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Abstract

In this paper, we explore complex net-
work properties of word collocation net-
works (Ferret, 2002) from four different
genres. Each document of a particular
genre was converted into a network of
words with word collocations as edges.
We analyzed graphically and statistically
how the global properties of these net-
works varied across different genres, and
among different network types within the
same genre. Our results indicate that the
distributions of network properties are vi-
sually similar but statistically apart across
different genres, and interesting variations
emerge when we consider different net-
work types within a single genre. We fur-
ther investigate how the global properties
change as we add more and more collo-
cation edges to the graph of one partic-
ular genre, and observe that except for
the number of vertices and the size of
the largest connected component, network
properties change in phases, via jumps and
drops.

1 Introduction

Word collocation networks (Ferret, 2002; Ke,
2007), also known as collocation graphs (Heyer et
al., 2001; Choudhury and Mukherjee, 2009), are
networks of words found in a document or a doc-
ument collection, where each node corresponds to
a unique word type, and edges correspond to word
collocations (Ke and Yao, 2008). In the simplest
case, each edge corresponds to a unique bigram in
the original document. For example, if the words
wA and wB appeared together in a document as
a bigram wAwB , then the word collocation net-
work of that particular document will contain an
edge wA → wB . Note that edges can be directed

(wA → wB) or undirected (wA − wB). Further-
more, they can be weighted (with the frequency of
the bigram wAwB) or unweighted.

It is interesting to note that word collocation
networks display complex network structure, in-
cluding power-law degree distribution and small-
world behavior (Matsuo et al., 2001a; Matsuo et
al., 2001b; Masucci and Rodgers, 2006; Liang et
al., 2012). This is not surprising, given that nat-
ural language generally shows complex network
properties at different levels (Ferrer i Cancho and
Solé, 2001; Motter et al., 2003; Biemann et al.,
2009; Liang et al., 2009). Moreover, researchers
have used such complex networks in applications
ranging from text genre identification (Stevanak
et al., 2010) and Web query analysis (Saha Roy
et al., 2011) to semantic analysis (Biemann et al.,
2012) and opinion mining (Amancio et al., 2011).
In Section 2, we will discuss some of these appli-
cations in more detail.

The goal of this paper is to explore some
key structural properties of these complex net-
works (cf. Table 1), and study how they vary
across different genres of text, and also across
different network types within the same genre.
We chose global network properties like di-
ameter, global clustering coefficient, shrinkage
exponent (Leskovec et al., 2007), and small-
worldliness (Walsh, 1999; Matsuo et al., 2001a),
and experimented with four different text collec-
tions – blogs, news articles, academic papers, and
digitized books (Section 4.1). Six different types
of word collocation networks were constructed on
each document, as well as on the entire collections
– two with directed edges, and four with undi-
rected edges (Section 3). We did not take into ac-
count edge weights in our study, and kept it as a
part of our future work (Section 5).

Tracking the variation of complex network
properties on word collocation networks yielded
several important observations and insights. We
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noted in particular that different genres had con-
siderable visual overlap in the distributions of
global network properties like diameter and clus-
tering coefficient (cf. Figure 2), although sta-
tistical significance tests indicated the distribu-
tions were sufficiently apart from each other (Sec-
tion 4.2). This calls for a deeper analysis of com-
plex network properties and their general applica-
bility to tasks like genre identification (Stevanak et
al., 2010).

We further analyzed distributions of global
word network properties across six different net-
work types within the same genre (Section 4.2).
This time, however, we noted a significant amount
of separation – both visually as well as statistically
– among the distributions of different global prop-
erties (cf. Figure 3 and Table 5).

In our final set of experiments, we analyzed
how global network properties change as we start
with an empty network, and gradually add edges
to that network. For this experiment, we chose
the news genre, and tracked the variation of 17
different global network properties on four types
of networks. We observed that all global net-
work properties (except the number of vertices and
edges, number of connected components and the
size of the largest connected component) show un-
predictability and spikes when the percentage of
added edges is small. We also noted that most
global properties showed at least one phase transi-
tion as the word collocation networks grew larger.
Statistical significance tests indicated that the pat-
terns of most global property variations were non-
random and positively correlated (Section 4.3).

2 Related Work

That language shows complex network structure
at the word level, was shown more than a decade
ago by at least two independent groups of re-
searchers (Ferrer i Cancho and Solé, 2001; Mat-
suo et al., 2001a). Matsuo et al. (2001b) went
further ahead, and designed an unsupervised key-
word extraction algorithm using the small-world
property of word collocation networks. Motter et
al. (2003) extended the collocation network idea to
concepts rather than words, and observed a small-
world structure in the resulting network. Edges
between concepts were defined as entries in an
English thesaurus. Liang et al. (2009) compared
word collocation networks of Chinese and English
text, and pointed out their similarities and differ-

ences. They further constructed character collo-
cation networks in Chinese, showed their small-
world structure, and used these networks in a
follow-up study to accurately segregate Chinese
essays from different literary periods (Liang et al.,
2012).

Word collocation networks have also been suc-
cessfully applied to the authorship attribution
task.1 Antiqueira et al. (2006) were among the
first to apply complex network features like clus-
tering coefficient, component dynamics deviation
and degree correlation to the authorship attribu-
tion problem.

Biemann et al. (2009) constructed syntactic
and semantic distributional similarity networks
(DSNs), and analyzed their structural differences
using spectral plots. Biemann et al. (2012) further
used graph motifs on collocation networks to dis-
tinguish real natural language text from generated
natural language text, and to point out the short-
comings of n-gram language models.

Word collocation networks have been used by
Amancio et al. (2011) for opinion mining, and by
Mihalcea and Tarau (2004) for keyword extrac-
tion. While the former study used complex net-
work properties as features for machine learning
algorithms, the latter ran PageRank (Page et al.,
1998) on word collocation networks to sieve out
most important words.

While all the above studies are very important,
we found none that performed a thorough and
systematic exploration of different global network
properties on different network types across gen-
res, along with statistical significance tests to as-
sess the validity of their observations. Stevanak
et al. (2010), for example, used word collocation
networks to distinguish between novels and news
articles, but they did not perform a distributional
analysis of the different global network properties
they used, thereby leaving open how good those
properties truly were as features for genre classifi-
cation, and whether there exist a better and simpler
set of global network properties for the same task.
On the other hand, Masucci and Rodgers (2006),
Ke (2007), and Ke and Yao (2008) explored sev-
eral global network properties on word collocation
networks, but they did not address the problem of
analyzing within-genre and cross-genre variations
of those properties.

1For details on authorship attribution, please see the
surveys by Juola (2006), Koppel et al. (2009), and Sta-
matatos (2009).
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(a) Directed (b) Undirected, Variant 1 (c) Undirected, Variant 2

Figure 1: Word collocation networks of the sentence “the quick brown fox jumped over the lazy dog”.
Note that for all three network types, the word “the” appeared as the most central word. It is in general
the case that stop words like “the” are the most central words in collocation networks, especially since
they act as connectors between other words.

Network Property Mathematical Expression
Number of vertices |V |
Number of edges |E|
Shrinkage exponent (Leskovec et al., 2007) log|V | |E|
Global clustering coefficient C
Small-worldliness (Walsh, 1999; Matsuo et al., 2001a) µ = (C̄/L)/(C̄rand/Lrand)
Diameter (directed) d
Diameter (undirected) d
Power-law exponent of degree distribution α
Power-law exponent of in-degree distribution αin

Power-law exponent of out-degree distribution αout

p-value for the power-law exponent of degree distribution N/A
p-value for the power-law exponent of in-degree distribution N/A
p-value for the power-law exponent of out-degree distribution N/A
Number of connected components* N/A
Size of the largest connected component* N/A
Number of strongly connected components* N/A
Size of the largest strongly connected component* N/A

Table 1: Different global network properties used in our study. The ones marked with an asterisk (“*”) are
only used in Section 4.3 in the context of incrementally constructing networks by gradually adding edges.
For document networks, these four properties do not make sense, because the number of connected
components is always one, and the size of the largest connected component always equals the number of
vertices in the document network. Note also that in-degree distribution, out-degree distribution, and the
directed version of diameter do not make sense for undirected networks, and same goes with the number
of strongly connected components and the size of the largest strongly connected component. Here we
report them separately for conceptual clarity.
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In addition to addressing these problems, in
this paper we introduce a new analysis - how the
global network properties change as we gradually
add more collocation edges to a network (Sec-
tion 4.3).2

3 Collocation Networks of Words

Before constructing collocation networks, we low-
ercased the input text and removed all punctuation,
but refrained from performing stemming in order
to retain subtle distinctions between words like
“vector” and “vectorization”. Six different types
of word collocation networks were constructed on
each document (used in Section 4.2) as well as on
document collections (used in Section 4.3), where
nodes are unique words, and an edge appears be-
tween two nodes if their corresponding words ap-
peared together as a bigram or in a trigram in
the original text. All the network types have the
same number of vertices (i.e., words) for a partic-
ular document or a document collection, and they
are only distinguished from each other by the type
(and potentially, number) of edges, as follows:
Directed – Directed edge wA → wB if wAwB is
a bigram in the given text.
Undirected, Variant 1 – Undirected edge wA −
wB if wAwB is a bigram in the given text.
Undirected, Variant 2 – Undirected edges wA −
wB , wB −wC and wA−wC , if wAwBwC is a tri-
gram in the given text.
Directed Simplified – Same as the directed ver-
sion, with self-loops removed.3

Undirected Variant 1, Simplified – Same as the
undirected variant 1, with self-loops removed.
Undirected Variant 2, Simplified – Same as the
undirected variant 2, with self-loops removed.

We did not take into account edge weights in
our study, and all our networks are therefore un-
weighted networks. Furthermore, since we re-
moved all punctuation information before con-
structing collocation networks, sentence bound-
aries were implicitly ignored. In other words, the

2All code, data, and supplementary material are avail-
able at https://drive.google.com/file/d/
0B2Mzhc7popBgODFKZVVnQTFMQkE/edit?usp=
sharing. The data includes – among other things – the
corpora we used (cf. Section 4.1), and code to construct the
networks and analyze their properties.

3Note that self-loops may appear in word collocation net-
works due to punctuation removal in the pre-processing step.
An example of such a self-loop is: “The airplane took off.
Off we go to Alaska.” Here the word “off” will contain a
self-loop.

last word of a sentence does link to the first word
of the next sentence in our collocation networks.
An example of the first three types of networks (di-
rected, undirected variant 1, and undirected vari-
ant 2) is shown in Figure 1. Here we considered
a sentence “the quick brown fox jumped over the
lazy dog” as our document. Note that all the col-
location networks in Figure 1 contain at least one
cycle, and the directed version contains a directed
cycle. In a realistic document network, there can
be many such cycles.

We constructed word collocation networks on
document collections as well. In this case, the six
network types remain as before, and the only dif-
ference comes from the fact that now the whole
collection is considered a single super-document.
Words in this super-document are connected ac-
cording to bigram and trigram relationships. We
respected document boundaries in this case, so the
last word of a particular document does not link to
the first word of the next document. The collec-
tion networks have only been used in Section 4.3
of this paper, to show how global network proper-
ties change as we add edges to the network.

With the networks now constructed, we went
ahead and explored several of their global prop-
erties (cf. Table 1). Properties were measured on
each type of network on each document, thereby
giving us property distributions across different
genres of documents for a particular network type
(cf. Figure 2), as well as property distributions
across different network types for a particular
genre (cf. Figure 3). We used the igraph software
package (Csardi and Nepusz, 2006) for computing
global network properties.

Among the properties in Table 1, number of
vertices (|V |) and number of edges (|E|) are self-
explanatory. The shrinkage exponent (log|V | |E|)
is motivated by the observations that the number
of edges (|E|) follows a power-law relationship
with the number of vertices (|V |), and that as a net-
work evolves, both |V | and |E| continue to grow,
but the diameter of the network either shrinks or
plateaus out, thereby resulting in a densified net-
work (Leskovec et al., 2007). We explored two
versions of graph diameter (d) in our study - a di-
rected version (considering directed edges), and an
undirected version (ignoring edge directions).4

The global clustering coefficient (C) is a mea-

4For undirected collocation networks, these two versions
yield the same results, as expected.

99



sure of how interconnected a graph’s nodes are
among themselves. It is defined as the ratio
between the number of closed triplets of ver-
tices (i.e., the number of ordered triangles or
transitive triads), and the number of connected
vertex-triples (Wasserman and Faust, 1994). The
small-worldliness or proximity ratio (µ) of a net-
work measures to what extent the network ex-
hibits small-world behavior. It is quantified as
the amount of deviation of the network from an
equally large random network, in terms of av-
erage local clustering coefficient (C̄) and aver-
age shortest path length (L)5. The exact ratio is
µ = (C̄/L)/(C̄rand/Lrand), where C̄ and L are
the average local clustering coefficient and the av-
erage shortest path length of the given network,
and C̄rand and Lrand are the average local cluster-
ing coefficient and the average shortest path length
of an equally large random network (Walsh, 1999;
Matsuo et al., 2001a).

Since collocation networks have been found to
display scale-free (power-law) degree distribution
in several previous studies (see, e.g., (Ferrer i
Cancho and Solé, 2001; Masucci and Rodgers,
2006; Liang et al., 2009)), we computed power-
law exponents of in-degree, out-degree, and de-
gree distributions on each of our collocation net-
works.6 We also computed the corresponding p-
values, following a procedure outlined in (Clauset
et al., 2009). These p-values help assess whether
the distributions are power-law or not. If a p-value
is < 0.05, then there is statistical evidence to be-
lieve that the corresponding distribution is not a
power-law distribution.

Finally, we computed the number of connected
components, size of the largest (“giant”) con-
nected component, number of strongly connected
components, and size of the largest strongly con-
nected component, to be used in Section 4.3.

4 Analysis of Network Properties

4.1 Datasets

We used four document collections from four dif-
ferent genres – blogs, news articles, academic pa-
pers, and digitized books. For blogs, we used the
Blog Authorship Corpus created by (Schler et al.,
2006). It consists of 19,320 blogs from authors

5Also called “characteristic path length” (Watts and
Strogatz, 1998).

6For undirected graphs, the exponents on all three distri-
butions are the same.

of different age groups and professions. The un-
processed corpus has about 136.8 million word to-
kens.

Our news articles come from the Reuters-
21578, Distribution 1.0 collection.7 This collec-
tion contains 19,043 news stories, and about 2.6
million word tokens (unprocessed).

For the academic paper dataset, we used NIPS
Conference Papers Vols 0-12.8 This corpus com-
prises 1,740 papers and about 4.8 million unpro-
cessed word tokens.

Finally, we created our own corpus of 3,036
digitized books written by 142 authors from the
Project Gutenberg digital library.9 After re-
moving metadata, license information, and tran-
scribers’ notes, this dataset contains about 210.9
million word tokens.

That the word collocation networks of individ-
ual documents are indeed scale-free and small-
world, is evident from Tables 2, 3, and 4, and
Figure 2h. Irrespective of network type, a major-
ity of the median α (power-law exponent of de-
gree distribution) values hovers in the range [2, 3],
with low dispersion. This corroborates with ear-
lier studies (Ferrer i Cancho and Solé, 2001; Liang
et al., 2009; Liang et al., 2012). Similarly, the
median µ (small-worldliness) is high for all gen-
res except news (irrespective of network type),
thereby indicating the document networks are in-
deed small-world. This finding is in line with pre-
vious studies (Matsuo et al., 2001a; Matsuo et al.,
2001b). Moreover, Figure 2h shows that a major-
ity of documents in different genres have a very
high p-value, indicating that the networks are sig-
nificantly power-law. The news genre poses an
interesting case. Since many news stories in the
Reuters-21578 collection are small, their colloca-
tion networks are not very well-connected, thereby
resulting in very low small-worldliness values, as
well as higher estimates of the power-law expo-
nent α (cf. Tables 2, 3, and 4).

4.2 Distribution of Global Network
Properties

We plotted the histograms of eight important
global network properties on directed collocation
networks in Figure 2. All histograms were plot-

7Available from http://www.daviddlewis.com/
resources/testcollections/reuters21578/.

8Available from http://www.cs.nyu.edu/
˜roweis/data.html.

9http://www.gutenberg.org/.
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Dataset
Median α Median α Median α Median µ Median µ Median µ

on Digraph on Undigraph 1 on Undigraph 2 on Digraph on Undigraph 1 on Undigraph 2

(quartile deviations are in parentheses) (quartile deviations are in parentheses)
Blog 2.34 (0.17) 2.34 (0.17) 2.41 (0.19) 16.63 (17.16) 22.50 (22.01) 14.93 (9.49)
News 3.38 (0.42) 3.38 (0.42) 4.35 (0.98) 0.63 (0.50) 0.95 (0.76) 1.75 (0.71)
Papers 2.35 (0.09) 2.35 (0.09) 2.45 (0.11) 20.69 (2.96) 27.87 (3.93) 14.95 (1.80)
Digitized Books 2.12 (0.04) 2.12 (0.04) 2.16 (0.05) 244.31 (98.62) 296.73 (116.98) 88.46 (31.78)
All together 2.58 (0.53) 2.58 (0.53) 2.70 (0.90) 5.03 (11.93) 7.27 (15.85) 7.31 (8.47)

Table 2: Power-law exponent of degree distribution (α) and small-worldliness (µ) of word collocation
networks. Here we report the median across documents in a particular dataset (genre), and also the
median across all documents in all datasets (last row).

Dataset
Median α on Median α on Median α on Median µ on Median µ on Median µ on

Simplified Digraph Simplified Undigraph 1 Simplified Undigraph 2 Simplified Digraph Simplified Undigraph 1 Simplified Undigraph 2

(quartile deviations are in parentheses) (quartile deviations are in parentheses)
Blog 2.34 (0.17) 2.34 (0.16) 2.36 (0.18) 16.67 (17.18) 23.28 (22.98) 39.13 (24.03)
News 3.39 (0.42) 3.40 (0.42) 3.88 (0.77) 0.63 (0.50) 0.96 (0.77) 4.96 (1.93)
Papers 2.36 (0.09) 2.37 (0.09) 2.40 (0.11) 20.78 (2.98) 29.18 (4.09) 38.81 (4.75)
Digitized Books 2.12 (0.04) 2.13 (0.04) 2.14 (0.05) 244.53 (98.81) 317.49 (127.14) 218.77 (78.02)
All together 2.58 (0.53) 2.58 (0.54) 2.65 (0.72) 5.04 (11.97) 7.45 (16.52) 19.64 (21.82)

Table 3: Power-law exponent of degree distribution (α) and small-worldliness (µ) of word collocation
networks. Here we report the median across documents in a particular dataset (genre), and also the
median across all documents in all datasets (last row).

Network Type
Median α Median α Median α Median α Median α Median µ Median µ Median µ Median µ Median µ
on Blogs on Papers on News on Books on All on Blogs on Papers on News on Books on All

(quartile deviations are in parentheses) (quartile deviations are in parentheses)
Digraph 2.34 (0.17) 2.35 (0.09) 3.38 (0.42) 2.12 (0.04) 2.58 (0.53) 16.63 (17.16) 20.69 (2.96) 0.63 (0.50) 244.31 (98.62) 5.03 (11.93)
Undigraph 1 2.34 (0.17) 2.35 (0.09) 3.38 (0.42) 2.12 (0.04) 2.58 (0.53) 22.50 (22.01) 27.87 (3.93) 0.95 (0.76) 296.73 (116.98) 7.27 (15.85)
Undigraph 2 2.41 (0.19) 2.45 (0.11) 4.35 (0.98) 2.16 (0.05) 2.70 (0.90) 14.93 (9.49) 14.95 (1.80) 1.75 (0.71) 88.46 (31.78) 7.31 (8.47)
Simplified Digraph 2.34 (0.17) 2.36 (0.09) 3.39 (0.42) 2.12 (0.04) 2.58 (0.53) 16.67 (17.18) 20.78 (2.98) 0.63 (0.50) 244.53 (98.81) 5.04 (11.97)
Simplified Undigraph 1 2.34 (0.16) 2.37 (0.09) 3.40 (0.42) 2.13 (0.04) 2.58 (0.54) 23.28 (22.98) 29.18 (4.09) 0.96 (0.77) 317.49 (127.14) 7.45 (16.52)
Simplified Undigraph 2 2.36 (0.18) 2.40 (0.11) 3.88 (0.77) 2.14 (0.05) 2.65 (0.72) 39.13 (24.03) 38.81 (4.75) 4.96 (1.93) 218.77 (78.02) 19.64 (21.82)

Table 4: Power-law exponent of degree distribution (α) and small-worldliness (µ) of word collocation
networks. Here we report the median across documents for a particular network type.

(a) Number of Edges (b) Diameter (directed) (c) Diameter (undirected) (d) Small-worldliness

(e) Clustering Coefficient (f) Shrinkage Exponent (g) α (h) p-value for α

Figure 2: Distributions of eight global network properties across different genres for directed collocation
networks. Y-axes represent the percentage of documents for different genres.
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(a) Number of Edges (b) Diameter (directed) (c) Diameter (undirected) (d) Small-worldliness

(e) Clustering Coefficient (f) Shrinkage Exponent (g) α (h) p-value for α

Figure 3: Distributions of eight global network properties across different network types on the news
genre. Y-axes represent the percentage of documents for different network types.

Test |E| Directed d Undirected d µ C Shrinkage α p-value for α
ANOVA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Kruskal-Wallis < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
ANOVA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Kruskal-Wallis < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 5: p-values from ANOVA and Kruskal-Wallis tests. The top two rows are p-values for Figure 2,
and the bottom two rows are p-values for Figure 3. Each column corresponds to one subfigure of Figure 2
and Figure 3. p-values in general were extremely low - close to zero in most cases.

(a) |V | (b) d (directed) (c) d (undirected) (d) µ (e) C (f) Shrinkage

(g) α (h) p-value for α (i) Number of SCCs (j) Number of CCs (k) Giant SCC Size (l) Giant CC Size

Figure 4: Change of global network properties with incremental addition of edges to the directed network
of news genre. SCC = Strongly Connected Component, CC = Connected Component. By “giant” CC
and “giant” SCC, we mean the largest CC and the largest SCC. See Table 1 for other properties.
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ted with 20 bins. Figure 2e, for example, shows
the global clustering coefficient (C) on the X-axis,
divided into 20 bins, and the percentage of doc-
ument networks (directed) with C values falling
into a particular bin, on the Y-axis. Histograms
from different genres are overlaid. Note from Fig-
ure 2e that most distributions are highly overlap-
ping across different genres, thereby putting into
question if they are indeed suitable for genre iden-
tification. But when we performed ANOVA and
Kruskal-Wallis tests to figure out if the distribu-
tions were similar or not across different gen-
res, we observed that the corresponding p-values
were all < 0.001 (cf. Table 5, top two rows),
thereby showing that at least a pair of mean values
were significantly apart. Follow-up experiments
using unpaired t-tests, U-tests, and Kolmogorov-
Smirnov tests (all with Bonferroni Correction for
multiple comparisons) showed that indeed almost
all distributions across different genres were sig-
nificantly apart from each other. Detailed results
are in the supplementary material. This, we think,
is an important and interesting finding, and needs
to be delved deeper in future work.

Figure 3 shows histograms of the eight proper-
ties from Figure 2, but this time on a single genre
(news articles), across different network types.
This time we observed that many histograms are
significantly apart from each other (see, e.g., Fig-
ures 3b, 3c, 3e, and 3f). ANOVA and Kruskal-
Wallis tests corroborated this finding (cf. Table 5,
bottom two rows). Detailed results, including t-
tests, U-tests, and Kolmogorov-Smirnov tests are
in the supplementary material.

4.3 Change of Global Network Properties
with Gradual Addition of Edges

To see how global network properties change as
we gradually add edges to a network, we took
the whole news collection, and constructed a di-
rected word collocation network on the whole col-
lection, essentially considering the collection as a
super-document (cf. Section 3). We studied how
properties change as we consider top k% of edges
in this super-network, with k ranging from 1 to
100 in steps of 1. The result is shown in Fig-
ure 4. Note that the number of connected compo-
nents and the number of strongly connected com-
ponents increase first, and then decrease. The
number of vertices, size of the largest strongly
connected component, and size of the largest con-

nected component increase monotonically as we
consider more and more collocation edges. For
other properties, we see a lot of unpredictability
and spikes (see, e.g., Figures 4d, 4e, 4g, and 4h),
especially when the percentage of added edges is
small. We performed Runs Test, Bartels Test, and
Mann-Kendall Test to figure out if these trends are
random, and the resulting p-values indicate that
they are not random, and in fact positively corre-
lated (i.e., increasing). Details of these tests are
in the supplementary material. Note also that all
figures except Figures 4a, 4k, and 4l show at least
one phase transition (i.e., a “jump” or a “bend”).

5 Conclusion

We performed an exploratory analysis of global
properties of word collocation networks across
four different genres of text, and across different
network types within the same genre. Our analy-
ses reveal that cross-genre and within-genre vari-
ations are statistically significant, and incremental
construction of collocation networks by gradually
adding edges leads to non-random and positively
correlated fluctuations in many global properties,
some of them displaying single or multiple phase
transitions. Future work consists of the inclusion
of edge weights; exploration of other datasets, net-
work properties, and network types; and applying
those properties to the genre classification task.
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