for the au-
tomatic extraction of nf new features depending
on hc neighboring words (Kim, 2014). The con-
volutional layer produces a new feature cj by ap-
plying a filterW ∈ Rhc·d to a window of hc words
xj−hc+1:j in a sentence with length m:

cj = f(Wx(j−hc+1):j + b), hc ≤ j ≤ m (2)

Where b ∈ R represents a bias term and f is a
non-linear function.

Our convolutional layer simply moves one di-
mension vertically, making one step at a time,

which gives us m − hc + 1 generated features.
Since we want to classify exactly m elements,
we add p = bhc/2c zero-padding on both sides
of the text. Applying this strategy for each en-
try xj yields the complete feature map c ∈
R(m−hc+1)+2·p.

In addition, we apply a max-pooling operation
over time, looking at a region of hm elements to
find the most significant features:

ĉ = max
1≤j≤m

{c(j−hm+1):j} (3)

5.2.3 Recurrent layer

The new features extracted are fed into a recurrent
bidirectional layer which has nr units. A recurrent
layer is able to store historic information by con-
necting the previous hidden state with the current
hidden state at a time t. The values in the hidden
and output layers are computed as follows:

ht = f(Wxxt +Whht−1 + bh) (4)

yt = g(Wyht + by) (5)

where Wx, Wh, and Wy are the connection
weights, by and bh are bias vectors, and f and g
are non-linear functions. Here, we use a special
unit known as Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), which is
able to learn over long dependencies between
words by a purpose-built memory cell. Figure 2
shows a single LSTM memory cell.

Figure 2: Diagram of a LSTM memory cell.

The LSTM updates for time steps t are done
as described by Jozefowicz et al. (2015), which
is a slight simplification of the one described by
Graves and Jailty (2014), where the memory cell
is implemented as follows:
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it = σ(Wxixt +Whiht−1 + bi)
ft = σ(Wxfxt +Whfht−1 + bf )
ot = σ(Wxoxt +Whoht−1 + bo)
gt = tanh(Wxcxt +Whcht−1 + bc)
ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

where σ(z) = 1/(1 + e−z) is the sigmoid func-
tion, ht ∈ Rnr is the hidden unit, it ∈ Rnr is the
input gate, ft ∈ Rnr is the forget gate, ot ∈ Rnr

is the output gate, gt ∈ Rnr is the input modula-
tion gate, and ct ∈ Rnr is the memory cell unit,
which is the summation of the previous memory
cell modulated by the forget gate ft, and a func-
tion of the current input with previous hidden state
modulated by the input gate it.

As in Graves and Jaitly (2014), we used the
features by looking at forward states and back-
ward states. This kind of mechanism is known
as a bidirectional neural network (BRNN), since
it learns weights based on both past and future el-
ements given a timestep t. In order to implement
the BRNN, we reversed the sentences as a trick
before we fed them to a regular LSTM layer, dou-
bling the number of weights used in the recurrent
layer. The output from this layer is the summation
of the forward output with backward output:

yt =←−yt +−→yt (6)

With a bidirectional LSTM layer, we are able
to explore the principle that words nearby have a
greater influence in classification, while consider-
ing that words farther away can also have some
impact. This often happens, for example, in the
case of question words and conjunctions: por que
(“why”); qual (“which”); quem (“who”); quando
(“when”), etc.

5.2.4 Fully connected layer
After the BRNN layer, dropout is used to pre-
vent co-adaptation of hidden units during forward-
backpropagation, where we ignore some neurons
meaning to reduce the chance of overfitting the
model (Srivastava et al., 2014).

The last layer receives the output from the
BRNN in each timestep and passes them trough a
fully connected layer, where the softmax operation
is calculated, giving us the probability of whether

or not the word precedes a boundary:

ŷt = softmax(Wyt + b) (7)

Where W ∈ Rnr×2 is a matrix of weights, b ∈
Rnr is a bias vector, and softmax is defined as:

sj(z) =
ezj∑K

k=1 e
zk

, for j = 1, 2, . . . ,K (8)

5.3 Training
We define all of the parameters to be trained as θ.

θ =
{
Eword, Etag, W

(c), b(c), W (f),

b(f),
←−
W (r),

←−
b (r),

−→
W (r),

−→
b (r)

}
(9)

Where Eword ∈ R|V |×|ew| is the lookup table
for the word embeddings, Etag ∈ R|Vtag |×|et| is
the lookup table for PoS tags, and |V |, |Vtag| rep-
resents the size of the vocabulary for word embed-
dings and PoS tags, respectively.

For the convolutional layer: the weightsW (c) ∈
Rnf×hc·d and the bias vector b(c) ∈ Rnf .

For the fully connected layer: the weights ma-
trixW (f) ∈ Rnr×2 and the bias vector b(f) ∈ Rnr .

For the BRNN layer we divide the set of param-
eters from BRNN into two sets. Those from the
forward pass and backward pass. Each set con-
tains the weights for an input W (r)

x ∈ Rnr×nf ,
the weights for previous hidden states W (r)

h ∈
Rnr×nr , and the bias vectors b(r) ∈ Rnr for
all gates (i, f, o, g). Additionally, we have the
weights for an output in a timestep W

(r)
y ∈

Rnr×nr and a bias vector by ∈ Rnr .
We define the loss function L as categorical

cross-entropy (Murphy, 2012), shown in the equa-
tion below, which aims to minimize the negative
log likelihood in relation to the weights. Since we
have an unbalanced class problem, we give differ-
ent weights for each class, where the weight of the
minority class (B) is greater than that of the ma-
jority (NB).

L(y, ŷ) = −
∑

i

yi log(ŷi) cwyi (10)

Where y are our real targets, ŷ are our predic-
tions, and cw are the class weights for ` = B and
` = NB, calculated as follows:

cw` =
|y|

2 · |y = `| (11)

We minimize the loss function with respect to
all weights θ 7→ L by using RMSProp algorithm
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(Tieleman and Hinton, 2012) with backpropaga-
tion to compute the gradients∇L. The update step
for a timestep t is made by normalizing the gradi-
ents by an exponent moving at an average rt:

rt = γrt−1 + (1− γ)∇L(θt)2 (12)

θt+1 = θt − η∇L(θt)√
rt + ε

(13)

Where η is the learning rate and 0 < γ < 1 is
the forgetting factor.

5.4 Experiment settings
We break the text in tokens delimited by spaces.
We do not remove stopwords from the texts, since
they can be important features for our domain.

We ran a 5-fold cross-validation for the group
being analyzed (CLT or MCI), which leaves about
10% of the data for testing, the rest for training.

The weight matrix for tag embeddingsEtag was
generated randomly from a gaussian distribution
scaled by fan in + fan out (Glorot and Bengio,
2010). Both embeddings matrix Eword and Etag

were adjusted during training. We follow previ-
ous studies on sentence boundary detection to set
the network hyper-parameters (Tilk and Alumäe,
2015; Che et al., 2016). The values for each pa-
rameter are shown in Table 2.

Var. Parameter Lexical Prosodic

|ew| Word emb. size 50 -
|et| Tag emb. size 10 -
nf Conv. filters 100 8
hc Filter length 7 5
hm Max-pool size 3 3
nr Recurrent units 100 100
γ Forget factor 0.9 0.9
η Learning rate 0.001 0.001

Table 2: RCNN Hyper-parameters.

We tried three different learning rate values η ∈
{0.01, 0.003, 0.001} for both lexical and prosodic
models, and found that 0.001 yielded best results.
We trained our network over 20 epochs using a
bucket strategy, which groups training examples in
buckets of similar sentence size. Our implementa-
tion is based on Theano (Bergstra et al., 2010), a
library that defines, optimizes and evaluates math-
ematical expressions in an effective way.

6 Evaluation

We evaluated our method intrinsically and also
compared it with the method developed by Fraser
et al. (2015a) for all of the datasets. We also per-
formed robustness tests to indicate how well our
method responds to both (i) test data that varies
from Cinderella training data and (ii) train data
that varies from Cinderella testing data.

If we classified all words as NB, our method
would have an accuracy superior to 90%. For this
reason, we use the F1 metric, which is defined
as the harmonic mean between precision and re-
call. And since we are more interested in knowing
whether our method correctly identifies the bound-
aries, we ignore theNBs and calculate F1 only for
the positive class (B).

6.1 Results

In this subsection, we evaluate the performance of
our classifier (RCNN) for the Cinderella and Con-
stitution datasets. Table 3 summarizes the results.

From Table 3 we can see that our approach
presents better results for the Constitution dataset
than Cinderella. This may be related to the text
quality, as the Cinderella transcripts presents many
disfluences, characteristic of spontaneous speech.
As expected, results for CTL were higher than
for MCI, since CTL narratives contain less dis-
fluencies. Another important observation is that
our method performs much better than the base-
line. Where the baseline represents the results
for a classifier that predicts all words as B. The
Constitution results show us that traditional ma-
chine learning techniques used in NLP can be ap-
plied to this scenario, since the differences in the
Cinderella data are few. Another reason that sup-
ports this statement is that F1 results from related
studies on sentence boundary detection based on
well-written texts are between 0.7 and 0.8 for two
classes (Wang et al., 2012; Khomitsevich et al.,
2015; Tilk and Alumäe, 2015; Che et al., 2016).
When we compare the Constitution size relation
we find out that corpus size is not greatly affected
by the results, since the results for Constitution S
were slightly better than for Constitution L. We
think that, even with less data, our method per-
forms better on Constitution S because of the dis-
tribution of sentence quantity in the dataset, where
Constitution S has an average of 23.48 sentences
per text, while Constitution L has an average of
only 7.56 sentences per text.
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Features Cinderella Constitution

CTL MCI L S

P R F1 P R F1 P R F1 P R F1

Baseline 0.07 1.00 0.13 0.08 1.00 0.14 0.03 1.00 0.07 0.04 1.00 0.08
PoS 0.36 0.82 0.50 0.32 0.83 0.46 0.30 0.89 0.44 0.29 0.79 0.42
Prosody 0.20 0.59 0.30 0.19 0.58 0.29 0.54 0.84 0.66 0.48 0.85 0.61
Embeddings 0.70 0.70 0.70 0.63 0.77 0.69 0.60 0.63 0.63 0.60 0.64 0.62
PoS + Pros. 0.40 0.74 0.52 0.36 0.80 0.49 0.52 0.91 0.66 0.57 0.85 0.68
Emb. + PoS 0.71 0.72 0.71 0.64 0.75 0.69 0.64 0.72 0.68 0.63 0.67 0.65
Emb. + Pros. 0.71 0.74 0.72 0.64 0.77 0.70 0.71 0.83 0.76 0.74 0.81 0.77
All 0.72 0.76 0.74 0.66 0.74 0.70 0.77 0.82 0.79 0.76 0.85 0.80

Table 3: F1 for boundary class for each feature set on Cinderella and Constitution data using our method.

We also evaluated the performance of different
feature sets with our datasets. Embeddings have
a great impact on both datasets. The PoS infor-
mation was influential on both datasets, but by a
small margin, since it has a small difference when
used with embeddings (0.01) on the Cinderella,
and (0.03) Constitution data. This tells us that
embeddings already bring enough morphosyntac-
tic information. It is evident that the weight of the
prosodic features is higher on Constitution, which
is based on prepared speech, than in Cinderela.
This result is consistent with those found by Kolár
et al. (2009) and Fraser et al. (2015a). We also
believe that the quality of the audio recordings
may have impacted the weight of the prosodic fea-
tures, since the Constitution dataset was recorded
by speech processing experts in a studio and the
Cinderella dataset was recorded in a clinical set-
ting. In light of this, we can see that our method
performs better when all features are used. Fur-
thermore, the best results were obtained by using
α = 0.6, from the linear combination in Equa-
tion 1, showing that our model lends more weight
to the lexical model.

6.2 Comparison of methods

In order to compare our model with related work,
we replicated the approach proposed by Fraser et
al. (2015a), which uses a CRF model for sen-
tence segmentation. To explain the choice for a re-
current convolutional model, we split our method
in three: (i) Multilayer Perceptron (MLP): we re-
moved the convolutional and the recurrent layer
of our model, and added a hidden fully-connected
layer with 100 units and sigmoid activation; (ii)
CNN: we simply removed the recurrent layer from
our model and passed the output from the convolu-
tional to the fully-connected layer; (iii) Recurrent

Neural Network (RNN): analogous to the CNN
model, we removed the convolutional layer and
connected the embedding layer with the recurrent
layer. The results for each method are presented in
Table 4.

Our method achieved the best results in both
datasets. We can see that the CRF method, used
by Fraser et al. (2015a), obtained the worst results
on Constitution, and was only better than RNN on
the Cinderella data. These results were similar to
those reported in their paper, which suggests that
our replication was faithful. We believe that the
RNN performed poorly because it has a large set
of weights to be trained, and since we have rela-
tively little data, it failed to achieve good results.
This may be related to the fact that LSTM units
are very complex and need more data to be able
to converge. Looking at the Constitution results,
which have about three times more words than the
Cinderella data, we can note the difference (∼ 0.2)
with relation to corpus size.

MLP and CNN alone were able to achieve bet-
ter results than CRF and RNN, but MLP results for
the MCI subset were not as good as CNN, which
indicates that MLP alone is not able to deal with
narratives that are potentially impaired. However,
for the Constitution data, MLP obtained results
very close (∼ 0.02) to our best method.

Our RCNN achieved the best results on both
datasets, implying that a union of these models
was a good choice in order to deal with impaired
speech. We believe that the greatest influence was
from the CNN, and the addition of a recurrent
layer with LSTM was able to deal with some par-
ticular cases, likely over long dependencies sim-
ilar to the findings in (Tilk and Alumäe, 2015),
where the CNN was not able to do so due to the
fixed filter length in the convolution process, a re-
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Methods Cinderella Constitution

CTL MCI L S

P R F1 P R F1 P R F1 P R F1

CRF 0.70 0.45 0.55 0.62 0.46 0.53 0.89 0.36 0.51 0.84 0.34 0.48
MLP 0.59 0.79 0.67 0.47 0.80 0.59 0.75 0.79 0.77 0.76 0.80 0.78
RNN 0.27 0.68 0.39 0.73 0.25 0.37 0.43 0.92 0.58 0.44 0.85 0.57
CNN 0.64 0.79 0.71 0.59 0.77 0.67 0.65 0.85 0.73 0.58 0.89 0.70
RCNN 0.72 0.76 0.74 0.66 0.74 0.70 0.77 0.82 0.79 0.76 0.85 0.80

Table 4: Best F1 results for each method.

sult which was also noted in (Che et al., 2016).

6.3 Robustness tests
Robustness was evaluated by measuring F1 on
both out-of-genre and in-genre data. The results
for each configuration are presented in Table 5.

Trained on Tested on P R F1

Constitution Cinderella CTL 0.19 0.29 0.23
Constitution Cinderella MCI 0.20 0.25 0.22
Cinderella Dog story CTL 0.72 0.62 0.66
Cinderella Dog story MCI 0.65 0.64 0.64

Table 5: Results for robustness tests

We evaluated our method by changing the cor-
pus genre: training with the Constitution and test-
ing with the Cinderella dataset. This evaluation
shows that our method performed poorly in this
scenario, probably because the differences in the
lexical clues between these datasets are high, since
the Constitution is composed of prepared speech
and Cinderella of spontaneous speech. When we
maintain the corpus genre but change the story
used in the neuropsychological test, our method
can still achieve good results, yielding a small dif-
ference of 0.08 for CTL and 0.06 for MCI from
our best results. We believe that these results are
related with the linear combination weight from
Equation 1, where the results were obtained by us-
ing α = 0.8, lending less weight to the prosodic
model when compared to our best results (where
it has 40% of influence). Since the Dog Story
and Cinderella datasets are composed of sponta-
neous speech, the lexical clues found in this kind
of speech helped the method to achieve good per-
formance.

7 Conclusions and Future Work

We have shown that our model, using a recur-
rent convolutional neural network, is benefited by

word embeddings and can achieve promising re-
sults even with a small amount of data. We found
that our method is better for cases where speech
is planned, since the prosodic features lend more
weight to the classification. Our method achieved
good results on impaired speech transcripts even
with little data, with an F1 result of 0.74 on CTL
patients, which is comparable with the results
from other studies using broadcast news and con-
versational data (Wang et al., 2012; Khomitsevich
et al., 2015; Tilk and Alumäe, 2015; Che et al.,
2016). Moreover, our method achieved good re-
sults in robustness tests when we changed the story
used in the neuropsychological test.

As for future work, we plan to evaluate our
method on English data for comparison with re-
lated work. Also, we plan on using more text
data to train the lexical model, as it is independent
from the prosodic model and lends more weight in
our evaluations. Moreover, we will evaluate our
method with the output of an ASR system for BP,
as a higher word recognition error rate can greatly
affect our results. Lastly, we would like to evaluate
our method with datasets with higher quality au-
dio, more robust acoustic models and a manually
aligned portion of the database as better audio seg-
mentation would greatly improve the model and
the usefulness of prosodic features.

With respect to improvements in the corpus, our
dataset consists of spontaneous speech narratives
and was annotated only with periods. Since there
are initial conjunctions such as “and”, “moreover”,
and “however”, we could include commas. This
would turn our problem into a ternary problem.
This could be done by increasing the number of
neurons in the last layer of our architecture.
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324



Maider Lehr, Emily Tucker Prudhommeaux, Izhak
Shafran, and Brian Roark. 2012. Fully automated
neuropsychological assessment for detecting mild
cognitive impairment. In INTERSPEECH, pages
1039–1042.

Yang Liu, Nitesh V. Chawla, Mary P. Harper, Elizabeth
Shriberg, and Andreas Stolcke. 2006. A study in
machine learning from imbalanced data for sentence
boundary detection in speech. Computer Speech
and Language, 20(4):468–494.
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