
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 159–163,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Improving Dependency Parsers using Combinatory Categorial Grammar

Bharat Ram Ambati Tejaswini Deoskar
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
bharat.ambati@ed.ac.uk, {tdeoskar,steedman}@inf.ed.ac.uk

Mark Steedman

Abstract
Subcategorization information is a useful
feature in dependency parsing. In this
paper, we explore a method of incorpo-
rating this information via Combinatory
Categorial Grammar (CCG) categories
from a supertagger. We experiment with
two popular dependency parsers (Malt
and MST) for two languages: English
and Hindi. For both languages, CCG
categories improve the overall accuracy
of both parsers by around 0.3-0.5% in
all experiments. For both parsers, we
see larger improvements specifically on
dependencies at which they are known to
be weak: long distance dependencies for
Malt, and verbal arguments for MST. The
result is particularly interesting in the case
of the fast greedy parser (Malt), since im-
proving its accuracy without significantly
compromising speed is relevant for large
scale applications such as parsing the web.

1 Introduction
Dependency parsers can recover much of the
predicate-argument structure of a sentence, while
being relatively efficient to train and extremely
fast at parsing. Dependency parsers have been
gaining in popularity in recent times due to
the availability of large dependency treebanks
for several languages and parsing shared tasks
(Buchholz and Marsi, 2006; Nivre et al., 2007a;
Bharati et al., 2012).

Ambati et al. (2013) showed that the perfor-
mance of Malt (Nivre et al., 2007b) on the free
word order language, Hindi, is improved by using
lexical categories from Combinatory Categorial
Grammar (CCG) (Steedman, 2000). In this paper,
we extend this work and show that CCG categories
are useful even in the case of English, a typolog-
ically different language, where parsing accuracy

of dependency parsers is already extremely high.
In addition, we also demonstrate the utility of
CCG categories to MST (McDonald et al., 2005)
for both languages. CCG lexical categories
contain subcategorization information regarding
the dependencies of predicates, including long-
distance dependencies. We show that providing
this subcategorization information in the form of
CCG categories can help both Malt and MST on
precisely those dependencies for which they are
known to have weak rates of recovery. The result
is particularly interesting for Malt, the fast greedy
parser, as the improvement in Malt comes without
significantly compromising its speed, so that it
can be practically applied in web scale parsing.
Our results apply both to English, a fixed word
order and morphologically simple language, and
to Hindi, a free word order and morphologically
rich language, indicating that CCG categories
from a supertagger are an easy and robust way
of introducing lexicalized subcategorization
information into dependency parsers.

2 Related Work

Parsers using different grammar formalisms
have different strengths and weaknesses, and
prior work has shown that information from one
formalism can improve the performance of a
parser in another formalism. Sagae et al. (2007)
achieved a 1.4% improvement in accuracy over a
state-of-the-art HPSG parser by using dependen-
cies from a dependency parser for constraining
wide-coverage rules in the HPSG parser. Coppola
and Steedman (2013) incorporated higher-order
dependency features into a cube decoding phrase-
structure parser and obtained significant gains
on dependency recovery for both in-domain and
out-of-domain test sets.

Kim et al. (2012) improved a CCG parser using
dependency features. They extracted n-best parses
from a CCG parser and provided dependency

159

Pierre Vinken will join the board as a nonexecutive director Nov. 29
N/N N (S[dcl]\NP)/(S[b]\NP) ((S[b]\NP)/PP)/NP NP/N N PP/NP NP/N N/N N ((S\NP)\(S\NP))/N N

> > > >
N NP N (S\NP)\(S\NP)

T >
NP NP

> >
(S[b]\NP)/PP PP

>
S[b]\NP

<
S[b]\NP

>
S[dcl]\NP

>
S[dcl]

Figure 1: A CCG derivation and the Stanford scheme dependencies for an example sentence.

features from a dependency parser to a re-ranker
with an improvement of 0.35% in labelled F-score
of the CCGbank test set. Conversely, Ambati
et al. (2013) showed that a Hindi dependency
parser (Malt) could be improved by using CCG
categories. Using an algorithm similar to Cakici
(2005) and Uematsu et al. (2013), they first cre-
ated a Hindi CCGbank from a Hindi dependency
treebank and built a supertagger. They provided
CCG categories from a supertagger as features to
Malt and obtained overall improvements of 0.3%
and 0.4% in unlabelled and labelled attachment
scores respectively.

3 Data and Tools
Figure 1 shows a CCG derivation with CCG
lexical categories for each word and Stanford
scheme dependencies (De Marneffe et al., 2006)
for an example English sentence. (Details of CCG
and dependency parsing are given by Steedman
(2000) and Kübler et al. (2009).)

3.1 Treebanks

In English dependency parsing literature, Stanford
and CoNLL dependency schemes are widely
popular. We used the Stanford parser’s built-in
converter (with the basic projective option) to
generate Stanford dependencies and Penn2Malt1

to generate CoNLL dependencies from Penn
Treebank (Marcus et al., 1993). We used standard
splits, training (sections 02-21), development
(section 22) and testing (section 23) for our
experiments. For Hindi, we worked with the
Hindi Dependency Treebank (HDT) released
as part of Coling 2012 Shared Task (Bharati et
al., 2012). HDT contains 12,041 training, 1,233
development and 1,828 testing sentences.

We used the English (Hockenmaier and Steed-
man, 2007) and Hindi CCGbanks (Ambati et al.,

1http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html

2013) for our experiments. For Hindi we used two
lexicons: a fine-grained one (with morphological
information) and a coarse-grained one (without
morphological information).
3.2 Supertaggers
We used Clark and Curran (2004)’s supertagger
for English, and Ambati et al. (2013)’s supertag-
ger for Hindi. Both are Maximum Entropy based
CCG supertaggers. The Clark and Curran (2004)
supertagger uses different features like word, part-
of-speech, and contextual and complex bi-gram
features to obtain a 1-best accuracy of 91.5% on
the development set. In addition to the above
mentioned features, Ambati et al. (2013) em-
ployed morphological features useful for Hindi.
The 1-best accuracy of Hindi supertagger for fine-
grained and coarse-grained lexicon is 82.92% and
84.40% respectively.

3.3 Dependency Parsers
There has been a significant amount of work on
parsing English and Hindi using the Malt and
MST parsers in the recent past (Nivre et al.,
2007a; Bharati et al., 2012). We first run these
parsers with previous best settings (McDonald et
al., 2005; Zhang and Nivre, 2012; Bharati et
al., 2012) and treat them as our baseline. In
the case of English, Malt uses arc-standard and
stack-projective parsing algorithms for CoNLL
and Stanford schemes respectively and LIBLIN-
EAR learner (Fan et al., 2008) for both the
schemes. MST uses 1st-order features, and a pro-
jective parsing algorithm with 5-best MIRA train-
ing for both the schemes. For Hindi, Malt uses
the arc-standard parsing algorithm with a LIBLIN-
EAR learner. MST uses 2nd-order features, non-
projective algorithm with 5-best MIRA training.

For English, we assigned POS-tags using a per-
ceptron tagger (Collins, 2002). For Hindi, we also
did all our experiments using automatic features

160

Language Experiment Malt MST
UAS LAS UAS LAS

English

Stanford Baseline 90.32 87.87 90.36 87.18
Stanford + CCG 90.56** (2.5) 88.16** (2.5) 90.93** (5.9) 87.73** (4.3)

CoNLL Baseline 89.99 88.73 90.94 89.69
CoNLL + CCG 90.38** (4.0) 89.19** (4.1) 91.48** (5.9) 90.23** (5.3)

Hindi
Baseline 88.67 83.04 90.52 80.67
Fine CCG 88.93** (2.2) 83.23* (1.1) 90.97** (4.8) 80.94* (1.4)
Coarse CCG 89.04** (3.3) 83.35* (1.9) 90.88** (3.8) 80.73* (0.4)

Table 1: Impact of CCG categories from a supertagger on dependency parsing. Numbers in brackets
are percentage of errors reduced. McNemar’s test compared to baseline, * = p < 0.05 ; ** = p < 0.01
(Hindi Malt results (grey background) are from Ambati et al. (2013)).

(POS, chunk and morphological information)
extracted using a Hindi shallow parser2.

4 CCG Categories as Features
Following Ambati et al. (2013), we used supertags
which occurred at least K times in the training
data, and backed off to coarse POS-tags otherwise.
For English K=1, i.e., when we use CCG cate-
gories for all words, gave the best results. K=15
gave the best results for Hindi due to sparsity is-
sues, as the data for Hindi is small. We provided
a supertag as an atomic symbol similar to a POS
tag and didn’t split it into a list of argument and
result categories. We explored both Stanford and
CoNLL schemes for English and fine and coarse-
grained CCG categories for Hindi. All feature and
parser tuning was done on the development data.
We assigned automatic POS-tags and supertags to
the training data.

4.1 Experiments with Supertagger output

We first used gold CCG categories extracted from
each CCGbank as features to the Malt and MST,
to get an upper bound on the utility of CCG cate-
gories. As expected, gold CCG categories boosted
the Unlabelled Attachment Score (UAS) and La-
belled Attachment Score (LAS) by a large amount
(4-7% in all the cases).

We then experimented with using automatic
CCG categories from the English and Hindi su-
pertaggers as a feature to Malt and MST. With au-
tomatic categories from a supertagger, we got sta-
tistically significant improvements (McNemar’s
test, p < 0.05 for Hindi LAS and p < 0.01 for the
rest) over the baseline parsers, for all cases (Table
1). Since the CCGbanks used to train the supertag-
gers are automatically generated from the con-
stituency or dependency treebanks used to train

2http://ltrc.iiit.ac.in/analyzer/hindi/

the dependency parsers, the improvements are
indeed due to reparameterization of the model to
include CCG categories and not due to additional
hand annotations in the CCGbanks. This shows
that the rich subcategorization information pro-
vided by automatically assigned CCG categories
can help Malt and MST in realistic applications.

For English, in case of Malt, we achieved
0.3% improvement in both UAS and LAS for
Stanford scheme. For CoNLL scheme, these
improvements were 0.4% and 0.5% in UAS and
LAS respectively. For MST, we got around 0.5%
improvements in all cases.

In case of Hindi, fine-grained supertags gave
larger improvements for MST. We got final
improvements of 0.5% and 0.3% in UAS and LAS
respectively. In contrast, for Malt, Ambati et al.
(2013) had shown that coarse-grained supertags
gave larger improvements of 0.3% and 0.4% in
UAS and LAS respectively. Due to better handling
of error propagation in MST, the richer informa-
tion in fine-grained categories may have surpassed
the slightly lower supertagger performance,
compared to coarse-grained categories.

4.2 Analysis: English

We analyze the impact of CCG categories on
different labels (label-wise) and distance ranges
(distance-wise) for CoNLL scheme dependencies
(We observed a similar impact for the Stanford
scheme dependencies as well). Figure 2a shows
the F-score for three major dependency labels,
namely, ROOT (sentence root), SUBJ (subject),
OBJ (object). For Malt, providing CCG categories
gave an increment of 1.0%, 0.3% for ROOT and
SUBJ labels respectively. For MST, the improve-
ments for ROOT and SUBJ were 0.5% and 0.8%
respectively. There was no significant improve-
ment for OBJ label, especially in the case of Malt.

161

87.7

92.5

88.7

92.8
93.4

92.5

88.2

93.9
93.3

88.589

90

91

92

93

94

95 Malt

Malt + CCG

MST

MST + CCG

87.7

86.5 86.5

88.2

86

87

88

89

ROOT SUBJ DOBJ

(a) Label-wise impact

98.2

78.6

80.8

98.3

79.2

81.7

98.4

80.8

84.5

98.5

81.8

85.5

78

83

88

93

98

1-5 6-10 >10

Malt

Malt + CCG

MST

MST + CCG

(b) Distance-wise impact
Figure 2: Label-wise and Distance-wise impact of supertag features on Malt and MST for English

Figure 2b shows the F-score of dependencies
based on the distance ranges between words. The
percentage of dependencies in the 1−5, 6−10 and
>10 distance ranges are 88.5%, 6.6% and 4.9% re-
spectively out of the total of around 50,000 depen-
dencies. For both Malt and MST, there was very
slight improvement for short distance dependen-
cies (1−5) but significant improvements for longer
distances (6−10 and >10). For Malt, there was
an improvement of 0.6% and 0.9% for distances
6−10, and >10 respectively. For MST, these
improvements were 1.0% and 1.0% respectively.

4.3 Analysis: Hindi

In the case of Hindi, for MST, providing CCG
categories gave an increment of 0.5%, 0.4% and
0.3% for ROOT, SUBJ and OBJ labels respec-
tively in F-score over the baseline. Ambati et al.
(2013) showed that for Hindi, providing CCG
categories as features improved Malt in better
handling of long distance dependencies.

The percentage of dependencies in the 1−5,
6−10 and >10 distance ranges are 82.2%,
8.6% and 9.2% respectively out of the total of
around 40,000 dependencies. Similar to English,
there was very slight improvement for short
distance dependencies (1−5). But for longer
distances, 6−10, and >10, there was significant
improvement of 1.3% and 1.3% respectively
for MST. Ambati et al. (2013) reported similar
improvements for Malt as well.

4.4 Discussion

Though valency is a useful feature in dependency
parsing (Zhang and Nivre, 2011), Zhang and Nivre
(2012) showed that providing valency information
dynamically, in the form of the number of depen-
dencies established in a particular state during
parsing, did not help Malt. However, as we have
shown above, providing this information as a static
lexical feature in the form of CCG categories does
help Malt. In addition to specifying the number of
arguments, CCG categories also contain syntactic
type and direction of those arguments. However,

providing CCG categories as features to zpar
(Zhang and Nivre, 2011) didn’t have significant
impact as it is already using similar information.
4.5 Impact on Web Scale Parsing
Greedy parsers such as Malt are very fast and are
practically useful in large-scale applications such
as parsing the web. Table 2, shows the speed of
Malt, MST and zpar on parsing English test data
in CoNLL scheme (including POS-tagging and
supertagging time). Malt parses 310 sentences per
second, compared to 35 and 11 of zpar and MST
respectively. Clearly, Malt is orders of magnitude
faster than MST and zpar. After using CCG
categories from the supertagger, Malt parses 245
sentences per second, still much higher than other
parsers. Thus we have shown a way to improve
Malt without significantly compromising speed,
potentially enhancing its usefulness for web scale
parsing.

Parser Ave. Sents / Sec Total Time
MST 11 3m 36s
zpar 35 1m 11s
Malt 310 0m 7.7s
Malt + CCG 245 0m 10.2s

Table 2: Time taken to parse English test data.
5 Conclusion
We have shown that informative CCG categories,
which contain both local subcategorization infor-
mation and capture long distance dependencies
elegantly, improve the performance of two de-
pendency parsers, Malt and MST, by helping
in recovering long distance relations for Malt
and local verbal arguments for MST. This is
true both in the case of English (a fixed word
order language) and Hindi (free word order and
morphologically richer language), extending the
result of Ambati et al. (2013). The result is
particularly interesting in the case of Malt which
cannot directly use valency information, which
CCG categories provide indirectly. It leads to an
improvement in performance without significantly
compromising speed and hence promises to be
applicable to web scale processing.

162

References
Bharat Ram Ambati, Tejaswini Deoskar, and Mark

Steedman. 2013. Using CCG categories to improve
Hindi dependency parsing. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
604–609, Sofia, Bulgaria.

Akshar Bharati, Prashanth Mannem, and Dipti Misra
Sharma. 2012. Hindi Parsing Shared Task. In Pro-
ceedings of Coling Workshop on Machine Transla-
tion and Parsing in Indian Languages, Kharagpur,
India.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, pages 149–164,
New York City, New York.

Ruken Cakici. 2005. Automatic induction of a CCG
grammar for Turkish. In Proceedings of the ACL
Student Research Workshop, pages 73–78, Ann Ar-
bor, Michigan.

Stephen Clark and James R. Curran. 2004. The impor-
tance of supertagging for wide-coverage CCG pars-
ing. In Proceedings of COLING-04, pages 282–288.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: theory and experi-
ments with perceptron algorithms. In Proceedings
of the conference on Empirical methods in natural
language processing, EMNLP ’02, pages 1–8.

Greg Coppola and Mark Steedman. 2013. The effect
of higher-order dependency features in discrimina-
tive phrase-structure parsing. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
610–616, Sofia, Bulgaria.

Marie Catherine De Marneffe, Bill Maccartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
In LREC 2006.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A li-
brary for large linear classification. J. Mach. Learn.
Res., 9:1871–1874, June.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Treebank.
Computational Linguistics, 33(3):355–396.

Sunghwan Mac Kim, Dominick Ng, Mark Johnson,
and James Curran. 2012. Improving combina-
tory categorial grammar parse reranking with depen-
dency grammar features. In Proceedings of COL-
ING 2012, pages 1441–1458, Mumbai, India.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on

Human Language Technologies. Morgan & Clay-
pool Publishers.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, pages 91–98, Ann Arbor, Michigan.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007a. The CoNLL 2007 shared task on
dependency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
915–932, Prague, Czech Republic.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007b. Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95–135.

Kenji Sagae, Yusuke Miyao, and Jun’ichi Tsujii. 2007.
HPSG parsing with shallow dependency constraints.
In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 624–
631, Prague, Czech Republic.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka,
Yusuke Miyao, and Hideki Mima. 2013. Inte-
grating multiple dependency corpora for inducing
wide-coverage Japanese CCG resources. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1042–1051, Sofia, Bulgaria.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA.

Yue Zhang and Joakim Nivre. 2012. Analyzing
the effect of global learning and beam-search on
transition-based dependency parsing. In Proceed-
ings of COLING 2012: Posters, pages 1391–1400,
Mumbai, India, December.

163

