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Abstract

Topic models based on latent Dirichlet al-
location and related methods are used in a
range of user-focused tasks including doc-
ument navigation and trend analysis, but
evaluation of the intrinsic quality of the
topic model and topics remains an open
research area. In this work, we explore
the two tasks of automatic evaluation of
single topics and automatic evaluation of
whole topic models, and provide recom-
mendations on the best strategy for per-
forming the two tasks, in addition to pro-
viding an open-source toolkit for topic and
topic model evaluation.

1 Introduction

Topic modelling based on Latent Dirichlet Alloca-
tion (LDA: Blei et al. (2003)) and related methods
is increasingly being used in user-focused tasks, in
contexts such as the evaluation of scientific impact
(McCallum et al., 2006; Hall et al., 2008), trend
analysis (Bolelli et al., 2009; Lau et al., 2012a)
and document search (Wang et al., 2007). The
LDA model is based on the assumption that doc-
ument collections have latent topics, in the form
of a multinomial distribution of words, which is
typically presented to users via its top-N highest-
probability words. In NLP, topic models are gener-
ally used as a means of preprocessing a document
collection, and the topics and per-document topic
allocations are fed into downstream applications
such as document summarisation (Haghighi and
Vanderwende, 2009), novel word sense detection
methods (Lau et al., 2012b) and machine transla-
tion (Zhao and Xing, 2007). In fields such as the
digital humanities, on the other hand, human users
interact directly with the output of topic models. It
is this context of topic modelling for direct human
consumption that we target in this paper.

The topics produced by topic models have a
varying degree of human-interpretability. To il-
lustrate this, we present two topics automatically
learnt from a collection of news articles:

1. 〈farmers, farm, food, rice, agriculture〉
2. 〈stories, undated, receive, scheduled, clients〉

The first topic is clearly related to agriculture.
The subject of the second topic, however, is less
clear, and may confuse users if presented to them
as part of a larger topic model. Measuring the
human-interpretability of topics and the overall
topic model is the core topic of this paper.

Various methodologies have been proposed for
measuring the semantic interpretability of topics.
In Chang et al. (2009), the authors proposed an
indirect approach based on word intrusion, where
“intruder words” are randomly injected into topics
and human users are asked to identify the intruder
words. The word intrusion task builds on the as-
sumption that the intruder words are more iden-
tifiable in coherent topics than in incoherent top-
ics, and thus the interpretability of a topic can be
estimated by measuring how readily the intruder
words can be manually identified by annotators.

Since its inception, the method of Chang et
al. (2009) has been used variously as a means
of assessing topic models (Paul and Girju, 2010;
Reisinger et al., 2010; Hall et al., 2012). Despite
its wide acceptance, the method relies on manual
annotation and has never been automated. This is
one of the primary contributions of this work: the
demonstration that we can automate the method of
Chang et al. (2009) at near-human levels of accu-
racy, as a result of which we can perform auto-
matic evaluation of the human-interpretability of
topics, as well as topic models.

There has been prior work to directly estimate
the human-interpretability of topics through au-
tomatic means. For example, Newman et al.
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(2010) introduced the notion of topic “coher-
ence”, and proposed an automatic method for es-
timating topic coherence based on pairwise point-
wise mutual information (PMI) between the topic
words. Mimno et al. (2011) similarly introduced
a methodology for computing coherence, replac-
ing PMI with log conditional probability. Musat
et al. (2011) incorporated the WordNet hierarchy
to capture the relevance of topics, and in Aletras
and Stevenson (2013a), the authors proposed the
use of distributional similarity for computing the
pairwise association of the topic words. One ap-
plication of these methods has been to remove in-
coherent topics before generating labels for topics
(Lau et al., 2011; Aletras and Stevenson, 2013b).

Ultimately, all these methodologies, and also
the word intrusion approach, attempt to assess the
same quality: the human-interpretability of top-
ics. The relationship between these methodolo-
gies, however, is poorly understood, and there is
no consensus on what is the best approach for
computing the semantic interpretability of topic
models. This is a second contribution of this pa-
per: we perform a systematic empirical compar-
ison of the different methods and find apprecia-
ble differences between them. We further go on to
propose an improved formulation of Newman et
al. (2010) based on normalised PMI. Finally, we
release a toolkit which implements the topic inter-
pretability measures described in this paper.

2 Related Work

Chang et al. (2009) challenged the conventional
wisdom that held-out likelihood — often com-
puted as the perplexity of test data or unseen doc-
uments — is the only way to evaluate topic mod-
els. To measure the human-interpretability of top-
ics, the authors proposed a word intrusion task
and conducted experiments using three topic mod-
els: Latent Dirichlet Allocation (LDA: Blei et al.
(2003)), Probabilistic Latent Semantic Indexing
(PLSI: Hofmann (1999)) and the Correlated Topic
Model (CTM: Blei and Lafferty (2005)). Contrary
to expectation, they found that perplexity corre-
lates negatively with topic interpretability.

In the word intrusion task, each topic is pre-
sented as a list of six words — the five most proba-
ble topic words and a randomly-selected “intruder
word”, which has low probability in the topic of
interest, but high probability in other topics —
and human users are asked to identify the intruder

word that does not belong to the topic in question.
Newman et al. (2010) capture topic inter-

pretability using a more direct approach, by asking
human users to rate topics (represented by their
top-10 topic words) on a 3-point scale based on
how coherent the topic words are (i.e. their ob-
served coherence). They proposed several ways of
automating the estimation of the observed coher-
ence, and ultimately found that a simple method
based on PMI term co-occurrence within a sliding
context window over English Wikipedia produces
the consistently best result, nearing levels of inter-
annotator agreement over topics learnt from two
distinct document collections.

Mimno et al. (2011) proposed a closely-related
method for evaluating semantic coherence, replac-
ing PMI with log conditional probability. Rather
than using Wikipedia for sampling the word co-
occurrence counts, Mimno et al. (2011) used the
topic-modelled documents, and found that their
measure correlates well with human judgements
of observed coherence (where topics were rated
in the same manner as Newman et al. (2010),
based on a 3-point ordinal scale). To incorpo-
rate the evaluation of semantic coherence into the
topic model, the authors proposed to record words
that co-occur together frequently, and update the
counts of all associated words before and after the
sampling of a new topic assignment in the Gibbs
sampler. This variant of topic model was shown to
produce more coherent topics than LDA based on
the log conditional probability coherence measure.

Aletras and Stevenson (2013a) introduced dis-
tributional semantic similarity methods for com-
puting coherence, calculating the distributional
similarity between semantic vectors for the top-N
topic words using a range of distributional similar-
ity measures such as cosine similarity and the Dice
coefficient. To construct the semantic vector space
for the topic words, they used English Wikipedia
as the reference corpus, and collected words that
co-occur in a window of ±5 words. They showed
that their method correlates well with the observed
coherence rated by human judges.

3 Dataset

As one of the primary foci of this paper is the au-
tomation of the intruder word task of Chang et
al. (2009), our primary dataset is that used in the
original paper by Chang et al. (2009), which pro-
vides topics and human annotations for a range of
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domains and topic model types. In the dataset,
two text collections were used: (1) 10,000 articles
from English Wikipedia (WIKI); and (2) 8,447 arti-
cles from the New York Times dating from 1987 to
2007 (NEWS). For each document collection, top-
ics were generated by three topic modelling meth-
ods: LDA, PLSI and CTM (see Section 2). For
each topic model, three settings of T (the num-
ber of topics) were used: T = 50, T = 100
and T = 150. In total, there were 9 topic mod-
els (3 models × 3 T ) and 900 topics (3 models ×
(50 + 100 + 150)) for each dataset.1

For some of topic interpretability estimation
methods, we require a reference corpus to sam-
ple lexical probabilities. We use two reference
corpora: (1) NEWS-FULL, which contains 1.2 mil-
lion New York Times articles from 1994 to 2004
(from the English Gigaword); and (2) WIKI-FULL,
which contains 3.3 million English Wikipedia ar-
ticles (retrieved November 28th 2009).2 The ratio-
nale for choosing the New York Times and English
Wikipedia as the reference corpora is to ensure do-
main consistency with the word intrusion dataset;
the full collections are used to more robustly esti-
mate lexical probabilities.

4 Human-Interpretability at the Model
Level

In this section, we evaluate measures for estimat-
ing human-interpretability at the model level. That
is, for a measure — human-judged or automated
— we first aggregate its coherence/interpretability
scores for all topics from a given topic model to
obtain the topic model’s average coherence score.
We then calculate the Pearson correlation coeffi-
cients between the two measures using the topic
models’ average coherence scores. In summary,
the correlation is computed over nine sets of top-
ics (3 topic modellers × 3 settings of T ) for each
of WIKI and NEWS.

4.1 Indirect Approach: Word Intrusion

The word intrusion task measures topic inter-
pretability indirectly, by computing the fraction
of annotators who successfully identify the in-
truder word. A limitation of the word intrusion

1In the WIKI topics there were corrupted symbols in the
topic words for 24 topics. We removed these topics, reducing
the total number of topics to 876.

2For both corpora we perform tokenisation and POS tag-
ging using OpenNLP and lemmatisation using Morpha (Min-
nen et al., 2001).

task is that it requires human annotations, there-
fore preventing large-scale evaluation. We begin
by proposing a methodology to fully automate the
word intrusion task.

Lau et al. (2010) proposed a methodology that
learns the most representative or best topic word
that summarises the semantics of the topic. Ob-
serving that the word intrusion task — the task
of detecting the least representative word — is
the converse of the best topic word selection task,
we adapt their methodology to automatically iden-
tify the intruder word for the word intrusion task,
based on the knowledge that there is a unique in-
truder word per topic.

The methodology works as follows: given a set
of topics (including intruder words), we compute
the word association features for each of the top-
N topic words of a topic,3 and combine the fea-
tures in a ranking support vector regression model
(SVMrank: Joachims (2006)) to learn the intruder
words. Following Lau et al. (2010), we use three
word association measures:

PMI(wi) =
N−1∑

j

log
P (wi, wj)

P (wi)P (wj)

CP1(wi) =
N−1∑

j

P (wi, wj)
P (wj)

CP2(wi) =
N−1∑

j

P (wi, wj)
P (wi)

We additionally experiment with normalised
pointwise mutual information (NPMI: Bouma
(2009)):

NPMI(wi) =
N−1∑

j

log P (wi,wj)
P (wi)P (wj)

− log P (wi, wj)

In the dataset of Chang et al. (2009) (see Sec-
tion 3), each topic was presented to 8 annota-
tors, with small variations in the displayed topic
words (including the intruder word) for each an-
notator. That is, each topic has essentially 8 subtly
different representations. To measure topic inter-
pretability, the authors defined “model precision”:
the relative success of human annotators at identi-
fying the intruder word, across all representations
of the different topics. The model precision scores
produced by human judges are henceforth referred
to as WI-Human, and the scores produced by our

3N is the number of topic words displayed to the human
users in the word intrusion task, including the intruder word.
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Topic Ref. Pearson’s r with WI-Human
Domain Corpus WI-Auto-PMI WI-Auto-NPMI

WIKI
WIKI-FULL 0.947 0.936
NEWS-FULL 0.801 0.835

NEWS
NEWS-FULL 0.913 0.831
WIKI-FULL 0.811 0.750

Table 1: Pearson correlation of WI-Human and WI-Auto-PMI/WI-Auto-NPMI at the model level.

automated method for the PMI and NPMI vari-
ants as WI-Auto-PMI and WI-Auto-NPMI respec-
tively.4

The Pearson correlation coefficients between
WI-Human and WI-Auto-PMI/WI-Auto-NPMI at
the model level are presented in Table 1. Note
that our two reference corpora are used to inde-
pendently sample the lexical probabilities for the
word association features.

We see very strong correlation for in-domain
pairings (i.e. WIKI+WIKI-FULL and NEWS+NEWS-

FULL), achieving r > 0.9 in most cases for both
WI-Auto-PMI or WI-Auto-NPMI, demonstrating
the effectiveness of our methodology at automat-
ing the word intrusion task for estimating human-
interpretability at the model level. Overall, WI-
Auto-PMI outperforms WI-Auto-NPMI.

Note that although our proposed methodology
is supervised, as intruder words are synthetically
generated and no annotation is needed for the su-
pervised learning, the whole process of computing
topic coherence via word intrusion is fully auto-
matic, without the need for hand-labelled training
data.

4.2 Direct Approach: Observed Coherence

Newman et al. (2010) defined topic interpretabil-
ity based on a more direct approach, by asking hu-
man judges to rate topics based on the observed
coherence of the top-N topic words, and various
methodologies have since been proposed to auto-
mate the computation of the observed coherence.
In this section, we present all these methods and
compare them.

The word intrusion dataset is not annotated with
human ratings of observed coherence. To cre-
ate gold-standard coherence judgements, we used
Amazon Mechanical Turk:5 we presented the top-
ics (with intruder words removed) to the Turkers
and asked them to rate the topics using on a 3-point

4Note that both variants use CP1 and CP2 features, i.e.
WI-Auto-PMI uses PMI+CP1+C2 while WI-Auto-NPMI
uses NPMI+CP1+C2 features.

5https://www.mturk.com/mturk/

ordinal scale, following Newman et al. (2010). In
total, we collected six to fourteen annotations per
topic (an average of 8.4 annotations per topic).
The observed coherence of a topic is computed
as the arithmetic mean of the annotators’ ratings,
once again following Newman et al. (2010). The
human-judged observed topic coherence is hence-
forth referred to as OC-Human.

For the automated methods, we experimented
with the following methods for estimating the
human-interpretability of a topic t:

1. OC-Auto-PMI: Pairwise PMI of top-N
topic words (Newman et al., 2010):

OC-Auto-PMI(t) =
N∑

j=2

j−1∑
i=1

log
P (wj , wi)

P (wi)P (wj)

2. OC-Auto-NPMI: NPMI variant of OC-
Auto-PMI:

OC-Auto-NPMI(t) =
N∑

j=2

j−1∑
i=1

log P (wj ,wi)
P (wi)P (wj)

− log P (wi, wj)

3. OC-Auto-LCP: Pairwise log conditional
probability of top-N topic words (Mimno et
al., 2011):6

OC-Auto-LCP(t) =
N∑

j=2

j−1∑
i=1

log
P (wj , wi)

P (wi)

4. OC-Auto-DS: Pairwise distributional simi-
larity of the top-N topic words, as described
in Aletras and Stevenson (2013a).

For OC-Auto-PMI, OC-Auto-NPMI and OC-
Auto-LCP, all topics are lemmatised and intruder
words are removed before coherence is com-
puted.7 In-domain and cross-domain pairings of

6Although the original method uses the topic-modelled
document collection and document co-occurrence for sam-
pling word counts, for a fairer comparison we use log condi-
tional probability only as a replacement to the PMI compo-
nent of the coherence computation (i.e. words are still sam-
pled using a reference corpus and a sliding window). For ad-
ditional evidence that the original method performs at a sub-
par level, see Lau et al. (2013) and Aletras and Stevenson
(2013a).

7We once again use Morpha to do the lemmatisation, and
determine POS via the majority POS for a given word, aggre-
gated over all its occurrences in English Wikipedia.
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Topic Ref. Pearson’s r with OC-Human
Domain Corpus OC-Auto-PMI OC-Auto-NPMI OC-Auto-LCP OC-Auto-DS

WIKI
WIKI-FULL 0.490 0.903 0.959 0.859NEWS-FULL 0.696 0.844 0.913

NEWS
NEWS-FULL 0.965 0.979 0.887 0.941WIKI-FULL 0.931 0.964 0.872

Table 2: Pearson correlation of OC-Human and the automated methods — OC-Auto-PMI, OC-Auto-
NPMI, OC-Auto-LCP and OC-Auto-DS — at the model level.

the topic domain and reference corpus are experi-
mented with for these measures.

For OC-Auto-DS, all topics are lemmatised, in-
truder words are removed and English Wikipedia
is used to generate the vector space for the topic
words. The size of the context window is set to
±5 word (i.e. 5 words to either side of the tar-
get word). We use PMI to weight the vectors,
cosine similarity for measuring the distributional
similarity between the top-N topic words, and the
“Topic Word Space” approach to reduce the di-
mensionality of the vector space. A complete de-
scription of the parameters can be found in Aletras
and Stevenson (2013a). Note that cross-domain
pairings of the topic domain and reference corpus
are not tested: in line with the original paper, we
use only English Wikipedia to generate the vector
space before distributional similarity.

We present the Pearson correlation coefficient
of OC-Human and the four automated methods at
the model level in Table 2. For OC-Auto-NPMI,
OC-Auto-LCP and OC-Auto-DS, we see that they
correlate strongly with the human-judged coher-
ence. Overall, OC-Auto-NPMI has the best per-
formance among the methods, and in-domain pair-
ings generally produce the best results for OC-
Auto-NPMI and OC-Auto-LCP. The results are
comparable to those for the automated intruder
word detection method in Section 4.1.

The non-normalised variant OC-Auto-PMI cor-
relates well for NEWS but performs poorly for WIKI,
producing a correlation of only 0.490 for the in-
domain pairing. We revisit this in Section 6, and
provide a qualitative analysis to explain the dis-
crepancy in results between OC-Auto-PMI and
OC-Auto-NPMI.

4.3 Word Intrusion vs. Observed Coherence

In the previous sections, we showed for both the
direct and indirect approaches that the automated
methods correlate strongly with the manually-
annotated human-interpretability of topics at the
model level (with the exception of OC-Auto-PMI).

One question that remains unanswered, however,
is whether word intrusion measures topic inter-
pretability differently to observed coherence. This
is the focus of this section.

From the results in Table 3 for the intruder
word model vs. observed coherence, we see a
strong correlation between WI-Human and OC-
Human. This observation is insightful: it shows
that the topic interpretability estimated by the two
approaches is almost identical at the model level.

Between WI-Human and the observed coher-
ence methods automated methods, overall we see
a strong correlation for the OC-Auto-NPMI, OC-
Auto-LCP and OC-Auto-DS methods. OC-Auto-
PMI once again performs poorly over WIKI, but
this is unsurprising given its previous results (i.e.
its poor correlation with OC-Human). In-domain
pairings tend to perform better, and the per-
formance of OC-Auto-NPMI, OC-Auto-LCP and
OC-Auto-DS is comparable, with no one clearly
best method.

5 Human-Interpretability at the Topic
Level

In this section, we evaluate the various methods
at the topic level. We group together all topics
for each dataset (without distinguishing the topic
models that produce them) and calculate the cor-
relation of one measure against another. That is,
the correlation coefficient is computed for 900 top-
ics/data points in the case of each of WIKI and
NEWS.

5.1 Indirect Approach: Word Intrusion
In Section 4.1, we proposed a novel methodol-
ogy to automate the word intrusion task (WI-Auto-
PMI and WI-Auto-NPMI). We now evaluate its
performance at the topic level, and present its
correlation with the human gold standard (WI-
Human) in Table 4.

The correlation of WI-Human and WI-Auto-
PMI/WI-Auto-NPMI at the topic level is consid-
erably worse, compared to its results at the model
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Topic Ref. Pearson’s r with WI-Human
Domain Corpus OC-Human OC-Auto-PMI OC-Auto-NPMI OC-Auto-LCP OC-Auto-DS

WIKI
WIKI-FULL 0.900 0.638 0.927 0.911 0.907NEWS-FULL 0.614 0.757 0.821

NEWS
NEWS-FULL 0.915 0.865 0.866 0.867 0.925WIKI-FULL 0.838 0.874 0.893

Table 3: Word intrusion vs. observed coherence: Pearson correlation coefficient at the model level.

Topic Ref. Pearson’s r with WI-Human Human
Domain Corpus WI-Auto-PMI WI-Auto-NPMI Agreement

WIKI
WIKI-FULL 0.554 0.573 0.735NEWS-FULL 0.622 0.592

NEWS
NEWS-FULL 0.602 0.612 0.770WIKI-FULL 0.638 0.648

Table 4: Pearson correlation coefficient of WI-Human and WI-Auto-PMI/WI-Auto-NPMI at the topic
level.

level (Table 1). The performance between WI-
Auto-PMI and WI-Auto-NPMI is not very differ-
ent, and the cross-domain pairing slightly outper-
forms the in-domain pairing.

To better understand the difficulty of the task,
we compute the agreement between human anno-
tators by calculating the Pearson correlation co-
efficient of model precisions produced by ran-
domised sub-group pairs in the topics.8 That is, for
each topic, we randomly split the annotations into
two sub-groups, and compute the Pearson correla-
tion coefficient of the model precisions produced
by the first sub-group and that of the second sub-
group.

The original dataset has 8 annotations per topic.
Splitting the annotations into two sub-groups re-
duces the number of annotations to 4 per group,
which is not ideal for computing model precision.
We thus chose to expand the number of annota-
tions by sampling 300 random topics from each
domain (for a total of 600 topics) and following
the same process as Chang et al. (2009) to get in-
truder word annotations using Amazon Mechani-
cal Turk. On average, we obtained 11.7 additional
annotations per topic for these 600 topics. The hu-
man agreement scores (i.e. the Pearson correlation
coefficient of randomised sub-group pairs) for the
sampled 600 topics are presented in the last col-
umn of Table 4.

The sub-group correlation is around r = 0.75
for the topics from both datasets. As such, esti-
mating topic interpretability at the topic level is a
much harder task than model-level evaluation. Our
automated methods perform at a highly credible

8To counter for the fact that annotators labelled varying
numbers of topics.

r = 0.6, but there is certainly room for improve-
ment. Note that the correlation values reported in
Newman et al. (2010) are markedly higher than
ours, as they evaluated based on Spearman rank
correlation, which isn’t attuned to the relative dif-
ferences in coherence values and returns higher
values for the task.

5.2 Direct Approach: Observed Coherence

We repeat the experiments of observed coherence
in Section 4.2, and evaluate the correlation of
the automated methods (OC-Auto-PMI, OC-Auto-
NPMI, OC-Auto-LCP and OC-Auto-DS) on the
human gold standard (OC-Human) at the topic
level. Results are summarised in Table 5.

OC-Auto-PMI performs poorly at the topic
level in the WIKI domain, similar to what was
seen at the model level in Section 4.2. Over-
all, both OC-Auto-NPMI and OC-Auto-DS are the
most consistent methods. OC-Auto-LCP performs
markedly worse than these two methods.

To get a better understanding of how well hu-
man annotators perform at the task, we compute
the one-vs-rest Pearson correlation coefficient us-
ing the gold standard annotations. That is, for
each topic, we single out each rating/annotation
and compare it to the average of all other rat-
ings/annotations. The one-vs-rest correlation re-
sult is displayed in the last column (titled “Hu-
man Agreement”) in Table 5. The best auto-
mated methods surpass the single-annotator per-
formance, indicating that they are able to per-
form the task as well as human annotators (unlike
the topic-level results for the word intrusion task
where humans were markedly better at the task
than the automated methods).
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Topic Ref. Pearson’s r with OC-Human Human
Domain Corpus OC-Auto-PMI OC-Auto-NPMI OC-Auto-LCP OC-Auto-DS Agreement

WIKI
WIKI-FULL 0.533 0.638 0.579 0.682 0.624NEWS-FULL 0.582 0.667 0.496

NEWS
NEWS-FULL 0.719 0.741 0.471 0.682 0.634WIKI-FULL 0.671 0.722 0.452

Table 5: Pearson correlation of OC-Human and the automated methods at the topic level.

Topic Ref. Pearson’s r with WI-Human
Domain Corpus OC-Human OC-Auto-PMI OC-Auto-NPMI OC-Auto-LCP OC-Auto-DS

WIKI
WIKI-FULL 0.665 0.472 0.557 0.547 0.639NEWS-FULL 0.504 0.571 0.455

NEWS
NEWS-FULL 0.641 0.629 0.634 0.407 0.649WIKI-FULL 0.604 0.633 0.390

Table 6: Word intrusion vs. observed coherence: pearson correlation results at the topic level.

5.3 Word Intrusion vs. Observed Coherence

In this section, we bring together the indirect ap-
proach of word intrusion and the direct approach
of observed coherence, and evaluate them against
each other at the topic level. Results are sum-
marised in Table 6.

We see that the correlation between the human
ratings of intruder words and observed coherence
is only modest, implying that there are topic-level
differences in the output of the two approaches. In
Section 6, we provide a qualitative analysis and
explanation as to what constitutes the differences
between the approaches.

For the automated methods, OC-Auto-DS has
the best performance, with OC-Auto-NPMI per-
forming relatively well (in particularly in the NEWS

domain).

6 Discussion

Normalised PMI (NPMI) was first introduced by
Bouma (2009) as a means of reducing the bias for
PMI towards words of lower frequency, in addition
to providing a standardised range of [−1, 1] for the
calculated values.

We introduced NPMI to the automated meth-
ods of word intrusion (WI-Auto-NPMI) and ob-
served coherence (OC-Auto-NPMI) to explore its
suitability for the task. For the latter, we saw
that NPMI achieves markedly higher correlation
than OC-Human (in particular, at the model level).
To better understand the impact of normalisation,
we inspected a list of WIKI topics that have simi-
lar scores for OC-Human and OC-Auto-NPMI but
very different OC-Auto-PMI scores. A sample of
these topics is presented in Table 7. WIKI-FULL

is used as the reference corpus for computing the

scores. Note that the presented OC-Auto-NPMI*
and OC-Auto-PMI* scores are post-normalised to
the range [0, 1] for ease of interpretation. To give
a sense of how readily these topic words occur in
the reference corpus, we additionally display the
frequency of the first topic word in the reference
corpus (last column).

All topics presented have an OC-Human score
of 3.0 (i.e. these topics are rated as being very co-
herent by human judges) and similar OC-Auto-
NPMI values. Their OC-Auto-PMI scores, how-
ever, are very different between the top-3 and
bottom-3 topics. The bias of PMI towards lower
frequency words is clear: topic words that occur
frequently in the corpus receive a lower OC-Auto-
PMI score compared to those that occur less fre-
quently, even though the human-judged observed
coherence is the same. OC-Auto-NPMI on the
other hand, correctly estimates the coherence.

We observed, however, that the impact of nor-
malising PMI is less in the word intrusion task.
One possible explanation is that for the automated
methods WI-Auto-PMI and WI-Auto-NPMI, the
PMI/NPMI scores are used indirectly as a feature
to a machine learning framework, and the bias
could be reduced/compensated by other features.

On the subject of the difference between ob-
served coherence and word intrusion in estimat-
ing topic interpretability, we observed that WI-
Human and OC-Human correlate only moderately
(r ≈ 0.6) at the topic level (Table 6). To better
understand this effect, we manually analysed top-
ics that have differing WI-Human and OC-Human
scores. A sample of topics with high divergence
in estimated coherence score is given in Table 8.
As before, the presented the OC-Human* and WI-
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Topic OC- OC- OC- Word
Human Auto-NPMI* Auto-PMI* Count

cell hormone insulin muscle receptor 3.0 0.59 0.61 #(cell) = 1.1M
electron laser magnetic voltage wavelength 3.0 0.52 0.54 #(electron) = 0.3M
magnetic neutrino particle quantum universe 3.0 0.55 0.55 #(magnetic) = 0.4M
album band music release song 3.0 0.56 0.37 #(album) = 12.5M
college education school student university 3.0 0.57 0.38 #(college) = 9.8M
city county district population town 3.0 0.52 0.34 #(city) = 22.0M

Table 7: A list of WIKI topics to illustrate the impact of NPMI.

Topic # Topic OC-Human* WI-Human*
1 business company corporation cluster loch shareholder 0.94 0.25
2 song actor clown play role theatre 1.00 0.50
3 census ethnic female male population village 0.92 0.25
4 composer singer jazz music opera piano 1.00 0.63

5 choice count give i.e. simply unionist 0.14 1.00
6 digital clown friend love mother wife 0.17 1.00

Table 8: A list of WIKI topics to illustrate the difference between observed coherence and word intrusion.
Boxes denote human chosen intruder words, and boldface denotes true intruder words.

Human* scores in the table are post-normalised to
the range [0, 1] for ease of comparison.

In general, there are two reasons for topics to
have high OC-Human and low WI-Human scores.
First, if a topic has an outlier word that is mildly
related to the topic, users tend to choose this word
as the intruder word in the word intrusion task,
yielding a low WI-Human score. If they are asked
to rate the observed coherence, however, the single
outlier word often does not affect its overall coher-
ence, resulting in a high OC-Human score. This is
observed in topics 1 and 2 in Table 8, where loch
and clown are chosen by annotators in the word in-
trusion task, as they detract from the semantics of
the topic. This results in low WI-Human scores,
but high observed coherence scores (OC-Human).

The second reason is the random selection of
intruder words related to the original topic. We
see this in topics 3 and 4, where related intruder
words (village and singer) were selected.

For topics with low OC-Human and high WI-
Human scores, the true intruder words are often
very different to the domain/focus of other topic
words. As such, annotators are consistently able
to single them out to yield high WI-Human scores,
even though the topic as a whole is not coherent.
Topics 5 and 6 in Table 8 exhibit this.

All topic evaluation measures described in this
paper are implemented in an open-source toolkit.9

9https://github.com/jhlau/topic_
interpretability

7 Conclusion

In this paper, we examined various methodologies
that estimate the semantic interpretability of top-
ics, at two levels: the model level and the topic
level. We looked first at the word intrusion task
proposed by Chang et al. (2009), and proposed
a method that fully automates the task. Next we
turned to observed coherence, a more direct ap-
proach to estimate topic interpretability. At the
model level, results were very positive for both the
word intrusion and observed coherence methods.
At the topic level, however, the results were more
mixed. For observed coherence, our best methods
(OC-Auto-NPMI and OC-Auto-DS) were able to
emulate human performance. For word intrusion,
the automated methods were slightly below human
performance, with some room for improvement.
We finally observed that there are systematic dif-
ferences in the topic-level scores derived from the
two task formulations.
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