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Abstract

Recent work on evaluating representation
learning architectures in NLP has estab-
lished a need for evaluation protocols based
on subconscious cognitive measures rather
than manually tailored intrinsic similarity
and relatedness tasks. In this work, we pro-
pose a novel evaluation framework that en-
ables large-scale evaluation of such archi-
tectures in the free word association (WA)
task, which is firmly grounded in cognitive
theories of human semantic representation.
This evaluation is facilitated by the exis-
tence of large manually constructed reposi-
tories of word association data. In this pa-
per, we (1) present a detailed analysis of the
new quantitative WA evaluation protocol,
(2) suggest new evaluation metrics for the
WA task inspired by its direct analogy with
information retrieval problems, (3) evaluate
various state-of-the-art representation mod-
els on this task, and (4) discuss the relation-
ship between WA and prior evaluations of
semantic representation with well-known
similarity and relatedness evaluation sets.
We have made the WA evaluation toolkit
publicly available.

1 Introduction

The quality of word representations in semantic
models is often measured using intrinsic evalua-
tions that capture particular types of relationships
(typically semantic similarity and relatedness) be-
tween word pairs (Finkelstein et al., 2002; Hill et
al., 2015; Schnabel et al., 2015; Tsvetkov et al.,
2015, inter alia).

Whereas the notions of semantic similarity and
relatedness constitute key concepts in such evalua-
tions, they are in fact vaguely defined (Batchkarov

et al., 2016; Ettinger and Linzen, 2016). The con-
struction of ground truth evaluation sets that reflect
these relations, such as SimLex-999 (Hill et al.,
2015), SimVerb-3500 (Gerz et al., 2016), MEN
(Bruni et al., 2014) or Rare Words (Luong et al.,
2013), relies on manually constructed guidelines
that trigger subjective human interpretation of the
task at hand. This in turn introduces inter-annotator
variability (Batchkarov et al., 2016) and does not
account for the fact that human similarity judge-
ments are asymmetric by nature (Tversky, 1977).

What is more, given that humans perform lin-
guistic comparisons between concepts on a sub-
conscious level (Kutas and Federmeier, 2011),
it is at least debatable whether current similar-
ity/relatedness evaluation sets fully capture the im-
plicit relational structure underlying human lan-
guage representation and understanding.

As evidenced by recent workshops on evalua-
tion of semantic representations1, the community
appears to recognise that current evaluation meth-
ods are inadequate. To fill in this gap, recent work
has proposed using subconscious cognitive mea-
sures of semantic connection instead, as a proxy
for measuring the ability of statistical models to
tackle various problems in human language un-
derstanding (Ettinger and Linzen, 2016; Søgaard,
2016; Mandera et al., 2017).

Motivated by these insights, this work proposes
an evaluation framework based on the word associ-
ation (WA) task, firmly rooted in and described
by the psychology literature, e.g., Nelson et al.
(2000) and Griffiths et al. (2007)2. Word associ-
ations, provided as simple (cue, response) concept
pairs, are naturally asymmetric: they tend to be
given as a repository of ranked lists of concepts col-

1E.g. RepEval, https://sites.google.com/site/repevalacl16/
2The WA task is a free-association task, in which partici-

pants are asked to produce the first word that came into their
head in response to a cue or query word.
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lected as responses (i.e., assocations) given a target
cue/query concept. The ranking of the response list
is based on the WA strength between the cue and
each generated response. WAs are directly tied to
language use and the memory systems that sup-
port online linguistic processing (Till et al., 1988;
Nelson et al., 1998).

We build our WA evaluation framework around a
large repository of the University of South Florida
(USF) association norms (Nelson et al., 2000; Nel-
son et al., 2004). After post-processing, the repos-
itory contains ~5K queries, and ~70,000 (cue, re-
sponse) pairs, making it one of the largest seman-
tic evaluation databases available (by contrast, the
largest word pair scoring data sets in NLP, SimVerb
and MEN, contain 3,500 and 3,000 word pairs re-
spectively). This new resource enables comprehen-
sive quantitative studies of WA and may be used
to guide the future development of representation
learning architectures.

While parts of the USF data set have been used
for evaluation in NLP before (Michelbacher et al.,
2007; Silberer and Lapata, 2012; Kiela et al., 2014;
Hill and Korhonen, 2014, inter alia), we conduct
the first full study regarding the evaluation on the
quantitative WA task. We compare a wide variety of
different semantic representation models, discuss
various evaluation metrics and analyse the links be-
tween word association and semantic similarity and
relatedness. In summary, the main contributions of
this paper are as follows:3

(C1) We present an end-to-end evaluation frame-
work for the WA task, and provide new evaluation
metrics and detailed guidelines for evaluating se-
mantic models on the WA task.
(C2) We conduct a systematic study and compari-
son of current state-of-the-art representation learn-
ing architectures on the WA task.
(C3) We present a systematic quantitative analy-
sis of the connections between the models’ per-
formance on the subconscious WA task and their
performance on benchmarking similarity and relat-
edness evaluation sets.

2 Motivation: Association and USF

Implicit Cognitive Measures: Means of Seman-
tic Evaluation? Several studies have shown
clear correspondence between implicit cognitive

3All evaluation scripts and detailed evaluation guidelines
are freely available at:
https://github.com/cambridgeltl/wa-eval/

measures (most notably semantic priming) and se-
mantic relations encountered in vector space mod-
els (VSMs) (McDonald and Brew, 2004; Jones et
al., 2006; Padó and Lapata, 2007; Herdağdelen
et al., 2009), suggesting that some of the implicit
relation structure in the human brain is already re-
flected in current statistical models of meaning.

These findings encouraged Ettinger and Linzen
(2016) to propose a preliminary evaluation frame-
work based on semantic priming experiments
(Meyer and Schvaneveldt, 1971).4 They demon-
strate the feasibility of such an evaluation using a
subconscious language processing task. They use
the online database of the Semantic Priming Project
(SPP), which compiles priming data for over 6,000
word pairs.

Here, we go one step further and demonstrate
that another subconscious language processing
task, with much more available data, can also be
used to evaluate representations. We construct an
evaluation framework based on the USF free word
association (WA) norms quantifying the strength
of association between cue and response concepts
for more than 70,000 concept pairs.

Word Association WA has been a long-standing
research topic in cognitive psychology, as evi-
denced by the following statement (Deese, 1966):

Are there any more fascinating data in psychology
than tables of association? (Deese, 1966)

Word association still remains one of the funda-
mental questions in cognitive psychology, as em-
phasised by e.g. Griffiths et al. (2007):

Association has been part of the theoretical ar-
mory of cognitive psychologists since Thomas
Hobbes used the notion to account for the struc-
ture of our “trayne of thoughts” in 1651.

These insights illustrate how WA can provide a
useful benchmark for evaluating models of human
semantic representation. WA norms are commonly
used in constructing memory experiments (Dennis
and Humphreys, 2001; Steyvers and Malmberg,
2003), and statistics derived from them have been
shown to be important in predicting cued recall

4Semantic priming measures a response time with a human
subject performing a simple language task (e.g., classifying
strings into words vs. non-words). It was shown that human
subjects are able to solve the task more quickly if the word
to which they are responding is preceded by a semantically
related word. The magnitude of the speed-up can be taken as
the strength of relation between the two concepts.
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CUE RESP #G #P FSG BSG

lunch dinner 156 42 0.269 0.096
lunch food 156 32 0.205 0.011
lunch eat 156 13 0.083 0.0
lunch meal 156 10 0.064 0.063
lunch box 156 9 0.058 0.0
lunch sandwich 156 9 0.058 0.037
lunch noon 156 6 0.038 0.200

noon lunch 150 30 0.200 0.038
noon twelve 150 22 0.147 0.034
noon sunshine 150 20 0.133 0.0

food eat 180 73 0.406 0.409
food drink 180 9 0.050 0.0

Table 1: Example (cue, response) pairs of free word
association from the USF data set. #G stands for
the number of participants serving in the group
norming the word, while #P denotes the number
participants producing a particular response.

and recognition (Nelson et al., 1998), and false
memories (Roediger et al., 2001).5

WA Evaluation Set: USF The USF norms data
set (hereafter USF) is the largest database of free
word association collected for English (Nelson et
al., 2004). It was generated by presenting human
subjects with one of 5, 000 cue concepts and ask-
ing them to write the first word coming to their
mind that is associated with that concept. Each cue
concept was normed by at least 100 participants,
resulting in a set of associates (or responses) for
each cue, for a total of ∼72,000 (cue, response)
pairs. A sample of the USF data is presented in
Tab. 1. The data are accessible online.6

For each such pair, the proportion of participants
that produced the responsewr when presented with
cue word wc can be used as a proxy for the strength
of association between the two words (FSG in
Tab. 1). BSG denotes the backward association
strength, when the roles of a cue and a response are
reversed, shows that the WA relation is inherently
asymmetrical.

5From another viewpoint, the WA evaluation aims to an-
swer a different question than a typical intrinsic evaluation
on data sets such as SimLex-999, MEN, WordSim-353, or
SimVerb-3500. The goal of the latter is to assess the quality of
learned text representations as a proxy towards downstream
NLP tasks. The goal of the former is to assess the capability
of representation learning and NLP architectures to help in ad-
vancing our understanding and modeling of human cognitive
processes (occurring on a sub-conscious level), while at the
same time it could still be used as a proxy evaluation in NLP.

6http://w3.usf.edu/FreeAssociation/

3 Evaluation Protocol

Terminology Wc = {wc
1, . . . , w

c
i , . . . , w

c
|WC |}

denotes a set of |Wc| cue or normed words (more
generally, concepts) in the evaluation set. For each
cue word wc

i , the data set contains a ranked list
of concepts or responses Ri sorted according to
the strength of forward association, from cue to
response (i.e., the FSG field in Tab. 1). The list
Ri contains entries of the format wr,j : fsgi,j ,
where wr,j is the jth most associated concept in
the ranked list, and fsgi,j is the accompanying
strength of forward association between cue wc

i

and response wr,j . LetRg
i refer to the ground truth

ranked list for wc
i , which contains only responses

where fsgi,j > 0 in the USF data, and Rs
i to the

ranked list retrieved by an automatic system.
The vocabulary or search space from which re-

sponses for all cues are drawn is labeled V r. Note
that V r may also contain words fromWc and that
V r may contain words that do not occur in any of
the ground truth listsRg

i .

Why Evaluate on Word Association? A stan-
dard evaluation protocol with word pair scoring
evaluation sets such as SimLex-999 or MEN is to
compute Spearman’s ρ correlations between the
ranking obtained by an automatic system and the
ground truth ranking. This protocol, however, is
not directly applicable to the USF test data. First,
the evaluated relation of WA is asymmetric, and the
pairs (X,Y ) and (Y,X) may differ dramatically
in their WA scores (see the difference in FSG and
BSG values from Tab. 1). Second, instead of one
global list of pairs, the data comprises a series of
ranked lists conditioned on the cue/normed word
wc (see Tab. 1 again). Finally, unlike with SimLex-
999 or MEN scores where it is difficult to inter-
pret “what a similarity/relatedness of 7.69 exactly
means” (Batchkarov et al., 2016; Avraham and
Goldberg, 2016), the USF FSG scores have a direct
meaningful interpretation (i.e., FSG = #P/#G).
To fully capture all aspects of the ground truth USF
data set, an evaluation protocol should ideally be
based not only on response rankings, but also on
the actual scores, i.e., the association strength.

In this paper, we propose and investigate two
different families of evaluation metrics on the USF
data: Sect. 3.1 discusses rank correlation evaluation
metrics inspired by recent work on the evaluation
of vector space models in distributional semantics
(Bruni et al., 2014; Hill et al., 2015; Vulić et al.,
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2016, inter alia). Sect. 3.2 draws inspiration from
research on evaluation in information retrieval (IR).
We show that the problem of evaluating USF asso-
ciation lists may be naturally framed as an ad-hoc
IR task (Manning et al., 2008). This enables the
application of standard IR evaluation methodology.

3.1 Rank Correlation Evaluation

Averaged Standard Spearman’s Correlation
The first protocol, labeled ρ-std, first computes
the standard Spearman’s ρ correlation betweenRg

i

andRs
i . The system listRs

i is pruned so that it con-
tains only those items that also occur in Rg

i . The
two lists are then correlated to obtain the score ρi

for cue wc
i .

Following that, the correlation scores are aver-
aged. First, we apply the Fisher z-transformation
(Fisher, 1915) and then average over the trans-
formed scores:

zi =
1

2
ln
(1 + ρi

1− ρi

)
= arctanh(ρi) (1)

zavg =

|Wc|∑
i=1

zi (2)

The final output score is obtained by applying the
inverse z-transformation on zavg:

ρavg = tanh(zavg) (3)

Averaged Weighted Spearman’s Correlation
The previous protocol treats all ranks equally, de-
spite the fact that the system should be rewarded
more for getting the strongest responses correct
(and penalised when failing to do so). Therefore,
we also experiment with weighted rank correlation
measures, which weigh the distance between two
ranks, and assign more importance to higher ranks
(i.e., in our setting, to stronger associates).

Several weighted correlation metrics have been
proposed (Blest, 2000; Pinto da Costa and
Soares, 2005; Dancelli et al., 2013; Pinto da
Costa, 2015). We show results with the weighted
Spearman’s correlation (further labelled ρ-w)
from Pinto da Costa (2015).7 Let us de-
note Q1 = [Q1,1, Q1,2, . . . , Q1,n] and Q1 =
[Q2,1, Q2,2, . . . , Q2,n] two vectors of ranks ob-
tained on a sample of size n. The weighted rank
correlation ρ between the vectors is computed as:

7We also experimented with other weighted variants, but
detected similar trends in reported model rankings.

1−
6

n∑
i=1

(Q1,i −Q2,i)((n−Q1,i + 1) + (n−Q2,i + 1))

n4 + n3 − n2 − n
(4)

We refer the interested reader to the relevant lit-
erature (Pinto da Costa, 2015) for further details,
theoretical implications and property proofs related
to Eq. (4). ρi scores for all cue wordsWc are then
obtained using Eq. (4), and the averaged score ρavg

is computed as before, see Eq. (1)-Eq. (3).
While the two metrics are intuitive and capture

the ability of models to correctly rank (a subset of)
associates/responses, note that they have deficien-
cies. They only evaluate the rankings of words oc-
curring inRg

i , which effectively reduces the search
space V r to the small subset {w1, . . . , w|Rg

i |} ⊂
V r. This effectively means that the final score
simply ignores incorrect responses that are ranked
highly by a system but that do not occur inRg

i . It
also does not take into account the actual strength
of association.

3.2 IR-Inspired Evaluation
Intuition Another set of evaluation metrics is in-
spired by the resemblance of the USF data structure
to the typical output of ad-hoc IR systems (Man-
ning et al., 2008; Pound et al., 2010). That is, each
cue word wc can be thought of as an input query
issued against some target concept collection V r,
where the goal of our association retrieval system
is to rank items from the target collection according
to their relevance (i.e., their association strength)
to the issued query. The output of the system is the
ranked list Rs

i of length |V r|, with ground truth
relevance assessments provided inRg

i .

MRR and MAP The first two metrics assume
non-weighted or binary relevance: the retrieved re-
sponse is either relevant to the issued cue (labeled
1) or it is non-relevant (0). We assume that all re-
sponses found in the ground truth lists Rg

i where
fsgi,j > t are relevant responses, where t is a
threshold.8 We label this reduced set of relevant
responsesRRg

i .
The most lenient evaluation metric is Mean Re-

ciprocal Rank (MRR) (Voorhees, 1999; Craswell,
8In our experiments, we impose a simple heuristic and

take responses as relevant if they were generated by at least 3
different human subjects in the USF experiments. This heuris-
tic reduces the noise in human answers and provides a more
coherent set of responses.
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2009). The reciprocal rank of a query response is
the multiplicative inverse of the rank of the first rel-
evant answer, and the final score is then averaged
over all |Wc| queries/cues. More formally:

MRR(Wc) =
1

|Wc|
|Wc|∑
i=1

1

ranki
(5)

where ranki is the rank position of the first relevant
response (i.e., the first response found in the set
RRg

i ) for the cue word wc
i .

Since MRR cannot assess multiple correct an-
swers and their ranking in the retrieved list, an al-
ternative metric is Mean Average Precision (MAP):

MAP (Wc) =
1

|Wc|
|Wc|∑
i=1

AP (wc
i ) (6)

AP (wc
i ) =

∑N
k=1 Pk · irelk
|RRg

i |
(7)

Here, AP (wc
i ) denotes Average Precision for

query/cue wc
i , N ≤ |V r| denotes the number of

responses retrieved by the system. Pk is the preci-
sion at cut-off k in the list, and irelk is an indica-
tor function which ’turns on’ only if the response
at rank k is the relevant response (i.e., present in
RRg

i ). The average is computed over all relevant
responses, and the non-retrieved relevant responses
from V r get a precision score of 0. N << |V r| is
typically used (e.g., standard values are N = 100
or N = 1000) to reduce the execution time of the
evaluation procedure, since it is expected that a
good retrieval system should obtain a majority of
relevant responses in the first N responses.

Compared to measures from Sect. 3.1, MRR and
MAP are better estimators of the model’s ability
to capture word association, as they operate over
the entire search space V r for each cue word. This
effectively means that systems get rewarded if they
are able to consistently rank relevant responses
higher than non-relevant responses. However, these
metrics still rely on binary non-weighted relevance
judgements, and are therefore unable to reward
models that rank highly relevant responses (i.e.,
strongly associated responses, see Tab. 1) higher
than weakly relevant responses.

NDCG@k In other words, the most expressive
evaluation metric should be able to distinguish
that cue-response pairs such as (lunch, dinner) and
(lunch, food) should be ranked higher than weakly
associated pairs such as (lunch, box) or (lunch,

sandwich). In addition, the metric should still re-
ward models that rank relevant responses higher
than non-relevant ones.

An IR metric which takes all these aspects into
account is Discounted Cumulative Gain (DCG)
(Järvelin and Kekäläinen, 2002). DCG operates
with weighted relevance values: in the USF sce-
nario, these are forward association strengths, i.e.,
scores fsgi,j . The main idea behind using DCG is
that highly relevant responses appearing lower in
a ranked list should be penalised. The penalty is
implemented by reducing the weighted relevance
value logarithmically proportional to the position
of the particular response. We opt for a more re-
cent variant of DCG which puts more emphasis on
retrieving relevant responses (Burges et al., 2005).
DCG@k, the DCG score accumulated at a particu-
lar rank position k is computed as follows:

DCG@k =
k∑

i=1

2wreli − 1

log2(i+ 1)
(8)

wreli is the graded relevance of the response at
rank i given by the ground truth data, i.e., fsgi,j if
the cue-response pair occurs inRg

i , or 0 otherwise.
To make results comparable across different

queries, a normalised variant of DCG is typically
used. First, all relevant responses are sorted by their
graded relevance value, producing the maximum
possible DCG at each position k. The score of
the ideal ranking at rank k is called Ideal DCG
(IDCG@k). NDCG@k for a single query is then:

NDCG@k =
DCG@k

IDCG@k
(9)

Finally, the mean NDCG@k is produced for the
entire collectionWc by averaging over all single
NDCG@k values. In all experiments we rely on a
standard choice for k: NDCG@100, while similar
trends are observed with NDCG@10.

4 Experimental Setup and Models

LDA-Based Approach First, we evaluate an ap-
proach based on latent topic modeling, rooted in the
psychology literature (Steyvers et al., 2004; Grif-
fiths et al., 2007; Steyvers and Griffiths, 2007).9

The following quantitative model of word associa-
tion has been proposed (Griffiths et al., 2007):

9Griffiths et al. (2007) also experimented with LSA (Lan-
dauer and Dumais, 1997) and found that their LDA-based
approach consistently outperformed LSA-based approaches.
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P (wr|wc) =

M∑
i=1

P (wr|toi)P (toi|wc) (10)

where wc is a cue word, wr ∈ V r any concept
from the search space, and toi is the ith latent topic
from the set of M topics induced from the corpus
data (using LDA). We label this model LDA-assoc.
The probability scores P (wr|toi) select words that
are highly descriptive for each particular topic.
P (toi|wc) scores are computed as in prior work, by
assuming topic independence and applying Bayes’
rule on the LDA output per-topic word distributions
P (·|toi) (Steyvers and Griffiths, 2007; Vulić and
Moens, 2013).10 We train LDA with 1,000 topics
using suggested parameters (Griffiths et al., 2007).

Count-Based Models We evaluate the best per-
forming reduced count-based model from (Baroni
et al., 2014). We label this model count-ppmi-
500d.11 For a more detailed description of the
model’s training data and setup we refer the reader
to the original work and supplementary material.

Vector Space Models We also compare the
performance of prominent representation mod-
els on the WA USF task. We include: (1) un-
supervised models that learn from distributional
information in text, including Glove (Penning-
ton et al., 2014) with d = 50 and d = 300
dimensions (glove-6B-50d and glove-6B-300d),
the skip-gram negative-sampling (SGNS) 300-
dimensional vectors (Mikolov et al., 2013) with var-
ious contexts (bow = bag-of-words; deps = depen-
dency contexts) as in (Levy and Goldberg, 2014)
and (Schwartz et al., 2015) (sgns-pw-bow-w2,
sgns-pw-bow-w5, sgns-pw-deps, sgns-8b-bow-
w2), and the symmetric-pattern based vectors by
Schwartz et al. (2015) (sympat-500d); (2) Models
that rely on linguistic hand-crafted resources or cu-
rated knowledge bases. Here, we use vectors fine-
tuned to a paraphrase database (paragram-25d,

10The generative model closely resembles the actual pro-
cess in the human brain (Griffiths et al., 2007) - when we
generate responses, we first tend to associate that word with
a related semantic/cognitive concept, i.e., a latent topic (the
factor P (toi|wc)), and then, after establishing the concept,
we output a list of words that we consider the most promi-
nent/descriptive for that concept (words with high scores in
the factor P (wr|toi)).

11We have also experimented with simple count-based
asymmetric association measures proposed by Michelbacher
et al. (2007), estimated using the same corpus as the count-
ppmi-500d model. We do not report the results with these
measures, as they show a very poor performance when com-
pared to all other models in our comparison.

paragram-300d, (Wieting et al., 2015)) further re-
fined using linguistic constraints (paragram+cf-
300d, (Mrkšić et al., 2016)); (3) Multilingual em-
bedding models from Luong et al. (2015) (biskip-
256d) and Faruqui and Dyer (2014) (bicca-512d).
More detailed descriptions of all VSM models are
available in the listed papers and supplementary
material attached to this work.

USF Data Processing and Parameters Only
USF pairs where both words are single word ex-
pressions were retained, and the rest was discarded.
This yields 4,992 single word queries in total. The
total number of finally retained USF pairs is ≈
70,000. Note that this evaluation set is by an or-
der of magnitude larger than current benchmarking
word pair scoring datasets such as MEN (3000
word pairs in total), SimVerb (3500), SimLex (999)
and Rare Words (2034), and thus allows for a truly
comprehensive evaluation of quantitative WA mod-
els. Only responses generated by at least 3 human
subjects in each list of responses are taken as rele-
vant in all experiments (see Foot. 7 in Sect. 3.2), all
other (cue, response) pairs and pairs not present
in the USF data are considered non-relevant.12

5 Results and Discussion

Exp. I: Making the Evaluation Tractable
Computational complexity is not an issue for stan-
dard semantic benchmarks such as SimLex-999
or MEN: these data sets require only Ngt sim-
ilarity computations in total, where Ngt is the
number of word pairs in each benchmark (999 or
3000). However, complexity plays a major role
in the USF evaluation: the system has to com-
pute |Wc| · |V r| similarity scores, where |Wc| ≈
5, 000, and |V r| is large for large vocabularies
(typically covering > 100K words). In addition,
each list of |V r| has to be sorted according to the
WA strength: this means that the complexity is
O(|Wc| · (|V r|+ |V r| log |V r|)).

Since this is prohibitively expensive, our so-
lution is to restrict the search space V r only to
words (both cues and responses) occurring in USF:
|V r| = 10, 070.13 Besides the gains in evaluation
efficiency, when using the USF vocabulary all mod-
els operate over exactly the same search space:

12For efficiency reasons with IR metrics, we evaluate results
only over the top N = 1000 retrieved responses for each cue.

13Prior work shows that the USF data represents a good
range of distinct semantic phenomena (Hill et al., 2015), which
suggests that the USF vocabulary represents a balanced sample
of the English vocabulary.

168



V r = 100K V r = USF

Model MRR MAP NDCG MRR MAP NDCG

glove-6B-50d [4988] 0.233 (4) 0.072 (3) 0.190 (3) 0.318 (5) 0.105 (5) 0.249 (5)
glove-6B-300d [4988] 0.303 (1) 0.112 (1) 0.280 (1) 0.473 (1) 0.183 (1) 0.380 (1)
sgns-pw-bow-w2 [4970] 0.177 (6) 0.047 (7) 0.129 (6) 0.315 (6) 0.098 (6) 0.226 (6)
sgns-pw-bow-w5 [4970] 0.235 (3) 0.066 (5) 0.176 (5) 0.372 (3) 0.122 (4) 0.278 (4)
sgns-pw-deps [4953] 0.164 (8) 0.041 (8) 0.107 (8) 0.281 (8) 0.081 (8) 0.187 (8)
sgns-8b-bow-w2 [4982] 0.239 (2) 0.078 (2) 0.218 (2) 0.452 (2) 0.169 (2) 0.358 (2)
paragram-25d [4902] 0.174 (7) 0.048 (6) 0.121 (7) 0.309 (7) 0.092 (7) 0.198 (7)
paragram+cf-300d [4971] 0.221 (5) 0.067 (4) 0.179 (4) 0.371 (4) 0.130 (3) 0.284 (3)

Table 2: The effects of reducing the search space V r to speed up the evaluation process. The numbers in
parentheses are relative rankings of each model (1-8) according to the particular evaluation metric. The
numbers in square brackets report the coverage of each model (the total number of USF queries is 4992).

Model ρ-std ρ-w MRR MAP NDCG

LDA-assoc 0.230 0.221 0.153 0.048 0.128

count-ppmi-500d 0.255 0.249 0.294 0.094 0.226

glove-6B-50d 0.280 0.277 0.318 0.105 0.249
glove-6B-300d 0.337 0.339 0.473 0.183 0.380
sgns-pw-bow-w2 0.263 0.259 0.315 0.098 0.226
sgns-pw-bow-w5 0.283 0.280 0.372 0.122 0.278
sgns-pw-deps 0.240 0.234 0.281 0.081 0.187
sgns-8b-bow-w2 0.322 0.324 0.452 0.169 0.358
sympat-500d 0.194 0.189 0.221 0.069 0.180

paragram-25d 0.222 0.217 0.309 0.092 0.198
paragram-300d 0.302 0.298 0.388 0.138 0.300
paragram+cf-300d 0.265 0.268 0.372 0.067 0.179

biskip-256d 0.255 0.253 0.283 0.091 0.212
bicca-512d 0.311 0.310 0.371 0.132 0.303

Table 3: Results on the USF WA task using differ-
ent evaluation metrics proposed in Sect. 3. V r =
USF for all models. The best results per column
are in bold, second best in italic.

therefore, their results are directly comparable as
the data coverage bias should be largely mitigated.

To fully support this choice, we perform a simple
experiment using a subset of models from Sect. 4.
In the first evaluation, V r contains the most fre-
quent 100K words for all models, where frequency
was computed on their respective training data. In
the second evaluation, V r contains only the USF
vocabulary words. The results with IR-style metrics
are shown in Tab. 2, and similar trends are observed
with Spearman’s ρ correlations.

The results support several conclusions. (i) Cov-
erage over cue words is very high for all models
(the model with the lowest coverage from Tab. 2 has
a coverage of 98.2%). This, along with the same
search space (the USF vocabulary) indicates a fair
comparison of different models. (ii) Different IR
metrics produce consistent model rankings, with a
slight variation in the middle of the rankings. Inter-
estingly, the best scoring model is Glove, a model
which uses document-level co-occurrence, which
steers it towards learning topical similarity. On the

other hand, the worst performing model relies on
dependency-based contexts which better capture
functional similarity (Levy and Goldberg, 2014)
and outperform other context choices in word sim-
ilarity tasks on SimLex and SimVerb (Melamud
et al., 2016; Gerz et al., 2016). (iii) Most impor-
tantly, the reduction of V r again yields consistent
rankings with all metrics, which are also fairly con-
sistent with the rankings obtained in the ten times
larger 100K search space. Therefore, in all further
experiments we use the USF vocabulary as our
search space.

Exp. II: Results on USF WA Next, we evaluate
all models from Sect. 3 on the WA task. The results
with different metrics are summarised in Tab. 3.
The results suggest that all proposed evaluation
metrics indeed reflect the ability of different models
to capture WA. We observe strong correlations of
the models’ rankings with all five metrics (Tab. 4).
ρ-w is a slightly more conservative metric than ρ-
std on average, but it does not affect model rankings
at all (see also Tab. 4).

Further, the LDA-based WA model (Griffiths et
al., 2007) is largely outperformed by VSM-based
approaches. As expected, similar VSMs with more
dimensions are more expressive and score higher
(e.g., note the scores with glove and paragram mod-
els). Additionally, models trained on larger corpora
are also able to improve the overall results (e.g.,
note the scores with sgns trained on the Polyglot
Wikipedia (PW, 2B tokens) vs. the 8B word2vec
corpus). The paragram models specialised for simi-
larity tasks are unable to match unsupervised VSMs
that train on running text (e.g., paragram+cf-300d
obtains a SimLex score of 0.74 compared to 0.46
with sgns-8b-bow-w2).

Two models using bilingual training (biskip-
256d and bicca-512d) seem unable to match the
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Figure 1: Influence of the window size on the ability of vector space models to capture Similarity (evaluated
on SimLex-999), Relatedness (MEN), and Association (USF) (a) Spearman’s ρ-std correlations on all
three data sets; (b) Behaviour of other evaluation metrics used in the USF evaluation. All tested models
are SGNS, d = 300, and the only varied hyper-parameter is the window size.

Association (WA) Similarity Relatedness

MAP MRR NDCG ρ-std ρ-w SimLex SimVerb MEN RareWords

MAP 1.0 0.966 0.986 0.958 0.958 0.088 0.169 0.729 0.645
MRR 0.972 1.0 0.933 0.921 0.921 0.076 0.129 0.626 0.701
NDCG 0.986 0.944 1.0 0.975 0.975 -0.012 0.080 0.722 0.544
ρ-std 0.951 0.923 0.972 1.0 1.0 -0.184 -0.088 0.639 0.425
ρ-w 0.951 0.923 0.972 1.0 1.0 -0.184 -0.088 0.639 0.425

SimLex 0.063 0.098 -0.042 -0.203 -0.203 1.0 0.975 0.370 0.666
SimVerb 0.140 0.098 0.049 -0.111 -0.111 0.972 1.0 0.482 0.667

MEN 0.741 0.657 0.741 0.671 0.671 0.342 0.448 1.0 0.591
RareWords 0.643 0.699 0.538 0.433 0.433 0.622 0.608 0.580 1.0

Table 4: Spearman’s ρ correlations between different evaluation protocols for vector space models divided
into (a) Association, (b) Similarity, and (c) Relatedness. The correlation scores are based on the rankings
of all the evaluated models (see Sect. 4.1) in each experiment. The lower-left part of the table (below the
main diagonal, in lighter gray) reports standard Spearman’s ρ-std correlations between different model
rankings, while ρ-w is reported in the upper-right part (in darker gray). We report model rankings based
on the 5 different metrics introduced for the WA USF evaluation. Model rankings for Similarity and
Relatedness experiments are according to the ρ-std correlation on the respective ground truth data sets.

best performing monolingual models: however, we
plan to further analyse the influence of bilingual
information in the WA task in future work.

Finally, a comparison of sgns-pw-* models
(where the only varied parameter is the context
used in training) reveals that (i) larger windows im-
prove WA scores (we test this phenomenon further
in Exp. III), (ii) sgns-pw-deps, which captures func-
tional similarity through dependency-based con-
texts, yields lower WA scores, while it improves
on SimLex-999 compared to the other two mod-
els. This insight leads us to further investigate this
phenomenon in Exp. IV.

Exp. III: Window Size In the next experiment,
we analysed the effect of the window size on

models’ ability to capture similarity, relatedness,
and association. We train the sgns-pw-bow model
(d = 300) with varying window sizes in the inter-
val [1, 30]. The results on similarity (SimLex-999),
relatedness (MEN), and WA benchmarks (USF)
are presented in Fig. 1(a)-1(b). It is clear that us-
ing larger windows deteriorates the performance
on SimLex-999 as the focus of the model is shifted
from functional to topical similarity. This shift has
been detected in prior work on vector space models
(Kiela and Clark, 2014). However, we also observe
a similar trend with MEN scores, although an op-
posite effect was expected, which questions the
ability of MEN to accurately evaluate relatedness.
The opposite effect is, however, visible with the
WA evaluation, where it is evident that larger win-
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dows (leading to topical similarity) lead to better
WA estimates. This also provides the first hint that
WA and semantic similarity capture two completely
distinct semantic phenomena.

Exp. IV: WA vs. Similarity vs. Relatedness We
delve deeper into this conjecture by computing cor-
relations between model rankings on the WA task
and two prominent similarity and relatedness data
sets. The results from Tab. 4 indicate the following.
First, semantic relatedness and similarity are cor-
related although they clearly refer to two distinct
semantic phenomena as emphasised in prior work
(Hill et al., 2015). The correlations between differ-
ent metrics proposed for the WA task are very high
(e.g., the lowest correlation score among any of
the two is ρ = 0.921). Second, WA and similarity
capture very distinct relations (this is evident from
low, even negative ρ correlation scores). Third, WA
and relatedness are strongly correlated,14 but the
correlation is not as high as expected, given that the
two are often considered equivalent, e.g., (Kiela et
al., 2015). Future work should investigate whether
the difference originates from inadequate evalua-
tion data and protocols (see Fig. 1(a)-1(b) again),
or whether the difference is fundamental.

6 Conclusion and Future Work

We have proposed and released a new end-to-end
evaluation framework for the task of free word as-
sociation (WA). We have also provided new evalu-
ation metrics inspired by research in IR, and guide-
lines for evaluating semantic representation models
on the quantitative WA task.

Besides serving as a gold standard in NLP, the
comprehensive WA evaluation resource and accom-
panying evaluation protocol should enable the de-
velopment of data-driven automatic systems that
can capture the notion of word association, and
further analysis on how humans perceive (types
of) semantic relatedness and similarity (Spence
and Owens, 1990; Maki and Buchanan, 2008;
De Deyne et al., 2013). These systems, as discussed
in this paper, may additionally facilitate research in
cognitive psychology pertaining to human semantic
representation and memory.

14Although it comes as slightly counter-intuitive, research
in statistics has shown that transitivity between correlation
coefficients does not hold in general (Langford et al., 2001;
Castro Sotos et al., 2009). Therefore, the observed behaviour is
possible: Relatedness indeed correlates both with Association
and with Similarity, while at the same time we do not observe
any correlation between Association and Similarity.

In future work, we plan to test the portability
of the evaluation protocol and apply it to other
repositories of word association data in English
(De Deyne et al., 2016), as well as in other lan-
guages, using existing WA tables in, e.g., German
(Schulte im Walde et al., 2008), Dutch (De Deyne
and Storms, 2008; Brysbaert et al., 2014), Italian
(Guida and Lenci, 2007), Japanese (Joyce, 2005),
or Cantonese (Kwong, 2013).15

In another line of future work, we will experi-
ment with other “cognitively plausible” evaluation
data such as N400 (Kutas and Federmeier, 2011;
Ettinger et al., 2016), and will analyse the similar-
ities and differences between WA and other such
“cognitive” evaluation protocols, as the one relying
on semantic priming (SPP) (Hutchison et al., 2013;
Ettinger and Linzen, 2016).

All evaluation scripts and detailed guidelines
related to this work are freely available at:
github.com/cambridgeltl/wa-eval/
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Supplementary Material

Vector Space Models

We evaluate a suite of pre-trained vector space mod-
els readily accessible online. We note that these
models typically use different training data and
other additional resources, and have a varying cov-
erage of the English lexicon, but the evaluation
score still reveals their ability to effectively capture
word association. As mentioned in the paper, we
have aimed at making the comparison fair by eval-
uating all models using the USF vocabulary as the
search space for each model in our comparison.
(0) We evaluate a traditional count-based repre-
sentation model which uses positive PMI weight-
ing and SVD dimensionality reduction. This is
the best performing reduced count-based model
from (Baroni et al., 2014). The model was trained
on concatenated ukWaC, the English Wikipedia
and the British National Corpus with the window
size 2, and dimensionality after SVD is set to
d = 500. Vectors were obtained online.16 We label
this model count-ppmi-500d.

(1) Two sets of Glove vectors (Pennington et al.,
2014) were used (d = 50 and d = 30) trained
on the 6B corpus of concatenated Wikipedia and
GigaWord:17 glove-6B-50d and glove-6B-300d.

(2) Pre-trained vectors obtained using skip-gram
with negative sampling (SGNS) (Mikolov et al.,
2013). We use SGNS vectors from (Levy and
Goldberg, 2014): sgns-pw-bow-w2 and sgns-pw-
bow-w5 denote vectors trained with bag-of-words
(BOW) contexts on the Polyglot Wikipedia (PW)
(Al-Rfou et al., 2013) with window sizes 2 and 5,
respectively; sgns-pw-deps denotes vectors trained
with dependency-based contexts. All vectors are
300-dimensional.18 For more details including the
preprocessing procedure and the specification of
the used dependency parser, we refer the reader
to the original work. We evaluate another SGNS-
BOW model trained on a large 8B corpus with the
window size 2 and d = 500 to measure the poten-
tial gains stemming from the use of larger training

16http://clic.cimec.unitn.it/composes/semantic-
vectors.html

17http://nlp.stanford.edu/projects/glove/
18https://levyomer.wordpress.com/publications/

corpora.19 This model was used as a baseline in
(Schwartz et al., 2015): sgns-8b-bow-w2.

(3) A template-based approach to vector space
modeling introduced by Schwartz et al. (2015).
Vectors are trained based on co-occurrence of
words in symmetric patterns (Davidov and Rap-
poport, 2006). We use pre-trained dense vectors
(d = 500) trained on the 8B corpus available on-
line:20 sympat-500d.

(4) Models that use additional linguistic reposi-
tories to build semantically specialised improved
word vectors. Wieting et al. (2015) use the Para-
phrase Database (PPDB) (Ganitkevitch et al., 2013)
to learn word vectors which emphasise para-
phrasability. They do this by fine-tuning, also
known as retro-fitting (Faruqui et al., 2015), SGNS
vectors using an objective function designed to in-
corporate the PPDB semantic similarity constraints.
We test two variants of the Paragram model (d =
25 and d = 300) available online:21 paragram-
25d and paragram-300d.

Another variant of the fine-tuning procedure
called counter-fitting (CF) was recently proposed by
Mrkšić et al. (2016). The model further improves
the Paragram vectors by injecting antonymy con-
straints from PPDB v2.0 (Pavlick et al., 2015) into
the final vector space. d = 300. We label this model
paragram+cf-300d.22

(5) Two multilingual pre-trained embedding mod-
els, aiming to test whether multilingual supervi-
sion can help in capturing word association the
same way it helps semantic similarity tasks. We use
pre-trained vectors of (Luong et al., 2015) (biskip-
256d) which rely on word-aligned parallel data,23

and CCA-based vectors of Faruqui and Dyer (2014)
(bicca-512d) which require readily available trans-
lation lexicons.24 As bilingual representations are
not the main focus of this work, for further training
details, we refer the reader to the literature.

19code.google.com/p/word2vec/source/browse/trunk/demo-
train-big-model-v1.sh

20http://homes.cs.washington.edu/∼roysch/papers/
sp embeddings/sp embeddings.html

21http://ttic.uchicago.edu/∼wieting/
22https://github.com/nmrksic/counter-fitting
23http://stanford.edu/∼lmthang/bivec/
24http://www.manaalfaruqui.com/
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