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Abstract

We model scientific expertise as a mixture
of topics and authority. Authority is calcu-
lated based on the network properties of each
topic network. ThemedPageRank, our combi-
nation of LDA-derived topics with PageRank
differs from previous models in that topics in-
fluence both the bias and transition probabili-
ties of PageRank. It also incorporates the age
of documents. Our model is general in that
it can be applied to all tasks which require an
estimate of document–document, document–
query, document–topic and topic–query sim-
ilarities. We present two evaluations, one
on the task of restoring the reference lists of
10,000 articles, the other on the task of au-
tomatically creating reading lists that mimic
reading lists created by experts. In both eval-
uations, our system beats state-of-the-art, as
well as Google Scholar and Google Search in-
dexed againt the corpus. Our experiments also
allow us to quantify the beneficial effect of our
two proposed modifications to PageRank.

1 Introduction

For search, the presence of links in a document
collection adds valuable information over that con-
tained in the text of the documents alone. Each act
of linking can be interpreted as a latent judgement of
authority or trust which is bestowed onto the linked
documents (Kleinberg, 1998). This makes author-
ity an objective measure of how important that pa-
per is to a community who confer that authority.
The citation count is the simplest of these, which
has been used successfully for decades for biblio-
metrics (Garfield, 1972) and for mapping out scien-
tific fields via bibliometric coupling (Kessler, 1963)

and co-citations (Small, 1978). More recently, cita-
tion counts have been shown to improve effective-
ness of ad-hoc retrieval (Meij and De Rijke, 2007;
Fujii, 2007).

In science, the peer review process ensures that
the right to cite is hard-earned, but on the web, hy-
perlinking is infinitely cheap. This means that that
the authority of webpages cannot simply be approx-
imated as the number of incoming links. Algorith-
mically more complex authority such as the random-
surfer model PageRank (Brin and Page, 1998) or the
authorities/hub based algorithm HITS (Kleinberg,
1998)) have spectacularly improved search results in
comparison to standard IR models relying on simi-
larity calculations based on the words in the text and
other text-internal informatioh.

Much recent work in bibliographic search has
been driven by the intuition that what works for the
web should also work for science, even though ci-
tations are more comparable to each other in weight
than hyperlinks. Case studies comparing PageRank-
based authority measures against citation counts
alone report some cases where PageRank is supe-
rior (Chen et al., 2007; Ma et al., 2008), but exper-
imental proof of standard PageRank outperforming
citation counts in a large-scale bibliographic search
experiment is still outstanding. In at least one such
experiment, PageRank performed worse than cita-
tion count (Bethard and Jurafsky, 2010).

Straightforward PageRank calculations, when ap-
plied to the scientific literature, are hampered by two
factors: on the one hand, the progression of time im-
poses a directional structure on the citation network.
Therefore, PageRank values of older papers are sys-
tematically inflated as PageRank can only ever flow
from newer to older papers (Walker et al., 2007).
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Secondly, and more interestingly, researchers earn
their expertise in particular, well-defined scientific
fields. We propose that this requires a more fine-
grained notion of specific – not global – expertise.

Our solution is to use LDA-derived topics (Blei
et al., 2003) as approximations for scientific fields,
and to model the importance of a paper as a mixture
of its relative expertise in each of the topics it cov-
ers. The second aspect of our solution, somewhat
more mundane but still necessary to adapt PageR-
ank successfully to model scientific expertise, is to
age-taper the resultant estimation.

In this paper, we present ThemedPageRank
(TPR), our model of topic-specific scientific exper-
tise, which incorporates the two modifications, and
provide evidence that both are necessary for the ad-
equate application of PageRank-style authority cal-
culations to the scientific literature. In two evalua-
tions, our model beats standard PageRank and cita-
tion counts by a large margin. Previous models exist
which combine the idea of personalising PageRank
by topics, but our manipulation of both PageRank’s
bias and transition probabilities differs from these.
Our experiments also support the claim of our sys-
tem’s superiority over these models.

We use two tasks to evaluate the system’s per-
formance. The first is the reintroduction of an ar-
ticle’s reference items that have been artificially re-
moved. The assumption here is that a good model
of document–document similarity should be able to
guess which articles any given paper would have
cited. The second task is the automatic creation of
reading lists, of the kind that an expert might pre-
pare for their students. We asked experts to create a
gold standard of such reading lists, and compare our
system against the currentde facto state-of-the-art in
such tasks, Google Scholar, and again find that our
system beats it comfortably.

This article is structured as follows: the next sec-
tion describes our model, which section 3 contrasts
to related work. The evaluations are described in
sections 4 and 5. Section 6 concludes.

2 Authority Model
Our model first determines an LDA space (Blei et
al., 2003) representing the entire document collec-
tion, which results in a set of topics describing the
entirety of the field. It then calculates an author-

Figure 1: A High-level view of LDA.

ity model for each topic based on a modification
of Personalised PageRank (Page et al., 1998). De-
pending on the search need, the input (one or more
keyword(s) or paper(s)) is converted into a topic dis-
tribution, which we then use to linearly combine the
multiple topic-specific expertise scores of our model
into a unique authority score representing the fit be-
tween search need and document.

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) is a Bayesian generative probabilistic model
for collections of discrete data, which has become
popular for the modelling of scientific text corpora
(Wei and Croft, 2006; He et al., 2009; Blei and
Lafferty, 2006). In LDA, a document in the cor-
pus is modelled and explicitly represented as a fi-
nite mixture over an underlying set of topics, while
each topic is modelled as an infinite mixture over
the underlying set of words in the corpus. We use
LDA predominantly to produce the latent topics that
form a foundation for the relationships between pa-
pers and technical terms in a corpus.

Technical terms act as the terms in our model
(rather than words), because technical terms are im-
portant artefacts for formulating knowledge from
scientific texts (Ananiadou, 1994; Justeson and
Katz, 1995), because descriptions of topics are bet-
ter understandable using technical terms rather than
words (Wallach, 2006; Wang et al., 2007); and to
make our model more scalable to large corpora. The
method we use to find technical terms is light-weight
and requires little infrastructure, but does not repre-
sent state-of-the-art in terminology detection (Lopez
and Romary, 2010; Wang et al., 2007). We collect
all n-grams of words which appear in 2 or more titles
of all documents in the corpus, filter out all unigrams
appearing in the Scrabble TWL98 word list, then all
n-grams starting or ending in stop words. To de-
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cide whether a subsumed term should be removed
if the subsuming term exists (“statistical machine
translation” subsumes both “statistical machine” and
“machine translation”), we remove those n-grams
whose frequency is lower than 25% of their subsum-
ing terms. Finally, only the most frequent 25% of the
remaining unigrams and bigrams are retained.

We then build aD × V matrix Ω, which con-
tains the counts ofV technical-terms (the columns)
in each of theD documents (the rows) in Fig. 1. Our
own implementation of LDA (with LDA parameters
α = β = 0.01) is used to collapse matrixΩ into two
denser, smaller matricesΘ (containing the distribu-
tion of documents over topics), andΦ (containing
the distribution of topics over technical-terms).

To model topic-specific expertise in science, we
modify the original PageRank calculation of Page at
al. (1998) by adding a topic dimension to the score
of both the bias and transition probabilities:

TPR(t, d, k + 1) = αB(t, d)

+(1− α)
∑

d′∈li(d)

T (t, d, d′)TPR(t, d′, k)

whereTPR(t, d, k) is the topic-specific PageR-
ank of topict for paperd at iterationk; B(t, d) is
the probability that paperd is chosen at random from
the corpus, given topict, andT (t, d, d′) is the tran-
sition probability of reaching paged from paged′,
given topict. In our formula, the transition proba-
bility T (t, d, d′) takes into account the probabilities
of topic t not only in documentsd andd′, but also in
the other documentsd′′ referenced by documentd′:

B(t, d) =
P (t|d)∑

d∗∈D P (t|d∗)

T ∗(t, d, d′) =

√
P (t|d′)∑

d∗∈D P (t|d∗)
P (t|d)∑

d′′∈lo(d′) P (t|d′′)

T (t, d, d′) =
T ∗(t, d, d′)∑

d∗∈li(d) T
∗(t, d, d∗)

Hered is a document whose TPR is being calcu-
lated,d′ is a document that refers to documentd and
whose TPR score is being distributed during this it-
eration of the algorithm, andd′′ is a document that

is referred to by documentd′. The first term in the
transition function ensures that TPR scores are prop-
agated only from citing documents that are highly
relevant to topict. The second term ensures that a
larger proportion of a documents TPR score is prop-
agated to cited documents that are highly relevant to
topic t. The valueP (t|d) can be read directly from
matrixΘ in Fig. 1.

In a final step, we age-taper TPR by dividing
TPR values by the age of the citation concerned in
years. Experimentally, this achieved the best model
in comparison to more complex dampening methods
(e.g., exponential).

3 Related Work
Others before us have observed that time effects bias
PageRank if applied unmodified to the scientific lit-
erature (Walker et al., 2007). Walker et al.’s Cit-
eRank algorithm modifies the bias probabilities of
PageRank exponentially with age, favouring more
recent publications.

We are also not the first to have combined a notion
of topic-specification with Personalised PageRank.
The idea goes back to the original PageRank paper
by Page et al. (1998), who discuss the personaliza-
tion of PageRank by introducing a bias towards only
a set of trusted web sitesW . Page et al. alter only
the bias probabilityB, while leaving the transition
probabilitiesT unchanged from global PageRank:

B(t, d) =

{
1

|W | if d ∈W
0 if d /∈W

T (t, d, d′) =
1

|lo(d′)|
Richardson and Domingos (2002) first used

PageRank personalisation for specialisation at
search time. For queryq with corresponding topic
t = q, they use the relevance of documentd to query
q as a bias. Haveliwalla (2003) calculates a Person-
alised PageRank for each of a set of 16 manually
created topicst comprised of several documents by
altering only the Bias termB, using Page et al.’s for-
mula above. This solution avoids the computational
scalability problem with Richardson and Domingos’
approach, but is limited in applicability by requiring
predefined topics. Several researchers followed Brin
and Page and Haveliwala in altering only the bias
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probabilities, including Wu et al. (2006) and Gori
and Pucci (2006).

In contrast, Narayan et al. (2003) and Pal and
Narayan (2005) propose a model of personalisation
that alters the transition probabilities instead of the
bias probabilities. Under their model, the transition
probabilityT (t, d) is proportional to the number of
words in documentd that are strongly present in the
documents contained in topict. Nie et al. (2006)
produce a more computationally scalable version of
the ideas presented in Pal and Narayan (2005) by as-
sociating a context vector with each document, with
a fixed set of topics (12 in their case), for which they
learn these context vectors using a naive Bayes clas-
sifier. They then provide the possibility to alter both
the bias and transition probabilities of each webpage
as follows:

B(t, d) =
1
D
Ct(d)

T (t, d, d′) = γ
1

|lo(d′)| + (1− γ)
∑
t′ 6=t

Ct′(d′)
lo(d′)

whereCt(d) is the context vector score for topic
t associated with documentd; the first term in
T (t, d, d′) corresponds to the probability of arriving
at paged from other pages in thesame topic con-
text; the second term is the probability of arriving at
paged from other pages in a different context; and
γ is a factor that weights the influence of same-topic
jumps over other-topic jumps. Their results suggest
thatγ should be close to 1, indicating that distribut-
ing PageRank within topics generates better Person-
alised PageRank scores.

Other than the fact that they treat bias and transi-
tion probabilities differently to how we treat them,
all personalisation methods discussed up to now
have the disadvantage that they rely on a fixed list
of manually selected topics, whereas our method of-
fers adaptive specialisation to corpus or domain.

The previous work closest to ours is Yang et al.
(2009), who were the first to use LDA to automat-
ically discover abstract topic distributions in a cor-
pus of scientific articles, and to combine them with
Pagerank by – in principle – altering both the bias
and transition probabilities according to the follow-
ing model:

B(t, d) =
1
D
P (t|d)

T (t, d, d′) = γTs t(t, d, d′) + (1− γ)To t(t, d, d′)

Ts t(t, d, d′) = P (d|d′, t) ∼= 1
|lo(d′)|

whereT is the number of LDA topics,P (t|d) is a
probability of topict given documentd, which can
be read directly from the generated LDA probabili-
ties,Ts t is the probability of arriving at paged from
other pages in the same topic context, whereasTo t

treats the case of arriving at a different topic. Like
Nie et al., they achieve best results withγ = 1, so
they ultimately only use bias probabilities, like the
models discussed above. Crucially, their decision
thatP (d|d′, t) does not to involve any of the LDA
topic distributions is surprising. Under their model,
as in ours, when the reader randomly jumps to a new
paper, they will tend to favour papers that are closely
associated with the topic. However, when they fol-
low a citation in Yang et. al’s model, one is picked
with equal probability. In contrast, our model imple-
ments the obvious intuition that if one follows cita-
tions, one should also favour those that are closely
associated with the topic.

Let us now turn to the task of reference list rein-
troduction (RLR), i.e., the prediction of which pa-
pers a target papers originally cited, given only some
information about the paper which stands in as a
search need – either its abstract, author names and
other bibliometric information, and/or the full text of
a paper (with citation information redacted). Evalu-
ation of a search model by RLR is cheap because of
the readily available gold standard, and it thus allows
for experiments with large data sets.

State-of-the-art solutions to RLR combine lexical
similarity (often via topic models), measures of au-
thority over a citation graph, and information about
social constructs and historic patterns of citation be-
haviour. Strohman et al. (2007) perform RLR with
the paper text as a query to their recommendation
system, using text similarity, citation counts, cita-
tion coupling, author information, and the citation
graph. Their model achieves a mean-average pre-
cision of 0.102 against a corpus from the Rexa10
database. Bethard and Jurafsky (2010) improve on
Strohman et al. by the use of a SVM with 19 fea-
tures from 6 broad categories: similar terms; cited
by others; recency; cited using similar terms; simi-
lar topics; and social habits. They achieve a MAP of
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0.279 against the ACL Anthology Reference Corpus
(Bird et al., 2008), with the following features per-
forming best: publication age, citation counts, the
terms in citation sentences, and the LDA topics of
the citing documents. They also use (unchanged)
PageRank authority counts as one of the features,
but find that it provides little discriminative power
to the SVM. A drawback of their method is the large
amount of information that has to be provided to
create their SVM features, and the expensive train-
ing routine, which is based on pairwise paper–paper
comparisons in the corpus.

Variations of the RLR tasks exist, which addi-
tionally determine the position in the text of a pa-
per where each recommended citation should occur
(Tang and Zhang, 2009; He et al., 2011; Lu, 2011), a
task which is typically solved by comparing a mov-
ing window in the query paper against millions of
previously located citation contexts with. The draw-
back of this technique in contrast to ours is the fact
that new papers, which have not collected sufficient
contexts in the literature, are severely disadvantaged
and will never be recommended.

We first create topics and then apply PageRank
to find expertise within topical networks. It is how-
ever also possible to simultaneously model citations
and terms (Cohn and Hofmann, 2001; Mann et al.,
2006). Such models are not normally directly com-
parable to ours; for instance Bharat and Henzinger’s
(1998) model, a modified version of HITS (Klein-
berg, 1998), is query-specific.

There are numerous extensions to LDA that incor-
porate external information in addition to the lex-
ical information inside the documents in a corpus,
via author-topic models and models of publication
venues (Steyvers and Griffiths, 2007; Rosen-Zvi et
al., 2010; Tang et al., 2008). Erosheva et al. (2004)
model a corpus using a multinomial distribution si-
multaneously over the citations and terms in each
document. Topics (which they call aspects) are as-
sociated with a list of the most likely words (inter-
pretable as topics) and citations (interpretable as au-
thorities) in that aspect. Extensions of the model ex-
ist (Nallapati and Cohen, 2008; Gruber et al., 2007;
Chang and Blei, 2010; Kataria et al., 2010; Dietz et
al., 2007).

We avoid the tight coupling of topic discovery and
citation modeling that the above-mentioned works

follow for several reasons. Firstly, such models only
work for papers and citations that were present dur-
ing the learning stage, and there is no mechanism
for predicting influential citations for topics in gen-
eral, or for combinations of topics. The tight cou-
pling might also result in overlooking some author-
ities, namely those that are authoritative across sev-
eral topics, which will be penalised via low joint
distribution probabilities in combined methods be-
cause of the division of the probabilities across sev-
eral topics. Secondly, and more disturbingly, such
models will not locate topics that lack an authority
because the authority component of the joint distri-
bution will be near-zero. This rules out niches in
a corpus where papers are equally relevant to each
other, or where the niches are so young that they do
not yet have an established citation network. There
is also a scalability issue with joint models of top-
ics and citations. The evaluation data used in cou-
pled models is generally small, with the number of
papers ranging under around 2,000, the number of
citations ranging under 10,000, and the number of
topics in their models ranging from eight to twenty.
But LDA has been shown to scale to corpora of mil-
lions of terms (Newman et al., 2006), and PageRank
to billions (Page et al., 1998) of documents. Our
model, which advocates a pipelined approach, ben-
efits from the fact that separate topic modelling is
computationally tractable using LDA, and the fact
that citation graph modelling is cheap using Person-
alised PageRank.

4 Evaluation 1: RLR
We evaluate our authority-based search model us-
ing the 2010 ACL Anthology Network (Radev et al.,
2009). We removed from it corrupted documents,
i.e., those of less than 100 characters or contain-
ing only control characters. The ACL Anthology
Network provides external meta-data about the ar-
ticles, which was manually curated. We do not use
this meta-data because we wanted to build as system
that can be applied to any large collection of arti-
cles, where external meta-data would not normally
exist. We therefore build an approximate citation
graph from the paper text itself, as a one-off task
when constructing the LDA space. We extract titles,
dates and full-text from every article and perform a
search of each articles title in the full-text of all other
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Model MAP
800 test papers, as in B&J (2010)

B&J; best model 0.287
TPR-NoDB 0.264
TPR-NoAge 0.267
TPR 0.302

10,000 test papers
A: NFIDF Cosine 0.062
B: NFIDF + citation count 0.092
C: NFIDF + global PageRank 0.099
D: NFIDF LDA (KL divergence) 0.115
E: TPR-NoDB 0.233
F: TPR-NoAge 0.242
G: TPR 0.268

Figure 2: RLR results

articles (i.e., under the assumption that the reference
list is the (only) place where we will find such titles).

Our system generates the RLR output (the recom-
mended articles) for an articled by extracting tech-
nical terms as described in section 2, examining the
topic distribution for that articleθd,t (i.e. a θi in
Fig. 1). We use the topic distribution of articled in
place to generate the unique age-adjusted TPR tai-
lored to the article,TPR(d, d′). The 100 articles
d′ with the highest ThemedPageRanks are recom-
mend as citations for articled. Results are reported
as mean average precision (MAP) of these 100 doc-
uments against the actual citations in the article.

We first compare our model to the state-of-the-
art (Bethard and Jurafsky, 2010). We emulate their
experimental setup by including only the pre-2004
articles in the corpus and testing only on the roughly
800 2005/6 articles with more than 5 intra-corpus
citations in their reference list, for which we have
per-paper average precision scores. The top part of
Fig. 2 shows that our model (MAP=0.302) outper-
forms their best model (MAP=0.287; difference at
5% confidence with Wilcoxon Ranked Squares test),
despite our model being a general, light-weight IR
system, which relies on LDA and PageRank alone,
and theirs is a specialised state-of-the art system,
which relies on heavy-weight machine learning and
on additional sociological features.

The lower part of Fig. 2 compares the influence
of citation count, global PageRank, topic similar-
ity, and combinations of topic similarity with ci-
tation counts or global PageRank, and our model

(TPR). For these tests, we use the entire corpus of
10,000 papers with more than 5 citations. Over the
baseline (A), n-gram-frequency-inverse-document-
frequency (NFIDF), both citation counts (B) and
global PageRank (C) make a small improvement.
Global LDA similarity scores (D) fare little better.

As the performance of the full model (G;
MAP=0.268) shows, the inclusion of topic models
lead to a large improvement over any of the above.
This is, as far as we are aware, the first time that a
large-scale evaluation that finds significant improve-
ments of a PageRank implementation over citation
counts in scientific search.

We next consider our two modifications, age-
adjusting(E) and double-biasing(F), in isolation.
We use two versions of our system where we
switched off age-tapering and double-biasing (ie.,
we only work with a change in the bias probabili-
ties, as do Nie etal. (2006), Havaliwala (2003) (al-
though their models do not include automatically
generated topics) and Yang et al. (2009)). Our
model comfortably outperforms TPR-NoDB in both
the 800 and 10,000 paper experiment. Similarly,
the effect of age-tapering alone can be seen from
the performance of TPR-NoAge (our model with-
out age-adjusting), in the difference between 0.267
and 0.302 and that between 0.242 and 0.268 (signif-
icant at 99%). This confirms our claim that a topic-
specific age-tapered PageRank is superior to global
PageRank in scientific citation networks.

5 Evaluation 2: Reading Lists
The aim of the second experiment is to test our
model against a much cleaner, albeit smaller gold
standard: on the task of reconstructing the mate-
rial of expert-created reading lists. We compare our
system’s performance to three standard, commonly
used search engines: Lucene TFIDF, the Google-
indexed ACL Anthology, and Google Scholar. We
chose Google-index and Google Scholar because
they represent commonly used state-of-the-art com-
mercial search engines, and the Google-index is
what is currently offered as the standard ACL An-
thology search tool. In contrast, Lucene TFIDF
was chosen to represent an easy-to-interpret, repro-
ducible, out-of-the-box baseline implementing the
simplest kind of lexical similarity search without
any notion of authority. Of the three search engines,
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we would predict Google Scholar to be the tough-
est competitor to TPR, because it uses citation in-
formation directly and it is reasonable to expect that
the Google Scholar algorithm employs some domain
adaptation to the scientific domain.

We created gold standard expert-written reading
lists using the following protocol. Eight experts
were recruited from the computational linguistics
groups of two universities (3 from one, 5 from the
other). All experts had a PhD in computational lin-
guistics and several years of research experience.
They were asked to choose a subject for an (imag-
inary or existing) reading list for an MPhil student,
concerning an area in which they know the litera-
ture well. We purposefully did not give them guid-
ance as to the size of the reading list as we wanted
to observe how experts create reading lists. During
the interview, the experimenter documented the final
list chosen by the expert and made sure all papers
chosen were present in the 2010 version of the ACL
Anthology Network.

This procedure resulted in reading lists of the fol-
lowing topics and sizes: statistical parsing (22 pa-
pers); parser evaluation (4); distributional semantics
(14); domain adaptation for parsing (11); informa-
tion extraction (9); lexical semantics (14); statistical
machine translation models (5); and concept-to-text
generation (16).

In our retrieval model, which topic distribution is
chosen for a query depends on whether the query is
an exact match to one of the technical terms found
by our model. If it is, then the topic distribution
of the technical term is used directly as the query
topic distributionθq, t (i.e. a transposed renormal-
ized ψ in Fig. 1). If not, we perform a keyword-
based search (using Lucene TFIDF), and use the av-
erage topic distribution of the top 20 documents re-
turned as the query topic distribution (i.e. severalθi
in Fig. 1). The query topic distribution is then used
to linearly combine the topic-specific TPRs into a
unique TPR tailored to the query. The 20 documents
with the highest TPR are recommended.

The three baselines are used as follows in the
experiment: The experiment is performed by issu-
ing the topic of the reading list (exactly as given
to us by the experts) as a key-word based query to
each system and recording the top 20 resulting pa-
pers answers. For Lucene TFIDF, we downloaded

Lucene.NET v2.9.2 and indexed our 2010 snapshot
of the ACL Anthology using standard Lucene pa-
rameters for the TFIDF model. For the Google-
indexed ACL Anthology (AAN), we use the in-
terface provided on the ACL Anthology website.
In order to provide an identical search ground, we
automatically exclude from the return lists papers
added after the creation of the AAN snapshot. For
Google Scholar (GS), we use the interface provided
atscholar.google.com, and parse returns to ex-
clude non-AAN material semi-automatically. In
the case of Google Scholar, we restrict the search
ground to the ACL Anthology by filtering the top
200 return sets (which may lead to fewer than 20
papers returned).

We report FCSC, RCSC and F-score for each al-
gorithm. FCSC and RCSC are new metrics which
address the problem that F-score, being binary, does
not support the notion of a “close hit”, combined
with the fact that we require a fine-grained compari-
son of the quality of different systems retrieved lists
despite the small size of our gold standard. Cita-
tion Substitution Coefficient (FCSC), a new metric
for RLR, gives higher scores to papers closely re-
lated to the target papers by citation distance. The
FCSC of each expert paper is the inverse of the num-
ber of nodes in the minimal citation graph connect-
ing each expert paper to any system-retrieved pa-
per (thus ranging between 0 and 1; non-connected
expert papers receive a zero score). We also in-
troduce Reverse Citation Substitution Coefficient
(RCSC), which measures the inverse of the num-
ber of nodes in the minimal citation graph connect-
ing each system-retrieved paper to any expert pa-
per. RCSC makes sure that systems cannot simply
increase their FCSC values by returning many ir-
relevant papers. RCSC thus corresponds to preci-
sion, while FCSC corresponds to recall. The sys-
tem RCSC and FCSC scores we report are the av-
erage scores of all the system-retrieved and expert
papers, respectively. Reporting both scores gives a
good overall picture of system performance, partic-
ularly when read together with the F-score.

Fig. 3 shows that our model comfortably beats the
competitor systems according to all metrics. In par-
ticular, our model> GS/AAN > Lucene TFIDF1.

1For FCSC, the differences are statistically significant at
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FCSC RCSC F-score
AAN/Google 0.527 0.317 0.117
GS 0.519 0.364 0.112
Lucene TFIDF 0.412 0.330 0.040
TPR 0.563 0.456 0.128

Figure 3: Reading List Creation: Results.

Concerning simpler methods of estimating author-
ity, Fig. 4 shows that a multiplication of TFIDF
by citation count (as Fujii (2007) does) results in a
FCSC/RCSC of 0.419/0.359 (reported as TF-CC),
and age-tapering of citation-count by dividing the
citation count by the age of the paper in years
(reported as TF-CC-A) results in FCSC/RCSC of
0.491/0.442. We again compare different versions
of PageRank. Global PageRank can be built into
the system by simple multiplication of PR scores
as above, with and without age-tapering (reported
as TF-PR and TF-PR-A, respectively). We observe
a similar effect to the one reported by Bethard and
Jurafsky and seen in experiment 1, namely that
global PageRank only performs similar to citation
counts (0.450/0.360 vs 0.419/0.359). With respect
to double-biasing and age-tapering we see the same
effect as in experiment 22. In fact, we can see from
these results that global PageRank barely improves
over standard TFIDF, while age-tapering even with-
out topics already brings quite some improvement.
Overall, these results confirms our claim of the su-
periority of a topic-specific PageRank over global
PageRank in scientific citation networks.

6 Conclusions
We present here the first experiments that pinpoint
which modifications to PageRank are necessary to

99% confidence via a two-tailed Wilcoxon Signed Ranks test,
except that between GS and AAN (for which the confidence in-
terval is only 96%) and that between Lucene and AAN, where
it is 98%. Non-parametric paired tests such as the Wilcoxon
Signed Ranks test can be used on FCSC, but not on RCSC,
as there are different sets of underlying system-retrievedpa-
pers in each case. For RCSC, differences between our model
and all others at 99% confidence interval, between GS and
AAN/Lucene TFIDF at the 95% interval. F-score is reported
for completeness.

2Wilcoxon Signed Rank test found all differences significant
at the 99% level, except that between TF-PR and Lucene TFIDF
(significant only at the 90% level), and the following equiva-
lences: Lucene TFIDF = TF-CC; TF-PR = TF-CC; TF-CC-A =
TF-PR-A; TF-CC-A = TF-PR.

FCSC RCSC
TF-CC 0.419 0.359
TF-CC-A 0.491 0.442
TF-PR 0.450 0.360
TF-PR-A 0.512 0.407
TPR-NoDB 0.541 0.440
TPR-NoAge 0.526 0.436

Figure 4: Citation counts and PageRank variants.

adequately cater for the highly specialised situation
we encounter in science. The modification we sug-
gest are to use LDA-derived topics (Blei et al., 2003)
as approximations for scientific fields, to calculate
authority in a topic-specific way, and to age-taper
the authority scores. We present formulae where
topics personalise both the bias and the transition
probabilities. This results in a general IR model
for science incorporating a robust notion of author-
ity. Our implementation requires only minimal re-
sources and relies only on LDA and PageRank cal-
culation, which means that it is efficient during train-
ing, retraining and at search time.

We perform two evaluations. In both, our
model significantly outperforms not only state-
of-the-art, but also standard PageRank, non-age-
tapered (but topical) PageRank, and non-topical (but
age-tapered) PageRank. Our model achieves its
competitive performance by using only the raw text
and citation links. It requires no external informa-
tion, neither explicit sociological information such
as past collaborations between authors, nor the ex-
pertise and cooperation of like-minded readers, as
collaborative models do. While successful applica-
tions of collaborative filtering to bibliometric search
are rife (Goldberg et al., 2001; Agarwal et al., 2005;
McNee et al., 2006; Torres et al., 2004), including
to reading list generation (Ekstrand et al., 2010), we
wanted an entirely independent authority-based IR
model similarity. CF also suffers from a cold-start
phenomenon, where recommendations are generally
poor where data is sparse, and has to wait for papers
to be rated by a large number of authors (rather than
cited) before it can rank them.

Should the reader wish to evaluate the perfor-
mance of TPR on their own PDF papers, it has been
incorporated into the Qiqqa reference management
software3.

3Available at http://www.qiqqa.com
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