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Abstract

Kernel based methods dominate the current
trend for various relation extraction tasks
including protein-protein interaction (PPI)
extraction. PPI information is critical in un-
derstanding biological processes. Despite
considerable efforts, previously reported
PPI extraction results show that none of the
approaches already known in the literature
is consistently better than other approaches
when evaluated on different benchmark PPI
corpora. In this paper, we propose a
novel hybrid kernel that combines (auto-
matically collected) dependency patterns,
trigger words, negative cues, walk fea-
tures and regular expression patterns along
with tree kernel and shallow linguistic ker-
nel. The proposed kernel outperforms the
exiting state-of-the-art approaches on the
BioInfer corpus, the largest PPI benchmark
corpus available. On the other four smaller
benchmark corpora, it performs either bet-
ter or almost as good as the existing ap-
proaches. Moreover, empirical results show
that the proposed hybrid kernel attains con-
siderably higher precision than the existing
approaches, which indicates its capability
of learning more accurate models. This also
demonstrates that the different types of in-
formation that we use are able to comple-
ment each other for relation extraction.

1 Introduction

Kernel methods are considered the most effective
techniques for various relation extraction (RE)
tasks on both general (e.g. newspaper text) and
specialized (e.g. biomedical text) domains. In
particular, as the importance of syntactic struc-
tures for deriving the relationships between en-
tities in text has been growing, several graph

and tree kernels have been designed and experi-
mented.

Early RE approaches more or less fall in one of
the following categories: (i) exploitation of statis-
tics about co-occurrences of entities, (ii) usage of
patterns and rules, and (iii) usage of flat features
to train machine learning (ML) classifiers. These
approaches have been studied for a long period
and have their own pros and cons. Exploitation
of co-occurrence statistics results in high recall
but low precision, while rule or pattern based ap-
proaches can increase precision but suffer from
low recall. Flat feature based ML approaches em-
ploy various kinds of linguistic, syntactic or con-
textual information and integrate them into the
feature space. They obtain relatively good results
but are hindered by drawbacks of limited feature
space and excessive feature engineering. Kernel
based approaches have become an attractive alter-
native solution, as they can exploit huge amount
of features without an explicit representation.

In this paper, we propose a new hybrid kernel
for RE. We apply the kernel to Protein–protein
interaction (PPI) extraction, the most widely re-
searched topic in biomedical relation extraction.
PPI1 information is very critical in understanding
biological processes. Considerable progress has
been made for this task. Nevertheless, empirical
results of previous studies show that none of the
approaches already known in the literature is con-
sistently better than other approaches when evalu-
ated on different benchmark PPI corpora (see Ta-
ble 4). This demands further study and innovation

1PPIs occur when two or more proteins bind together,
and are integral to virtually all cellular processes, such as
metabolism, signalling, regulation, and proliferation (Tikk
et al., 2010).

420



of new approaches that are sensitive to the varia-
tions of complex linguistic constructions.

The proposed hybrid kernel is the composition
of one tree kernel and two feature based kernels
(one of them is already known in the literature
and the other is proposed in this paper for the first
time). The novelty of the newly proposed feature
based kernel is that it envisages to accommodate
the advantages of pattern based approaches. More
precisely:

1. We propose a new feature based kernel (de-
tails in Section 4.1) by using syntactic de-
pendency patterns, trigger words, negative
cues, regular expression (henceforth, regex)
patterns and walk features (i.e. e-walks and
v-walks)2.

2. The syntactic dependency patterns are au-
tomatically collected from a type of depen-
dency subgraph (we call it reduced graph,
more details in Section 4.1.1) during run-
time.

3. We only use the regex patterns, trigger words
and negative cues mentioned in the literature
(Ono et al., 2001; Fundel et al., 2007; Bui et
al., 2010). The objective is to verify whether
we can exploit knowledge which is already
known and used.

4. We propose a hybrid kernel by combin-
ing the proposed feature based kernel (out-
lined above) with the Shallow Linguistic
(SL) kernel (Giuliano et al., 2006) and the
Path-enclosed Tree (PET) kernel (Moschitti,
2004).

The aim of our work is to take advantage of
different types of information (i.e., dependency
patterns, regex patterns, trigger words, negative
cues, syntactic dependencies among words and
constituent parse trees) and their different repre-
sentations (i.e. flat features, tree structures and
graphs) which can complement each other to learn
more accurate models.

2The syntactic dependencies of the words of a sentence
create a dependency graph. A v-walk feature consists of
(wordi − dependency typei,i+1 − wordi+1), and an e-
walk feature is composed of (dependency typei−1,i −
wordi − dependency typei,i+1). Note that, in a depen-
dency graph, the words are nodes while the dependency
types are edges.

The remainder of the paper is organized as fol-
lows. In Section 2, we briefly review previous
work. Section 3 lists the datasets. Then, in Sec-
tion 4, we define our proposed hybrid kernel and
describe its individual component kernels. Sec-
tion 5 outlines the experimental settings. Follow-
ing that, empirical results are discussed in Section
6. Finally, we conclude with a summary of our
study as well as suggestions for further improve-
ment of our approach.

2 Related Work

In this section, we briefly discuss some of the
recent work on PPI extraction. Several RE ap-
proaches have been reported to date for the PPI
task, most of which are kernel based methods.
Tikk et al. (2010) reported a benchmark evalu-
ation of various kernels on PPI extraction. An
interesting finding is that the Shallow Linguis-
tic (SL) kernel (Giuliano et al., 2006) (to be dis-
cussed in Section 4.2), despite its simplicity, is on
par with the best kernels in most of the evaluation
settings.

Kim et al. (2010) proposed walk-weighted sub-
sequence kernel using e-walks, partial matches,
non-contiguous paths, and different weights for
different sub-structures (which are used to capture
structural similarities during kernel computation).
Miwa et al. (2009a) proposed a hybrid kernel,
which combines the all-paths graph (APG) kernel
(Airola et al., 2008), the bag-of-words kernel, and
the subset tree kernel (Moschitti, 2006) (applied
on the shortest dependency paths between target
protein pairs). They used multiple parser inputs.
The system is regarded as the current state-of-the-
art PPI extraction system because of its high re-
sults on different PPI corpora (see the results in
Table 4).

As an extension of their work, they boosted sys-
tem performance by training on multiple PPI cor-
pora instead of on a single corpus and adopting
a corpus weighting concept with support vector
machine (SVM) which they call SVM-CW (Miwa
et al., 2009b). Since most of their results are re-
ported by training on the combination of multi-
ple corpora, it is not possible to compare them
directly with the results published in the other re-
lated works (that usually adopt 10-fold cross vali-
dation on a single PPI corpus). To be comparable
with the vast majority of the existing work, we
also report results using 10-fold cross validation
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Corpus Sentences Positive pairs Negative pairs

BioInfer 1,100 2,534 7,132

AIMed 1,955 1,000 4,834

IEPA 486 335 482

HPRD50 145 163 270

LLL 77 164 166

Table 1: Basic statistics of the 5 benchmark PPI cor-
pora.

on single corpora.
Apart from the approaches described above,

there also exist other studies that used kernels for
PPI extraction (e.g. subsequence kernel (Bunescu
and Mooney, 2006)).

A notable exception is the work published by
Bui et al. (2010). They proposed an approach that
consists of two phases. In the first phase, their
system categorizes the data into different groups
(i.e. subsets) based on various properties and pat-
terns. Later they classify candidate PPI pairs in-
side each of the groups using SVM trained with
features specific for the corresponding group.

3 Data

There are 5 benchmark corpora for the PPI task
that are frequently used: HPRD50 (Fundel et al.,
2007), IEPA (Ding et al., 2002), LLL (Nédellec,
2005), BioInfer (Pyysalo et al., 2007) and AIMed
(Bunescu et al., 2005). These corpora adopt dif-
ferent PPI annotation formats. For a comparative
evaluation Pyysalo et al. (2008) put all of them
in a common format which has become the stan-
dard evaluation format for the PPI task. In our
experiments, we use the versions of the corpora
converted to such format.

Table 1 shows various statistics regarding the 5
(converted) corpora.

4 Proposed Hybrid Kernel

The hybrid kernel that we propose is as follows:

KHybrid (R1, R2) = KTPWF (R1, R2)
+ KSL (R1, R2) + w * KPET (R1, R2)

where KTPWF stands for the new feature
based kernel (henceforth, TPWF kernel) com-
puted using flat features collected by exploiting
patterns, trigger words, negative cues and walk
features. KSL and KPET stand for the Shallow
Linguistic (SL) kernel and the Path-enclosed Tree

(PET) kernel respectively. w is a multiplicative
constant used for the PET kernel. It allows the
hybrid kernel to assign more (or less) weight to
the information obtained using tree structures de-
pending on the corpus. The proposed hybrid ker-
nel is valid according to the closure properties of
kernels.

Both the TPWF and SL kernels are linear ker-
nels, while PET kernel is computed using Unlex-
icalized Partial Tree (uPT) kernel (Severyn and
Moschitti, 2010). The following subsections ex-
plain each of the individual kernels in more detail.

4.1 Proposed TPWF Kernel
4.1.1 Reduced graph, trigger words,

negative cues and dependency patterns
For each of the candidate entity pairs, we

construct a type of subgraph from the depen-
dency graph formed by the syntactic dependen-
cies among the words of a sentence. We call it
“reduced graph” and define it in the follow-
ing way:

A reduced graph is a subgraph
of the dependency graph of a sentence
which includes:
• the two candidate entities and their

governor nodes up to their least
common governor (if exists).
• dependent nodes (if exist) of all the

nodes added in the previous step.
• the immediate governor(s) (if ex-

ists) of the least common governor.

Figure 1 shows an example of a reduced graph.
A reduced graph is an extension of the smallest
common subgraph of the dependency graph that
aims at overcoming its limitations. It is a known
issue that the smallest common subgraph (or sub-
tree) sometimes does not contain cue words. Pre-
viously, Chowdhury et al. (2011a) proposed a lin-
guistically motivated extension of the minimal
(i.e. smallest) common subtree (which includes
the candidate entity pairs), known as Mildly Ex-
tended Dependency Tree (MEDT). However, the
rules used for MEDT are too constrained. Our ob-
jective in constructing the reduced graph is to in-
clude any potential modifier(s) or cue word(s) that
describes the relation between the given pair of
entities. Sometimes such modifiers or cue words
are not directly dependent (syntactically) on any
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BioInfer AIMed IEPA HPRD50 LLL

P R F P R F P R F P R F P R F

Only walk features 51.8 71.2 60.0 48.7 63.2 55.0 61.0 75.2 67.4 60.2 65.0 62.5 64.6 87.8 74.4

Features: dep. patterns, 53.8 68.8 60.4 50.6 63.9 56.5 63.9 74.6 68.9 65.0 71.8 68.2 66.5 89.6 76.4

trigger, neg. cues, walks

Features: dep. patterns, 53.5 68.6 60.1 52.5 62.9 57.2 63.8 74.6 68.8 65.1 69.9 67.5 67.4 88.4 76.5

trigger, neg. cues, walks,

regex patterns

Table 2: Results of the proposed TPWF feature based kernel on 5 benchmark PPI corpora before and after adding
features collected using dependency patterns, regex patterns, trigger words and negative cues to the walk features.
The TPWF kernel is a component of the new hybrid kernel.

Figure 1: Dependency graph for the sentence “A pVHL mutant containing a P154L substitution does not promote
degradation of HIF1-Alpha” generated by the Stanford parser. The edges with blue dots form the smallest
common subgraph for the candidate entity pair pVHL and HIF1-Alpha, while the edges with red dots form the
reduced graph for the pair.

of the entities (of the candidate pair). Rather they
are dependent on some other word(s) which is de-
pendent on one (or both) of the entities. The word
“not” in Figure 1 is one such example. The re-
duced graph aims to preserve these cue words.

The following types of features are collected
from the reduced graph of a candidate pair:

1. HasTriggerWord: whether the least common
governor(s) of the target entity pairs inside
the reduced graph matches any trigger word.

2. Trigger-X: whether the least common gov-
ernor(s) of the target entity pairs inside the
reduced graph matches the trigger word ‘X’.

3. HasNegWord: whether the reduced graph
contains any negative word.

4. DepPattern-i: whether the reduced graph
contains all the syntactic dependencies of the
i-th pattern of dependency pattern list.

The dependency pattern list is automatically
constructed from the training data during the
learning phase. Each pattern is a set of syntactic
dependencies of the corresponding reduced graph

of a (positive or negative) entity pair in the train-
ing data. For example, the dependency pattern for
the reduced graph in Figure 1 is {det, amod, part-
mod, nsubj, aux, neg, dobj, prep of}. The same
dependency pattern might be constructed for mul-
tiple (positive or negative) entity pairs. However,
if it is constructed for both positive and negative
pairs, it has to be discarded from the pattern list.

The dependency patterns allow some kind of
underspecification as they do not contain the lex-
ical items (i.e. words) but contain the likely com-
bination of syntactic dependencies that a given re-
lated pair of entities would pose inside their re-
duced graph.

The list of trigger words contains 144 words
previously used by Bui et al. (2010) and Fundel
et al. (2007). The list of negative cues contain 18
words, most of which are mentioned in Fundel et
al. (2007).

4.1.2 Walk features
We extract e-walk and v-walk features from

the Mildly Extended Dependency Tree (MEDT)
(Chowdhury et al., 2011a) of each candidate pair.
Reduced graphs sometimes include some unin-
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BioInfer AIMed IEPA HPRD50 LLL

Pos. / Neg. 2,534 / 7,132 1,000 / 4,834 335 / 482 163 / 270 164 / 166

P R F P R F P R F P R F P R F

Proposed TPWF kernel 53.8 68.8 60.4 50.6 63.9 56.5 63.9 74.6 68.9 65.0 71.8 68.2 66.5 89.6 76.4

(without regex)

Proposed TPWF kernel 53.5 68.6 60.1 52.5 62.9 57.2 63.8 74.6 68.8 65.1 69.9 67.5 67.4 88.4 76.5

(with regex)

SL kernel 60.8 65.8 63.2 56.2 64.4 60.0 73.3 71.9 72.6 62.0 65.0 63.5 74.9 85.4 79.8

PET kernel 72.8 74.9 73.9 44.8 72.8 55.5 70.7 77.9 74.2 65.0 73.0 68.8 72.1 89.6 79.9

Proposed hybrid kernel 80.0 71.4 75.5 64.2 58.2 61.1 81.1 69.3 74.7 72.9 59.5 65.5 70.4 95.7 81.1

(PET + SL + TPWF

(without regex))

Proposed hybrid kernel 80.1 72.0 75.9 64.4 58.3 61.2 79.3 69.6 74.1 71.9 61.4 66.2 70.6 95.1 81.0

(PET + SL + TPWF

(with regex))

Table 3: Results of the proposed hybrid kernel and its individual components. Pos. and Neg. refer to number
positive and negative relations respectively. PET refers to the path-enclosed tree kernel, SL refers to the shallow
linguistic kernel, and TPWF refers to the kernel computed using trigger, pattern, negative cue and walk features.

formative words which produce uninformative
walk features. Hence, they are not suitable for
walk feature generation. MEDT suits better for
this purpose. The walk features extracted from
MEDTs have the following properties:

• The directionality of the edges (or nodes) in
an e-walk (or v-walk) is not considered. In
other words, e.g., pos(stimulatory)−amod−
pos(effects) and pos(effects) − amod −
pos(stimulatory) are treated as the same fea-
ture.

• The v-walk features are of the form (posi −
dependency typei,i+1−posi+1). Here, posi is
the POS tag of wordi, i is the governor node
and i + 1 is the dependent node.

• The e-walk features are of the form
(dep. typei−1,i − posi − dep. typei,i+1) and
(dep. typei−1,i − lemmai − dep. typei,i+1).
Here, lemmai is the lemmatized form of
wordi.

• Usually, the e-walk features are con-
structed using dependency types be-
tween {governor of X, node X} and
{node X, dependent of X}. However,
we also extract e-walk features from
the dependency types between any two
dependents and their common governor

(i.e. {node X, dependent 1 of X} and
{node X, dependent 2 of X}).

Apart from the above types of features, we also
add features for lemmas of the immediate preced-
ing and following words of the candidate entities.
These feature names are augmented with -1 or +1
depending on whether the corresponding words
are preceded or followed by a candidate entity.

4.1.3 Regular expression patterns
We use a set of 22 regex patterns as binary

features. These patterns were previously used
by Ono et al. (2001) and Bui et al. (2010).
If there is a match for a pattern (e.g. “En-
tity 1.*activates.*Entity 2” where Entity 1 and
Entity 2 form the candidate entity pair) in a given
sentence, value 1 is added for the feature (i.e., pat-
tern) inside the feature vector.

4.2 Shallow Linguistic (SL) Kernel
The Shallow Linguistic (SL) kernel was proposed
by Giuliano et al. (2006). It is one of the best
performing kernels applied on different biomedi-
cal RE tasks such as PPI and DDI (drug-drug in-
teraction) extraction (Tikk et al., 2010; Segura-
Bedmar et al., 2011; Chowdhury and Lavelli,
2011b; Chowdhury et al., 2011c). It is defined
as follows:

KSL (R1, R2) = KLC (R1, R2) + KGC

(R1, R2)
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BioInfer AIMed IEPA HPRD50 LLL

Pos. / Neg. 2,534 / 7,132 1,000 / 4,834 335 / 482 163 / 270 164 / 166

P R F P R F P R F P R F P R F

SL kernel – – – 60.9 57.2 59.0 – – – – – – – – –
(Giuliano et al., 2006)

APG kernel 56.7 67.2 61.3 52.9 61.8 56.4 69.6 82.7 75.1 64.3 65.8 63.4 72.5 87.2 76.8

(Airola et al., 2008)

Hybrid kernel and 65.7 71.1 68.1 55.0 68.8 60.8 67.5 78.6 71.7 68.5 76.1 70.9 77.6 86.0 80.1

multiple parser input

(Miwa et al., 2009a)

SVM-CW, multiple – – 67.6 – – 64.2 – – 74.4 – – 69.7 – – 80.5

parser input and graph,

walk and BOW features

(Miwa et al., 2009b)

kBSPS kernel 49.9 61.8 55.1 50.1 41.4 44.6 58.8 89.7 70.5 62.2 87.1 71.0 69.3 93.2 78.1

(Tikk et al., 2010)

Walk weighted 61.8 54.2 57.6 61.4 53.3 56.6 73.8 71.8 72.9 66.7 69.2 67.8 76.9 91.2 82.4

subsequence kernel

(Kim et al., 2010)

2 phase extraction 61.7 57.5 60.0 55.3 68.5 61.2 – – – – – – – – –
(Bui et al., 2010)

Our proposed hybrid 80.0 71.4 75.5 64.2 58.2 61.1 81.1 69.3 74.7 72.9 59.5 65.5 70.4 95.7 81.1

kernel (PET + SL +

TPWF without regex)

Table 4: Comparison of the results on the 5 benchmark PPI corpora. Pos. and Neg. refer to number positive and
negative relations respectively. The underlined numbers indicate the best results for the corresponding corpus
reported by any of the existing state-of-the-art approaches. The results of Bui et al. (2010) on LLL, HPRD50,
and IEPA are not reported since thy did not use all the positive and negative examples during cross validation.
Miwa et al. (2009b) showed that better results can be obtained using multiple corpora for training. However,
we consider only those results of their experiments where they used single training corpus as it is the standard
evaluation approach adopted by all the other studies on PPI extraction for comparing results. All the results of
the previous approaches reported in this table are directly quoted from their respective original papers.

where KSL, KGC and KLC correspond to SL,
global context (GC) and local context (LC) ker-
nels respectively. The GC kernel exploits contex-
tual information of the words occurring before,
between and after the pair of entities (to be in-
vestigated for RE) in the corresponding sentence;
while the LC kernel exploits contextual informa-
tion surrounding individual entities.

4.3 Path-enclosed tree (PET) Kernel

The path-enclosed tree (PET) kernel3 was first
proposed by Moschitti (2004) for semantic role
labeling. It was later successfully adapted by
Zhang et al. (2005) and other works for relation
extraction on general texts (such as newspaper do-

3Also known as shortest path-enclosed tree (SPT) kernel.

main). A PET is the smallest common subtree of a
phrase structure tree that includes the two entities
involved in a relation.

A tree kernel calculates the similarity between
two input trees by counting the number of com-
mon sub-structures. Different techniques have
been proposed to measure such similarity. We use
the Unlexicalized Partial Tree (uPT) kernel (Sev-
eryn and Moschitti, 2010) for the computation of
the PET kernel since a comparative evaluation by
Chowdhury et al. (2011a) reported that uPT ker-
nels achieve better results for PPI extraction than
the other techniques used for tree kernel compu-
tation.
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5 Experimental Settings

We have followed the same criteria commonly
used for the PPI extraction tasks, i.e. abstract-
wise 10-fold cross validation on individual corpus
and one-answer-per-occurrence criterion. In fact,
we have used exactly the same (abstract-wise)
fold splitting of the 5 benchmark (converted) cor-
pora used by Tikk et al. (2010) for benchmarking
various kernel methods4.

The Charniak-Johnson reranking parser (Char-
niak and Johnson, 2005), along with a self-trained
biomedical parsing model (McClosky, 2010), has
been used for tokenization, POS-tagging and
parsing of the sentences. Before parsing the sen-
tences, all the entities are blinded by assigning
names as EntityX where X is the entity index.
In each example, the POS tags of the two can-
didate entities are changed to EntityX . The
parse trees produced by the Charniak-Johnson
reranking parser are then processed by the Stan-
ford parser5 (Klein and Manning, 2003) to obtain
syntactic dependencies according to the Stanford
Typed Dependency format.

The Stanford parser often skips some syntactic
dependencies in output. We use the following two
rules to add some of such dependencies:

• If there is a “conj and” or “conj or” depen-
dency between two words X and Y, then X
should be dependent on any word Z on which
Y is dependent and vice versa.

• If there are two verbs X and Y such that in-
side the corresponding sentence they have
only the word “and” or “or” between them,
then any word Z dependent on X should be
also dependent on Y and vice versa.

Our system exploits SVM-LIGHT-TK6 (Mos-
chitti, 2006; Joachims, 1999). We made minor
changes in the toolkit to compute the proposed
hybrid kernel. The ratio of negative and positive
examples has been used as the value of the cost-
ratio-factor parameter. We have done parameter
tuning following the approach described by Hsu
et al. (2003).

4Downloaded from http://informatik.hu-
berlin.de/forschung /gebiete/wbi/ppi-benchmark .

5http://nlp.stanford.edu/software/lex-parser.shtml
6http://disi.unitn.it/moschitti/Tree-Kernel.htm

6 Results and Discussion

To measure the contribution of the features col-
lected from the reduced graphs (using dependency
patterns, trigger words and negative cues) and
regex patterns, we have applied the new TPWF
kernel on the 5 PPI corpora before and after using
these features. Results shown in Table 2 clearly
indicate that usage of these features improve the
performance. The improvement of performance
is primarily due to the usage of dependency pat-
terns which resulted in higher precision for all the
corpora.

We have tried to measure the contribution of
the regex patterns. However, from the empirical
results a clear trend does not emerge (see Table
2).

Table 3 shows a comparison among the re-
sults of the proposed hybrid kernel and its indi-
vidual components. As we can see, the overall
results of the hybrid kernel (with and without us-
ing regex pattern features) are better than those
by any of its individual component kernels. Inter-
estingly, precision achieved on the 4 benchmark
corpora (other than the smallest corpus LLL) is
much higher for the hybrid kernel than for the in-
dividual components. This strongly indicates that
these different types of information (i.e. depen-
dency patterns, regex patterns, triggers, negative
cues, syntactic dependencies among words and
constituent parse trees) and their different repre-
sentations (i.e. flat features, tree structures and
graphs) can complement each other to learn more
accurate models.

Table 4 shows a comparison of the PPI extrac-
tion results of our proposed hybrid kernel with
those of other state-of-the-art approaches. Since
the contribution of regex patterns in the perfor-
mance of the hybrid kernel was not relevant (as
Tables 2 and 3 show), we used the results of pro-
posed hybrid kernel without regex for the compar-
ison. As we can see, the proposed kernel achieves
significantly higher results on the BioInfer corpus,
the largest benchmark PPI corpus (2,534 positive
PPI pair annotations) available, than any of the
existing approaches. Moreover, the results of the
proposed hybrid kernel are on par with the state-
of-the-art results on the other smaller corpora.

Furthermore, empirical results show that the
proposed hybrid kernel attains considerably
higher precision than the existing approaches.
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Since a dependency pattern, by construction,
contains all the syntactic dependencies inside the
corresponding reduced graph, it may happen that
some of the dependencies (e.g. det or determiner)
are not informative for classifying the label of the
corresponding class label (i.e., positive or nega-
tive relation) of the pattern. Their presence in-
side a pattern might make it unnecessarily rigid
and less general. So, we tried to identify and dis-
card such non informative dependencies by mea-
suring probabilities of the dependencies with re-
spect to the class label and then removing any of
them which has probability lower than a threshold
(we tried with different threshold values). But do-
ing so decreased the performance. This suggests
that the syntactic dependencies of a dependency
pattern are not independent of each other even if
some of them might have low probability (with
respect to the class label) individually. We plan to
further investigate whether there could be differ-
ent criteria for identifying non informative depen-
dencies. For the work reported in this paper, we
used the dependency patterns as they are initially
constructed.

We also did experiments to see whether collect-
ing features for trigger words from the whole re-
duced graph would help. But that also decreased
performance. This suggests that trigger words are
more likely to appear in the least common gover-
nors.

7 Conclusion

In this paper, we have proposed a new hybrid
kernel for RE that combines two vector based
kernels and a tree kernel. The proposed kernel
outperforms any of the exiting approaches by a
wide margin on the BioInfer corpus, the largest
PPI benchmark corpus available. On the other
four smaller benchmark corpora, it performs ei-
ther better or almost as good as the existing state-
of-the art approaches.

We have also proposed a novel feature based
kernel, called TPWF kernel, using (automatically
collected) dependency patterns, trigger words,
negative cues, walk features and regular expres-
sion patterns. The TPWF kernel is used as a com-
ponent of the new hybrid kernel.

Empirical results show that the proposed hy-
brid kernel achieves considerably higher precision
than the existing approaches, which indicates its
capability of learning more accurate models. This

also demonstrates that the different types of infor-
mation that we use are able to complement each
other for relation extraction.

We believe there are at least three ways to
further improve the proposed approach. First
of all, the 22 regular expression patterns (col-
lected from Ono et al. (2001) and Bui et al.
(2010)) are applied at the level of the sen-
tences and this sometimes produces unwanted
matches. For example, consider the sentence
“X activates Y and inhibits Z” where X, Y,
and Z are entities. The pattern “Entity1. ∗
activates. ∗Entity2” matches both the X–Y and
X–Z pairs in the sentence. But only the X–Y pair
should be considered. So, the patterns should
be constrained to reduce the number of unwanted
matches. For example, they could be applied on
smaller linguistic units than full sentences. Sec-
ondly, different techniques could be used to iden-
tify less-informative syntactic dependencies in-
side dependency patterns to make them more ac-
curate and effective. Thirdly, usage of automati-
cally collected paraphrases of regular expression
patterns instead of the patterns directly could be
also helpful. Weakly supervised collection of
paraphrases for RE has been already investigated
(e.g. Romano et al. (2006)) and, hence, can be
tried for improving the TPWF kernel (which is a
component of the proposed hybrid kernel).
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