
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 338–347,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Deterministic Parsing using PCFGs

Mark-Jan Nederhof and Martin McCaffery
School of Computer Science

University of St Andrews, UK

Abstract

We propose the design of deterministic
constituent parsers that choose parser ac-
tions according to the probabilities of
parses of a given probabilistic context-free
grammar. Several variants are presented.
One of these deterministically constructs a
parse structure while postponing commit-
ment to labels. We investigate theoretical
time complexities and report experiments.

1 Introduction

Transition-based dependency parsing (Yamada
and Matsumoto, 2003; Nivre, 2008) has attracted
considerable attention, not only due to its high ac-
curacy but also due to its small running time. The
latter is often realized through determinism, i.e.
for each configuration a unique next action is cho-
sen. The action may be a shift of the next word
onto the stack, or it may be the addition of a de-
pendency link between words.

Because of the determinism, the running time
is often linear or close to linear; most of the time
and space resources are spent on deciding the next
parser action. Generalizations that allow nonde-
terminism, while maintaining polynomial running
time, were proposed by (Huang and Sagae, 2010;
Kuhlmann et al., 2011).

This work has influenced, and has been in-
fluenced by, similar developments in constituent
parsing. The challenge here is to deterministi-
cally choose a shift or reduce action. As in the
case of dependency parsing, solutions to this prob-
lem are often expressed in terms of classifiers of
some kind. Common approaches involve maxi-
mum entropy (Ratnaparkhi, 1997; Tsuruoka and
Tsujii, 2005), decision trees (Wong and Wu, 1999;
Kalt, 2004), and support vector machines (Sagae
and Lavie, 2005).

The programming-languages community rec-
ognized early on that large classes of gram-
mars allow deterministic, i.e. linear-time, pars-
ing, provided parsing decisions are postponed as
long as possible. This has led to (deterministic)
LR(k) parsing (Knuth, 1965; Sippu and Soisalon-
Soininen, 1990), which is a form of shift-reduce
parsing. Here the parser needs to commit to a
grammar rule only after all input covered by the
right-hand side of that rule has been processed,
while it may consult the next k symbols (the
lookahead). LR is the optimal, i.e. most determin-
istic, parsing strategy that has this property. De-
terministic LR parsing has also been considered
relevant to psycholinguistics (Shieber, 1983).

Nondeterministic variants of LR(k) parsing, for
use in natural language processing, have been
proposed as well, some using tabulation to en-
sure polynomial running time in the length of
the input string (Tomita, 1988; Billot and Lang,
1989). However, nondeterministic LR(k) pars-
ing is potentially as expensive as, and possibly
more expensive than, traditional tabular parsing
algorithms such as CKY parsing (Younger, 1967;
Aho and Ullman, 1972), as shown by for exam-
ple (Shann, 1991); greater values of k make mat-
ters worse (Lankhorst, 1991). For this reason, LR
parsing is sometimes enhanced by attaching prob-
abilities to transitions (Briscoe and Carroll, 1993),
which allows pruning of the search space (Lavie
and Tomita, 1993). This by itself is not uncon-
troversial, for several reasons. First, the space of
probability distributions expressible by a LR au-
tomaton is incomparable to that expressible by a
CFG (Nederhof and Satta, 2004). Second, because
an LR automaton may have many more transitions
than rules, more training data may be needed to
accurately estimate all parameters.

The approach we propose here retains some im-
portant properties of the above work on LR pars-
ing. First, parser actions are delayed as long as

338

possible, under the constraint that a rule is com-
mitted to no later than when the input covered by
its right-hand side has been processed. Second, the
parser action that is performed at each step is the
most likely one, given the left context, the looka-
head, and a probability distribution over parses
given by a PCFG.

There are two differences with traditional LR
parsing however. First, there is no explicit repre-
sentation of LR states, and second, probabilities of
actions are computed dynamically from a PCFG
rather than retrieved as part of static transitions.
In particular, this is unlike some other early ap-
proaches to probabilistic LR parsing such as (Ng
and Tomita, 1991).

The mathematical framework is reminiscent of
that used to compute prefix probabilities (Jelinek
and Lafferty, 1991; Stolcke, 1995). One major dif-
ference is that instead of a prefix string, we now
have a stack, which does not need to be parsed. In
the first instance, this seems to make our problem
easier. For our purposes however, we need to add
new mechanisms in order to take lookahead into
consideration.

It is known, e.g. from (Cer et al., 2010; Candito
et al., 2010), that constituent parsing can be used
effectively to achieve dependency parsing. It is
therefore to be expected that our algorithms can be
used for dependency parsing as well. The parsing
steps of shift-reduce parsing with a binary gram-
mar are in fact very close to those of many depen-
dency parsing models. The major difference is,
again, that instead of general-purpose classifiers to
determine the next step, we would rely directly on
a PCFG.

The emphasis of this paper is on deriving the
necessary equations to build several variants of
deterministic shift-reduce parsers, all guided by a
PCFG. We also offer experimental results.

2 Shift-reduce parsing

In this section, we summarize the theory of LR
parsing. As usual, a context-free grammar (CFG)
is represented by a 4-tuple (Σ, N, S, P), where
Σ and N are two disjoint finite sets of terminals
and nonterminals, respectively, S ∈ N is the start
symbol, and P is a finite set of rules, each of the
form A → α, where A ∈ N and α ∈ (Σ ∪ N)∗.
By grammar symbol we mean a terminal or non-
terminal. We use symbols A,B,C, . . . for non-
terminals, a, b, c, . . . for terminals, v, w, x, . . . for

strings of terminals, X for grammar symbols, and
α, β, γ, . . . for strings of grammar symbols. For
technical reasons, a CFG is often augmented by
an additional rule S† → S$, where S† /∈ N and
$ /∈ Σ. The symbol $ acts as an end-of-sentence
marker.

As usual, we have a (right-most) ‘derives’ re-
lation ⇒rm , ⇒∗rm denotes derivation in zero or
more steps, and ⇒+

rm denotes derivation in one
or more steps. If d is a string of rules π1 · · ·πk,
then α d⇒rm β means that β can be derived from
α by applying this list of rules in right-most order.
A string α such that S ⇒∗rm α is called a right-
sentential form.

The last rule A → β used in a derivation
S ⇒+

rm α together with the position of (the rel-
evant occurrence of) β in α we call the han-
dle of the derivation. In more detail, such a
derivation can be written as S = A0 ⇒rm

α1A1β1 ⇒∗rm α1A1v1 ⇒rm α1α2A2β2v2 ⇒∗rm
. . . ⇒∗rm α1 · · ·αk−1Ak−1vk−1 · · · v1 ⇒rm

α1 · · ·αk−1βvk−1 · · · v1, where k ≥ 1, and
Ai−1 → αiAiβi (1 ≤ i < k) andAk−1 → β are in
P . The underlined symbols are those that are (re-
cursively) rewritten to terminal strings within the
following relation⇒rm or⇒∗rm . The handle here
is Ak−1 → β, together with the position of β in
the right-sentential form, just after α1 · · ·αk−1. A
prefix of α1 · · ·αk−1β is called a viable prefix in
the derivation.

Given an input string w, a shift-reduce parser
finds a right-most derivation of w, but in reverse
order, identifying the last rules first. It manipulates
configurations of the form (α, v$), where α is a
viable prefix (in at least one derivation) and v is
a suffix of w. The initial configuration is (ε, w$),
where ε is the empty string. The two allowable
steps are (α, av$) ` (αa, v$), which is called a
shift, and (αβ, v$) ` (αA, v$) where A→ β is in
P , which is called a reduce. Acceptance happens
upon reaching a configuration (S, $).

A 1-item has the form [A → α • β, a], where
A → αβ is a rule. The bullet separates the right-
hand side into two parts, the first of which has been
matched to processed input. The symbol a ∈ Σ ∪
{$} is called the follower.

In order to decide whether to apply a
shift or reduce after reaching a configuration
(X1 · · ·Xk, w), one may construct the sets I0, . . . ,
Ik, inductively defined as follows, with 0 ≤ i ≤ k:

• if S → σ in P , then [S → • σ, $] ∈ I0,

339

• if [A → α • Bβ, a] ∈ Ii, B → γ in P , and
β ⇒∗rm x, then [B → • γ, b] ∈ Ii, where
b = 1 : xa,

• if [A → α • Xiβ, a] ∈ Ii−1 then [A →
αXi • β, a] ∈ Ii.

(The expression 1 : y denotes a if y = az, for
some a and z; we leave it undefined for y = ε.)
Exhaustive application of the second clause above
will be referred to as the closure of a set of items.

It is not difficult to show that if [A→ α •, a] ∈
Ik, then α is of the form Xj+1 · · ·Xk, some j,
and A → α at position j + 1 is the handle of at
least one derivation S ⇒∗rm X1 · · ·Xkax, some
x. If furthermore a = 1 : w, where 1 : w is
called the lookahead of the current configuration
(X1 · · ·Xk, w), then this justifies a reduce with
A → α, as a step that potentially leads to a com-
plete derivation; this is only ‘potentially’ because
the actual remaining input w may be unlike ax,
apart from the matching one-symbol lookahead.

Similarly, if [A → α • aβ, b] ∈ Ik, then
α = Xj+1 · · ·Xk, some j, and if furthermore
a = 1 : w, then a shift of symbol a is a justifiable
step. Potentially, if a is followed by some x such
that β ⇒∗rm x, then we may eventually obtain a
stack X1 · · ·Xjαaβ, which is a prefix of a right-
sentential form, with the handle being A → αaβ
at position j + 1.

For a fixed grammar, the collection of all pos-
sible sets of 1-items that may arise in processing
any viable prefix is a finite set. The technique
of LR(1) parsing relies on a precomputation of all
such sets of items, each of which is turned into a
state of the LR(1) automaton. The initial state con-
sists of closure({[S → • σ, $] | S → σ ∈ P}).
The automaton has a transition labeled X from
I to J if goto(I,X) = J , where goto(I,X)
= closure({[A → αX • β, a] | [A → α •
Xβ, a] ∈ I}). In the present study, we do not pre-
compute all possible states of the LR(1) automa-
ton, as this would require prohibitive amounts of
time and memory. Instead, our parsers are best
understood as computing LR states dynamically,
while furthermore attaching probabilities to indi-
vidual items.

In the sequel we will assume that all rules either
have the (lexical) form A → a, the (binary) form
A → BC, or the (unary) form A → B. This
means that A ⇒∗rm ε is not possible for any A.
The end-of-sentence marker is now introduced by
two augmented rules S† → SS$ and S$ → $.

3 Probabilistic shift-reduce parsing

A probabilistic CFG (PCFG) is a 5-tuple (Σ, N,
S, P , p), where the extra element p maps rules
to probabilities. The probability of a derivation
α

d⇒rm β, with d = π1 · · ·πk, is defined to be
p(d) =

∏
i p(πi). The probability p(w) of a string

w is defined to be the sum of p(d) for all d with

S
d⇒rm w.
We assume properness, i.e.

∑
π=A→α p(π) =

1 for all A, and consistency, i.e.
∑

w p(w) = 1.
Properness and consistency together imply that for
each nonterminal A, the sum of p(d) for all d with

∃wA d⇒rm w equals 1. We will further assume an
augmented PCFG with extra rules S† → SS$ and
S$ → $ both having probability 1.

Consider a viable prefix A1 · · ·Ak on the stack
of a shift-reduce parser, and lookahead a. Each
right-most derivation in which the handle is A →
Ak−1Ak at position k − 1 must be of the form
sketched in Figure 1.

Because of properness and consistency, we may
assume that all possible subderivations generat-
ing strings entirely to the right of the lookahead
have probabilities summing to 1. To compactly
express the remaining probabilities, we need addi-
tional notation. First we define:

V(C,D) =
∑

d : ∃wC d⇒rm Dw

p(d)

for any pair of nonterminals C and D. This will
be used later to ‘factor out’ a common term in a
(potentially infinite) sum of probabilities of sub-
derivations; the w in the expression above corre-
sponds to a substring of the unknown input beyond
the lookahead. In order to compute such values,
we fix an ordering of the nonterminals by N =
{C1, . . . , Cr}, with r = |N |. We then construct
a matrix M , such that Mi,j =

∑
π=Ci→Cjα

p(π).
In words, we sum the probabilities of all rules that
have left-hand sideCi and a right-hand side begin-
ning with Cj .

A downward path in a parse tree from an oc-
currence of C to an occurrence of D, restricted
to following always the first child, can be of any
length n, including n = 0 if C = D. This means
we need to obtain the matrixM∗ =

∑
0≤nM

n, and
V(Ci, Cj) =M∗i,j for all i and j. Fortunately,M∗i,j
can be effectively computed as (I −M)−1, where
I is the identity matrix of size r and the superscript
denotes matrix inversion.

340

We further define:

U(C,D) =
∑

d : C d⇒rm D

p(d)

much as above, but restricting attention to unit
rules.

The expected number of times a handle A →
Ak−1Ak at position k − 1 occurs in a right-most
derivation with viable prefix A1 · · ·Ak and looka-
head a is now given by:

E(A1 · · ·Ak, a, A→ Ak−1Ak) =∑
S† = E0, . . . , Ek−2, F1, . . . , Fk−1 = A,

F,E,B,B′,m : 0 ≤ m < k − 1∏
i: 1≤i≤m

V(Ei−1, Fi) · p(Fi → AiEi) ·

V(Em, F) · p(F → EB) · U(E,Fm+1) ·∏
i: m<i<k−1

p(Fi → AiEi) · U(Ei, Fi+1) ·

p(Fk−1 → Ak−1Ak) · V(B,B′) · p(B′ → a)

Note that the value above is not a probability and
may exceed 1. This is because the same viable
prefix may occur several times in a single right-
most derivation.

At first sight, the computation of E seems to re-
quire an exponential number of steps in k. How-
ever, we can use an idea similar to that commonly
used for computation of forward probabilities for
HMMs (Rabiner, 1989). We first define F :

F(ε, E) =
{

1 if E = S†

0 otherwise

F(αA,E) =
∑

E′,π=F→AE
F(α,E′) · V(E′, F) · p(π)

This corresponds to the part of the definition
of E involving A1, . . . , Am, E0, . . . , Em and
F1, . . . , Fm. We build on this by defining:

G(α,E,B) =
∑

E′,π=F→EB
F(α,E′) · V(E′, F) · p(π)

One more recursive function is needed for
what was Am+1, . . . , Ak−2, Em+1, . . . , Ek−2 and
Fm+1, . . . , Fk−2 in the earlier definition of E :

H(ε, E,B)=G(ε, E,B)

H(αA,E,B)=
∑

E′,π=F→AE
H(α,E′, B) · U(E′, F) · p(π)

+ G(αA,E,B)

E0

F1

A1 E1

Em−1

Fm

Am Em

F

E

Fm+1

Am+1 Em+1

Ek−2

Fk−1

Ak−1 Ak

B

B′

a

Figure 1: Right-most derivation leading to
Fk−1 → Ak−1Ak in viable prefix A1 · · ·Ak with
lookahead a.

Finally, we can express E in terms of these re-
cursive functions, considering the more general
case of any rule π = F → β:

E(αβ, a, F → β) =∑
E,B

H(α,E,B) · U(E,F) · p(π) · L(B, a)

E(α, a, F → β) = 0 if ¬∃γ α = γβ

where:

L(B, a) =
∑

π=B′→a
V(B,B′) · p(π)

The expected number of times the handle is to
be found to the right of α, with the stack being α
and the lookahead symbol being a, is:

E(α, a, shift) =
∑
B

F(α,B) · L(B, a)

The expected number of times we see a stack α
with lookahead a is:

E(α, a) = E(α, a, shift) +
∑
π

E(α, a, π)

341

The probability that a reduce with rule π is the
correct action when the stack is α and the looka-
head is a is naturally E(α, a, π)/E(α, a) and the
probability that a shift is the correct action is
E(α, a, shift)/E(α, a). For determining the most
likely action we do not need to compute E(α, a);
it suffices to identify the maximum value among
E(α, a, shift) and E(α, a, π) for each rule π.

A deterministic shift-reduce parser can now be
constructed that always chooses the most likely
next action. For a given input string, the number
of actions performed by this parser is linear in the
input length.

A call of E may lead to a number of recursive
calls of F and H that is linear in the stack size
and thereby in the input length. Note however that
by remembering the values returned by these func-
tion between parser actions, one can ensure that
each additional element pushed on the stack re-
quires a bounded number of additional calls of the
auxiliary functions. Because only linearly many
elements are pushed on the stack, the time com-
plexity becomes linear in the input length.

Complexity analysis seems less favorable if we
consider the number of nonterminals. The defi-
nitions of G and H each involve four nontermi-
nals excluding the stack symbol A, so that the
time complexity is O(|w| · |N |4), where |w| is
the length of the input w. A finer analysis gives
O(|w| · (|N | · |P |+ |N |2 · ‖P‖)), where ‖P‖ is
the maximum for all A of the number of rules
of the form F → AE. By splitting up G and
H into smaller functions, we obtain complexity
O(|w| · |N |3), which can still be prohibitive.

Therefore we have implemented an alternative
that has a time complexity that is only quadratic
in the size of the grammar, at the expense of a
quadratic complexity in the length of the input
string, as detailed in Appendix A. This is still
better in practice if the number of nonterminals is
much greater than the length of the input string, as
in the case of the grammars we investigated.

4 Structural determinism

We have assumed so far that a deterministic shift-
reduce parser chooses a unique next action in each
configuration, an action being a shift or reduce.
Implicit in this was that if the next action is a re-
duce, then also a unique rule is chosen. However,
if we assume for now that all non-lexical rules
are binary, then we can easily generalize the pars-

ing algorithm to consider all possible rules whose
right-hand sides match the top-most two stack el-
ements, and postpone commitment to any of the
nonterminals in the left-hand sides. This requires
that stack elements now contain sets of grammar
symbols. Each of these is associated with the
probability of the most likely subderivation con-
sistent with the relevant substring of the input.

Each reduce with a binary rule is implicitly fol-
lowed by zero or more reduces with unary rules.
Similarly, each shift is implicitly followed by a re-
duce with a lexical rule and zero or more reduces
with unary rules; see also (Graham et al., 1980).
This uses a precompiled table similar to U , but us-
ing maximization in place of summation, defined
by:

Umax(C,D) = max
d : C d⇒rm D

p(d)

More concretely, configurations have the form
(Z1 . . . Zk, v$), k ≥ 0, where each Zi (1 ≤ i ≤ k)
is a set of pairs (A, p), where A is a nonterminal
and p is a (non-zero) probability; each A occurs
at most once in Zi. A shift turns (α, av$) into
(αZ, v$), where Z consists of all pairs (E, p) such
that p = maxF Umax(E,F) · p(F → a). A gen-
eralized binary reduce now turns (αZ1Z2, v$) into
(αZ, v$), where Z consists of all pairs (E, p) such
that:

p = max
π = F → A1A2,

(A1, p1) ∈ Z1, (A2, p2) ∈ Z2

Umax(E,F) · p(π) · p1 · p2

We characterize this parsing procedure as struc-
turally deterministic, as an unlabeled structure is
built deterministically in the first instance. The
exact choices of rules can be postponed until af-
ter reaching the end of the sentence. Then follows
a straightforward process of ‘backtracing’, which
builds the derivation that led to the computed prob-
ability associated with the start symbol.

The time complexity is now O(|w| · |N |5) in
the most straightforward implementation, but we
can reduce this to quadratic in the size of the gram-
mar provided we allow an additional factor |w| as
before. For more details see Appendix B.

5 Other variants

One way to improve accuracy is to increase the
size of the lookahead, beyond the current 1, com-
parable to the generalization from LR(1) to LR(k)
parsing. The formulas are given in Appendix C.

342

Yet another variant investigates only the top-
most n stack symbols when choosing the next
parser action. In combination with Appendix A,
this brings the time complexity down again to lin-
ear time in the length of the input string. The re-
quired changes to the formulas are given in Ap-
pendix D. There is a slight similarity to (Schuler,
2009), in that no stack elements beyond a bounded
depth are considered at each parsing step, but in
our case the stack can still have arbitrary height.

Whereas we have concentrated on determinism
in this paper, one can also introduce a limited de-
gree of nondeterminism and allow some of the
most promising configurations at each input posi-
tion to compete, applying techniques such as beam
search (Roark, 2001; Zhang and Clark, 2009; Zhu
et al., 2013), best-first search (Sagae and Lavie,
2006), or A∗ search (Klein and Manning, 2003)
in order to keep the running time low. For com-
paring different configurations, one would need to
multiply the values E(α, a) as in Section 3 by the
probabilities of the subderivations associated with
occurrences of grammar symbols in stack α.

Further variants are obtained by replacing the
parsing strategy. One obvious candidate is left-
corner parsing (Rosenkrantz and Lewis II, 1970),
which is considerably simpler than LR parsing.
The resulting algorithm would be very different
from the left-corner models of e.g. (Henderson,
2003), which rely on neural networks instead of
PCFGs.

6 Experiments

We used the WSJ treebank from OntoNotes 4.0
(Hovy et al., 2006), with Sections 2-21 for train-
ing and the 2228 sentences of up to 40 words from
Section 23 for testing. Grammars with different
sizes, and in the required binary form, were ex-
tracted by using the tools from the Berkeley parser
(Petrov et al., 2006), with between 1 and 6 split-
merge cycles. These tools offer a framework for
handling unknown words, which we have adopted.

The implementation of the parsing algorithms
is in C++, running on a desktop with four 3.1GHz
Intel Core i5 CPUs. The main algorithm is that of
Appendix C, with lookahead k between 1 and 3,
also in combination with structural determinism
(Appendix B), which is indicated here by sd. The
variant that consults the stack down to bounded
depth n (Appendix D) will only be reported for
k = 1 and n = 5.

Bracketing recall, precision and F-measure, are
computed using evalb, with settings as in (Collins,
1997), except that punctuation was deleted.1 Ta-
ble 1 reports results.

A nonterminal B in the stack may occur in a
small number of rules of the form A → BC. The
C of one such rule is needed next in order to al-
low a reduction. If future input does not deliver
this C, then parsing may fail. This problem be-
comes more severe as nonterminals become more
specific, which is what happens with an increase of
the number of split-merge cycles. Even more fail-
ures are introduced by removing the ability to con-
sult the complete stack, which explains the poor
results in the case of k = 1, n = 5; lower values
of n lead to even more failures, and higher values
further increase the running time. That the running
time exceeds that of k = 1 is explained by the fact
that with the variant from Appendix D, every pop
or push requires a complete recomputation of all
function values.

Parse failures can be almost completely elimi-
nated however by choosing higher values of k and
by using structural determinism. A combination
thereof leads to high accuracy, not far below that
of the Viterbi parses. Note that one cannot expect
the accuracy of our deterministic parsers to exceed
that of Viterbi parses. Both rely on the same model
(a PCFG), but the first is forced to make local deci-
sions without access to the input string that follows
the bounded lookahead.

7 Conclusions

We have shown that deterministic parsers can be
constructed from a given PCFG. Much of the ac-
curacy of the grammar can be retained by choosing
a large lookahead in combination with ‘structural
determinism’, which postpones commitment to
nonterminals until the end of the input is reached.

Parsers of this nature potentially run in linear
time in the length of the input, but our parsers are
better implemented to run in quadratic time. In
terms of the grammar size, the experiments sug-
gest that the number of rules is the dominating fac-
tor. The size of the lookahead strongly affects run-
ning time. The extra time costs of structural deter-
minism are compensated by an increase in accu-
racy and a sharp decrease of the parse failures.

1Evalb otherwise stumbles over e.g. a part of speech con-
sisting of two single quotes in the parsed file, against a part
of speech ‘POS’ in the gold file, for an input token consisting
of a single quote.

343

Table 1: Total time required (seconds), number of parse failures, recall, precision, F-measure, for deter-
ministic parsing, compared to the Viterbi parses as computed with the Berkeley parser.

time fail R P F1
1-split-merge (12,059 rules)
k = 1 43 11 67.20 66.67 66.94
k = 2 99 0 70.74 71.01 70.88
k = 3 199 0 71.41 71.85 71.63
k = 1, sd 62 0 68.12 68.52 68.32
k = 2, sd 135 0 70.98 71.72 71.35
k = 3, sd 253 0 71.31 72.50 71.90
k = 1, n = 5 56 170 66.19 65.67 65.93
Viterbi 0 72.45 74.55 73.49

2-split-merge (32,994 rules)
k = 1 120 33 72.65 70.50 71.56
k = 2 275 1 78.44 77.26 77.84
k = 3 568 0 79.81 79.27 79.54
k = 1, sd 196 0 74.78 74.96 74.87
k = 2, sd 439 0 79.96 80.40 80.18
k = 3, sd 770 0 80.49 81.20 80.85
k = 1, n = 5 146 247 72.27 70.34 71.29
Viterbi 0 82.16 82.69 82.43

3-split-merge (95,647 rules)
k = 1 305 75 74.39 72.33 73.35
k = 2 770 3 81.32 80.35 80.83
k = 3 1,596 0 82.78 82.35 82.56
k = 1, sd 757 0 78.11 78.37 78.24
k = 2, sd 1,531 0 82.85 83.39 83.12
k = 3, sd 2,595 0 83.66 84.25 83.96
k = 1, n = 5 404 401 74.52 72.39 73.44
Viterbi 0 85.38 86.03 85.71

time fail R P F1
4-split-merge (269,162 rules)
k = 1 870 115 75.69 73.30 74.48
k = 2 2,257 1 83.48 82.35 82.91
k = 3 4,380 1 84.95 84.06 84.51
k = 1, sd 2,336 1 80.82 80.65 80.74
k = 2, sd 4,747 0 85.52 85.64 85.58
k = 3, sd 7,728 0 86.62 86.82 86.72
k = 1, n = 5 1,152 508 76.21 73.92 75.05
Viterbi 0 87.95 88.10 88.02

5-split-merge (716,575 rules)
k = 1 3,166 172 76.17 73.44 74.78
k = 2 7,476 2 84.14 82.80 83.46
k = 3 14,231 1 86.05 85.24 85.64
k = 1, sd 7,427 1 81.99 81.44 81.72
k = 2, sd 14,587 0 86.89 87.00 86.95
k = 3, sd 24,553 0 87.67 87.82 87.74
k = 1, n = 5 4,572 559 77.65 75.13 76.37
Viterbi 0 88.65 89.00 88.83

6-split-merge (1,947,915 rules)
k = 1 7,741 274 76.60 74.08 75.32
k = 2 19,440 5 84.60 83.17 83.88
k = 3 35,712 0 86.02 85.07 85.54
k = 1, sd 19,530 1 82.64 81.95 82.29
k = 2, sd 39,615 0 87.36 87.20 87.28
k = 3, sd 64,906 0 88.16 88.26 88.21
k = 1, n = 5 10,897 652 77.89 75.57 76.71
Viterbi 0 88.69 88.99 88.84

There are many advantages over other ap-
proaches to deterministic parsing that rely on
general-purpose classifiers. First, some state-of-
the-art language models are readily available as
PCFGs. Second, most classifiers require tree-
banks, whereas our algorithms are also applicable
to PCFGs that were obtained in any other way, for
example through intersection of language models.
Lastly, our algorithms fit within well understood
automata theory.

Acknowledgments We thank the reviewers.

A Formulas for quadratic time
complexity

The following are the formulas that correspond
to the first implemented variant. Relative to Sec-
tion 3, some auxiliary functions are broken up, and
associating the lookahead a with an appropriate

nonterminal B is now done in G:

F(ε, E) =
{

1 if E = S†

0 otherwise

F(αA,E) =
∑

π=F→AE
F ′(α, F) · p(π)

F ′(α, F) =
∑
E

F(α,E) · V(E,F)

G(α,E, a) =
∑
F

F ′(α, F) · G′(F,E, a)

G′(F,E, a) =
∑

π=F→EB
p(π) · L(B, a)

H(ε, E, a) = G(ε, E, a)

H(αA,E, a) =
∑

π=F→AE
H′(α, F, a) · p(π)

+ G(αA,E, a)

H′(α, F, a) =
∑
E

H(α,E, a) · U(E,F)

344

E(αβ, a, F → β) = H′(α, F, a) · p(F → β)
E(α, a, F → β) = 0 if ¬∃γ α = γβ

E(αA, a, shift) = G(α,A, a)
E(ε, a, shift) = L(S†, a)

These equations correspond to a time complex-
ity of O(|w|2 · |N |2 + |w| · |P |). Each definition
except that of G′ involves one stack (of linear size)
and, at most, one terminal plus two arbitrary non-
terminals. The full grammar is only considered
once for every input position, in the definition of
G′.

The values are stored as vectors and matrices.
For example, for each distinct lookahead symbol
a, there is a (sparse) matrix containing the value of
G′(F,E, a) at a row and a column uniquely iden-
tified by F and E, respectively.

B Formulas for structural determinism

For the variant from Section 4, we need to change
only two definitions of auxiliary functions:

F(αZ,E) =
∑

(A,p)∈Z,π=F→AE
F ′(α, F) · p(π) · p

H(αZ,E, a) =
∑

(A,p)∈Z,π=F→AE
H′(α, F, a) · p(π) · p

+ G(αZ,E, a)

The only actions are shift and generalized bi-
nary reduce red . The definition of E becomes:

E(αZ1Z2, a, red)=
∑

(A1,p1)∈Z1,(A2,p2)∈Z2

π=F→A1A2

H′(α, F, a) · p(π) · p1 · p2

E(αZ, a, shift) =
∑

(A,p)∈Z

G(α,A, a) · p

The time complexity now increases to
O(|w|2 · (|N |2 + |P |)) due to the newH.

C Formulas for larger lookahead

In order to handle k symbols of lookahead (Sec-
tion 5) some technical problems are best avoided
by having k copies of the end-of-sentence marker
appended behind the input string, with a corre-
sponding augmentation of the grammar. We gen-
eralize L(B, v) to be the sum of p(d) for all d

such that B d⇒rm vx, some x. We let I(B, v)

be the sum of p(d) for all d such that B d⇒rm v.
If I is given for all prefixes of a fixed lookahead
string of length k (this requires cubic time in k),
we can compute L in linear time for all suffixes of
the same string:

L(B, v) =
∑
B′
V(B,B′) · L′(B′, v)

L′(B, v) =
∑

π=B→B1B2,v1,v2:

v=v1v2,1≤|v1|,1≤|v2|

p(π) · I(B1, v1) · L(B2, v2)
if |v| > 1

L′(B, a) =
∑

π=B→a
p(π)

The function H is generalized straightforwardly
by letting it pass on a string v (1 ≤ |v| ≤ k) in-
stead of a single terminal a. The same holds for E .
The function G requires a slightly bigger modifica-
tion, leading back to H if not all of the lookahead
has been matched yet:

G(α,E, v) =
∑
F

F ′(α, F) · G′(F,E, v) +∑
F,v1,v2:v=v1v2,|v2|>0

H′(α, F, v2) · G′′(F,E, v1)

G′(F,E, v) =
∑

π=F→EB
p(π) · L(B, v)

G′′(F,E, v) =
∑

π=F→EB
p(π) · I(B, v)

The time complexity is nowO(k · |w|2 · |N |2 +
k3 · |w| · |P |).

D Investigation of top-most n stack
symbols only

As discussed in Section 5, we want to predict the
next parser action without consulting any symbols
in α, when the current stack is αβ, with |β| =
n. This is achieved by approximating F(α,E) by
the outside value of E, that is, the sum of p(d)
for all d such that ∃α,wS d⇒rm αEw. Similarly,
H′(α, F, v) is approximated by

∑
E G(α,E, v) ·

W(E,F) where:

W(C,D) =
∑

d : ∃δC d⇒rm δD

p(d)

The time complexity (with lookahead k) is now
O(k · n · |w| · |N |2 + k3 · |w| · |P |).

345

References
A.V. Aho and J.D. Ullman. 1972. Parsing, volume 1 of

The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, N.J.

S. Billot and B. Lang. 1989. The structure of
shared forests in ambiguous parsing. In 27th An-
nual Meeting of the ACL, Proceedings of the Confer-
ence, pages 143–151, Vancouver, British Columbia,
Canada, June.

T. Briscoe and J. Carroll. 1993. Generalized prob-
abilistic LR parsing of natural language (corpora)
with unification-based grammars. Computational
Linguistics, 19(1):25–59.

M. Candito, J. Nivre, P. Denis, and E. Henestroza An-
guiano. 2010. Benchmarking of statistical de-
pendency parsers for French. In The 23rd Inter-
national Conference on Computational Linguistics,
pages 108–116, Beijing, China, August.

D. Cer, M.-C. de Marneffe, D. Jurafsky, and C. Man-
ning. 2010. Parsing to Stanford dependen-
cies: Trade-offs between speed and accuracy. In
LREC 2010: Seventh International Conference on
Language Resources and Evaluation, Proceedings,
pages 1628–1632, Valletta , Malta, May.

M. Collins. 1997. Three generative, lexicalised models
for statistical parsing. In 35th Annual Meeting of the
ACL, Proceedings of the Conference, pages 16–23,
Madrid, Spain, July.

S.L. Graham, M.A. Harrison, and W.L. Ruzzo. 1980.
An improved context-free recognizer. ACM Trans-
actions on Programming Languages and Systems,
2:415–462.

J. Henderson. 2003. Generative versus discrimina-
tive models for statistical left-corner parsing. In
8th International Workshop on Parsing Technolo-
gies, pages 115–126, LORIA, Nancy, France, April.

E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and
R. Weischedel. 2006. OntoNotes: The 90% solu-
tion. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Main Conference,
pages 57–60, New York, USA, June.

L. Huang and K. Sagae. 2010. Dynamic programming
for linear-time incremental parsing. In Proceedings
of the 48th Annual Meeting of the ACL, pages 1077–
1086, Uppsala, Sweden, July.

F. Jelinek and J.D. Lafferty. 1991. Computation
of the probability of initial substring generation by
stochastic context-free grammars. Computational
Linguistics, 17(3):315–323.

T. Kalt. 2004. Induction of greedy controllers for de-
terministic treebank parsers. In Conference on Em-
pirical Methods in Natural Language Processing,
pages 17–24, Barcelona, Spain, July.

D. Klein and C.D. Manning. 2003. A∗ parsing: Fast
exact Viterbi parse selection. In Proceedings of the
2003 Human Language Technology Conference of
the North American Chapter of the ACL, pages 40–
47, Edmonton, Canada, May–June.

D.E. Knuth. 1965. On the translation of languages
from left to right. Information and Control, 8:607–
639.

M. Kuhlmann, C. Gómez-Rodrı́guez, and G. Satta.
2011. Dynamic programming algorithms for
transition-based dependency parsers. In 49th An-
nual Meeting of the ACL, Proceedings of the Con-
ference, pages 673–682, Portland, Oregon, June.

M. Lankhorst. 1991. An empirical comparison of gen-
eralized LR tables. In R. Heemels, A. Nijholt, and
K. Sikkel, editors, Tomita’s Algorithm: Extensions
and Applications, Proc. of the first Twente Work-
shop on Language Technology, pages 87–93. Uni-
versity of Twente, September.

A. Lavie and M. Tomita. 1993. GLR∗ – an effi-
cient noise-skipping parsing algorithm for context
free grammars. In Third International Workshop on
Parsing Technologies, pages 123–134, Tilburg (The
Netherlands) and Durbuy (Belgium), August.

M.-J. Nederhof and G. Satta. 2004. An alternative
method of training probabilistic LR parsers. In 42nd
Annual Meeting of the ACL, Proceedings of the Con-
ference, pages 551–558, Barcelona, Spain, July.

S.-K. Ng and M. Tomita. 1991. Probabilistic LR pars-
ing for general context-free grammars. In Proc. of
the Second International Workshop on Parsing Tech-
nologies, pages 154–163, Cancun, Mexico, Febru-
ary.

J. Nivre. 2008. Algorithms for deterministic incremen-
tal dependency parsing. Computational Linguistics,
34(4):513–553.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree
annotation. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the ACL, pages 433–440, Sydney,
Australia, July.

L.R. Rabiner. 1989. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, February.

A. Ratnaparkhi. 1997. A linear observed time statis-
tical parser based on maximum entropy models. In
Proceedings of the Second Conference on Empirical
Methods in Natural Language Processing, pages 1–
10, Providence, Rhode Island, USA, August.

B. Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

346

D.J. Rosenkrantz and P.M. Lewis II. 1970. Determin-
istic left corner parsing. In IEEE Conference Record
of the 11th Annual Symposium on Switching and Au-
tomata Theory, pages 139–152.

K. Sagae and A. Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proceed-
ings of the Ninth International Workshop on Parsing
Technologies, pages 125–132, Vancouver, British
Columbia, Canada, October.

K. Sagae and A. Lavie. 2006. A best-first probabilistic
shift-reduce parser. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics
and 44th Annual Meeting of the ACL, pages 691–
698, Sydney, Australia, July.

W. Schuler. 2009. Positive results for parsing with
a bounded stack using a model-based right-corner
transform. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the ACL, pages 344–
352, Boulder, Colorado, May–June.

P. Shann. 1991. Experiments with GLR and chart pars-
ing. In M. Tomita, editor, Generalized LR Parsing,
chapter 2, pages 17–34. Kluwer Academic Publish-
ers.

S.M. Shieber. 1983. Sentence disambiguation by
a shift-reduce parsing technique. In 21st Annual
Meeting of the ACL, Proceedings of the Conference,
pages 113–118, Cambridge, Massachusetts, July.

S. Sippu and E. Soisalon-Soininen. 1990. Parsing The-
ory, Vol. II: LR(k) and LL(k) Parsing, volume 20 of
EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag.

A. Stolcke. 1995. An efficient probabilistic context-
free parsing algorithm that computes prefix proba-
bilities. Computational Linguistics, 21(2):167–201.

M. Tomita. 1988. Graph-structured stack and natu-
ral language parsing. In 26th Annual Meeting of
the ACL, Proceedings of the Conference, pages 249–
257, Buffalo, New York, June.

Y. Tsuruoka and J. Tsujii. 2005. Chunk parsing re-
visited. In Proceedings of the Ninth International
Workshop on Parsing Technologies, pages 133–140,
Vancouver, British Columbia, Canada, October.

A. Wong and D. Wu. 1999. Learning a lightweight
robust deterministic parser. In Sixth European Con-
ference on Speech Communication and Technology,
pages 2047–2050.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
8th International Workshop on Parsing Technolo-
gies, pages 195–206, LORIA, Nancy, France, April.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10:189–208.

Y. Zhang and S. Clark. 2009. Transition-based pars-
ing of the Chinese treebank using a global discrimi-
native model. In Proceedings of the 11th Interna-
tional Conference on Parsing Technologies, pages
162–171, Paris, France, October.

M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu.
2013. Fast and accurate shift-reduce constituent
parsing. In 51st Annual Meeting of the ACL, Pro-
ceedings of the Conference, volume 1, pages 434–
443, Sofia, Bulgaria, August.

347

