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Abstract

Sentiment relevance (SR) aims at identify-
ing content that does not contribute to sen-
timent analysis. Previously, automatic SR
classification has been studied in a limited
scope, using a single domain and feature
augmentation techniques that require large
hand-crafted databases. In this paper, we
present experiments on SR classification
with automatically learned feature repre-
sentations on multiple domains. We show
that a combination of transfer learning and
in-task supervision using features learned
unsupervisedly by the stacked denoising
autoencoder significantly outperforms a
bag-of-words baseline for in-domain and
cross-domain classification.

1 Introduction

Many approaches to sentiment analysis rely on
term-based clues to detect the polarity of sentences
or documents, using the bag-of-words (BoW)
model (Wang and Manning, 2012). One drawback
of this approach is that the polarity of a clue is
often treated as fixed, which can be problematic
when content is not intended to contribute to the
polarity of the entity but contains a term with a
known lexical non-neutral polarity.

For example, movie reviews often have plot
summaries which contain subjective descriptions,
e.g., “April loves her new home and friends.”, con-
taining “loves”, commonly a subjective positive
term. Other domains contain different types of
nonrelevant content: Music reviews may contain
track listings, product reviews on retail platforms
contain complaints that do not concern the prod-
uct, e.g., about shipping and handling. Filtering
such nonrelevant content can help to improve sen-
timent analysis (Pang and Lee, 2004). Sentiment
relevance (Scheible and Schütze, 2013; Taboada

et al., 2009; Täckström and McDonald, 2011) for-
malizes this distinction: Content that contributes
to the overall sentiment of a document is said to
be sentiment relevant (SR), other content is senti-
ment nonrelevant (SNR).

The main bottleneck in automatic SR classifi-
cation is the lack of annotated data. On the sen-
tence level, it has been attempted for the movie
review domain (Scheible and Schütze, 2013) on
a manually annotated dataset that covers around
3,500 sentences. The sentiment analysis data by
Täckström and McDonald (2011) contains SR an-
notations for five product review domains, four of
which have fewer than 1,000 annotated examples.

As the amount of labeled data is low, we adopt
transfer learning (TL, (Thrun, 1995)), which has
been used before for SR classification. In this
setup, we train a classifier on a different task, using
subjectivity-labeled data – for which a large num-
ber of annotated examples is available – and ap-
ply it for SR classification. To enable knowledge
transfer between the tasks, feature space augmen-
tation has been proposed. For this purpose, we em-
ploy automatic representation learning, using the
stacked denoising autoencoder (SDA, (Vincent et
al., 2010)) which has been applied successfully to
other domain adaptation problems such as cross-
domain sentiment analysis (Glorot et al., 2011).

In this paper, we present experiments on both
multi-domain and cross-domain SR classification.
We show that compared to the in-domain base-
line, TL with SDA features increases F1 by 6.8%
on average. We find that domain adaptation using
TL with the SDA compensates for strong domain
shifts, reducing the average classification transfer
loss by 12.7%.

2 Stacked Denoising Autoencoders

The stacked denoising autoencoder (SDA, (Vin-
cent et al., 2010)) is a neural network (NN) model
for unsupervised feature representation learning.
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An autoencoder takes an input vector x, uses an
NN layer with a (possibly) nonlinear activation
function to generate a hidden feature representa-
tion h. A second NN layer reconstructs x at the
output, minimizing the error.

Denoising autoencoders reconstruct x from a
corrupted version of the input, x̃. As the model
learns to be robust to noise, the representations are
expected to generalize better. For discrete data,
masking noise is a natural choice, where each in-
put unit is randomly set to 0 with probability p.

Autoencoders can be stacked by using the hi

produced by the ith autoencoder as the input to
the (i+1)th one, yielding the representation hi+1.
The h of the topmost autoencoder is the final rep-
resentation output by the SDA. We let k-SDA de-
note a stack of k denoising autoencoders.

Chen et al. (2012) introduced a marginalized
closed-form version, the mSDA. We opt for this
version as it is faster to train and allows us to use
the full feature space which would be inefficient
with iterative backpropagation training.

3 Task and Experimental Setup

The task in this paper is multi- and cross-domain
SR classification. Two aspects motivate our work:
First, we need to address the sparse data situa-
tion. Second, we are interested in how cross-
domain effects influence SR classification. We
classify SR in three different setups: in-domain
(ID), in which we take the training and test data
from the same domain; domain adaptation (DA),
where training and test data are from different do-
mains; and transfer learning (TL), where we use a
much larger amount of data from a different but re-
lated task. To improve the generalization capabili-
ties of the models, we use representations learned
by the SDA. We will next describe our classifica-
tion setup in more detail.
Data We use the following datasets for our ex-
periments. Table 1 shows statistics on the datasets.

CINEMA: The movie SR data (CINEMA)
by Scheible and Schütze (2013) contains SR-
annotated sentences for the movie review domain.
Ambiguous sentences are marked as unknown; we
exclude them.

PRODUCTS: The multi-domain product data
(PRODUCTS) by Täckström and McDonald (2011)
contains labeled sentences from five Amazon.com
product review domains: BOOKS, DVDS, electron-
ics (EL), MUSIC, and video games (VG). This

Dataset #doc #sent #SR #SNR

CINEMA 125 3,487 2,759 728

PRODUCTS 294 3,836 2,689 1,147
–BOOKS 59 739 424 315
–DVDS 59 799 524 275
–ELECTRONICS 57 628 491 137
–MUSIC 59 638 448 190
–VIDEOGAMES 60 1032 802 230

P&L – 10,000 5,000 5,000

UNLAB 7,500 68,927 – –

Table 1: Dataset statistics

dataset differs from CINEMA firstly in the product
domains (except obviously for DVDS which also
covers movies). Secondly, the data was collected
from a retail site, which introduces further facets
of sentiment nonrelevance, as discussed above.
Thirdly, the annotation style has no unknown cat-
egory: ambiguous examples are marked as SR.

P&L: The subjectivity data (P&L) by Pang and
Lee (2004) serves as our cross-task training data
for transfer learning. The dataset was heuristically
created for subjectivity detection on the movie do-
main by sampling snippets from Rotten Tomatoes
as subjective and sentences from IMDb plot sum-
maries as objective examples.

UNLAB: To improve generalization on PROD-
UCTS, we use additional unlabeled sentences
(UNLAB) for SDA training. We extract the sen-
tences of 1,500 randomly selected documents for
each of the five domains from the Amazon.com
review data by Jindal and Liu (2008).
SDA setup We train the SDA with 10,000 hid-
den units and tanh nonlinearity on the BoW fea-
tures of all available data as the input. We opti-
mize the noise level p with 2-fold cross-validation
on the in-domain training folds.
Classification setup We perform SR classifica-
tion with a linear support vector machine (SVM)
using LIBLINEAR (Chang and Lin, 2011). We
perform 2-fold cross-validation for all training
data but P&L. We report overall macro-averaged
F1 over both folds. The feature representation for
the SVM is either bag of words (BoW) or the k-
SDA output. Unlike Chen et al. (2012), we do not
use concatenations of BoW and SDA vectors as
we found them to perform worse.
Evaluation As class distributions are heavily
skewed, we use macro-averaged F1(s, t) (train-
ing on s and evaluating on t) as the basic eval-
uation measure. We evaluate DA with transfer
loss, the difference in F1 of a classifier CL with
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Features Setup CINEMA BOOKS DVDS EL MUSIC VG ∅

1 Majority BL – 39.6 28.9 32.6 39.2 35.1 39.0 35.7

2 BoW ID 74.0 57.5 49.8 55.1 55.5 55.0 58.4
3 1-SDA ID 73.6 55.3 48.4 43.8 41.8 44.1 52.6
4 2-SDA ID 76.0 54.5 52.5 43.9 41.2 46.7 53.6

5 BoW TL 71.5 60.7 60.2 50.3 55.1 53.2 59.6
6 1-SDA TL 73.3 62.9 60.6 59.0 59.9 57.0 63.1
7 2-SDA TL 76.2 62.9 65.8 59.7 59.9 60.5 64.9

8 BoW ID+TL 76.6 63.5 61.7 52.4 56.7 57.0 62.3
9 1-SDA ID+TL 79.0 62.7 62.1 57.7 57.8 57.4 63.9

10 2-SDA ID+TL 80.4 62.7 65.2 59.0 58.7 58.9 65.2

Table 2: Macro-averaged F1 (%) evaluating on each test domain on both folds. ∅ = row mean. Bold:
best result in each column and results in that column not significantly different from it.

respect to the in-domain baseline BL: L(s, t) =
F

(BL)
1 (t, t)−F

(CL)
1 (s, t). L is negative if the clas-

sifier surpasses the baseline. As a statistical sig-
nificance test (indicated by † in the text), we use
approximate randomization (Noreen, 1989) with
10,000 iterations at p < 0.05.

4 Experiments

In-Domain Classification (ID) Table 2 shows
macro-averaged F1 for different SR models. We
first turn to fully supervised SR classification with
bag-of-words (BoW) features using ID training
(line 2). While the results for CINEMA are high,
on par with the reported results in related work,
they are low for the PRODUCTS data. This is not
surprising as the SVM is trained with fewer than
600 examples on each domain. Also, no unknown
category exists in the latter dataset. While am-
biguous examples on CINEMA are annotated as un-
known, they receive an SR label on PRODUCTS.
Thus, many examples are ambiguous and thus dif-
ficult to classify. SDA features worsen results
significantly† (lines 3–4) on all domains except
CINEMA and DVDS due to data sparsity. They are
the two most homogeneous domains where plot
descriptions make up a large part of the SNR con-
tent. On many domains, there is no single proto-
typical type of SNR which could be learned from
a small amount of training data.
Transfer Learning (TL) TL with training on
P&L and evaluation on CINEMA/PRODUCTS with
BoW features (line 5) performs slightly worse than
ID classification, except on BOOKS and DVDS

where we see strong improvements. This result
is easy to explain: Both BOOKS and DVDS contain
SNR descriptions of narratives, which are covered
well in P&L. This distinction is less helpful on

domains like EL where SNR content is different,
so we achieve worse results even with the much
larger P&L data.

We find that 1-SDA (line 6) already performs
significantly† better than the ID baseline on all do-
mains except CINEMA which has a much larger
amount of ID training data available than the other
domains (approx. 1700 sentences vs. fewer than
600). Using stacking, 2-SDA (line 7) improves
the results on three domains significantly,† and
performs on par with the ID classifier on CIN-
EMA. We found that stack depths of k > 2 do
not significantly† increase performance.

Finally, we try a combination of ID and TL
(ID+TL), training on both P&L and the respective
ID training fold of CINEMA/PRODUCTS. The re-
sults for this experiment are shown in lines 8–10
in Table 2. Comparing BoW models, we beat both
ID and TL across all domains (lines 2 and 5). With
SDA features, we are able to beat ID for CINEMA.
The results on the other domains are comparable
to plain TL. This is a promising result, showing
that with SDA features, ID+TL performs as well
as or better than plain TL. This property could be
exploited for domains where labeled data is not
available. We will show below that SDA features
become important when we apply ID+TL to do-
main adaptation.

We also conducted experiments using only the
5,000 most frequent features but found that the
SDA does not generalize well from this input rep-
resentation, particularly on EL and MUSIC. This
confirms that in SR, rare features make an im-
portant contribution (such as named entities in the
movie domain).

Domain Adaptation (DA) We now evaluate the
task in a DA setting, comparing the ID and ID+TL
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Figure 1: Transfer losses (%) for DA. Training-test pairs grouped by target domain and abbreviated by
first letter (e.g., CD: training on CINEMA, evaluating on DVDS). In-domain results shown for comparison
to Table 2.

setups with BoW and 2-SDA features. We mea-
sure the transfer losses we suffer from training on
one domain and evaluating on another (Figure 1).
The overall picture is the same as above: ID+TL
2-SDA models perform best. In the baseline BoW
ID setup, domain shifts have a strong influence on
the results. The combination of out-of-domain and
out-of-task data in ID+TL keeps losses uniformly
low. 2-SDA features lower almost all losses fur-
ther. On average, 2-SDA ID+TL reduces trans-
fer loss by 12.7 points compared to the baseline
(Table 3). As expected, pairings of thematically
strongly related domains (e.g., BOOKS and DVDS)
have lower losses in all setups.

The biggest challenge is the strong domain shift
between the CINEMA and PRODUCTS domains
(concerning mainly the retail aspects). With BoW
ID, losses on CINEMA reach up to 25 points, and
using CINEMA for training causes high losses for
PRODUCTS in most cases. Our key result is that
the ID+TL 2-SDA setup successfully compensates
for these problems, reducing the losses below 0.

Losses across the PRODUCTS domains are less
pronounced. The DVDS baseline classifier has the
lowest F1 (cf. Table 2) and shows the highest im-
provements in domain adaptation: BoW models of
other domains perform better than the in-domain
classifier. Analyzing the DVDS model shows over-
fitting to specific movie terms which occur fre-
quently across each review in the training data.
SNR content in movies is mostly concerned with
named entity types which cannot easily be learned
from BoW representations. Out-of-domain mod-
els are less specialized and perform better than in-

BoW 2-SDA

ID 6.7 8.9
ID+TL -1.8 -6.0

Table 3: Mean transfer losses (%) for the different
training data and feature representation setups. In-
domain results not included.

domain models. TL and SDA increase the cover-
age of movie terms and provide better generaliza-
tion, which improves performance further.

BOOKS is the most challenging domain in all se-
tups. It is particularly heterogeneous, containing
both fiction and non-fiction reviews which feature
different SNR aspects. Both results illustrate that
domain effects depend on how diverse SNR con-
tent is within the domain.

Overall, the results show that ID+TL leads to a
successful compensation of cross-domain effects.
SDA features improve the results significantly† for
ID+TL. In particular, we find that the SDA suc-
cessfully compensates for the strong domain shift
between CINEMA and PRODUCTS.

5 Conclusion

We presented experiments on multi- and cross-
domain sentiment relevance classification. We
showed that transfer learning (TL) using stacked
denoising autoencoder (SDA) representations sig-
nificantly increases performance by 6.8% F1 for
in-domain classification. Moreover, the average
transfer loss in domain adaptation is reduced by
12.7 percentage points where the SDA features
compensate for strong domain shifts.
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