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Abstract

Scripts represent knowledge of stereotyp-
ical event sequences that can aid text un-
derstanding. Initial statistical methods
have been developed to learn probabilis-
tic scripts from raw text corpora; how-
ever, they utilize a very impoverished rep-
resentation of events, consisting of a verb
and one dependent argument. We present
a script learning approach that employs
events with multiple arguments. Unlike
previous work, we model the interactions
between multiple entities in a script. Ex-
periments on a large corpus using the task
of inferring held-out events (the “narrative
cloze evaluation”) demonstrate that mod-
eling multi-argument events improves pre-
dictive accuracy.

1 Introduction

Scripts encode knowledge of stereotypical events,
including information about their typical ordered
sequences of sub-events and corresponding argu-
ments (Schank and Abelson, 1977). The clas-
sic example is the “restaurant script,” which en-
codes knowledge about what normally happens
when dining out. Such knowledge can be used
to improve text understanding by supporting in-
ference of missing actions and events, as well as
resolution of lexical and syntactic ambiguities and
anaphora (Rahman and Ng, 2012). For example,
given the text “John went to Olive Garden and or-
dered lasagna. He left a big tip and left,” an infer-
ence that scripts would ideally allow us to make is
“John ate lasagna.”

There is a small body of recent research on auto-
matically learning probabilistic models of scripts
from large corpora of raw text (Manshadi et al.,
2008; Chambers and Jurafsky, 2008; Chambers
and Jurafsky, 2009; Jans et al., 2012). However,

this work uses a very impoverished representation
of events that only includes a verb and a single de-
pendent entity. We propose a more complex multi-
argument event representation for use in statistical
script models, capable of directly capturing inter-
actions between multiple entities. We present a
method for learning such a model, and provide ex-
perimental evidence that modeling entity interac-
tions allows for better prediction of events in docu-
ments, compared to previous single-entity “chain”
models. We also compare to a competitive base-
line not used in previous work, and introduce a
novel evaluation metric.

2 Background

The idea of representing stereotypical event se-
quences for textual inference originates in the
seminal work of Schank and Abelson (1977).
Early scripts were manually engineered for spe-
cific domains; however, Mooney and DeJong
(1985) present an early knowledge-based method
for learning scripts from a single document. These
early scripts (and methods for learning them) were
non-statistical and fairly brittle.

Chambers and Jurafsky (2008) introduced a
method for learning statistical scripts that, using a
much simpler event representation that allows for
efficient learning and inference. Jans et al. (2012)
use the same simple event representation, but in-
troduce a new model that more accurately predicts
test data. These methods only model the actions of
a single participant, called the protagonist. Cham-
bers and Jurafsky (2009) extended their approach
to the multi-participant case, modeling the events
in which all of the entities in a document are in-
volved; however, their method cannot represent in-
teractions between multiple entities.

Balasubramanian et al. (2012; 2013) describe
the Rel-gram system, a Markov model similar to
that of Jans et al. (2012), but with tuples instead
of (verb, dependency) pairs. Our approach is sim-
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ilar, but instead of modeling a distribution over co-
occurring verbs and nominal arguments, we model
interactions between entities directly by incorpo-
rating coreference information into the model.

Previous statistical script learning systems pro-
ceed broadly as follows. For a document D:

1. Run a dependency parser on D, to match up
verbs with their argument NPs.

2. Run a coreference resolver onD to determine
which NPs likely refer to the same entity.

3. Construct a sequence of event objects, using
syntactic and coreference information.

One can then build a statistical model of the event
sequences produced by Step 3. Such a model may
be evaluated using the narrative cloze evaluation,
described in Section 4.1, in which we hold out an
event from a sequence and attempt to infer it.

The major difference between the current work
and previous work is that the event sequences pro-
duced in Step 3 are of a different sort from those
in other models. Our events are more structured,
as described in Section 3.1, and we produce one
event sequence per document, instead of one event
sequence per entity. This requires a different sta-
tistical model, as described in Section 3.2.

3 Script Models

In Section 3.1, we describe the multi-argument
events we use as the basis of our script models.
Section 3.2 describes a script model using these
events, and Section 3.3 describes the baseline sys-
tems to which we compare.

3.1 Multi-Argument Events
Statistical scripts are models of stereotypical se-
quences of events. In Chambers and Juraf-
sky (2008; 2009) and Jans et al. (2012), events
are (verb, dependency) pairs, forming “chains,”
grouped according to the entity involved. For ex-
ample, the text

(1) Mary emailed Jim and he responded to her
immediately.

yields two chains. First, there is a chain for Mary:

(email, subject)
(respond, object)

indicating that Mary was the subject of an email-
ing event and the object of a responding event.
Second, there is a chain for Jim:

(email, object)
(respond, subject)

indicating that Jim was the object of an emailing
event and the subject of a responding event. Thus,
one document produces many chains, each cor-
responding to an entity. Note that a single verb
may produce multiple pair events, each present
in a chain corresponding to one of the verb’s ar-
guments. Note also that there is no connection
between the different events produced by a verb:
there is nothing connecting (email, subject) in
Mary’s chain with (email, object) in Jim’s chain.

We propose a richer event representation, in
which a document is represented as a single se-
quence of event tuples, the arguments of which are
entities. Each entity may be mentioned in many
events, and, unlike previous work, each event may
involve multiple entities. For example, sentence
(1) will produce a single two-event sequence, the
first event representing Mary emailing Jim, and the
second representing Jim responding to Mary.

Formally, an entity is represented by a con-
stant, and noun phrases are mapped to entities,
where two noun phrases are mapped to the same
constant if and only if they corefer. A multi-
argument event is a relational atom v(es, eo, ep),
where v is a verb lemma, and es, eo, and ep are
possibly-null entities. The first entity, es, stands
in a subject relation to the verb v; the second, eo,
is the direct object of v; the third ep stands in
a prepositional relation to v. One of these enti-
ties is null (written as “·”) if and only if no noun
phrase stands in the appropriate relation to v. For
example, Mary hopped would be represented as
hop(mary, ·, ·), while Mary gave the book to John
would be give(mary, book, john). In this formula-
tion, Example (1) produces the sequence

email(m, j, ·)
respond(j,m, ·)

where m and j are entity constants representing
all mentions of Mary and Jim, respectively. Note
that this formulation is capable of capturing inter-
actions between entities: we directly encode the
fact that after one person emails another, the lat-
ter responds to the former. In contrast, pair events
can capture only that after an entity emails, they
are responded to (or after they are emailed, they
respond). Multi-argument events capture more of
the basic event structure of text, and are therefore
well-suited as a representation for scripts.
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3.2 Multi-argument Statistical Scripts
We now describe our script model. Section 3.2.1
describes our method of estimating a joint prob-
ability distribution over pairs of events, modeling
event co-occurrence, and Section 3.2.2 shows how
this co-occurrence probability can be used to infer
new events from a set of known events.

3.2.1 Estimating Joint Probabilities
Suppose we have a sequence of multi-argument
events, each of which is a verb with entities as ar-
guments. We are interested in predicting which
event is most likely to have happened at some
point in the sequence. Our model will require
a conditional probability P (a|a′), the probability
of seeing event a after event a′, given we have
observed a′. However, as described below, di-
rectly estimating this probability is more compli-
cated than in previous work because events now
have additional structure.

By definition, we have

P (a2|a1) =
P (a1, a2)
P (a1)

where P (a1, a2) is the probability of seeing a1

and a2, in order. The most straightforward way
to estimate P (a1, a2) is, if possible, by counting
the number of times we observe a1 and a2 co-
occurring and normalizing the function to sum to
1 over all pairs (a1, a2). For Chambers and Ju-
rafsky (2008; 2009) and Jans et al. (2012), such a
Maximum Likelihood Estimate is straightforward
to arrive at: events are (verb, dependency) pairs,
and two events co-occur when they are in the same
event chain, relating to the same entity (Jans et al.
(2012) further require a1 and a2 to be near each
other). One need simply traverse a training corpus
and count the number of times each pair (a1, a2)
co-occurs. The Rel-grams of Balasubramanian et
al. (2012; 2013) admit a similar strategy: to arrive
at a joint distribution of pairwise co-occurrence,
one can simply count co-occurrence of ground re-
lations in a corpus and normalize.

However, given two multi-argument events of
the form v(es, eo, ep), this strategy will not suffice.
For example, if during training we observe the two
co-occurring events

(2) ask(mary, bob, question)
answer(bob, ·, ·)

we would like this to lend evidence to the
co-occurrence of events ask(x, y, z) and

Algorithm 1 Learning with entity substitution
1: for a1, a2 ∈ evs do
2: N(a1, a2)← 0
3: end for
4: for D ∈ documents do
5: for a1, a2 ∈ coocurEvs(D) do
6: for σ ∈ subs(a1, a2) do
7: N(σ(a1), σ(a2)) += 1
8: end for
9: end for

10: end for

answer(y, ·, ·) for all distinct entities x, y,
and z. If we were to simply keep the entities as
they are and calculate raw co-occurrence counts,
we would get evidence only for x = mary,
y = bob, and z = question.

One approach to this problem would be to de-
ploy one of many previously described Statistical
Relational Learning methods, for example Logi-
cal Hidden Markov Models (Kersting et al., 2006)
or Relational Markov Models (Anderson et al.,
2002). These methods can learn various statisti-
cal relationships between relational logical atoms
with variables, of the sort considered here. How-
ever, we investigate a simpler option.

The most important relationship between the
entities in two multi-argument events concerns
their overlapping entities. For example, to de-
scribe the relationship between the three entities
in (2), it is most important to note that the object
of the first event is identical with the subject of the
second (namely, both are bob). The identity of the
non-overlapping entities mary and question is not
important for capturing the relationship between
the two events.

We note that two multi-argument events
v(es, eo, ep) and v′(e′s, e′o, e′p), share at most three
entities. We thus introduce four variables x, y, z,
and O. The three variables x, y, and z repre-
sent arbitrary distinct entities, and the fourth, O,
stands for “Other,” for entities not shared between
the two events. We can rewrite the entities in our
two multi-argument events using these variables,
with the constraint that two identical (i.e. corefer-
ent) entities must be mapped to the same variable
in {x, y, z}, and no two distinct entities may map
to the same variable in {x, y, z}. This formulation
simplifies calculations while still capturing pair-
wise entity relationships between events.

Algorithm 1 gives the pseudocode for the learn-
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ing method. This populates a co-occurrence
matrix N , where entry N(a1, a2) gives the co-
occurrence count of events a1 and a2. The vari-
able evs in line 1 is the set of all events in our
model, which are of the form v(es, eo, ep), with v
a verb lemma and es, eo, ep ∈ {x, y, z, O}. The
variable documents in line 4 is the collection
of documents in our training corpus. The func-
tion cooccurEvs in line 5 takes a document D
and returns all ordered pairs of co-occurring events
in D, where, following the 2-skip bigram model
of Jans et al. (2012), and similar to Balasubrama-
nian et al. (2012; 2013), two events a1 and a2 are
said to co-occur if they occur in order, in the same
document, with at most two intervening events be-
tween them.1 The function subs in line 6 takes
two events and returns all variable substitutions σ
mapping from entities mentioned in the events a1

and a2 to the set {x, y, z, O}, such that two coref-
erent entities map to the same element of {x, y, z}.
A substitution σ applied to an event v(es, eo, ep),
as in line 7, is defined as v(σ(es), σ(eo), σ(ep)),
with the null entity mapped to itself.

Once we have calculatedN(a1, a2) using Algo-
rithm 1, we may define P (a1, a2) for two events
a1 and a2, giving an estimate for the probability
of observing a2 occurring after a1, as

P (a1, a2) =
N(a1, a2)∑

a′
1,a′

2
N(a′1, a′2)

. (3)

We may then define the conditional probability of
seeing a2 after a1, given an observation of a1:

P (a2|a1) =
P (a1, a2)∑
a′ P (a1, a′)

=
N(a1, a2)∑
a′ N(a1, a′)

. (4)

3.2.2 Inferring Events
Suppose we have a sequence of multi-argument
events extracted from a document. A natural task
for a statistical script model is to infer what other
events likely occurred, given the events explic-
itly stated in a document. Chambers and Jurafsky
(2008; 2009) treat the events involving an entity
as an unordered set, inferring the most likely ad-
ditional event, with no relative ordering between
the inferred event and known events. We adopt
the model of Jans et al. (2012), which was demon-
strated to give better empirical performance. This

1Other notions of co-occurrence could easily be substi-
tuted here.

model takes an ordered sequence of events and
a position in that sequence, and guesses events
that likely occurred at that position. In that work,
events are (verb, dependency) pairs, and an event
sequence consists of all such pairs involving a par-
ticular entity. We use this model in the multi-
argument event setting, in which a document pro-
duces a single sequence of multi-argument events.

LetA be an ordered list of events, and let p be an
integer between 1 and |A|, the length ofA. For i =
1, . . . , |A|, define ai to be the ith element of A.
We follow Jans et al. (2012) by scoring a candidate
event a according to its probability of following all
of the events before position p, and preceding all
events after position p. That is, we rank candidate
events a by maximizing S(a), defined as

S(a) =
p−1∑
i=1

logP (a|ai) +
|A|∑
i=p

logP (ai|a) (5)

with conditional probabilities P (a|a′) calculated
using (4). Each event in ai ∈ A independently
contributes to a candidate a’s score; the ordering
between a and ai is taken into account, but the or-
dering between the different events ai ∈ A does
not directly affect a’s score.

3.3 Baseline Systems
We describe the baseline systems against which
we compare the performance of the multi-
argument script system described in section 3.2.
These systems infer new events (either multi-
argument or pair events) given the events con-
tained in a document.

Performance of these systems is measured using
the narrative cloze task, in which we hold out a sin-
gle event (either a multi-argument or pair event),
and rate a system by its ability to infer this event,
given the other events in a document. The narra-
tive cloze task is described in detail in Section 4.1.

3.3.1 Random Model
The simplest baseline we compare to is the ran-
dom baseline, which outputs randomly selected
events observed during training. This model can
guess either multi-argument or pair events.

3.3.2 Unigram Model
The unigram system guesses events ordered by
prior probability, as calculated from the train-
ing set. If scripts are viewed as n-gram models
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over events, this baseline corresponds to a bag-of-
words unigram model. In this model, events are
assumed to occur independently, drawn from a sin-
gle distribution. This model can be used to guess
either multi-argument or pair events.

3.3.3 Single Protagonist Model
We refer to the system of Jans et al. (2012) as the
single protagonist system. This model takes a
single sequence of (verb, dependency) pair events,
all relating to a single entity. It then produces
a list of pair events, giving the model’s top pre-
dictions for additional events involving the entity.
This model maximizes the objective given in (5),
with the sequence A (and the candidate guesses a)
comprised of pair events.

3.3.4 Multiple Protagonist Model
The multiple protagonist system infers multi-
argument events. While this method is not de-
scribed in previous work, it is the most direct way
of guessing a full multi-argument event using a
single protagonist script model.

The multiple protagonist system uses a single-
protagonist model, which models pair events, to
predict multi-argument events, given a sequence
of known multi-argument events. Suppose we
have a non-empty set E of entities mentioned in
the known events. We describe the most direct
method of using a single-protagonist system to in-
fer additional multi-argument events involving E.

A multi-argument event a = v(es, eo, ep) repre-
sents three pairs: (v, es), (v, eo), and (v, ep). The
multiple protagonist model scores an event a ac-
cording to the score the single protagonist model
assigns to these three pairs individually.

For entity e ∈ E in some multi-argument event
in a document, we first extract the sequence of
(verb, dependency) pairs corresponding to e from
all known multi-argument events. For a pair d,
we calculate the score Se(d), the score the sin-
gle protagonist system assigns the pair d, given the
known pairs corresponding to e. If e has no known
pairs corresponding to it (in the cloze evaluation
described below, this will happen if e occurs only
in the held-out event), we fall back to calculating
Se(d) with a unigram model, as described in Sec-
tion 3.3.2, over (verb, dependency) pair events.

We then rank a multi-argument event a =
v(es, eo, ep), with es, eo, ep ∈ E, with the follow-

ing objective function:

M(a) =Ses((v, subj)) + Seo((v, obj))+
Sep((v, prep)) (6)

where, for null entity e, we define Se(d) = 0 for
all d. In the cloze evaluation, E will be the entities
in the held-out event. Each entity in a contributes
independently to the score M(a), based on the
known (verb, dependency) pairs involving that en-
tity. This model scores a multi-argument event a
by combining one independent single-protagonist
model for every entity in a.

This model is similar to the multi-participant
narrative schemas described in Chambers and Ju-
rafsky (2009), but whereas they infer bare verbs,
we infer an entire multi-argument event.

4 Evaluation

4.1 Evaluation Task
We follow previous work in using the narrative
cloze task to evaluate statistical scripts (Chambers
and Jurafsky, 2008; Chambers and Jurafsky, 2009;
Jans et al., 2012). The task is as follows: given
a sequence of events a1, . . . , an from a document,
hold out some event ap and attempt to predict that
event, given the other events in the sequence. As
we cannot automatically evaluate the prediction of
truly unmentioned events in a document, this eval-
uation acts as a straightforward proxy.

In the aforementioned work, the cloze task is
to guess a pair event, given the other events in
which the held-out pair’s entity occurs. In Section
4.2.2, we evaluate directly on this task of guess-
ing pair events. However, in Section 4.2.1, we
evaluate on the task of guessing a multi-argument
event, given all other events in a document and the
entities mentioned in the held-out event. This is,
we argue, the most natural way to adapt the cloze
evaluation to the multi-argument event setting: in-
stead of guessing a held-out pair event based on
the other events involving its lone entity, we will
guess a held-out multi-argument event based on
the other events involving any of its entities.

A document may contain arbitrarily many enti-
ties. The script model described in Section 3.2.1,
however, only models events involving entities
from a closed class of four variables {x, y, z, O}.
We therefore rewrite entities in a document’s se-
quences of events to the variables {x, y, z, O} in
a way that maintains all pairwise relationships be-
tween the held-out event and others. That is, if the
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held-out event shares an entity with another event,
this remains true after rewriting.

We perform entity rewriting relative to a single
held-out event, proceeding as follows:

• Any entity in the held-out event that is men-
tioned at least once in another event gets
rewritten consistently to one of x, y, or z,
such that distinct entities never get rewritten
to the same variable.

• Any entity mentioned only in the held-out
event is rewritten as O.

• All entities not present in the held-out event
are rewritten as O.

This simplification removes structure from the
original sequence, but retains the important pair-
wise entity relationships between the held-out
event and the other events.

4.2 Experimental Evaluation
For each document, we use the Stanford depen-
dency parser (De Marneffe et al., 2006) to get syn-
tactic information about the document; we then
use the Stanford coreference resolution engine
(Raghunathan et al., 2010) to get (noisy) equiva-
lence classes of coreferent noun phrases in a doc-
ument.2 We train on approximately 1.1M arti-
cles from years 1994-2006 of the NYT portion
of the Gigaword Corpus, Third Edition (Graff et
al., 2007), holding out a random subset of the arti-
cles from 1999 for development and test sets. Our
test set consists of 10,000 randomly selected held-
out events, and our development set is 500 disjoint
randomly selected held-out events. To remove du-
plicate documents, we hash the first 500 characters
of each article and remove any articles with hash
collisions. We use add-one smoothing on all joint
probabilities. To reduce the size of our model, we
remove all events that occur fewer than 50 times.3

We evaluate performance using the following
two metrics:

1. Recall at 10: Following Jans et al. (2012),
we measure performance by outputting the
top 10 guesses for each held-out event and
calculating the percentage of such lists con-

2We use version 1.3.4 of the Stanford CoreNLP system.
3A manual inspection reveals that the majority of these

removed events come from noisy text or parse errors.

taining the correct answer.4 This value will
be between 0 and 1, with 1 indicating perfect
system performance.

2. Accuracy: A multi-argument event
v(es, eo, ep) has four components; a pair
event has two components. For a held-out
event, we may judge the accuracy of a
system’s top guess by giving one point for
getting each of its components correct and
dividing by the number of possible points.
We average this value over the test set,
yielding a value between 0 and 1, with 1
indicating perfect system performance. This
is a novel evaluation metric for the script
learning task.

These metrics target a system’s most confident
predicted events: we argue that a script system is
best evaluated by its top inferences.

In Section 4.2.1, we evaluate on the task of in-
ferring multi-argument events. In Section 4.2.2,
we evaluate on the task of guessing pair events.

4.2.1 System Comparison on Multi-argument
Events

We first compare system performance on inferring
multi-argument events, evaluated on the narrative
cloze task as described in Section 4.1, using the
corpora and metrics described in Section 4.2. We
compare against three baselines: the uninformed
random baseline from Section 3.3.1, the unigram
system from 3.3.2, and the multiple protagonist
system from Section 3.3.4.

The joint system guesses the held-out event,
given the other events in the document that involve
the entities in that held-out tuple. The system or-
ders candidate events a by their scores S(a), as
given in Equation (5). This is the primary sys-
tem described in this paper, modeling full multi-
argument events directly.

Table 1 gives the recall at 10 (“R@10”) and ac-
curacy scores for the different systems. The uni-
gram system is quite competitive, achieving per-
formance comparable to the multiple protagonist
system on accuracy, and superior performance on
recall at 10.

Evaluating by the recall at 10 metric, the joint
system provides a 2.9% absolute (13.2% relative)
improvement over the unigram system, and a 3.6%

4Jans et al. (2012) instead use recall at 50, but we observe,
as they also report, that the comparative differences between
systems using recall at k for various values of k is similar.
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Method R@10 Accuracy
Random 0.001 0.334
Unigram 0.216 0.507
Multiple Protagonist 0.209 0.504
Joint 0.245 0.549

Table 1: Results for multi-argument events.

absolute (17.2% relative) improvement over the
multiple protagonist system. These differences
are statistically significant (p < 0.01) by McNe-
mar’s test. By accuracy, the joint system provides
a 4.2% absolute (8.3% relative) improvement over
the unigram model, and a 4.5% absolute (8.9%
relative) improvement over the multiple protago-
nist model. Accuracy differences are significant
(p < 0.01) by a Wilcoxon signed-rank test.

These results provide evidence that directly
modeling full multi-argument events, as opposed
to modeling chains of (verb, dependency) pairs for
single entities, allows us to better infer held-out
verbs with all participating entities.

4.2.2 System Comparison on Pair Events
In Section 4.2.1, we adapted a baseline pair-event
system to the task of guessing multi-argument
events. We may also do the converse, adapting our
multi-argument event system to the task of guess-
ing the simpler pair events. That is, we infer a full
multi-argument event and extract from it a (sub-
ject,verb) pair relating to a particular entity. This
allows us to compare directly to previously pub-
lished methods.

The random, unigram, and single protagonist
systems are pair-event systems described in Sec-
tions 3.3.1, 3.3.2, and 3.3.3, respectively. The
joint pair system takes the multi-argument events
guessed by the joint system of Section 4.2.1 and
converts them to pair events by discarding any in-
formation not related to the target entity; that is, if
the held-out pair event relates to an entity e, then
every occurrence of e as an argument of a guessed
multi-argument event will be converted into a sin-
gle pair event, scored identically to its original
multi-argument event. Ties are broken arbitrarily.

Table 2 gives the comparative results for these
four systems. The test set is constructed by ex-
tracting one pair event from each of the 10,000
multi-argument events in the test set used in Sec-
tion 4.2.1, such that the extracted pair event relates
to an entity with at least one additional known pair

Method R@10 Accuracy
Random 0.001 0.495
Unigram 0.297 0.552
Single Protagonist 0.282 0.553
Joint Pair 0.336 0.561

Table 2: Results for pair events.

event. Evaluating by recall at 10, the joint sys-
tem provides a 3.9% absolute (13.1% relative) im-
provement over the unigram baseline, and a 5.4%
absolute (19.1% relative) improvement over the
single protagonist system. These differences are
significant (p < 0.01) by McNemar’s test. By
accuracy, the joint system provides a 0.9% abso-
lute (1.6% relative) improvement over the unigram
model, and a 0.8% absolute (1.4% relative) im-
provement over the single protagonist model. Ac-
curacy differences are significant (p < 0.01) by a
Wilcoxon signed-rank test.

These results indicate that modeling multi-
argument event sequences allows better inference
of simpler pair events. These performance im-
provements may be due to the fact that the joint
model conditions on information not representable
in the single protagonist model (namely, all of the
events in which a multi-argument event’s entities
are involved).

5 Related Work

The procedural encoding of common situations
for automated reasoning dates back decades. The
frames of Minsky (1974), schemas of Rumelhart
(1975), and scripts of Schank and Abelson (1977)
are early examples. These models use quite com-
plex representations for events, with many differ-
ent relations between events. They are not statis-
tical, and use separate models for different scenar-
ios (e.g. the “restaurant script” is different from
the “bank script”). Generally, they require humans
to encode procedural information by hand; see,
however, Mooney and DeJong (1985) for an early
method for learning scripts automatically from a
document. Miikkulainen (1990; 1993) gives a hi-
erarchical Neural Network system which stores
sequences of events from text in episodic memory,
capable of simple question answering.

Regneri et al. (2010) and Li et al. (2012)
give methods for using crowdsourcing to cre-
ate situation-specific scripts. These methods
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help alleviate the bottleneck of the knowledge-
engineering required for traditionally conceived
script systems. These systems are precision-
oriented: they create small, highly accurate scripts
for very limited scenarios. The current work,
in contrast, focuses on building high-recall mod-
els of general event sequences. There are also a
number of systems addressing the related problem
of modeling domain-specific human-human dia-
log for building dialog systems (Bangalore et al.,
2006; Chotimongkol, 2008; Boyer et al., 2009).

There have been a number of recent approaches
to learning statistical scripts. Chambers and Ju-
rafsky (2008) and Jans et al. (2012) give methods
for learning models of (verb, dependency) pairs,
as described above. Manshadi et al. (2008) give
an n-gram model for sequences of verbs and their
patients. McIntyre and Lapata (2009; 2010) use
script objects learned from corpora of fairy tales
to automatically generate stories. Chambers and
Jurafsky (2009) extend their previous model to
incorporate multiple entities, but do not directly
model the different arguments of an event. Bam-
man et al. (2013) learn latent character personas
from film summaries, associating character types
with stereotypical actions; they focus on identify-
ing persona types, rather than event inference.

Manshadi et al. (2008) and Balasubramanian et
al. (2012; 2013) give approaches similar to the
current work for modeling sequences of events as
n-grams. These methods differ from the current
work in that they do not model entities directly, in-
stead modeling co-occurrence of particular nouns
standing as arguments to particular verbs. Lewis
and Steedman (2013) build clusters of relations
similar to these events, finding such clusters help-
ful to question answering and textual inference.

There has also been recent interest in the related
problem of automatically learning event frames
(Bejan, 2008; Chambers and Jurafsky, 2011; Che-
ung et al., 2013; Chambers, 2013). These ap-
proaches focus on identifying frames for infor-
mation extraction tasks, as opposed to inferring
events directly. Balasubramanian et al. (2013) give
an event frame identification method, developed in
parallel with the current work, using sequences of
tuples similar to our multi-argument events, noting
coherence issues with pair events. Their formu-
lation differs from ours primarily in that they do
not incorporate coreference information into their
event co-occurrence distribution, and evaluate us-

ing human judgments of frame coherence rather
than a narrative cloze test.

6 Future Work

We have evaluated only one type of multi-
argument event inference, in which a script infers
an event given a set of entities and the events in-
volving those entities. We claim that this is the
most natural adaptation of the cloze evaluation to
the multi-argument event setting. However, other
types of inferences would be useful as well for
question-answering. Additional script inferences,
and their applications to question answering, are
worth investigating more fully.

The evaluation methodology used here has two
serious benefits: it is totally automatic, and it does
not require labeled data. The cloze evaluation is
intuitively reasonable: a good script system should
be able to predict stated events as having taken
place. Basic pragmatic reasoning, however, tells
us that the most obvious inferable events are not
typically stated in text. This evaluation thus fails
to capture some of the most important common-
sense inferences. Further investigation into evalu-
ation methodologies for script systems is needed.

7 Conclusion

We described multi-argument events for statisti-
cal scripts, which can directly encode the pair-
wise entity relationships between events in a doc-
ument. We described a script model that can han-
dle the important aspects of the additional com-
plexity introduced by these events, and a baseline
model that can infer multi-argument events using
single-protagonist chains instead of directly mod-
eling full relations. We introduced the novel uni-
gram baseline model for comparison, as well as
the novel accuracy metric, and provided empir-
ical evidence that modeling full multi-argument
events provides more predictive power than mod-
eling event chains individually.
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