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Abstract

Automatically inferring new relations
from already existing ones is a way to
improve the quality of a lexical network
by relation densification and error de-
tection. In this paper, we devise such
an approach for the JeuxDeMots lexi-
cal network, which is a freely avalaible
lexical network for French. We first
present deduction (generic to specific)
and induction (specific to generic) which
are two inference schemes ontologically
founded. We then propose abduction
as a third form of inference scheme,
which exploits examples similar to a tar-
get term.

1 Introduction

Building resources for Computational Linguis-
tics (CL) is of crucial interest. Most of exist-
ing lexical-semantic networks have been built
by hand (like for instance WordNet (Miller et
al., 1990)) and, despite that tools are generally
designed for consistency checking, the task re-
mains time consuming and costly. Fully auto-
mated approaches are generally limited to term
co-occurrences as extracting precise semantic
relations between terms from corpora remains
really difficult. Meanwhile, crowdsourcing ap-
proaches are flowering in CL especially with
the advent of Amazon Mechanical Turk or in a
broader scope Wikipedia and Wiktionary, to cite
the most well-known examples. WordNet is such
a lexical network, constructed by hand at great
cost, based on synsets which can be roughly
considered as concepts (Fellbaum, 1988). Eu-
roWordnet (Vossen., 1998) a multilingual ver-
sion of WordNet and WOLF (Sagot., 2008) a

French version of WordNet, were built by auto-
mated crossing of WordNet and other lexical re-
sources along with some manual checking. Nav-
igli (2010) constructed automatically BabelNet a
large multilingual lexical network from term co-
occurrences in Wikipedia.

A lexical-semantic network can contain lem-
mas, word forms and multi-word expressions as
entry points (nodes) along with word meanings
and concepts. The idea itself of word senses in
the lexicographic tradition may be debatable in
the context of resources for semantic analysis,
and we generally prefer to consider word us-
ages. A given polysemous word, as identified
by locutors, has several usages that might dif-
fer substantially from word senses as classically
defined. A given usage can also in turn have
several deeper refinements and the whole set
of usages can take the form of a decision tree.
For example, frigate can be a bird or a ship. A
frigate>boat can be distinguished as a modern
ship with missiles and radar or an ancient vessel
with sails. In the context of a collaborative con-
struction, such a lexical resource should be con-
sidered as being constantly evolving and a gen-
eral rule of thumb is to have no definite certi-
tude about the state of an entry. For a polysemic
term, some refinements might be just missing at
a given time notwithstanding evolution of lan-
guage which might be very fast, especially in
technical domains. There is no way (unless by
inspection) to know if a given entry refinements
are fully completed, and even if this question is
really relevant.

The building of a collaborative lexical network
(or, in all generality, any similar resource) can
be devised according to two broad strategies.
First, it can be designed as a contributive system
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like Wikipedia where people willingly add and
complete entries (like for Wiktionary). Second,
contributions can be made indirectly thanks to
games (better known as GWAP (vonAhn, 2008))
and in this case players do not need to be aware
that while playing they are helping building a
lexical resource. In any case, the built lexical
network is not free of errors which are corrected
along their discovery. Thus, a large number of
obvious relations are not contained in the lexi-
cal network but are indeed necessary for a high
quality resources usable in various NLP applica-
tions and notably semantic analysis. For exam-
ple, contributors seldom indicate that a particu-
lar bird type can fly, as it is considered as an obvi-
ous generality. Only notable facts which are not
easily deductible are naturally contributed. Well
known exceptions are also generally contributed
and take the form of a negative weight and anno-

tated as such (for example, fly
ag ent :−100−−−−−−−→ ostrich

[exception: bird]).

In order to consolidate the lexical network,
we adopt a strategy based on a simple in-
ference mechanism to propose new relations
from those already existing. The approach is
strictly endogenous (i.e. self-contained) as it
doesn’t rely on any other external resources. In-
ferred relations are submitted either to contrib-
utors for voting or to experts for direct valida-
tion/invalidation. A large percentage of the in-
ferred relations has been found to be correct
however, a non-negligible part of them are found
to be wrong and understanding why is both in-
teresting and useful. The explanation process
can be viewed as a reconciliation between the in-
ference engine and contributors who are guided
through a dialog to explain why they found
the considered relation incorrect. The possible
causes for a wrong inferred relation may come
from three possible origins: false premises that
were used by the inference engine, exception or
confusion due to some polysemy.

In (Sajous et al., 2013) an endogenous enrich-
ment of Wiktionary is done thanks to a crowd-
sourcing tool. A quite similar approach of us-
ing crowdsourcing has been considered by (Ze-
ichner, 2012) for evaluating inference rules that
are discovered from texts. In (Krachina, 2006),
some specific inference methods are conducted
on text with the help of an ontology. Simi-
larly, (Besnard, 2008) capture explanation with

ontology-based inference. OntoLearn (Velardi,
2006) is a system that automatically build on-
tologies of specific domains from texts and also
makes use of inferences. There have been
also researchs on taxonomy induction based on
WordNet (Snow, 2006). Although extensive work
on inference from texts or handcrafted resources
has been done, almost none endogenously on
lexical network built by the crowds. Most prob-
ably the main reason of that situation is the lack
of such specific resources.

In this article, we first present the principles
behind the lexical network construction with
crowdsourcing and games with a purpose (also
know as human-based computation games) and
illustrated them with the JeuxDeMots (JDM)
project. Then, we present the outline of an elici-
tation engine based on an inference engine using
deduction, induction and especially abduction
schemes. An experimentation is then presented.

2 Crowdsourced Lexical Networks

For validating our approach, we used the JDM
lexical network, which is constructed thanks to
a set of associatory games (Lafourcade, 2007)
and has been made freely available by its au-
thors. There is an increasing trend of using on-
line GWAPs (game with a purpose (Thaler et
al., 2011)) method for feeding such resources.
Beside manual or automated strategies, con-
tributive approaches are flowering and becom-
ing more and more popular as they are both
cheap to set up and efficient in quality.

The network is composed of terms (as ver-
tices) and typed relations (as links between
vertices) with weight. It contains terms and
possible refinements. There are more than 50
types of relations, that range from ontological
(hypernym, hyponym), to lexical-semantic
(synonym, antonym) and to semantic role
(agent, patient, instrument). The weight of a
relation is interpreted as a strength, but not
directly as a probability of being valid. The JDM
network is not an ontology with some clean
hierarchy of concepts or terms. A given term
can have a substantial set of hypernyms that
covers a large part of the ontological chain to
upper concepts. For example, hypernym(cat) =
{feline,mammal, living being,pet,vertebrate, ...}.
Heavier weights associated to relations are those
felt by users as being the most relevant. The
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1st January 2014, there are more than 6 700 000
relations and roughly 310 000 lexical items in the
JDM lexical network (according to the figures
given by the game site: http://jeuxdemots.org).

To our knowledge, there is no other existing
freely available crowdsourced lexical-network,
especially with weighted relations, thus enabling
strongly heuristic methods.

3 Inferring with Deduction & Induction

Adding new relations to the JDM lexical network
may rely on two components: (a) an inference
engine and (b) a reconciliator. The inference en-
gine proposes relations as a contributor to be
validated by other human contributors or ex-
perts. In case of invalidation of an inferred re-
lation, the reconciliator is invoked to try to as-
sess why the inferred relation was found wrong.
Elicitation here should be understood as the pro-
cess to transform some implicit knowledge of the
user into explicit relations in the lexical network.
The core ideas about inferences in our engine are
the following:

• inferring is to derive new premises (as
relations between terms) from previously
known premises, which are existing rela-
tions;

• candidate inferences may be logically
blocked on the basis of the presence or the
absence of some other relations;

• candidate inferences can be filtered out on
the basis of a strength evaluation.

3.1 Deduction Scheme

Inferring by deduction is a top-down scheme
based on the transitivity of the relation is-a (hy-
pernym). If a term A is a kind of B and B holds
some relation R with C, then we can expect that A
holds the same relation type with C. The scheme

can be formally written as follows: ∃ A
i s−a−−−→ B

∧ ∃ B
R−→ C ⇒ A

R−→ C.
For example, shark

i s−a−−−→ fish and fish
has−par t−−−−−−−→ fin, thus we can expect that shark
has−par t−−−−−−−→ fin. The inference engine is applied

on terms having at least one hypernym (the
scheme could not be applied otherwise). Of
course, this scheme is far too naive, especially
considering the resource we are dealing with
and may produce wrong relations (noise). In
effect, the central term B is possibly polysemous

and ways to avoid probably wrong inferences
can be done through a logical blocking: if
there are two distinct meanings for B that hold
respectively the first and the second relation,
then most probably the inferred relation R(3)
is wrong (see figure 1) and hence should be
blocked. Moreover, if one of the premises is
tagged by contributors as true but irrelevant,
then the inference is blocked.

B

Bi Bj

A C

(1
) is-

a : w 1

(3) R? : w3

(4)
is-

a

(2) R
: w

2

(5) R

Figure 1: Triangular inference scheme where the
logical blocking based on the polysemy of the
central term B which has two distinct meanings
Bi and B j is applied. The two arrows without la-
bel are those of word meanings.

It is possible to evaluate a confidence level (on
an open scale) for each produced inference, in a
way that dubious inferences can be eliminated
out through statistical filtering. The weight w
of an inferred relation is the geometric mean of
the weight of the premises (relations (1) and (2)
in Figure 1). If the second premise has a nega-
tive value, the weight is not a number and the
proposal is discarded. As the geometric mean is
less tolerant to small values than the arithmetic
mean, inferences which are not based on two
rather strong relations (premises) are unlikely to
pass.

w(A
R−→ C) = ( w(A

i s−a−−−→ B) × w(B
R−→ C) )1/2

⇒ w3 = (w1 × w2)1/2

Inducing a transitive closure over a knowledge
base is not new, but doing so considering word
meanings over a crowdsourced lexical network is
an original approach.

3.2 Induction Scheme
As for the deductive inference, induction ex-
ploits the transitivity of the relation is-a. If a term
A is a kind of B and A holds a relation R with C ,
then we might expect that B could hold the same
type of relation with C . More formally we can

write: ∃ A
i s−a−−−→ B ∧ ∃ A

R−→ C ⇒ B
R−→ C.

For example, shark
i s−a−−−→ fish and shark

has−par t−−−−−→
jaw, thus we might expect that fish

has−par t−−−−−→ jaw.
This scheme is a generalization inference. The

principle is similar to the one applied to the de-
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duction scheme and similarly some logical and
statistical filtering may be undertaken.

B

C

A

Ai

Aj

(1
) is-

a : w 1

(2) R
: w

3

(5)
is-

a

(4) R

(3
)

R
?

:
w

2

Figure 2: (1) and (2) are the premises, and (3)
is the induction proposed for validation. Term
A may be polysemous with meanings holding
premises, thus inducing a probably wrong rela-
tion.

The central term here A, is possibly polyse-
mous (as shown in Figure 2). In that case, we
have the same polysemy issues than with the de-
duction, and the inference may be blocked. The
estimated weight for the induced relation is:

w(B
R−→ C) = (w(A

R−→ C))2 / w(A
i s−a−−−→ B)

⇒ w2 = (w3)2/w1

3.3 Performing Reconciliation

Inferred relations are presented to the validator
to decide of their status. In case of invalida-
tion, a reconciliation procedure is launched in
order to diagnose the reasons: error in one of the
premises (previously existing relations are false),
exception or confusion due to polysemy (the in-
ference has been made on a polysemous central
term). A dialog is initiated with the user (Cohen’s
kappa of 0.79). To know in which order to pro-
ceed, the reconciliator checks if the weights of
the premises are rather strong or weak.

Errors in the premises. We suppose that rela-
tion (1) (in Figure 1 and 2) has a relatively low
weight. The reconciliation process asks the val-
idator if the relation (1) is true. It sets a negative
weight to this relation if not so that the engine
blocks further inferences. Else, if relation (1) is
true, we ask about relation (2) and proceed as
above if the answer is negative. Otherwise, we
check the other cases (exception, polysemy).

Errors due to Exceptions. For the deduction, in
case we have two trusted relations, the reconcil-
iation process asks the validators if the inferred
relation is a kind of exception relatively to the
term B . If it is the case, the relation is stored in

the lexical network with a negative weight and
annotated as exception. Relations that are ex-
ceptions do not participate further as premises
for deducing. For the induction, in case we have
two trusted relations, the reconciliator asks the

validators if the relation (A
R−→ C) (which served

as premise) is an exception relatively to the term
B . If it is the case, in addition to storing the false

inferred relation (B
R−→ C) in the lexical network

with a negative weight, the relation (A
R−→ C) is

annotated as exception. In the induction case,
the exception is a true premise which leads to a
false induced relation. In both cases of induc-
tion and deduction, the exception tag concerns

always the relation (A
R−→ C). Once this relation

is annotated as an exception, it will not partic-
ipate as a premise in inferring generalized rela-
tions (bottom-up model) but can still be used in
inducing specified relations (top-down model).

Errors due to Polysemy. If the central term
(B for deduction and A for induction) present-
ing a polysemy is mentioned as polysemous
in the network, the refinement terms ter m1,
ter m2, . . . ter mn are presented to the validator
so she/he can choose the appropriate one. The
validator can propose new terms as refinements
if she/he is not satisfied with the listed ones (in-
ducing the creation of new appropriate refine-
ments). If there is no meta information indicat-
ing that the term is polysemous, we ask first the
validator if it is indeed the case. After this proce-
dure, new relations will be included in the net-
work with positive values and the inference en-
gine will use them later on as premises.

4 Abductive Inference

The last inferring scheme is built upon abduc-
tion and can be viewed as an example based
strategy. Hence abduction relies on similarity
between terms, which may be formalized in our
context as sharing some outgoing relations be-
tween terms. The abductive inferring layout
supposes that relations held by a term can be
proposed to similar terms. Here, abduction first
selects a set of similar terms to the target term A
which are considered as proper examples. The
outgoing relations from the examples which are
not common with those of A are proposed as
potential relations for A and then presented for
validation/invalidation to users. Unlike induc-
tion and deduction, abduction can be applied on
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terms with missing or irrelevant ontological rela-
tions, and can generate ontological relations to
be used afterward by the inference loop.

4.1 Abduction Scheme

We note an outgoing relation as a 3-uple of a type
t , a weight w and a target node n:Ri = 〈 ti , wi , ni

〉. For example, consider the term A having n
outgoing relations. Amongst these relations, we
have for example:

• beak
has−par t←−−− A & • nest

locati on←−−− A.
We found 3 examples sharing those two rela-

tions with the term A:

• beak
has−par t←−−− {ex1,ex2,ex3}

• nest
l ocati on←−−− {ex1,ex2,ex3}

We consider these terms as a set of exam-
ples to follow and similar to A. These examples
have also other outgoing relations which are pro-
posed as potential relations for A. For example :

• {ex1,ex2}
ag ent−1−−−→ fly • {ex2}

car ac−−−→ colorful

• {ex1,ex2,ex3}
has−par t−−−→ feather

• {ex3}
ag ent−1−−−→ sing

We infer that A can hold these relations and we
propose them for validation.

• A
ag ent−1−−−→ fly ? • A

has−par t−−−→ feather ?

• A
car ac−−−→ colorful ? • A

ag ent−1−−−→ sing ?

4.2 Abduction Filtering

Applying the abduction procedure crudely on
the terms generates a lot of waste as a consid-
erable amount of erroneous inferred relations.
Hence, we elaborated a filtering strategy to avoid
having a lot of dubious proposed candidates. For
this purpose, we define two different threshold
pairs. The first threshold pair (δ1, ω1) is used to
select proper examples x1,x2...xn and is defined
as follows:

δ1 = max(3,nbogr(A)×0.1) (1)

where nbogr(A) is the number of outgoing rela-
tions from the term A.

ω1 = max(25,mwogr(A)×0.5) (2)

where mwogr(A) is the mean of weights of outgo-
ing relations from A. The second threshold pair
(δ2, ω2) is used to select proper candidate re-
lations from outgoing relations of the examples
R ′

1,R ′
2...R ′

q .

δ2 = max(3,{xi }×0.1) (3)

where {xi } is the cardinal of the set {xi }.

ω2 = max(25,mwogr({xi })×0.5) (4)

where mwogr({xi }) is the mean of weights of out-
going relations from the set of examples xi .

If a term A is sharing at least δ1 relations, hav-
ing a weight over ω1, of the total of the rela-
tions R1, R2, . . . Rp toward terms T1, T2, . . . Tp

with a group of examples x1, x2, . . . xn , we admit
that this term has a degree of similarity strong
enough with these examples. After building up
a set of examples on which we can apply our ab-
duction engine we proceed with the second part
of the strategy. If we have at least δ2 examples xi

holding a specific relation R ′
k weighting over ω2

with a term Bk , more formally R ′
k = 〈 t , w ≥ ω2,

Bk 〉, we can suppose that the term A may hold
this same relation R ′

k with the same target term
Bk (figure 3).

x1

x2

x3

xn

T1

T2

Tp

A

B1

B2

Bq

R1

R2

Rp

R ′
1

R ′
q

R ′
2

R ′
1?

R ′
q ?

Figure 3: Abduction scheme with examples xi

sharing relations with A and proposing new ab-
ducted relations.

On figure 3, we simplified thresholds to 2
for illustrative purpose. So, to be selected, the
examples x1 ,x2, x3, . . . xn must have at least 2
common relations with A. A relation R ′

1→q must
be hold by at least 2 examples to be proposed as
a potential relation for A. More clearly:

Ï x1
R ′

1−−−→ B1 and x2
R ′

1−−−→ B1 ⇒ R ′
1 : 2

=⇒ propose A
R ′

1?−−−→ B1

Ï xn
R ′

2−−−→ B2 ⇒ R ′
2 : 1

=⇒ do not propose this relation.

Ï x1
R ′

q−−−→ Bq , x3
R ′

q−−−→ Bq and xn
R ′

q−−−→ Bq

⇒ R ′
q : 3

=⇒ propose A
R ′

q ?−−−→ Bq

For statistical filtering, we can act on the
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threshold (δ2, ω2) as the minimum number of
examples xi being R ′ related with a target term
Bk . It is also possible to evaluate the weight of
the abducted relation as following:

w(A
R ′

k−→ Bk ) = 1

nbR ′
cd

n,p,q∑
i=1, j=1,k=1

3
p

w1w2w3 (5)

where nbR ′
cd

is the number of the relations R ′

candidate to be proposed and w1=A
R j−−−→ T j &

w2=xi
R j−−−→ T j & w3=xi

R ′
k−−−→ Bk .

This filtering parameters are adjustable ac-
cording to the user’s requirements, so it can fulfil
various expectations. Constant values in thresh-
old formulas have been determined empirically.

5 Experimentation

We made an experiment with a unique run of
the deduction, induction and abduction engines
over the lexical network. Contributors have ei-
ther accepted or rejected a subset of those can-
didates during the normal course of their activ-
ity. This experiment is for an evaluation pur-
pose only, as actually the system is running iter-
atively along with contributors and games. The
experiment has been done with the parameters
given previously, which are determined empri-
cally as those maximizing recall and precision
(over a very small subset of the JDM lexical net-
work, around 1‰).

5.1 Appliying Deductions and Inductions

We applied the inference engine on around
25 000 randomly selected terms having at least
one hypernym or one hyponym and thus pro-
duced by deduction more than 1 500 000 infer-
ences and produced by induction over 360 000
relation candidates. The threshold for filtering
was set to a weight of 25. This value is relevant
as when a human contributor proposed relation
is validated by experts, it is introduced with a de-
fault weight of 25.

The transitive is-a (Table1) is not very produc-
tive which might seems surprising at first glance.
In fact, the is-a relation is already quite popu-
lated in the network, and as such, fewer new re-
lations can be inferred. The figures are inverted
for some other relations that are not so well pop-
ulated in the lexical network but still are poten-
tially valid. The has-parts relation and the agent
semantic role (the agent-1 relation) are by far the
most productive types.

Relation type Proposed %
is-a (x is a type of y) 6.1
has-parts (x is composed of y) 25.1
holonym (y specific of x) 7.2
typical place (of x) 7.2
charac (x as characteristic y) 13.7
agent-1 (x can do y) 13.3
instr-1 (x instrument of y) 1.7
patient-1 (x can be y) 1
place-1 (x located in the place y) 9.8
place > action (y can be done in place x) 3.4
object > mater (x is made of y) 0.3

Table 1: Global percentages of relations pro-
posed per type for deduction and induction.

Deduction % valid % error
Relation type rlvt ¬ rlvnt prem excep pol
is-a 76% 13% 2% 0% 9%
has-parts 65% 8% 4% 13% 10%
holonym 57% 16% 2% 20% 5%
typical place 78% 12% 1% 4% 5%
charac 82% 4% 2% 8% 4%
agent-1 81% 11% 1% 4% 3%
instr-1 62% 21% 1% 10% 6%
patient-1 47% 32% 3% 7% 11%
place-1 72% 12% 2% 10% 6%
place > action 67% 25% 1% 4% 3%
object > mater 60% 3% 7% 18% 12%

Table 2: Number of propositions produced by
deduction and ratio of relations found as true or
false.

In tables 2 and 3 are presented some evalu-
ations of the status of the inferences proposed
by the inference engine through deduction and
induction respectively. Inferences are valid for
an overall of 80-90% with around 10% valid but

not relevant (like for instance dog
has−par t s−−−−−−−→ pro-

ton). We observe that error number in premises
is quite low, and nevertheless errors can be eas-
ily corrected. Of course, not all possible errors
are detected through this process. More inter-
estingly, the reconciliation allows in 5% of the
cases to identify polysemous terms and refine-
ments. Globally false negatives (inferences voted
false while being true) and false positives (infer-
ences voted true while being false) are evaluated
to less than 0.5%.

For the induction process, the relation is-a is
not obvious (a lexical network is not reductible
to an ontology and multiple inheritance is possi-
ble). Result seems about 5% better than for the
deduction process: inferences are valid for an
overall of 80-95%. The error number is very low.
The main difference with the deduction process
is on errors due to polysemy which is lower with
the induction process.
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To try to assess a baseline for those results,
we compute the full closure of the lexical net-
work, i.e. we produce iteratively all possible can-
didate relations until no more could be found,
each candidate being considered as correct and
participating to the process. We got more than
6 000 000 relations out of which 45% were wrong
(evaluation on around 1 000 candidates ran-
domly chosen).

5.2 Unleashing the Abductive Engine

We applied systematically the abduction engine
on the lexical items contained in the network,
and produce 629 987 abducted relations out of
which 137 416 were not already existing in the
network. Those 137 416 are candidate relations
concerning 10 889 distinct lexical entries, hence
producing a mean of around 12 new relations
per entry. The distribution of the proposed re-
lations follows a power law, which is not totally
surprising as the relation distribution in the lex-
ical network is by itself governed by such a dis-
tribution. Those figures indicate that abduction
seems to be still quite productive in terms of raw
candidates, even not relying on ontological ex-
isting relations.

The table 4 presents the number of relations
proposed by the inference engine through ab-
duction. The different relation types are var-
iously productive, and this is mainly due to
the number of existing relations and the dis-
tribution of their type. The most productive
relation is has-part and the least one is holo
(holonym/whole). Correct relations represent
around 80% of the relations that have been eval-
uated (around 5.6% of the total number of pro-
duced relations).

One suprising fact, is that the 80% seem to
be quite constant notwithstanding the relation
type, the lowest value being 77% (for instr-1
which is the relation specifying what can be done
with x as an instrument) and the highest being
85% (for action-place which is the relation asso-
ciating for an action the typical locations where
it can occur). The abduction process is not onto-
logically based, and hence does not rely on the
generic (is-a) or specific (hyponym) relations,
but on the contrary on any set of examples that
seems to be alike the target term. The apparent
stability of 80% correct abducted relations may
be a positive consequence of relying on a set of
examples, with a potentially irreductible of 20%

wrong abducted relations.
Figure 4 presents two types of data: (1) the

percentage of correct abducted relations accord-
ing to the number of examples required to pro-
duce the inference, and (2) the proportion be-
tween the produced relations and the total of
107 416 relations according to the minimal num-
ber of examples allowed. What can clearly be
seen is that when the number of required ex-
amples is increased, the ratio of correct abduc-
tions increases accordingly, but the number of
proposed relations dramaticaly falls. The num-
ber of abductions is an inverse power law of the
number of examples required.

Figure 4: Production of abducted relations and
percentage of correctness according to examples
number.

At 3 examples, only 40% of the proposed re-
lations are correct, and with a minimum of 6
examples, more than 3/4 of the proposals are
deemed correct. The balanced F-score is opti-
mal at the intersection of both curves, that is to
say for at least 4 examples.

In figure 5, is showed the mean number of
new relations during an iteration of the infer-
ence engine on abduction. Between two runs,
users and validators are invited to accept or re-
ject abducted relations. This process is done
at their discretion and users may leave some
propostions unvoted. Experiments showed that
users are willing to validate strongly true rela-
tions and invalidate clearly false relations. Rela-
tions whose status may be difficult are more of-
ten left aside than other easiest proposals. The
third run is the most productive with a mean of
almost 20 new abducted relations. After 3 runs,
the abductive process begins to be less produc-
tive by attrition of new possible candidates. No-
tice that the abduction process may, on subse-
quent runs, remove some previsouly done pro-
posals and as such is not monotonous.
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Figure 5: Mean number of new relations rela-
tively to runs in iterated abduction.

5.3 Figures on Reconciliation
Reconciliation in abduction is simpler than in
deduction or induction, as the potential adverse
effect of polysemy is counterbalanced by the
statistical approach implemented by the large
number of examples (when available). The rec-
onciliation in the case of abduction is to deter-
mine if the wrong proposal has been produced
logically considering the support examples. In
97% of the cases, the wrong abducted relation
has been qualified as wrong but logical by vot-
ers or validators. For examples: • Boeing

747
has−par t−−−−−→ propeller* • whale

pl ace−−−→ lake *

• pelican
ag ent−1−−−−−→ sing *. All those wrong ab-

ducted relations given as examples above might
have been correct. Considering the examples ex-
ploited to produce the candidates, in those cases
there is no possible way to guess those relations
are wrong. This is even reinforced by the fact that
abduction does not rely on ontological relations,
which in some cases could have avoided wrong
abduction. However, abduction compared to in-
duction and deduction, can be used on terms
that do not hold ontological relations, either they
are missing or they are not relevant (for verbs, in-
stances...).

6 Conclusion
We presented some issues in inferring new rela-
tions from existing ones to consolidate a lexical-
semantic network built with games and user
contributions. New inferred relations are stored
to avoid having to infer them again and again dy-
namically. To be able to enhance the network
quality and coverage, we proposed an elicitation
engine based on inferences (induction, deduc-
tion and abduction) and reconciliation. If an in-
ferred relation is proven wrong, a reconciliation
process is conducted in order to identify the un-
derlying cause and solve the problem. The ab-
duction scheme does not rely on the ontologi-
cal relation (is-a) but merely on examples that
are similarly close to the target term. Experi-

ments showed that abduction is quite produc-
tive (compared to deduction and induction), and
is stable in correctness. User evaluation showed
that wrong abducted relations (around 20% of
all abducted relations) are still logically sound
and could not have been dismissed a priori. Ab-
duction can conclusively be considered as a use-
full and efficient tool for relation inference. The
main difficulty relies in setting the various pa-
rameter in order to achieve a fragile tradeoff be-
tween an overrestrictive filter (many false nega-
tives, resulting in information losses) and the op-
posite (many false postive, more human effort).

The elicitation engine we presented through
schemas based on deduction, induction and ab-
duction is an efficient error detector, a polysemy
identifier but also a classifier by abduction. The
actions taken during the reconciliation forbid
an inference proven wrong or exceptional to be
inferred again. Each inference scheme is sup-
ported by the two others, and if a given inference
has been produced by more than one of these
three schemas, it is almost surely correct.

Induction % valid % error
Relation types rlvt ¬rlvnt prem excep pol
is-a - - - - -
has-parts 78% 10% 3% 2% 7%
holonyme 68% 17% 2% 8% 5%
typical place 81% 13% 1% 2% 3%
charac 87% 6% 2% 2% 3%
agent-1 84% 12% 1% 2% 1%
instr-1 68% 24% 1% 4% 3%
patient-1 57% 36% 3% 2% 2%
place-1 75% 16% 2% 5% 2%
place > action 67% 28% 1% 3% 1%
object > mater 75% 10% 7% 5% 3%

Table 3: Number of propositions produced by in-
duction and ratio of relations found as true or
false.

Abduction #prop #eval (%) True (%) False (%)
is-a 7141 421 (5.9) 343 (81.5) 78 (18.5)
has-parts 26517 720 (2.7) 578 (80.3) 142 (19.7)
holo 1592 153 (9.6) 124 (81) 29 (18.9)
agent 7739 298 (3.9) 236 (79.2) 62 (20.8)
place 17148 304 (1.8) 253 (83.2) 51 (16.8)
instr 10790 431 (4) 356 (82.6) 75 (17.4)
charac 7443 319 (4.3) 251 (78.7) 68 (21.3)
agent-1 18147 955 (5.3) 780 (81.7) 175 (18.3)
instr-1 11867 886 (7.5) 682 (77) 204 (23)
place-1 14787 1106 (7.5) 896 (81) 210 (19)
place>act 8268 270 (3.3) 214 (79.3) 56 (20.7)
act>place 5976 170 (2.8) 145 (85.3) 25 (14.7)
Total 137416 6033 (4.3) 4858 (81) 1175 (19)

Table 4: Number of propositions produced by
abduction and ratio of relations found as true or
false.
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