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Abstract

This paper describes work on using Mini-
mal Recursion Semantics (MRS) repre-
sentations for the task of recognising tex-
tual entailment. I use entailment data
from a SemEval-2010 shared task to de-
velop and evaluate an entailment recog-
nition heuristic. I compare my results to
the shared task winner, and discuss dif-
ferences in approaches. Finally, I run my
system with multiple MRS representations
per sentence, and show that this improves
the recognition results for positive entail-
ment sentence pairs.

1 Introduction

Since the first shared task on Recognising Text-
ual Entailment (RTE) (Dagan et al., 2005) was
organised in 2005, much research has been done
on how one can detect entailment between natural
language sentences. A range of methods within
statistical, rule based, and logical approaches have
been applied. The methods have exploited knowl-
edge on lexical relations, syntactic and semantic
knowledge, and logical representations.

In this paper, I examine the benefits and pos-
sible disadvantages of using rich semantic repre-
sentations as the basis for entailment recognition.
More specifically, I use Minimal Recursion Se-
mantics (MRS) (Copestake et al., 2005) represen-
tations as output by the English Resource Gram-
mar (ERG) (Flickinger, 2000). I want to investi-
gate how logical-form semantics compares to syn-
tactic analysis on the task of determining the en-
tailment relationship between two sentences. To
my knowledge, MRS representations have so far
not been extensively used for this task.

To this end, I revisit a SemEval shared task from
2010 that used entailment recognition as a means
to evaluate parser output. The shared task data

were constructed so as to require only syntactic
analysis to decide entailment for a sentence pair.
The MRSs should perform well on such data, as
they abstract over irrelevant syntactic variation, as
for example use of active vs. passive voice, or
meaning-preserving variation in constituent order,
and thus normalise at a highly suitable level of
“who did what to whom”. The core idea of my
approach is graph alignment over MRS represen-
tations, where successful alignment of MRS nodes
is treated as an indicator of entailment.

This work is part of an ongoing dissertation
project, where the larger goal is to look more
closely at correspondences between logical and
textual entailment, and the use of semantic repre-
sentations in entailment recognition.

Besides using MRS, one novel aspect of this
work is an investigation of using n-best lists of
parser outputs in deciding on entailment relations.
In principle, the top-ranked (i.e., most probable)
parser output should correspond to the intended
reading, but in practise this may not always be
the case. To increase robustness in our approach
to imperfect parse ranking, I generalise the sys-
tem to operate over n-best lists of MRSs. This
setup yields greatly improved system performance
and advances the state of the art on this task, i.e.,
makes my system retroactively the top performer
in this specific competition.

The rest of this paper is organised as follows: in
section 2, I describe the task of recognising text-
ual entailment. I also briefly describe MRS rep-
resentations, and mention previous work on RTE
using MRS. In section 3, I analyse the shared task
data, and implement an entailment decision com-
ponent which takes as input MRS representations
from the ERG. I then analyse the errors that the
component makes. Finally, I compare my results
to the actual winner of the 2010 shared task. In
section 4, I generalise my approach to 10-best lists
of MRSs.
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2 Background

In the following, I briefly review the task of recog-
nising entailment between natural language sen-
tences. I also show an example of an MRS rep-
resentation, and mention some previous work on
entailment recognition that has used MRSs.

2.1 Recognising Textual Entailment

Research on automated reasoning has always been
a central topic in computer science, with much fo-
cus on logical approaches. Although there had
been research on reasoning expressed in natural
language, the PASCAL Recognising Textual En-
tailment (RTE) Challenge (Dagan et al., 2005)
spurred wide interest in the problem. In the task
proposed by the RTE Challenge, a system is re-
quired to recognise whether the meaning of one
text can be inferred from the meaning of another
text. Their definition of inference, or textual en-
tailment, is based on the everyday reasoning abili-
ties of humans rather than the logical properties of
language.

The RTE Challenge evolved from the relatively
simple task of making binary decisions about sen-
tence pairs into more complex variants with many
categories and multi-sentence texts. The data sets
issued by the organisers over the years provide
valuable research material. However, they con-
tain a wide range of inference phenomena, and re-
quire both ontological and world knowledge. The
data set that I have used for the present work, the
PETE data set, focusses on syntactic phenomena,
and does not require any knowledge about the state
of the world or ontological relations.

2.2 Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) (Copestake
et al., 2005) is a framework for computational se-
mantics which can be used for both parsing and
generation. MRS representations are expressive,
have a clear interface with syntax, and are suitable
for processing. MRSs can be underspecified with
regard to scope in order to allow a semantically
ambiguous sentence to be represented with a sin-
gle MRS that captures every reading. MRS is inte-
grated with the HPSG English Resource Grammar
(ERG) (Flickinger, 2000).

An MRS representation contains a multiset of
relations, called elementary predications (EPs).
An EP usually corresponds to a single lexeme, but
can also represent general grammatical features.

Each EP has a predicate symbol which, in the case
of lexical predicates, encodes information about
lemma, part-of-speech, and sense distinctions. An
EP also has a label (also called handle) attached
to it. Each EP contains a list of numbered argu-
ments: ARG0, ARG1, etc. The value of an ar-
gument can be either a scopal variable (a handle
which refers to another EP’s label) or a non-scopal
variable (events or states, or entities).

The ARG0 position of the argument list has
the EP’s distinguished variable as its value. This
variable denotes either an event or state, or a
referential or abstract entity (ei or xi, respec-
tively). Each non-quantifier EP has its unique dis-
tinguished variable.

Finally, an MRS has a set of handle constraints
which describe how the scopal arguments of the
EPs can be equated with EP labels. A constraint
hi =q hj denotes equality modulo quantifier in-
sertion. In addition to the indirect linking through
handle constraints, EPs are directly linked by shar-
ing the same variable as argument values. The re-
sulting MRS forms a connected graph.

In figure 2, we see an MRS for the sentence
Somebody denies there are barriers from the
PETE development data (id 4116)1. The topmost
relation of the MRS is deny v to, which has
two non-empty arguments: x5 and h10. x5 is the
distinguished variable of the relations some q
and person, which represent the pronoun some-
body. A handle constraint equates the senten-
tial variable h10 with h11, which is the label of
be v there. This last relation has x13 as its

sole argument, which is the distinguished variable
of udef q and barrier n to, the representa-
tion of barriers.

2.3 Previous Work on RTE using MRS
To my knowledge, MRS has not been used exten-
sively in entailment decision systems. Notable ex-
amples of approaches that use MRSs are Wotzlaw
and Coote (2013), and Bergmair (2010).

In Wotzlaw and Coote (2013), the authors
present an entailment recognition system which
combines high-coverage syntactic and semantic
text analysis with logical inference supported by
relevant background knowledge. Their system
combines deep and shallow linguistic analysis,
and transforms the results into scope-resolved

1The event and entity variables of the EPs often have
grammatical features attached to them. I have removed these
features from the MRS for the sake of readability.
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〈h1,
h4:proper q〈0:5〉(ARG0 x6, RSTR h5, BODY h7),
h8:named〈0:5〉(ARG0 x6, CARG Japan),
h2: deny v to〈6:12〉(ARG0 e3, ARG1 x6, ARG2 h10, ARG3 i9),
h11: be v there〈19:22〉(ARG0 e12, ARG1 x13),
h14:udef q〈23:37〉(ARG0 x13, RSTR h15, BODY h16),
h17: real a 1〈23:27〉(ARG0 e18, ARG1 x13),
h17: barrier n to〈28:37〉(ARG0 x13, ARG1 i19)
{h15 =q h17, h10 =q h11, h5 =q h8, h1 =q h2 } 〉
Figure 1: MRS for the sentence Japan denies there are real barriers.

〈h1,
h4:person〈0:8〉(ARG0 x5),
h6: some q〈0:8〉(ARG0 x5, RSTR h7, BODY h8),
h2: deny v to〈9:15〉(ARG0 e3, ARG1 x5, ARG2 h10, ARG3 i9),
h11: be v there〈22:25〉(ARG0 e12, ARG1 x13),
h14:udef q〈26:35〉(ARG0 x13, RSTR h15, BODY h16),
h17: barrier n to〈26:35〉(ARG0 x13, ARG1 i18)
{h15 =q h17, h10 =q h11, h7 =q h4, h1 =q h2 } 〉
Figure 2: MRS for the sentence Somebody denies there are barriers.

MRS representations. The MRSs are in turn trans-
lated into another semantic representation for-
mat, which, enriched with background knowledge,
forms the basis for logical inference.

In Bergmair (2010), we find a theory-driven ap-
proach to textual entailment that uses MRS as an
intermediate format in constructing meaning rep-
resentations. The approach is based on the as-
sumptions that the syllogism is a good approx-
imation of natural language reasoning, and that
a many-valued logic provides a better model of
natural language semantics than bivalent logics do.
MRSs are used as a step in the translation of natu-
ral language sentences into logical formulae that
are suitable for processing. Input sentences are
parsed with the ERG, and the resulting MRSs are
translated into ProtoForms, which are fully recur-
sive meaning representations that are closely re-
lated to MRSs. These ProtoForms are then decom-
posed into syllogistic premises that can be pro-
cessed by an inference engine.

3 Recognising Syntactic Entailment
using MRSs

In this section, I briefly review the SemEval-2010
shared task that used entailment decision as a
means of evaluating parsers. I then describe the
entailment system I developed for the shared task

data, and compare its results to the winner of the
original task.

3.1 The PETE Shared Task

Parser Evaluation using Textual Entailments
(PETE) was a shared task in the SemEval-
2010 Evaluation Exercises on Semantic Evalua-
tion (Yuret et al., 2010). The task involved build-
ing an entailment system that could decide entail-
ment for sentence pairs based on the output of a
parser. The organisers proposed the task as an al-
ternative way of evaluating parsers. The parser
evaluation method that currently dominates the
field, PARSEVAL (Black et al., 1991), compares
the phrase-structure bracketing of a parser’s output
with the gold annotation of a treebank. This makes
the evaluation both formalism-dependent and vul-
nerable to inconsistencies in human annotations.

The PETE shared task proposes a different eval-
uation method. Instead of comparing parser output
directly to a gold standard, one can evaluate in-
directly by examining how well the parser output
supports the task of entailment recognition. This
strategy has several advantages: the evaluation is
formalism-independent, it is easier for annotators
to agree on entailment than on syntactic categories
and bracketing, and the task targets semantically
relevant phenomena in the parser output. The data
are constructed so that syntactic analysis of the
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sentences is sufficient to determine the entailment
relationship. No background knowledge or rea-
soning ability is required to solve the task.

It is important to note that in the context of the
PETE shared task, entailment decision is not a
goal in itself, it is just a tool for parser evaluation.

The PETE organisers created two data sets for
the task: a development set of 66 sentence pairs,
and a test set of 301 pairs. The data sets were built
by taking a selection of sentences that contain syn-
tactic dependencies that are challenging for state-
of-the-art parsers, and constructing short entail-
ments that (in the case of positive entailment pairs)
reflect these dependencies. The resulting sentence
pairs were annotated with entailment judgements
by untrained annotators, and only sentence pairs
with a high degree of inter-annotator agreement
were kept.

20 systems from 7 teams participated in the
PETE task. The best scoring system was the Cam-
bridge system (Rimell and Clark, 2010), with an
accuracy of 72.4 %.

3.2 The System

My system consists of an entailment decision
component that processes MRS representations as
output by the ERG2. The entailment decision com-
ponent is a Python implementation I developed af-
ter analysing the PETE development data.

The core idea is based on graph alignment,
seeking to establish equivalence relations between
components of MRS graphs. In a nutshell, if all
nodes of the MRS corresponding to the hypothesis
can be aligned with nodes of the MRS of the text,
then we will call this relation MRS inclusion, and
treat it as an indicator for entailment.3 Further-
more, the PETE data set employs a limited range
of “robust” generalisations in hypothesis strings,
for example replacing complex noun phrases from
the text by an underspecified pronoun like some-
body. To accomodate such variation, my graph
alignment procedure supports a number of “ro-
bust” equivalences, for example allowing an arbi-
trarily complex sub-graph to align with the graph
fragment corresponding to expressions like some-
body. These heuristic generalisations were de-
signed in response to an in-depth analysis of the
PETE development corpus, where I made the fol-

2I used the 1212 release of the ERG, in combination with
the PET parser (Callmeier, 2000).

3On this view, bidirectional inclusion indicates that the
two MRS graphs are isomorphic, i.e., logically equivalent.

lowing observations for the sentences of positive
entailment pairs (I use Tsent to mean the text sen-
tence, and Hsent to mean the hypothesis sentence):

• Hsent is always shorter than Tsent.

• In some cases, Hsent is completely included
in Tsent.

• Mostly, Hsent is a substructure of Tsent with
minor changes:

– Tsent is an active sentence, while Hsent

is passive.
– A noun phrase in Tsent has been re-

placed by somebody, someone or some-
thing in Hsent.

– The whole of Hsent corresponds to a
complex noun phrase in Tsent.

In addition, I noted that the determiner or defi-
niteness of a noun phrase often changes from text
to hypothesis without making any difference for
the entailment. I also noted that, in accordance
with the PETE design principles, the context pro-
vided by the text sentence does not influence the
entailment relationship.

In the negative entailment pairs the hypothesis
is usually a combination of elements from the text
that does not match semantically with the text.

I examined treebanked MRS representations of
the PETE development data in order to develop
an entailment recognition heuristic. I found that
by taking the EPs that have an event variable as
their distinguished variable, I would capture the
semantically most important relations in the sen-
tence (the verbs). The heuristic picks out all EPs
whose ARG0 is an event variable from both the
text and hypothesis MRSs—let us call them event
relations. Then it tries to match all the event re-
lations of the hypothesis to event relations in the
text. In the following, Tmrs means the MRS for
the text sentence, and Hmrs the MRS for the hy-
pothesis. We say that two event relations match
if:

1. they are the same or similar relations. Two
event relations are the same or similar if they
share the same predicate symbol, or if their
predicate symbols contain the same lemma
and part-of-speech.

2. and all their arguments match. Two argu-
ments in the same argument position match
if:
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• they are the same relation; or
• the argument in Tmrs represents a noun

phrase and the argument in Hmrs is
somebody/someone/something; or
• the argument in Tmrs is either a scopal

relation or a conjunction relation, and
the argument in the hypothesis is an ar-
gument of this relation; or
• the argument in Hmrs is not expressed.

Let us see how the heuristic works for the fol-
lowing sentence pair (PETE id 4116):

4116 Tsent: The U.S. wants the removal of what
it perceives as barriers to investment; Japan
denies there are real barriers.

4116 Hsent: Somebody denies there are barriers.

Figure 2 shows the MRS for 4116 Hsent. Fig-
ure 1 shows an MRS for the part of 4116 Tsent

that entails 4116 Hsent: Japan denies there are
real barriers. The heuristic picks out two rela-
tions in 4116 Hmrs that have an event variable
as their distinguished variable: deny v to and
be v there. It then tries to find a match for

these relations in the set of event relations in
4116 Tmrs:

• The relation deny v to also appears in
4116 Tmrs, and all its argument variables can
be unified since their relations match accord-
ing to the heuristic:

– x5 unifies with x6, since some q and
person (which represent somebody)
match proper q and named (which
represent Japan4)

– h10 unifies with h10, since they both (via
the handle constraints) lead to the rela-
tion be v there.

– The variables i9 and i9 both represent
unexpressed arguments, and so are triv-
ially unified.

• The relation be v there matches the cor-
responding relation in 4116 Tmrs, since their
single argument x13 denotes the same rela-
tions: udef q and barrier n to.

4According to the heuristic, any proper name matches the
pronoun somebody, so we do not have to consider the actual
proper name involved.

This strategy enables us to capture all the core
relations of the hypothesis. When examining the
data one can see that, contrary to the design prin-
ciples for the PETE data, some sentence pairs do
require reasoning. The heuristic will fail to cap-
ture such pairs.

The ERG is a precision grammar and does not
output analyses for sentences that are ungrammat-
ical. Some of the sentences in the PETE data sets
are arguably in a grammatical gray zone, and con-
sequently the ERG will not give us MRS represen-
tations for such sentences. In some cases, errors in
an MRS can also cause the MRS processing in the
system to fail. Therefore, my system must have
a fallback strategy for sentence pairs were MRSs
are lacking or processing fails. The system answer
NO in such cases, since it has no evidence for an
entailment relationship.

For the development process I used both tree-
banked and 1-best MRSs.

3.3 Error analysis
Tables 1 and 2 show the entailment decision re-
sults for 1-best MRSs for the PETE development
and test data. The ERG parsed 61 of the 66 pairs
in the development set, and 285 of the 301 pairs in
the test set. The five development set pairs that did
not get a parse were all negative entailments pairs.
Of the 16 test pairs that failed to parse, 10 were
negative entailment pairs. The system’s fallback
strategy labels these as NO.

gold YES: 38 gold NO: 28
sys YES 25 2
sys NO 13 26

Table 1: The results for 1-best MRSs for the PETE
development data.

gold YES: 156 gold NO: 145
sys YES 78 10
sys NO 78 135

Table 2: The results for 1-best MRSs for the PETE
test data.

The implementation of the heuristic is fine-
grained in its treatment of the transformations
from text to hypothesis that I found in the PETE
development sentences. Although I tried to antici-
pate possible variations in the test data set, it in-
evitably contained cases that were not covered by
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the code. This meant that occasionally the system
was not able to recognise an entailment.

However, most of the incorrect judgements
were caused either by errors in the MRSs, or by
features of the MRSs or the PETE sentence pairs
that are outside the scope of my heuristic:

1. Recognising the entailment depends on infor-
mation about coreferring expressions, which
is not part of the MRS analyses.

2. The entailment (or non-entailment) relation-
ship depends on something other than syntac-
tic structure. Recognising the entailment re-
quires background knowledge and reasoning.
This means the entailment is really outside
the stated scope of the PETE task.

3. For some of the PETE sentence pairs, the
gold annotation can be discussed. The fol-
lowing pair (PETE id 2079) is labeled NO,
but is structurally similar to sentence pairs
in the data set that are labeled YES: Also,
traders are in better shape today than in 1987
to survive selling binges. ⇒ Binges are sur-
vived.

3.4 Results and Comparison to Shared Task
Winner

At this point, we are ready to compare the results
with the winner of the PETE shared task. Of the 20
systems that took part in the shared task, the best
scoring participant was the Cambridge system, de-
veloped by Laura Rimell and Stephen Clark of
the University of Cambridge (Rimell and Clark,
2010). Their system had an overall accuracy of
72.4 %. My focus here is on comparing the perfor-
mance of the entailment systems, not the parsers.

The Cambridge system: The system consists of
a parser and an entailment system. Rimell and
Clark used the C&C parser, which can produce
output in the form of grammatical relations, that is,
labelled head-dependencies. They used the parser
with the Stanford Dependency scheme (de Marn-
effe et al., 2006), which defines a hierarchy of 48
grammatical relations.

The Cambridge entailment system was based on
the assumption that the hypothesis is a simplified
version of the text. In order to decide entailment,
one can then compare the grammatical relations—

the SDs—of the two sentences5. If the SDs of
the hypothesis are a subset of the SDs of the text,
then the text entails the hypothesis. However, be-
cause the hypotheses in the PETE data are often
not a direct substructure of the text, Rimell and
Clark used heuristics to deal with alterations be-
tween sentences (in the following, I use Tsd and
Hsd to mean the grammatical relations of text and
hypothesis sentences, respectively):

1. If a SD in the hypothesis contains a to-
ken which is not in the text, this SD is ig-
nored. This means that passive auxiliaries,
pronouns, determiners and expletive subjects
that are in Hsd but not in Tsd are ignored.

2. Passive subjects are equated with direct ob-
jects. This rule handles the PETE pairs where
the active verb of the text has become a pas-
sive in the hypothesis.

3. When checking whether the SDs in Hsd are a
subset of the SDs in Tsd, only subject and ob-
ject relations are considered (core relations).

4. The intersection of SDs in Tsd and Hsd has
to be non-empty (this is not restricted to sub-
jects and objects).

To sum up: if core(Hsd)⊆ core(Tsd) and Hsd ∩
Tsd 6= ∅, then Tsent entails Hsent.

Results for 1-best (automatically generated)
test data: We can now compare the results from
the system for 1-best test data with those of Cam-
bridge.

In order to compare the test data results from
my system with those of Rimell & Clark, I have
to account for those sentence pairs that the ERG
could not parse (16) and the MRS pairs that my
system could not process (1). I use the same fall-
back strategy as Rimell & Clark, and let the en-
tailment decision be NO for those sentence pairs
the system cannot handle. For comparison, I also
include the results for SCHWA (University of Syd-
ney), the second highest scorer of the systems that
participated in the shared task.

From the results in table 3 we can see that my
system would have done well in the shared task.
An accuracy of 70.7 % places the system a little

5In Rimell and Clark (2010), the authors used the abbre-
viation GR to mean the grammatical relations of the Stanford
Dependency scheme. I use SD instead, to avoid confusion
with the term GR as used by Carroll et al. (1999)
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System A P R F1
Cambridge 72.4 79.6 62.8 70.2
My system 70.7 88.6 50.0 63.9
SCHWA 70.4 68.3 80.1 73.7

Table 3: The two top systems from the PETE
shared task (Yuret et al., 2010) compared to my
system. Accuracy (A) gives the percentage of cor-
rect answers for both YES and NO. Precision (P),
recall (R) and F1 are calculated for YES.

ahead of SCHWA, the second best system. We
also note that my system has a significantly higher
precision on the YES judgements than the other
two systems.

Resuls for gold/treebanked development data:
In order to evaluate their entailment system,
Rimell & Clark ran their system on manually an-
notated grammatical relations. Given a valid en-
tailment decision approach and correct SDs, the
system could in theory achieve 100 % accuracy.
Cambridge achieved 90.9 % accuracy on these
gold data. The authors noted that one incorrect
decision was due to a PETE pair requiring coref-
erence resolution, three errors were caused by cer-
tain transformations between text and hypothesis
that were not covered by their heuristic, and two
errors occured because the heuristic ignored some
SDs that were crucial for recognising the entail-
ments.

When I ran my system on treebanked MRSs for
the PETE development data, it achieved an accu-
racy of 92.4 %, which is slightly better than the
accuracy for Cambridge.

MRSs vs. grammatical relations: The infor-
mation that the Cambridge system uses is word
dependencies that are typed with grammatical re-
lations. More specifically, Cambridge uses subject
and object relations between words to decide en-
tailment. Because the relations are explicit—we
know exactly what type of grammatical relation
that holds between two words—it is easy to select
the relations in Hsd that one wants to check.

The EPs of MRSs are a mixture of lexical re-
lations, and various syntactic and semantic re-
lations. A lot of the grammatical information
that is explicitly represented as SDs in the Stan-
ford scheme is implicitly represented in MRS EPs
as argument-value pairs. For example, the sub-
ject relation between he and the verb in he runs

is represented as (nsubj run he) in Stan-
ford notation. The corresponding representation
in an MRS is [ run v 1 LBL: h ARG0: e
ARG1: x ], where ARG1 denotes the proto-
agent of the verb. The assignment of semantic
roles to arguments in EPs is not affected by pas-
sivisation or dative shift, whereas such transforma-
tions can cause differences in SDs. For sentence
pairs where these phenomena occur, it is easier
to match EPs and their arguments than the corre-
sponding grammatical relations.

Cambridge heuristic vs. my heuristic: The
Cambridge system checks whether the subject and
object relations in Hsd also appear in Tsd. How-
ever, because their heuristic ignores tokens in the
hypothesis that are not in the text, the system in
certain cases does not check core relations that are
crucial to the entailment relationship.

My system checks whether the event relations
in Hmrs also appear in Tmrs, and whether their
arguments can be matched. Whereas the Cam-
bridge system ignores tokens in the hypothesis that
have no match in the text, my heuristic has ex-
plicit rules for matching arguments that are dif-
ferent. It makes my system more vulnerable to
unseen cases, but at the same time makes the pos-
itive entailment decisions more well-founded. It
leads my system to make fewer mistakes on the
NO entailments than both the Cambridge system
and SCHWA.

In their paper, Rimell & Clark do not provide
an error analysis for the PETE test set, so I can-
not do a comparative error analysis with my sys-
tem. However, they go into detail on some analy-
ses and mention some errors that the system made
on the development data (both automatically gen-
erated and gold-standard), and I can compare these
to my own results on the development data. (I will
only look at those analyses where there are signif-
icant differences between Cambridge and my sys-
tem.)

PETE id 5019: He would wake up in the mid-
dle of the night and fret about it. ⇒ He would
wake up. The Cambridge system recognises this
correctly, but the decision is based only on the sin-
gle SD match (nsubj would he). The other
SDs are ignored, since they are non-core accord-
ing to the heuristic. In my system, the YES de-
cision is based on matching of both the relation
would v modal which has wake v up as its

scopal argument, and wake v up itself with its
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pronoun argument.
PETE id 3081.N: Occasionally, the children

find steamed, whole-wheat grains for cereal which
they call “buckshot”. ⇒ Grains are steamed. The
transformation of steamed from an adjective in
Tsent to a passive in Hsent was not accounted for
in the Cambridge heuristic, and the system failed
to recognise the entailment. In the MRS analyses
for these sentences, steamed gets exactly the same
representation, and my entailment system can eas-
ily match the two.

The Cambridge paper mentions that two of the
errors the entailment system made were due to the
fact that a non-core relation or a pronoun in the
hypothesis, which Cambridge ignores, was crucial
for recognising an entailment. The paper does not
mention which sentences these were, but it seems
likely that they would not pose a problem to my
system.

4 Using 10-best MRSs

So far, I have used only one MRS per sentence
in the entailment decision process. The entail-
ment decisions were based on the best MRSs for a
sentence pair, either chosen manually (treebanked
MRSs) or automatically (1-best MRSs). In both
cases, it can happen that the MRS chosen for a
sentence is not actually the best interpretation, ei-
ther because of human error during treebanking,
or because the best MRS is not ranked as number
one.

I also noticed that many of the incorrect deci-
sions that the system made were caused either by
errors in the MRSs or by incompatible analyses
for a sentence pair. In both cases, the correct or
compatible MRS could possibly be found further
down the list of analyses produced by the ERG.
These shortcomings can perhaps be remedied by
examining more MRS analyses for each sentence
in a pair.

When doing n-best parsing on the PETE data
sets, we can expect a high number of analyses
for the text sentences, and fewer analyses for the
shorter hypotheses. By setting n to 10, I hope to
capture a sufficient number of the best analyses.
With 10-best parsing, I get on average 9 analyses
for the text sentences, and 3 analyses for the hy-
potheses.

I use a simple strategy for checking entailment
between a set of MRSs for the text and a set of
MRSs for the hypothesis: If I can find one case

of entailment between two MRSs, then I conclude
that the text entails the hypothesis.

In table 4, I compare my previous results with
those that I get with 10-best MRSs. As we can see,
the system manages to recognise a higher number
of positive entailment pairs, but the precision goes
down a little. Using 10-best MRSs ensures that we
do not miss out on positive entailment pairs where
an incorrect MRS is ranked as number one. How-
ever, it also increases the number of spurious en-
tailments caused by MRSs whose event relations
accidentally match. Variation of n allows trad-
ing off precision and recall, and n can possibly be
tuned separately for texts and hypotheses.

When we compare 10-best entailment checking
to the PETE shared task results, we see that my
results improve substantially over the previously
highest reported performance. My system scores
about 4 accuracy points higher than the system of
Rimell & Clark, and more than 5 points for F1.

System A P R F1
One MRS 70.7 88.6 50.0 63.9
10-best 76.4 81.4 70.5 75.5

Table 4: Here I compare system results for one
MRS and 10-best MRSs. Accuracy (A) gives the
percentage of correct answers for both YES and
NO. Precision (P), recall (R) and F1 are calculated
for YES.

5 Conclusions and Future Work

In this paper, I have demonstrated how to build
an entailment system from MRS graph alignment,
combined with heuristic “robust” generalisations.
I compared my results to the winner of the 2010
PETE shared task, the Cambridge system, which
used grammatical relations as the basis for entail-
ment decision. I performed an in-depth compar-
ison of types and structure of information rele-
vant to entailment in syntactic dependencies vs.
logical-form meaning representations. The system
achieved competitive results to the state of the art.
Results on gold-standard parser output suggests
substantially better performance in my entailment
system than the PETE shared task winner.

I also generalised the approach to using n-
best lists of parser outputs. Using 1-best out-
put makes entailment decision vulnerable to in-
correct MRS analyses being ranked as number
one. Using n-best can counterbalance this prob-
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lem. With 10-best MRSs, a significant improve-
ment was achieved in the performance of the en-
tailment decision system. The n-best setup offers
the flexibility of trading off precision and recall.

With the 10-best MRS lists, I used a simple
strategy for entailment decision: if one MRS pair
supports a YES decision, we say that we have en-
tailment. It would be interesting to explore more
complex strategies, such as testing all the MRS
combinations for a sentence pair for a certain n,
and decide for the majority vote. One could also
make use of the conditional probabilities on parser
outputs, for instance by multiplying the probabil-
ities for each MRS pair, summing up for YES vs.
NO decisions, and setting a threshold for the final
decision.
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