
Proceedings of the EACL 2012 Student Research Workshop, pages 46–54,
Avignon, France, 26 April 2012. c©2012 Association for Computational Linguistics

Yet Another Language Identifier

Martin Majliš
Charles University in Prague

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
majlis@ufal.mff.cuni.cz

Abstract

Language identification of written text has
been studied for several decades. Despite
this fact, most of the research is focused
on a few most spoken languages, whereas
the minor ones are ignored. The identi-
fication of a larger number of languages
brings new difficulties that do not occur
for a few languages. These difficulties are
causing decreased accuracy. The objective
of this paper is to investigate the sources
of such degradation. In order to isolate
the impact of individual factors, 5 differ-
ent algorithms and 3 different number of
languages are used. The Support Vector
Machine algorithm achieved an accuracy of
98% for 90 languages and the YALI algo-
rithm based on a scoring function had an
accuracy of 95.4%. The YALI algorithm
has slightly lower accuracy but classifies
around 17 times faster and its training is
more than 4000 times faster.

Three different data sets with various num-
ber of languages and sample sizes were pre-
pared to overcome the lack of standardized
data sets. These data sets are now publicly
available.

1 Introduction

The task of language identification has been stud-
ied for several decades, but most of the literature
is about identifying spoken language1. This is
mainly because language identification of written
form is considered an easier task, because it does
not contain such variability as the spoken form,
such as dialects or emotions.

1http://speech.inesc.pt/˜dcaseiro/
html/bibliografia.html

Language identification is used in many NLP
tasks and in some of them simple rules2 are of-
ten good enough. But for many other applica-
tions, such as web crawling, question answering
or multilingual documents processing, more so-
phisticated approaches need to be used.

This paper first discusses previous work in Sec-
tion 2, and then presents possible hypothesis for
decreased accuracy when a larger number of lan-
guages is identified in Section 3. Data used for
experiments is described in Section 4, along with
methods used in experiments for language iden-
tification in Section 5. Results for all methods
as well as comparison with other systems is pre-
sented in Section 6.

2 Related Work

The methods used in language identification have
changed significantly during the last decades. In
the late sixties, Gold (1967) examined language
identification as a task in automata theory. In the
seventies, Leonard and Doddington (1974) was
able to recognize five different languages, and in
the eighties, Beesley (1988) suggested using cryp-
toanalytic techniques.

Later on, Cavnar and Trenkle (1994) intro-
duced their algorithm with a sliding window over
a set of characters. A list of the 300 most com-
mon n-grams for n in 1..5 is created during train-
ing for each training document. To classify a new
document, they constructed a list of the 300 most
common n-grams and compared n-grams position
with the testing lists. The list with the least dif-
ferences is the most similar one and new doc-
ument is likely to be written in same language.

2http://en.wikipedia.org/wiki/
Wikipedia:Language_recognition_chart

46

They classified 3478 samples in 14 languages
from a newsgroup and reported an achieved accu-
racy of 99.8%. This influenced many researches
that were trying different heuristics for selecting
n-grams, such as Martins and Silva (2005) which
achieved an accuracy of 91.25% for 12 languages,
or Hayati (2004) with 93.9% for 11 languages.

Sibun and Reynar (1996) introduced a method
for language detection based on relative entropy, a
popular measure also known as Kullback-Leibler
distance. Relative entropy is a useful measure
of the similarity between probability distributions.
She used texts in 18 languages from the European
Corpus Initiative CD-ROM. She achieved a 100%
accuracy for bigrams.

In recent years, standard classification tech-
niques such as support vector machines also be-
came popular and many researchers used them
Kruengkrai et al. (2005) or Baldwin and Lui
(2010) for identifying languages.

Nowadays, language recognition is considered
as an elementary NLP task3 which can be used
for educational purposes. McNamee (2005) used
single documents for each language from project
Gutenberg in 10 European languages. He prepro-
cessed the training documents – the texts were
lower-cased, accent marks were retained. Then,
he computed a so-called profile of each language.
Each profile consisted of a percentage of the train-
ing data attributed to each observed word. For
testing, he used 1000 sentences per language from
the Euro-parliament collection. To classify a new
document, the same preprocessing was done and
inner product based on the words in the document
and the 1000 most common words in each lan-
guage was computed. Performance varied from
80.0% for Portuguese to 99.5% for German.

Some researches such as Hughes et al. (2006)
or Grothe et al. (2008) focused in their papers
on the comparison of different approaches to lan-
guage identification and also proposed new goals
in that field, such as as minority languages or lan-
guages written non-Roman script.

Most of the researches in the past identified
mostly up to twenty languages but in recent
years, language identification of minority lan-
guages became the focus of Baldwin and Lui
(2010), Choong et al. (2011), and Majliš (2012).
All of them observed that the task became much

3http://alias-i.com/lingpipe/demos/
tutorial/langid/read-me.html

harder for larger numbers of languages and accu-
racy of the system dropped.

3 Hypothesis

The accuracy degradation with a larger number of
languages in the language identification system
may have many reasons. This section discusses
these reasons and suggests how to isolate them.
In some hypotheses, charts involving data from
the W2C Wiki Corpus are used, which are intro-
duced in Section 4.

3.1 Training Data Size
In many NLP applications, size of the available
training data influences overall performance of
the system, as was shown by Halevy et al. (2009).

To investigate the influence of training data
size, we decided to use two different sizes of train-
ing data – 1 MB and 4 MB. If the drop in accu-
racy is caused by the lack of training data, then
all methods used on 4 MB should outperform the
same methods used on 1 MB of data.

3.2 Language Diversity
The increasing number of languages recognised
by the system decreases language diversity. This
may be another reason for the observed drop
in the accuracy. We used information about
language classes from the Ethnologue website
(Lewis, 2009). The number of different language
classes is depicted in Figure 1. Class 1 represents
the most distinguishable classes, such as Indo-
European vs. Japonic, while Class 2 represents
finer classification, such as Indo-European, Ger-
manic vs. Indo-European, Italic.

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90

L
a

n
g

u
a

g
e

 F
a

m
ili

e
s

Languages

Class 1
Class 2

Figure 1: Language diversity on Wikipedia. Lan-
guages are sorted according to their text corpus size.

The first 52 languages belong to 15 different
Class 1 classes and the number of classes does not

47

change until the 77th language, when the Swahili
language from class Niger-Congo appears.

3.3 Scalability
Another issue with increasing number of lan-
guages is the scalability of used methods. There
are several pitfalls for machine learning algo-
rithms – a) many languages may require many
features which may lead to failures caused by
curse-of-dimensionality, b) differences in lan-
guages may shrink, so the classifier will be forced
to learn minor differences and will lose its abil-
ity to generalise, and become overfitted, and c)
the classifier may internally use only binary clas-
sifiers which may lead up to quadratic complexity
(Dimitriadou et al., 2011).

4 Data Sets

For our experiments, we decided to use the W2C
Wiki Corpus (Majliš, 2012) which contains arti-
cles from Wikipedia. The total size of all texts
was 8 GB and available material for various lan-
guages differed significantly, as is displayed in
Figure 2.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90

S
iz

e
 i
n

 M
B

Language

W2C Wiki Corpus - Size in MB

Figure 2: Available data in the W2C Wiki Corpus.
Languages are sorted according to their size in the cor-
pus.

We used this corpus to prepare 3 different data
sets. We used one of them for testing hypothesis
presented in the previous section and the remain-
ing two for comparison with other systems. These
data sets contain samples of length approximately
30, 140, and 1000 bytes. The sample of length 30
represents image caption or book title, the sample
of length 140 represents tweet or user comment,
and sample of length 1000 represents newspaper
article.

All datasets are available at http://ufal.
mff.cuni.cz/˜majlis/yali/.

4.1 Long

The main purpose of this data set (yali-dataset-
long) was testing hypothesis described in the pre-
vious section.

To investigate the drop, we intended to cover
around 100 languages, but the amount of available
data limited us. For example, the 80th language
has 12 MB, whereas the 90th has 6 MB and tbe
100th has only 1 MB of text. To investigate the
hypothesis of the influence of training data size,
we decided to build a 1 MB and 4 MB corpus for
each language, where the 1 MB corpus is a subset
of the 4 MB one.

Then, we divided the corpus for each language
into chunks with 1000 bytes of text, so we gained
1000 and 4000 chunks respectively. These chunks
were divided into training and testing sets in a
90:10 ratio, thus we had 900 and 3600 train-
ing chunks, respectively, and 100 and 400 testing
chunks respectively.

To reduce the risk that the training and testing
are influenced by the position from which they
were taken (the beginning or the end of the cor-
pus), we decided to use every 10th sentence as a
testing one and use the remaining ones for train-
ing.

Then, we created an n-gram for n in 1..4 fre-
quency list for each language, each corpus size.
From each frequency list, we preserved only the
first m = 100 most frequent n-grams. For exam-
ple, from the raw frequency list – a: 5, b: 3, c: 1,
d: 1, and m = 2, frequency list a: 5, b: 3 would
be created. We used this n-grams as features for
testing classifiers.

4.2 Small

The second data set (yali-dataset-small) was pre-
pared for comparison with Google Translate4

(GT). The GT is paid service capable of recog-
nizing 50 different languages. This data set con-
tains 50 samples of lengths 30 and 140 for 48 lan-
guages, so it contains 4,800 samples in total.

4.3 Standard

The purpose of the third data sets is compari-
son with other systems for language identifica-
tion. This data set contains 700 samples of length
30, 140, and 1000 for 90 languages, so it contains
in total 189,000 samples.

4http://translate.google.com

48

Size L\N 1 2 3 4
30 177 1361 2075 2422

1MB 60 182 1741 3183 4145
90 186 1964 3943 5682
30 176 1359 2079 2418

4MB 60 182 1755 3184 4125
90 187 1998 3977 5719

Table 1: The number of unique N-grams in corpus
Size with L languages. (D(Size,L,n))

5 Methods

To investigate the influence of the language di-
versity, we decided to use 3 different language
counts – 30, 60, and 90 languages sorted ac-
cording to their raw text size. For each cor-
pus size (cS ∈ {1000, 4000}), language
count (lC ∈ {30, 60, 90}), and n-gram size
(n ∈ {1, 2, 3, 4}) we constructed a separate dic-
tionary D(cS,lC,n) containing the first 100 most
frequent n-grams for each language. The number
of items in each dictionary is displayed in Table 1
and visualised for 1 MB corpus in Figure 3.

The dictionary sizes for 4 MB corpora were
slightly higher when compared to 1 MB corpora,
but surprisingly for 30 languages it was mostly
opposite.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120

U
n

iq
u

e
 n

-g
ra

m
s

Languages (lC)

n=1
n=2
n=3
n=4

Figure 3: The number of unique n-grams in the dic-
tionary D(1000,lC,n). Languages are sorted according
to their text corpus size.

Then, we converted all texts into matri-
ces in the following way. For each cor-
pus size (cS ∈ {1000, 4000}), language
count (lC ∈ {30, 60, 90}), and n-gram size
(n ∈ {1, 2, 3, 4}) we constructed a training ma-
trix Tr(cS,lC,n) and a testing matrix Te(cS,lC,n),
where element on Tr

(cS,lC,n)
i,j represents the num-

ber of occurrences of j-th n-gram from dic-

tionary D(cS,lC,n) in training sample i, and
Tr

(cS,lC,n)
i,0 represents language of that sample.

The training matrix Tr(cS,lC,n) has dimension
(0.9 · cS · lC) × (1 + | D(cS,lC,n) |)
and the testing matrix Te(cS,lC,n) has dimension
(0.1 · cS · lC)× (1 + | D(cS,lC,n) |).

For investigating the scalability of the differ-
ent approaches to language identification, we de-
cided to use five different methods. Three of them
were based on standard classification algorithms
and two of them were based on scoring function.
For experimenting with the classification algo-
rithms, we used R (2009) environment which con-
tains many packages with machine learning algo-
rithms5, and for scoring functions we used Perl.

5.1 Support Vector Machine

The Suport Vector Machine (SVM) is a state of
the art algorithm for classification. Hornik et al.
(2006) compared four different implementations
and concluded that Dimitriadou et al. (2011) im-
plementation available in the package e1071 is the
fastest one. We used SVM with sigmoid kernel,
cost of constraints violation set to 10, and termi-
nation criterion set to 0.01.

5.2 Naive Bayes

The Naive Bayes classifier (NB) is a simple prob-
abilistic classifier. We used Dimitriadou et al.
(2011) implementation from the package e1071
with default arguments.

5.3 Regression Tree

Regression trees are implemented by Therneau et
al. (2010) in the package rpart. We used it with
default arguments.

5.4 W2C

The W2C algorithm is the same as was used by
Majliš (2011). From the frequency list, probabil-
ity is computed for each n-gram, which is used as
a score in classification. The language with the
highest score is the winning one. For example,
from the raw frequency list – a: 5, b: 3, c: 1, d: 1,
and m=2, the frequency list a: 5; b: 3, and com-
puted scores – a: 0.5, b: 0.3 would be created.

5http://cran.r-project.org/web/views/
MachineLearning.html

49

5.5 Yet Another Language Identifier

The Yet Another Language Identifier (YALI) al-
gorithm is based on the W2C algorithm with two
small modifications. The first is modification in
n-gram score computation. The n-gram score is
not based on its probability in raw data, but rather
on its probability in the preserved frequency list.
So for the numbers used in the W2C example, we
would receive scores – a: 0.625, b: 0.375. The
second modification is using rather byte n-grams
instead of character n-grams.

6 Results & Discussion

At the beginning we used only data set yali-
dataset-long to investigate the influence of vari-
ous set-ups.

The accuracy of all experiments is presented
in Table 2, and visualised in Figure 4 and Fig-
ure 5. These experiments also revealed that algo-
rithms are strong in different situations. All clas-
sification techniques outperform all scoring func-
tions on short n-grams and small amount of lan-
guages. However, with increasing n-gram length,
their accuracy stagnated or even dropped. The in-
creased number of languages is unmanageable for
NB a RPART classifiers and their accuracy sig-
nificantly decreased. On the other hand, the ac-
curacy of scoring functions does not decrease so
much with additional languages. The accuracy of
the W2C algorithm decreased when greater train-
ing corpora was used or more languages were
classified, whereas the YALI algorithm did not
have these problems, but moreover its accuracy
increased with greater training corpus.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

A
c
c
u

ra
c
y

N-Gram

SVM
NB

RPART
W2C
YALI

Figure 4: Accuracy for 90 languages and 1 MB cor-
pus with respect to n-gram length.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 30 60 90

A
c
c
u

ra
c
y

Language Count

SVMn=2
NBn=1

RPARTn=1
W2Cn=4
YALIn=4

Figure 5: Accuracy for 1 MB corpus and the best
n-gram length with respect to the number of languages.

The highest accuracy for all language
amounts – 30, 60, 90 was achieved by the
SVM with accuracies of 100%, 99%, and 98.5%,
respectively, followed by the YALI algorithm
with accuracies of 99.9%, 96.8%, and 95.4%
respectively.

From the obtained results, it is possible to no-
tice that 1 MB of text is sufficient for training lan-
guage identifiers, but some algorithms achieved
higher accuracy with more training material.

Our next focus was on the scalability of the
used algorithms. Time required for training is pre-
sented in Table 3, and visualised in Figures 6 and
7.

The training of scoring functions required only
loading dictionaries and therefore is extremely
fast, whereas training classifiers required compli-
cated computations. The scoring functions did not
have any advantages, because all algorithms had
to load all training examples, segment them, ex-
tract the most common n-grams, build dictionar-
ies, and convert text to matrices as was described
in Section 5.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4

T
ra

in
in

g
 T

im
e

 (
s
)

N-Gram

SVM
NB

RPART
W2C
YALI

Figure 6: Training time for 90 languages and 1 MB
corpus with respect to n-gram length.

50

N-Gram L 1 2 3 4
Method S 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB

30 96.3% 96.7% 100.0% 99.9% 100.0% 99.9% 99.9% 99.9%
SVM 60 91.5% 92.3% 98.5% 98.5% 99.0% 99.0% 98.6% 98.5%

90 90.8% 91.6% 98.0% 98.0% 98.5% - 98.3% -
30 91.8% 94.2% 91.3% 90.9% 82.2% 93.3% 32.1% 59.9%

NB 60 78.7% 84.8% 70.6% 68.2% 71.7% 77.6% 25.7% 34.0%
90 75.4% 82.7% 68.8% 66.5% 64.3% 71.0% 18.4% 17.5%
30 97.3% 96.7% 98.8% 98.6% 98.4% 97.8% 97.7% 97.4%

RPART 60 90.2% 91.2% 67.3% 72.0% 67.2% 68.8% 65.5% 74.6%
90 64.3% 55.9% 39.7% 39.6% 43.0% 44.0% 38.5% 39.6%
30 38.0% 38.6% 89.9% 91.0% 96.2% 96.5% 97.9% 98.1%

W2C 60 34.7% 30.9% 83.0% 81.7% 86.0% 84.9% 89.1% 82.0%
90 34.7% 30.9% 77.8% 77.6% 84.9% 83.4% 87.8% 82.7%
30 38.0% 38.6% 96.7% 96.2% 99.6% 99.5% 99.9% 99.8%

YALI 60 35.0% 31.2% 86.1% 86.1% 95.7% 96.4% 96.8% 97.4%
90 34.9% 31.1% 86.8% 87.8% 95.0% 95.6% 95.4% 96.1%

Table 2: Accuracy of classifiers for various corpora sizes, n-gram lengths, and language counts.

 1

 10

 100

 1000

 10000

 100000

 30 60 90

T
ra

in
in

g
 T

im
e

 (
s
)

Language Count

SVMn=2
NBn=1

RPARTn=1
W2Cn=4
YALIn=4

Figure 7: Training time for 1 MB corpus and the best
n-gram length with respect to the number of languages.

Time required for training increased dramat-
ically for SVM and RPART algorithms when
the number of languages or the corpora size in-
creased. It is possible to use the SVM only with
unigrams or bigrams, because training on trigrams
required 12 times more time for 60 languages
compared with 30 languages. The SVM also had
problems with increasing corpora sizes, because it
took almost 10-times more time when the corpus
size increased 4 times. Scoring functions scaled
well and were by far the fastest ones. We ter-
minated training the SVM on trigrams and quad-
grams for 90 languages after 5 days of computa-
tion.

Finally, we also measured time required for
classifying all testing examples. The results are
in Table 4, and visualised in Figure 8 and Fig-
ure 6. Times displayed in the table and charts rep-
resents the number of seconds needed for classi-
fying 1000 chunks.

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4

P
re

d
ic

ti
o

n
 T

im
e

 (
s
/1

0
0

0
 c

h
u

n
k
s
)

N-Gram

SVM
NB

RPART
W2C
YALI

Figure 8: Prediction time for 90 languages and 1 MB
corpus with respect to n-gram length.

 0

 10

 20

 30

 40

 50

 60

 70

 30 60 90

P
re

d
ic

ti
o

n
 T

im
e

 (
s
/1

0
0

0
 c

h
u

n
k
s
)

Language Count

SVMn=2
NBn=1

RPARTn=1
W2Cn=4
YALIn=4

Prediction time for 1 MB corpus and the best n-gram
length with respect to the number of languages.
The RPART algorithm was the fastest classifier

followed by both scoring functions, whereas NB
was the slowest one. All algorithms with 4 times
more data achieved slightly higher accuracy, but
their training took 4 times longer, with the ex-
ception of the SVM which took at least 10 times
longer. The SVM algorithm is the least scalable

51

N-Gram L 1 2 3 4
Method S 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB

30 215 1858 663 1774 627 7976 655 3587
SVM 60 1499 13653 7981 87260 7512 44288 26943 207123

90 2544 24841 12698 267824 76693 - 27964 -
30 5 19 27 83 40 144 54 394

NB 60 9 32 76 255 142 515 363 1187
90 12 56 188 683 298 1061 672 2245
30 44 189 144 946 267 1275 369 1360

RPART 60 162 1332 736 3447 1270 11114 2583 7493
90 351 1810 1578 7647 5139 23413 6736 17659
30 1 1 0 1 0 1 1 1

W2C 60 1 2 1 2 2 1 2 2
90 1 1 1 1 3 1 2 1
30 1 1 1 1 1 1 1 1

YALI 60 2 2 2 2 2 2 2 0
90 2 1 2 1 3 1 3 2

Table 3: Training Time

Method 30 60 90
Acc 100.0% 98.5% 98.0%

SVM Tre 663 7981 12698
n=2 Pre 10.3 66.2 64.1

Acc 91.8% 78.7% 75.4%
NB Tre 5 9 12
n=1 Pre 13.0 18.2 22.2

Acc 97.3% 90.2% 64.3%
RPART Tre 44 162 351

n=1 Pre 0.1 0.2 0.1
Acc 97.9% 89.1% 87.8%

W2C Tre 1 2 2
n=4 Pre 1.3 2.8 12.3

Acc 99.9% 96.8% 95.4%
YALI Tre 1 2 3

n=4 Pre 1.3 2.7 3.6

Table 5: Comparison of classifiers with best param-
eters. Label Acc represents accuracy, Tre represents
training time in seconds, and Pre represents prediction
time for 1000 chunks in seconds.

algorithm of all the examined – all the rest re-
quired proportionally more time for training and
prediction when the greater training corpus was
used or more languages were classified.

The comparison of all methods is presented in
Table 5. For each model we selected the n-grams
size with the best trade-off between accuracy and
time required for training and prediction. The two
most accurate algorithms are SVM and YALI. The
SVM achieved the highest accuracy for all lan-
guages but its training took around 4000 times
longer and classification was around 17 times
slower than the YALI.

In the next step we evaluated the YALI algo-
rithm for various size of selected n-grams. These

Languages
Size 30 140 1000
100 64.9% 85.7 % 93.8 %
200 68.7% 87.3 % 93.9 %
400 71.7% 88.0 % 94.0 %
800 73.7% 88.5 % 94.0 %

1600 75.0% 88.8% 94.0%

Table 6: Effect of the number of selected 4-grams on
accuracy.

experiments were evaluated on the data set yali-
dataset-standard. Achieved results are presented
in Table 6. The number of used n-grams increased
the accuracy for short samples from 64.9% to
75.0% but it had no effect on long samples.

As the last step in evaluation we decided to
compare the YALI with Google Translate (GT),
which also provides language identification for 50
languages through their API.6 For comparison we
used data set yali-dataset-small which contains 50
samples of length 30 and 140 for each language
(4800 samples in total). Achieved results are pre-
sented in Table 7. The GT and the YALI per-
form comparably well on samples of length 30 on
which they achieved accuracy 93.6% and 93.1%
respectively, but on samples of length 140 GT
with accuracy 97.3% outperformed YALI with ac-
curacy 94.8%.

7 Conclusions & Future Work

In this paper we compared 5 different algorithms
for language identification – three based on the

6http://code.google.com/apis/language/
translate/v2/using_rest.html

52

N-Gram L 1 2 3 4
Method S 1MB 4MB 1MB 4MB 1MB 4MB 1MB 4MB

30 3.7 7.3 10.3 6.8 9.0 31.8 9.3 13.8
SVM 60 13.3 30.1 66.2 189.7 59.8 92.8 236.7 375.2

90 16.1 36.7 64.1 381.4 414.9 - 133.4 -
30 13.0 13.6 75.3 77.1 132.7 147.9 186.0 349.7

NB 60 18.2 18.8 155.3 162.0 291.5 297.4 860.3 676.0
90 22.2 24.7 318.1 251.9 546.3 469.3 1172.8 1177.8
30 0.1 0.1 0.3 0.1 0.1 0.2 0.7 0.2

RPART 60 0.2 0.1 0.2 0.0 0.2 0.4 0.8 0.2
90 0.1 0.1 0.2 0.1 0.4 0.3 1.2 0.3
30 0.7 0.8 1.7 1.6 3.3 1.5 1.3 2.2

W2C 60 1.3 1.3 2.2 2.4 2.7 2.5 2.8 2.9
90 2.1 1.8 4.0 3.2 4.4 3.8 12.3 5.8
30 0.7 0.8 1.0 1.2 2.0 1.9 1.3 2.2

YALI 60 1.3 1.5 1.8 2.2 2.5 2.2 2.7 2.5
90 2.2 1.8 2.7 2.9 4.4 3.5 3.6 3.7

Table 4: Prediction Time

Text Length
30 140

System
Google 93.6% 97.3%
YALI 93.1% 94.8%

Table 7: Comparison of Google Translate and YALI
on 48 languages.

standard classification algorithms (Support Vec-
tor Machine (SVM), Naive Bayes (NB), and Re-
gression Tree (RPART)) and two based on scoring
functions. For investigating the influence of the
amount of training data we constructed two cor-
pora from the Wikipedia with 90 languages. To
investigate the influence of number if identified
languages we created three sets with 30, 60, and
90 languages. We also measured time required for
training and classification.

Our experiments revealed that the standard
classification algorithms requires at most bi-
grams while the scoring ones required quad-
grams. We also showed that Regression Trees and
Naive Bayes are not suitable for language identifi-
cation because they achieved accuracy 64.3% and
75.4% respectively.

The best classifier for language identification
was the SVM algorithm which achieved accuracy
98% for 90 languages but its training took 4200
times more and its classification was 16 times
slower than the YALI algorithm with accuracy
95.4%. This YALI algorithm has also potential
for increasing accuracy and number of recognized
languages because it scales well.

We also showed that the YALI algorithm is

comparable with the Google Translate system.
Both systems achieved accuracy 93% for sam-
ples of length 30. On samples of length 140
Google Translate with accuracy 97.3% outper-
formed YALI with accuracy 94.8%.

All data sets as well as source codes are
available at http://ufal.mff.cuni.cz/

˜majlis/yali/.
In the future we would like to focus on using

described techniques not only on recognizing lan-
guages but also on recognizing character encod-
ings which is directly applicable for web crawl-
ing.

Acknowledgments

The research has been supported by the grant
Khresmoi (FP7-ICT-2010-6-257528 of the EU
and 7E11042 of the Czech Republic).

References

[Baldwin and Lui2010] Timothy Baldwin and Marco
Lui. 2010. Language identification: the long and
the short of the matter. Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pp. 229–237.

[Beesley1988] Kenneth R. Beesley. 1988. Lan-
guage identifier: A computer program for automatic
natural-language identification of on-line text. Lan-
guages at Crossroads: Proceedings of the 29th An-
nual Conferenceof the American Translators Asso-
ciation, 12-16 October 1988, pp. 47-54.

[Cavnar and Trenkle1994] William B. Cavnar and John
M. Trenkle. 1994. N-gram-based text categoriza-

53

tion. In Proceedings of Symposium on Document
Analysis and Information Retrieval.

[Choong et al.2011] Chew Yew Choong, Yoshiki
Mikami, and Robin Lee Nagano. 2011. Language
Identification of Web Pages Based on Improved N
gram Algorithm. IJCSI, issue 8, volume 3.

[Dimitriadou et al.2011] Evgenia Dimitriadou, Kurt
Hornik, Friedrich Leisch, David Meyer, and and
Andreas Weingessel 2011. e1071: Misc Func-
tions of the Department of Statistics (e1071), TU
Wien. R package version 1.5-27. http://CRAN.
R-project.org/package=e1071.

[Gold1967] E. Mark Gold. 1967. Language iden-
tification in the limit. Information and Control,
5:447474.

[Grothe et al.2008] Lena Grothe, Ernesto William De
Luca, and Andreas Nrnberger. 2008. A Com-
parative Study on Language Identification Meth-
ods. Proceedings of the Sixth International Lan-
guage Resources and Evaluation (LREC’08). Mar-
rakech, 980-985.

[Halevy et al.2009] Alon Halevy, Peter Norvig, and
Fernando Pereira. 2009. The unreasonable effec-
tiveness of data. IEEE Intelligent Systems, 24:8–
12.

[Hayati 2004] Katia Hayati. 2004. Language Iden-
tification on the World Wide Web. Master The-
sis, University of California, Santa Cruz. http:
//lily-field.net/work/masters.pdf.

[Hornik et al.2006] Kurt Hornik, Alexandros Karat-
zoglou, and David Meyer. 2006. Support Vec-
tor Machines in R. Journal of Statistical Software
2006., 15.

[Hughes et al.2006] Baden Hughes, Timothy Bald-
win, Steven Bird, Jeremy Nicholson, and Andrew
Mackinlay. 2006. Reconsidering language identifi-
cation for written language resources. Proceedings
of LREC2006, 485–488.

[Kruengkrai et al.2005] Canasai Kruengkrai, Prapass
Srichaivattana, Virach Sornlertlamvanich, and Hi-
toshi Isahara. 2005. Language identification based
on string kernels. In Proceedings of the 5th Interna-
tional Symposium on Communications and Infor-
mation Technologies (ISCIT2005), pages 896899,
Beijing, China.

[Leonard and Doddington1974] Gary R. Leonard and
George R. Doddington. 1974. Automatic language
identification. Technical report RADC-TR-74-200,
Air Force Rome Air Development Center.

[Lewis2009] M. Paul Lewis. 2009. Ethnologue: Lan-
guages of the World, Sixteenth edition. Dallas,
Tex.: SIL International. Online version: http:
//www.ethnologue.com/

[McNamee2005] Paul McNamee. 2005. Language
identification: a solved problem suitable for under-
graduate instruction. J. Comput. Small Coll, vol-
ume: 20, issue: 3, February 2005, 94–101. Consor-
tium for Computing Sciences in Colleges, USA.

[Majliš2012] Martin Majliš, Zdeněk Žabokrtský.
2012. Language Richness of the Web. In Proceed-
ings of the Eight International Language Resources
and Evaluation (LREC’12), Istanbul, Turkey, May
2012.

[Majliš2011] Martin Majliš. 2011. Large Multilin-
gual Corpus. Mater Thesis, Charles University in
Prague.

[Martins and Silva2005] Bruno Martins and Mário J.
Silva. 2005. Language identification in web pages.
Proceedings of the 2005 ACM symposium on Ap-
plied computing, SAC ’05, 764–768. ACM, New
York, NY, USA. http://doi.acm.org/10.
1145/1066677.1066852.

[R2009] R Development Core Team. 2009. R: A Lan-
guage and Environment for Statistical Computing.
R Foundation for Statistical Computing. ISBN 3-
900051-07-0. http://www.R-project.org,

[Sibun and Reynar1996] Penelope Sibun and Jeffrey C.
Reynar. 1996. Language identification: Examining
the issues. In Proceedings of the 5th Symposium on
Document Analysis and Information Retrieval.

[Therneau et al.2010] Terry M. Therneau, Beth Atkin-
son, and R port by Brian Ripley. 2010.
rpart: Recursive Partitioning. R package ver-
sion 3.1-48. http://CRAN.R-project.
org/package=rpart.

54

