
Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 17–20,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

RDRPOSTagger: A Ripple Down Rules-based Part-Of-Speech Tagger

Dat Quoc Nguyen1 and Dai Quoc Nguyen1 and Dang Duc Pham2 and Son Bao Pham1

1 Faculty of Information Technology
University of Engineering and Technology

Vietnam National University, Hanoi
{datnq, dainq, sonpb}@vnu.edu.vn
2 L3S Research Center, Germany

pham@L3S.de

Abstract

This paper describes our robust, easy-
to-use and language independent toolkit
namely RDRPOSTagger which employs
an error-driven approach to automatically
construct a Single Classification Ripple
Down Rules tree of transformation rules
for POS tagging task. During the demon-
stration session, we will run the tagger on
data sets in 15 different languages.

1 Introduction
As one of the most important tasks in Natural
Language Processing, Part-of-speech (POS) tag-
ging is to assign a tag representing its lexical
category to each word in a text. Recently, POS
taggers employing machine learning techniques
are still mainstream toolkits obtaining state-of-
the-art performances1. However, most of them are
time-consuming in learning process and require a
powerful computer for possibly training machine
learning models.

Turning to rule-based approaches, the most
well-known method is proposed by Brill (1995).
He proposed an approach to automatically learn
transformation rules for the POS tagging problem.
In the Brill’s tagger, a new selected rule is learned
on a context that is generated by all previous rules,
where a following rule will modify the outputs of
all the preceding rules. Hence, this procedure re-
turns a difficulty to control the interactions among
a large number of rules.

Our RDRPOSTagger is presented to overcome
the problems mentioned above. The RDRPOSTag-
ger exploits a failure-driven approach to auto-
matically restructure transformation rules in the
form of a Single Classification Ripple Down Rules
(SCRDR) tree (Richards, 2009). It accepts inter-
actions between rules, but a rule only changes the

1http://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

outputs of some previous rules in a controlled con-
text. All rules are structured in a SCRDR tree
which allows a new exception rule to be added
when the tree returns an incorrect classification.
A specific description of our new RDRPOSTagger
approach is detailed in (Nguyen et al., 2011).

Packaged in a 0.6MB zip file, implementations
in Python and Java can be found at the tagger’s
website http://rdrpostagger.sourceforge.net/. The
following items exhibit properties of the tagger:
• The RDRPOSTagger is easy to configure and

train. There are only two threshold parameters uti-
lized to learn the rule-based model. Besides, the
tagger is very simple to use with standard input
and output, having clear usage and instructions
available on its website.
• The RDRPOSTagger is language independent.

This POS tagging toolkit has been successfully
applied to English and Vietnamese. To train the
toolkit for other languages, users just provide a
lexicon of words and the most frequent associated
tags. Moreover, it can be easily combined with ex-
isting POS taggers to reach an even better result.
• The RDRPOSTagger obtains very competitive

accuracies. On Penn WSJ Treebank corpus (Mar-
cus et al., 1993), taking WSJ sections 0-18 as the
training set, the tagger achieves a competitive per-
formance compared to other state-of-the-art En-
glish POS taggers on the test set of WSJ sections
22-24. For Vietnamese, it outperforms all previ-
ous machine learning-based POS tagging systems
to obtain an up-to-date highest result on the Viet-
namese Treebank corpus (Nguyen et al., 2009).
• The RDRPOSTagger is fast. For instance in

English, the time2 taken to train the tagger on
the WSJ sections 0-18 is 40 minutes. The tagging
speed on the test set of the WSJ sections 22-24 is
2800 words/second accounted for the latest imple-
mentation in Python whilst it is 92k words/second

2Training and tagging times are computed on a Windows-
7 OS computer of Core 2Duo 2.4GHz & 3GB of memory.

17



Figure 1: A part of our SCRDR tree for English POS tagging.

for the implementation in Java.

2 SCRDR methodology

A SCRDR tree (Richards, 2009) is a binary tree
with two distinct types of edges. These edges are
typically called except and if-not edges. Associ-
ated with each node in a tree is a rule. A rule has
the form: if α then β where α is called the condi-
tion and β is referred to as the conclusion.

Cases in SCRDR are evaluated by passing a
case to the root of the tree. At any node in the
tree, if the condition of a node N ’s rule is satis-
fied by the case, the case is passed on to the ex-
ception child ofN using the except link if it exists.
Otherwise, the case is passed on to the N ’s if-not
child. The conclusion given by this process is the
conclusion from the last node in the SCRDR tree
which fired (satisfied by the case). To ensure that
a conclusion is always given, the root node typi-
cally contains a trivial condition which is always
satisfied. This node is called the default node.

A new node containing a new rule (i.e. a new ex-
ception rule) is added to an SCRDR tree when the
evaluation process returns the wrong conclusion.
The new node is attached to the last node in the
evaluation path of the given case with the except
link if the last node is the fired one. Otherwise, it
is attached with the if-not link.

For example with the SCRDR tree in the fig-
ure 1, given a case “as/IN investors/NNS an-
ticipate/VB a/DT recovery/NN” where “antici-
pate/VB” is the current word and tag pair, the case
satisfies the conditions of the rules at nodes (0),
(1) and (3), it then is passed to the node (6) (utiliz-
ing except links). As the case does not satisfy the
condition of the rule at node (6), it will be trans-
ferred to node (7) using if-not link. Since the case
does not fulfill the conditions of the rules at nodes
(7) and (8), we have the evaluation path (0)-(1)-
(3)-(6)-(7)-(8) with fired node (3). Therefore, the
tag for “anticipate” is concluded as “VBP”.

Rule (1) - the rule at node (1) - is the exception
rule3 of the default rule (0). As node (2) is the if-
not child node of the node (1), the associated rule
(2) is also an exception rule of the rule (0). Simi-
larly, both rules (3) and (4) are exception rules of
the rule (1) whereas all rules (6), (7) and (8) are
exception rules of the rule (3), and so on. Thus,
the exception structure of the SCRDR tree extends
to 4 levels: rules (1) and (2) at layer 1, rules (3),
(4) and (5) at layer 2, rules (6), (7) and (8) at layer
3, and rule (9) at layer 4.

3 The RDRPOSTagger toolkit
The toolkit consists of four main compo-
nents: Utility, Initial-tagger, SCRDR-learner and
SCRDR-tagger.

3.1 The Utility

The major functions of this component are to eval-
uate tagging performances (displaying accuracy
results), and to create a lexicon of words and the
most frequent associated tags as well as to extract
Raw corpus from an input golden training corpus.

3.2 The Initial-tagger

The initial-tagger developed in the RDRPOSTag-
ger toolkit is based on the lexicon which is gen-
erated in the use of the Utility component to as-
sign a tag for each word. To deal with unknown
words, the initial-tagger utilizes several regular ex-
pressions or heuristics for English and Vietnamese
whereas the most frequent tag in the training cor-
pus is exploited to label unknown-words when
adapting to other languages.

3.3 The SCRDR-learner

The SCRDR-learner component uses a failure-
driven method to automatically build a SCRDR
tree of transformation rules. Figure 3 describes the
learning process of the learner.

3The default rule is the unique rule which is not an excep-
tion rule of any other rule. Every rule in layer n is an excep-
tion rule of a rule in layer n− 1.

18



#12: if next1stTag == “object.next1stTag” then tag = “correctTag”
#14: if prev1stTag == “object.prev1stTag” then tag = “correctTag”
#18: if word == “object.word” && next1stTag == “object.next1stTag” then tag = “correctTag”

Figure 2: Rule template examples.

Figure 3: The diagram of the learning process of the learner.

The Initialized corpus is returned by perform-
ing the Initial-tagger on the Raw corpus. By com-
paring the initialized one with the Golden corpus,
an Object-driven dictionary of pairs (Object, cor-
rectTag) is produced in which Object captures the
5-word window context covering the current word
and its tag in following format (previous 2nd word
/ previous 2nd tag, previous 1st word / previous
1st tag, word / currentTag, next 1st word / next 1st

tag, next 2nd word / next 2nd tag) from the initial-
ized corpus, and the correctTag is the correspond-
ing tag of the current word in the golden corpus.

There are 27 Rule templates applied for Rule se-
lector which is to select the most suitable rules
to build the SCRDR tree. Examples of the rule
templates are shown in figure 2 where elements
in bold will be replaced by concrete values from
Objects in the object-driven dictionary to create
concrete rules. The SCRDR tree of rules is initial-
ized by building the default rule and all exception
rules of the default one in form of if currentTag =
“TAG” then tag = “TAG” at the layer-1 exception
structure, for example rules (1) and (2) in the fig-
ure 1, and the like. The learning approach to con-
struct new exception rules to the tree is as follows:

• At a node-F in the SCRDR tree, let SO be
the set of Objects from the object-driven dictio-
nary, which those Objects are fired at the node-F
but their initialized tags are incorrect (the current-
Tag is not the correctTag associated). It means that
node-F gives wrong conclusions to all Objects in
the SO set.
• In order to select a new exception rule of the

rule at node-F from all concrete rules which are

generated for all Objects in the SO set, the se-
lected rule have to satisfy constraints: (i) The rule
must be unsatisfied by cases for which node-F has
already given correct conclusions. This constraint
does not apply to node-F at layer-1 exception struc-
ture. (ii) The rule must associate to a highest score
value of subtracting B from A in comparison to
other ones, where A and B are the numbers of the
SO’s Objects which are correctly and incorrectly
concluded by the rule respectively. (iii) And the
highest value is not smaller than a given threshold.

The SCRDR-learner applies two threshold pa-
rameters: first threshold is to choose exception
rules at the layer-2 exception structure (e.g rules
(3), (4) and (5) in figure 1), and second threshold
is to select rules for higher exception layers.
• The process to add new exception rules is re-

peated until there is no rule satisfying the con-
straints above. At each iteration, a new rule is
added to the current SCRDR tree to correct error
conclusions made by the tree.

3.4 The SCRDR-tagger

The SCRDR-tagger component is to perform the
POS tagging on a raw text corpus where each line
is a sequence of words separated by white space
characters. The component labels the text corpus
by using the Initial-tagger. It slides due to a left-
to-right direction on a 5-word window context to
generate a corresponding Object for each initially
tagged word. The Object is then classified by the
learned SCRDR tree model to produce final con-
clusion tag of the word as illustrated in the exam-
ple in the section 2.

4 Evaluation
The RDRPOSTagger has already been success-
fully applied to English and Vietnamese corpora.

4.1 Results for English

Experiments for English employed the Penn WSJ
Treebank corpus to exploit the WSJ sections 0-18
(38219 sentences) for training, the WSJ sections
19-21 (5527 sentences) for validation and the WSJ
sections 22-24 (5462 sentences) for test.

Using a lexicon created in the use of the train-

19



ing set, the Initial-tagger obtains an accuracy of
93.51% on the test set. By varying the thresholds
on the validation set, we have found the most suit-
able values4 of 3 and 2 to be used for evaluating
the RDRPOSTagger on the test set. Those thresh-
olds return a SCRDR tree model of 2319 rules
in a 4-level exception structure. The training time
and tagging speed for those thresholds are men-
tioned in the introduction section. On the same test
set, the RDRPOSTagger achieves a performance at
96.49% against 96.46% accounted for the state-of-
the-art POS tagger TnT (Brants, 2000).

For another experiment, only in training pro-
cess: 1-time occurrence words in training set are
initially tagged as out-of-dictionary words. With
a learned tree model of 2418 rules, the tagger
reaches an accuracy of 96.51% on the test set.

Retraining the tagger utilizing another initial
tagger5 developed in the Brill’s tagger (Brill,
1995) instead of the lexicon-based initial one,
the RDRPOSTagger gains an accuracy result of
96.57% which is slightly higher than the perfor-
mance at 96.53% of the Brill’s.

4.2 Results for Vietnamese

In the first Evaluation Campaign6 on Vietnamese
Language Processing, the POS tagging track pro-
vided a golden training corpus of 28k sentences
(631k words) collected from two sources of the
national VLSP project and the Vietnam Lexicog-
raphy Center, and a raw test corpus of 2100 sen-
tences (66k words). The training process returned
a SCRDR tree of 2896 rules7. Obtaining a highest
performance on the test set, the RDRPOSTagger
surpassed all other participating systems.

We also carry out POS tagging experiments on
the golden corpus of 28k sentences and on the
Vietnamese Treebank of 10k sentences (Nguyen
et al., 2009) according to 5-fold cross-validation
scheme8. The average accuracy results are pre-
sented in the table 1. Achieving an accuracy of
92.59% on the Vietnamese Treebank, the RDR-

4The thresholds 3 and 2 are reused for all other experi-
ments in English and Vietnamese.

5The initial tagger gets a result of 93.58% on the test set.
6http://uet.vnu.edu.vn/rivf2013/campaign.html
7It took 100 minutes to construct the tree leading to tag-

ging speeds of 1100 words/second and 45k words/second for
the implementations in Python and Java, respectively, on the
computer of Core 2Duo 2.4GHz & 3GB of memory.

8In each cross-validation run, one fold is selected as test
set, 4 remaining folds are merged as training set. The initial
tagger exploits a lexicon generated from the training set. In
training process, 1-time occurrence words are initially labeled
as out-of-lexicon words.

Table 1: Accuracy results for Vietnamese

Corpus Initial-tagger RDRPOSTagger
28k 91.18% 93.42%
10k 90.59% 92.59%

POSTagger outperforms previous Maximum En-
tropy Model, Conditional Random Field and Sup-
port Vector Machine-based POS tagging systems
(Tran et al., 2009) on the same evaluation scheme.

5 Demonstration and Conclusion
In addition to English and Vietnamese, in the
demonstration session, we will present promising
experimental results and run the RDRPOSTagger
for other languages including Bulgarian, Czech,
Danish, Dutch, French, German, Hindi, Italian,
Lao, Portuguese, Spanish, Swedish and Thai. We
will also let the audiences to contribute their own
data sets for retraining and testing the tagger.

In this paper, we describe the rule-based
POS tagging toolkit RDRPOSTagger to auto-
matically construct transformation rules in form
of the SCRDR exception structure. We be-
lieve that our robust, easy-to-use and language-
independent toolkit RDRPOSTagger can be useful
for NLP/CL-related tasks.

References
Thorsten Brants. 2000. TnT: a statistical part-of-

speech tagger. In Proc. of 6th Applied Natural Lan-
guage Processing Conference, pages 224–231.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: a case
study in part-of-speech tagging. Comput. Linguist.,
21(4):543–565.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of English: the penn treebank. Comput.
Linguist., 19(2):313–330.

Phuong Thai Nguyen, Xuan Luong Vu, Thi
Minh Huyen Nguyen, Van Hiep Nguyen, and
Hong Phuong Le. 2009. Building a Large
Syntactically-Annotated Corpus of Vietnamese. In
Proc. of LAW III workshop, pages 182–185.

Dat Quoc Nguyen, Dai Quoc Nguyen, Son Bao Pham,
and Dang Duc Pham. 2011. Ripple Down Rules for
Part-of-Speech Tagging. In Proc. of 12th CICLing -
Volume Part I, pages 190–201.

Debbie Richards. 2009. Two decades of ripple down
rules research. Knowledge Engineering Review,
24(2):159–184.

Oanh Thi Tran, Cuong Anh Le, Thuy Quang Ha, and
Quynh Hoang Le. 2009. An experimental study
on vietnamese pos tagging. Proc. of the 2009 Inter-
national Conference on Asian Language Processing,
pages 23–27.

20


