
Adaptivity in Question Answering
with User Modelling and a Dialogue Interface

Silvia Quarteroni and Suresh Manandhar

Department of Computer Science

University of York

York YO10 5DD

UK

{silvia,suresh}@cs.york.ac.uk

Abstract

Most question answering (QA) and infor-

mation retrieval (IR) systems are insensi-

tive to different users’ needs and prefer-

ences, and also to the existence of multi-

ple, complex or controversial answers. We

introduce adaptivity in QA and IR by cre-

ating a hybrid system based on a dialogue

interface and a user model. Keywords:

question answering, information retrieval,

user modelling, dialogue interfaces.

1 Introduction

While standard information retrieval (IR) systems

present the results of a query in the form of a

ranked list of relevant documents, question an-

swering (QA) systems attempt to return them in

the form of sentences (or paragraphs, or phrases),

responding more precisely to the user’s request.

However, in most state-of-the-art QA systems

the output remains independent of the questioner’s

characteristics, goals and needs. In other words,

there is a lack of user modelling: a 10-year-old and

a University History student would get the same

answer to the question: “When did the Middle

Ages begin?”. Secondly, most of the effort of cur-

rent QA is on factoid questions, i.e. questions con-

cerning people, dates, etc., which can generally be

answered by a short sentence or phrase (Kwok et

al., 2001). The main QA evaluation campaign,

TREC-QA 1, has long focused on this type of

questions, for which the simplifying assumption is

that there exists only one correct answer. Even re-

cent TREC campaigns (Voorhees, 2003; Voorhees,

2004) do not move sufficiently beyond the factoid

approach. They account for two types of non-

factoid questions –list and definitional– but not for

non-factoid answers. In fact, a) TREC defines list

questions as questions requiring multiple factoid

1http://trec.nist.gov

answers, b) it is clear that a definition question

may be answered by spotting definitional passages

(what is not clear is how to spot them). However,

accounting for the fact that some simple questions

may have complex or controversial answers (e.g.

“What were the causes of World War II?”) remains

an unsolved problem. We argue that in such situa-

tions returning a short paragraph or text snippet is

more appropriate than exact answer spotting. Fi-

nally, QA systems rarely interact with the user:

the typical session involves the user submitting a

query and the system returning a result; the session

is then concluded.

To respond to these deficiencies of existing QA

systems, we propose an adaptive system where a

QA module interacts with a user model and a di-

alogue interface (see Figure 1). The dialogue in-

terface provides the query terms to the QA mod-

ule, and the user model (UM) provides criteria

to adapt query results to the user’s needs. Given

such information, the goal of the QA module is to

be able to discriminate between simple/factoid an-

swers and more complex answers, presenting them

in a TREC-style manner in the first case and more

appropriately in the second.

DIALOGUE

INTERFACE

QUESTION

PROCESSING

DOCUMENT

RETRIEVAL

ANSWER

EXTRACTION

USER

MODEL

Question

Answer

QA MODULE

Figure 1: High level system architecture

Related work To our knowledge, our system is

among the first to address the need for a different

approach to non-factoid (complex/controversial)

199

answers. Although the three-tiered structure of

our QA module reflects that of a typical web-

based QA system, e.g. MULDER (Kwok et al.,

2001), a significant aspect of novelty in our archi-

tecture is that the QA component is supported by

the user model. Additionally, we drastically re-

duce the amount of linguistic processing applied

during question processing and answer generation,

while giving more relief to the post-retrieval phase

and to the role of the UM.

2 User model

Depending on the application of interest, the UM

can be designed to suit the information needs of

the QA module in different ways. As our current

application, YourQA2, is a learning-oriented, web-

based system, our UM consists of the user’s:

1) age range, a ∈ {7 − 11, 11 − 16, adult};

2) reading level, r ∈ {poor,medium, good};

3) webpages of interest/bookmarks, w.

Analogies can be found with the SeAn (Ardissono

et al., 2001) and SiteIF (Magnini and Strapparava,

2001) news recommender systems where age and

browsing history, respectively, are part of the UM.

In this paper we focus on how to filter and adapt

search results using the reading level parameter.

3 Dialogue interface

The dialogue component will interact with both

the UM and the QA module. From a UM point of

view, the dialogue history will store previous con-

versations useful to construct and update a model

of the user’s interests, goals and level of under-

standing. From a QA point of view, the main goal

of the dialogue component is to provide users with

a friendly interface to build their requests. A typi-

cal scenario would start this way:

— System: Hi, how can I help you?

— User: I would like to know what books Roald Dahl wrote.

The query sentence “what books Roald Dahl wrote”, is

thus extracted and handed to the QA module. In a

second phase, the dialogue module is responsible

for providing the answer to the user once the QA

module has generated it. The dialogue manager

consults the UM to decide on the most suitable

formulation of the answer (e.g. short sentences)

and produce the final answer accordingly, e.g.:

— System: Roald Dahl wrote many books for kids and adults,

including: “The Witches”, “Charlie and the Chocolate Fac-

tory”, and “James and the Giant Peach".

2http://www.cs.york.ac.uk/aig/aqua

4 Question Answering Module

The flow between the three QA phases – question

processing, document retrieval and answer gener-

ation – is described below (see Fig. 2).

4.1 Question processing

We perform query expansion, which consists in

creating additional queries using question word

synonyms in the purpose of increasing the recall

of the search engine. Synonyms are obtained via

the WordNet 2.0 3 lexical database.

Question QUERY
EXPANSION

DOCUMENT
RETRIEVAL

KEYPHRASE
EXTRACTION

ESTIMATION
OF READING

LEVELS

CLUSTERING

Language
Models

UM-BASED
FILTERING

SEMANTIC
SIMILARITY

RANKING

User Model
Reading

Level

Ranked
Answer

Candidates

Figure 2: Diagram of the QA module

4.2 Retrieval

Document retrieval We retrieve the top 20 doc-

uments returned by Google4 for each query pro-

duced via query expansion. These are processed

in the following steps, which progressively narrow

the part of the text containing relevant informa-

tion.

Keyphrase extraction Once the documents are

retrieved, we perform keyphrase extraction to de-

termine their three most relevant topics using Kea

(Witten et al., 1999), an extractor based on Naïve

Bayes classification.

Estimation of reading levels To adapt the read-

ability of the results to the user, we estimate

the reading difficulty of the retrieved documents

using the Smoothed Unigram Model (Collins-

Thompson and Callan, 2004), which proceeds in

3http://wordnet.princeton.edu
4http://www.google.com

200

two phases. 1) In the training phase, sets of repre-

sentative documents are collected for a given num-

ber of reading levels. Then, a unigram language

model is created for each set, i.e. a list of (word

stem, probability) entries for the words appearing

in its documents. Our models account for the fol-

lowing reading levels: poor (suitable for ages 7–

11), medium (ages 11–16) and good (adults). 2)

In the test phase, given an unclassified document

D, its estimated reading level is the model lmi

maximizing the likelihood that D ∈ lmi
5.

Clustering We use the extracted topics and es-

timated reading levels as features to apply hierar-

chical clustering on the documents. We use the

WEKA (Witten and Frank, 2000) implementation

of the Cobweb algorithm. This produces a tree

where each leaf corresponds to one document, and

sibling leaves denote documents with similar top-

ics and reading difficulty.

4.3 Answer extraction

In this phase, the clustered documents are filtered

based on the user model and answer sentences are

located and formatted for presentation.

UM-based filtering The documents in the clus-

ter tree are filtered according to their reading diffi-

culty: only those compatible with the UM’s read-

ing level are retained for further analysis6.

Semantic similarity Within each of the retained

documents, we seek the sentences which are se-

mantically most relevant to the query by applying

the metric in (Alfonseca et al., 2001): we rep-

resent each document sentence p and the query

q as word sets P = {pw1, . . . , pwm} and Q =

{qw1, . . . , qwn}. The distance from p to q is then

distq(p) =
∑

1≤i≤m minj [d(pwi, qwj)], where

d(pwi, qwj) is the word-level distance between

pwi and qwj based on (Jiang and Conrath, 1997).

Ranking Given the query q, we thus locate

in each document D the sentence p∗ such that

p∗ = argminp∈D[distq(p)]; then, distq(p
∗) be-

comes the document score. Moreover, each clus-

5The likelihood is estimated using the formula:
Li,D =

∑
w∈D

C(w, D) · log(P (w|lmi)), where w is a

word in the document, C(w, d) is the number of occurrences
of w in D and P (w|lmi) is the probability with which w
occurs in lmi

6However, if their number does not exceed a given thresh-
old, we accept in our candidate set part of the documents hav-
ing the next lowest readability – or a medium readability if the
user’s reading level is low

ter is assigned a score consisting in the maximal

score of the documents composing it. This allows

to rank not only documents, but also clusters, and

present results grouped by cluster in decreasing or-

der of document score.

Answer presentation We present our answers

in an HTML page, where results are listed follow-

ing the ranking described above. Each result con-

sists of the title and clickable URL of the originat-

ing document, and the passage where the sentence

which best answers the query is located and high-

lighted. Question keywords and potentially useful

information such as named entities are in colour.

5 Sample result

We have been running our system on a range

of queries, including factoid/simple, complex and

controversial ones. As an example of the latter, we

report the query “Who wrote the Iliad?”, which is

a subject of debate. These are some top results:

— UMgood: “Most Classicists would agree that, whether

there was ever such a composer as "Homer" or not, the

Homeric poems are the product of an oral tradition [. . .]

Could the Iliad and Odyssey have been oral-formulaic po-

ems, composed on the spot by the poet using a collection of

memorized traditional verses and phases?”

— UMmed: “No reliable ancient evidence for Homer –

[. . .] General ancient assumption that same poet wrote Il-

iad and Odyssey (and possibly other poems) questioned by

many modern scholars: differences explained biographi-

cally in ancient world (e g wrote Od. in old age); but simi-

larities could be due to imitation.”

— UMpoor: “Homer wrote The Iliad and The Odyssey

(at least, supposedly a blind bard named "Homer" did).”

In the three results, the problem of attribution of

the Iliad is made clearly visible: document pas-

sages provide a context which helps to explain the

controversy at different levels of difficulty.

6 Evaluation

Since YourQA does not single out one correct an-

swer phrase, TREC evaluation metrics are not suit-

able for it. A user-centred methodology to assess

how individual information needs are met is more

appropriate. We base our evaluation on (Su, 2003),

which proposes a comprehensive search engine

evaluation model, defining the following metrics:

1. Relevance: we define strict precision (P1) as

the ratio between the number of results rated as

relevant and all the returned results, and loose pre-

201

cision (P2) as the ratio between the number of re-

sults rated as relevant or partially relevant and all

the returned results.

2. User satisfaction: a 7-point Likert scale7 is used

to assess the user’s satisfaction with loose preci-

sion of results (S1) and query success (S2).

3. Reading level accuracy: given the set R of re-

sults returned for a reading level r, Ar is the ratio

between the number of results ∈ R rated by the

users as suitable for r and |R|.
4. Overall utility (U): the search session as a

whole is assessed via a 7-point Likert scale.

We performed our evaluation by running 24

queries (some of which in Tab. 2) on Google and

YourQA and submitting the results –i.e. Google

result page snippets and YourQA passages– of

both to 20 evaluators, along with a questionnaire.

The relevance results (P1 and P2) in Tab. 1 show a

P1 P2 S1 S2 U

Google 0,39 0,63 4,70 4,61 4,59

YourQA 0,51 0,79 5,39 5,39 5,57

Table 1: Evaluation results

10-15% difference in favour of YourQA for both

strict and loose precision. The coarse seman-

tic processing applied and context visualisation

thus contribute to creating more relevant passages.

Both user satisfaction results (S1 and S2) in Tab.

1 also denote a higher level of satisfaction tributed

to YourQA. Tab. 2 shows that evaluators found our

Query Ag Am Ap

When did the Middle Ages begin? 0,91 0,82 0,68

Who painted the Sistine Chapel? 0,85 0,72 0,79

When did the Romans invade Britain? 0,87 0,74 0,82

Who was a famous cubist? 0,90 0,75 0,85

Who was the first American in space? 0,94 0,80 0,72

Definition of metaphor 0,95 0,81 0,38

average 0,94 0,85 0,72

Table 2: Sample queries and accuracy values

results appropriate for the reading levels to which

they were assigned. The accuracy tended to de-

crease (from 94% to 72%) with the level: it is

indeed more constraining to conform to a lower

reading level than to a higher one. Finally, the

7This measure – ranging from 1= “extremely unsatisfac-
tory” to 7=“extremely satisfactory” – is particularly suitable
to assess how well a system meets user’s search needs.

general satisfaction values for U in Tab. 1 show

an improved preference for YourQA.

7 Conclusion

A user-tailored QA system is proposed where a

user model contributes to adapting answers to the

user’s needs and presenting them appropriately.

A preliminary evaluation of our core QA module

shows a positive feedback from human assessors.

Our short term goals involve performing a more

extensive evaluation and implementing a dialogue

interface to improve the system’s interactivity.

References

E. Alfonseca, M. DeBoni, J.-L. Jara-Valencia, and
S. Manandhar. 2001. A prototype question answer-
ing system using syntactic and semantic information
for answer retrieval. In Text REtrieval Conference.

L. Ardissono, L. Console, and I. Torre. 2001. An adap-
tive system for the personalized access to news. AI
Commun., 14(3):129–147.

K. Collins-Thompson and J. P. Callan. 2004. A lan-
guage modeling approach to predicting reading dif-
ficulty. In Proceedings of HLT/NAACL.

J. J. Jiang and D. W. Conrath. 1997. Semantic similar-
ity based on corpus statistics and lexical taxonomy.
In Proceedings of the International Conference Re-
search on Computational Linguistics (ROCLING X).

C. C. T. Kwok, O. Etzioni, and D. S. Weld. 2001. Scal-
ing question answering to the web. In World Wide
Web, pages 150–161.

Bernardo Magnini and Carlo Strapparava. 2001. Im-
proving user modelling with content-based tech-
niques. In UM: Proceedings of the 8th Int. Confer-
ence, volume 2109 of LNCS. Springer.

L. T. Su. 2003. A comprehensive and systematic
model of user evaluation of web search engines: Ii.
an evaluation by undergraduates. J. Am. Soc. Inf.
Sci. Technol., 54(13):1193–1223.

E. M. Voorhees. 2003. Overview of the TREC 2003
question answering track. In Text REtrieval Confer-
ence.

E. M. Voorhees. 2004. Overview of the TREC 2004
question answering track. In Text REtrieval Confer-
ence.

H. Witten and E. Frank. 2000. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementation. Morgan Kaufmann.

I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and
C. G. Nevill-Manning. 1999. KEA: Practical au-
tomatic keyphrase extraction. In ACM DL, pages
254–255.

202

