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Abstract

Unsupervised paraphrase acquisition has

been an active research field in recent

years, but its effective coverage and per-

formance have rarely been evaluated. We

propose a generic paraphrase-based ap-

proach for Relation Extraction (RE), aim-

ing at a dual goal: obtaining an applicative

evaluation scheme for paraphrase acquisi-

tion and obtaining a generic and largely

unsupervised configuration for RE. We an-

alyze the potential of our approach and

evaluate an implemented prototype of it

using an RE dataset. Our findings reveal a

high potential for unsupervised paraphrase

acquisition. We also identify the need for

novel robust models for matching para-

phrases in texts, which should address syn-

tactic complexity and variability.

1 Introduction

A crucial challenge for semantic NLP applica-

tions is recognizing the many different ways for

expressing the same information. This seman-

tic variability phenomenon was addressed within

specific applications, such as question answering,

information extraction and information retrieval.

Recently, the problem was investigated within

generic application-independent paradigms, such

as paraphrasing and textual entailment.

Eventually, it would be most appealing to apply

generic models for semantic variability to concrete

applications. This paper investigates the applica-

bility of a generic “paraphrase-based” approach to

the Relation Extraction (RE) task, using an avail-

able RE dataset of protein interactions. RE is

highly suitable for such investigation since its goal

is to exactly identify all the different variations in

which a target semantic relation can be expressed.

Taking this route sets up a dual goal: (a) from

the generic paraphrasing perspective - an objective

evaluation of paraphrase acquisition performance

on a concrete application dataset, as well as identi-

fying the additional mechanisms needed to match

paraphrases in texts; (b) from the RE perspective -

investigating the feasibility and performance of a

generic paraphrase-based approach for RE.

Our configuration assumes a set of entailing

templates (non-symmetric “paraphrases”) for the

target relation. For example, for the target rela-

tion “X interact with Y” we would assume a set of

entailing templates as in Tables 3 and 7. In addi-

tion, we require a syntactic matching module that

identifies template instances in text.

First, we manually analyzed the protein-

interaction dataset and identified all cases in which

protein interaction is expressed by an entailing

template. This set a very high idealized upper

bound for the recall of the paraphrase-based ap-

proach for this dataset. Yet, obtaining high cover-

age in practice would require effective paraphrase

acquisition and lexical-syntactic template match-

ing. Next, we implemented a prototype that uti-

lizes a state-of-the-art method for learning en-

tailment relations from the web (Szpektor et al.,

2004), the Minipar dependency parser (Lin, 1998)

and a syntactic matching module. As expected,

the performance of the implemented system was

much lower than the ideal upper bound, yet ob-

taining quite reasonable practical results given its

unsupervised nature.

The contributions of our investigation follow
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the dual goal set above. To the best of our knowl-

edge, this is the first comprehensive evaluation

that measures directly the performance of unsuper-

vised paraphrase acquisition relative to a standard

application dataset. It is also the first evaluation of

a generic paraphrase-based approach for the stan-

dard RE setting. Our findings are encouraging for

both goals, particularly relative to their early ma-

turity level, and reveal constructive evidence for

the remaining room for improvement.

2 Background

2.1 Unsupervised Information Extraction

Information Extraction (IE) and its subfield Rela-

tion Extraction (RE) are traditionally performed

in a supervised manner, identifying the different

ways to express a specific information or relation.

Given that annotated data is expensive to produce,

unsupervised or weakly supervised methods have

been proposed for IE and RE.

Yangarber et al. (2000) and Stevenson and

Greenwood (2005) define methods for automatic

acquisition of predicate-argument structures that

are similar to a set of seed relations, which rep-

resent a specific scenario. Yangarber et al. (2000)

approach was evaluated in two ways: (1) manually

mapping the discovered patterns into an IE system

and running a full MUC-style evaluation; (2) using

the learned patterns to perform document filtering

at the scenario level. Stevenson and Greenwood

(2005) evaluated their method through document

and sentence filtering at the scenario level.

Sudo et al. (2003) extract dependency subtrees

within relevant documents as IE patterns. The goal

of the algorithm is event extraction, though perfor-

mance is measured by counting argument entities

rather than counting events directly.

Hasegawa et al. (2004) performs unsupervised

hierarchical clustering over a simple set of fea-

tures. The algorithm does not extract entity pairs

for a given relation from a set of documents but

rather classifies all relations in a large corpus. This

approach is more similar to text mining tasks than

to classic IE problems.

To conclude, several unsupervised approaches

learn relevant IE templates for a complete sce-

nario, but without identifying their relevance to

each specific relation within the scenario. Accord-

ingly, the evaluations of these works either did not

address the direct applicability for RE or evaluated

it only after further manual postprocessing.

2.2 Paraphrases and Entailment Rules

A generic model for language variability is us-

ing paraphrases, text expressions that roughly con-

vey the same meaning. Various methods for auto-

matic paraphrase acquisition have been suggested

recently, ranging from finding equivalent lexical

elements to learning rather complex paraphrases

at the sentence level1.

More relevant for RE are “atomic” paraphrases

between templates, text fragments containing vari-

ables, e.g. ‘X buy Y ⇔ X purchase Y’. Under a

syntactic representation, a template is a parsed text

fragment, e.g. ‘X
subj
← interact

mod
→ with

pcomp−n
→ Y’

(based on the syntactic dependency relations of

the Minipar parser). The parses include part-of-

speech tags, which we omit for clarity.

Dagan and Glickman (2004) suggested that a

somewhat more general notion than paraphrasing

is that of entailment relations. These are direc-

tional relations between two templates, where the

meaning of one can be entailed from the meaning

of the other, e.g. ‘X bind to Y⇒ X interact with Y’.

For RE, when searching for a target relation, it is

sufficient to identify an entailing template since it

implies that the target relation holds as well. Un-

der this notion, paraphrases are bidirectional en-

tailment relations.

Several methods extract atomic paraphrases by

exhaustively processing local corpora (Lin and

Pantel, 2001; Shinyama et al., 2002). Learn-

ing from a local corpus is bounded by the cor-

pus scope, which is usually domain specific (both

works above processed news domain corpora). To

cover a broader range of domains several works

utilized the Web, while requiring several manu-

ally provided examples for each input relation,

e.g. (Ravichandran and Hovy, 2002). Taking a

step further, the TEASE algorithm (Szpektor et al.,

2004) provides a completely unsupervised method

for acquiring entailment relations from the Web

for a given input relation (see Section 5.1).

Most of these works did not evaluate their re-

sults in terms of application coverage. Lin and

Pantel (2001) compared their results to human-

generated paraphrases. Shinyama et al. (2002)

measured the coverage of their learning algorithm

relative to the paraphrases present in a given cor-

pus. Szpektor et al. (2004) measured “yield”, the

number of correct rules learned for an input re-

1See the 3rd IWP workshop for a sample of recent works
on paraphrasing (http://nlp.nagaokaut.ac.jp/IWP2005/).
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lation. Ravichandran and Hovy (2002) evaluated

the performance of a QA system that is based

solely on paraphrases, an approach resembling

ours. However, they measured performance using

Mean Reciprocal Rank, which does not reveal the

actual coverage of the learned paraphrases.

3 Assumed Configuration for RE

Phenomenon Example

Passive form ‘Y is activated by X’

Apposition ‘X activates its companion, Y’

Conjunction ‘X activates prot3 and Y’

Set ‘X activates two proteins, Y and Z’

Relative clause ‘X, which activates Y’

Coordination ‘X binds and activates Y’

Transparent head ‘X activates a fragment of Y’

Co-reference ‘X is a kinase, though it activates Y’

Table 1: Syntactic variability phenomena, demon-

strated for the normalized template ‘X activate Y’.

The general configuration assumed in this pa-

per for RE is based on two main elements: a list

of lexical-syntactic templates which entail the re-

lation of interest and a syntactic matcher which

identifies the template occurrences in sentences.

The set of entailing templates may be collected ei-

ther manually or automatically. We propose this

configuration both as an algorithm for RE and as

an evaluation scheme for paraphrase acquisition.

The role of the syntactic matcher is to iden-

tify the different syntactic variations in which tem-

plates occur in sentences. Table 1 presents a list

of generic syntactic phenomena that are known in

the literature to relate to linguistic variability. A

phenomenon which deserves a few words of ex-

planation is the “transparent head noun” (Grish-

man et al., 1986; Fillmore et al., 2002). A trans-

parent noun N1 typically occurs in constructs of

the form ‘N1 preposition N2’ for which the syn-

tactic relation involving N1, which is the head of

the NP, applies to N2, the modifier. In the example

in Table 1, ‘fragment’ is the transparent head noun

while the relation ‘activate’ applies to Y as object.

4 Manual Data Analysis

4.1 Protein Interaction Dataset

Bunescu et al. (2005) proposed a set of tasks re-

garding protein name and protein interaction ex-

traction, for which they manually tagged about

200 Medline abstracts previously known to con-

tain human protein interactions (a binary symmet-

ric relation). Here we consider their RE task of

extracting interacting protein pairs, given that the

correct protein names have already been identi-

fied. All protein names are annotated in the given

gold standard dataset, which includes 1147 anno-

tated interacting protein pairs. Protein names are

rather complex, and according to the annotation

adopted by Bunescu et al. (2005) can be substrings

of other protein names (e.g., <prot> <prot>

GITR </prot> ligand </prot>). In such

cases, we considered only the longest names and

protein pairs involving them. We also ignored all

reflexive pairs, in which one protein is marked

as interacting with itself. Altogether, 1052 inter-

actions remained. All protein names were trans-

formed into symbols of the type ProtN , where N

is a number, which facilitates parsing.

For development purposes, we randomly split

the abstracts into a 60% development set (575 in-

teractions) and a 40% test set (477 interactions).

4.2 Dataset analysis

In order to analyze the potential of our approach,

two of the authors manually annotated the 575 in-

teracting protein pairs in the development set. For

each pair the annotators annotated whether it can

be identified using only template-based matching,

assuming an ideal implementation of the configu-

ration of Section 3. If it can, the normalized form

of the template connecting the two proteins was

annotated as well. The normalized template form

is based on the active form of the verb, stripped

of the syntactic phenomena listed in Table 1. Ad-

ditionally, the relevant syntactic phenomena from

Table 1 were annotated for each template instance.

Table 2 provides several example annotations.

A Kappa value of 0.85 (nearly perfect agree-

ment) was measured for the agreement between

the two annotators, regarding whether a protein

pair can be identified using the template-based

method. Additionally, the annotators agreed on

96% of the normalized templates that should be

used for the matching. Finally, the annotators

agreed on at least 96% of the cases for each syn-

tactic phenomenon except transparent heads, for

which they agreed on 91% of the cases. This high

level of agreement indicates both that template-

based matching is a well defined task and that nor-

malized template form and its syntactic variations

are well defined notions.

Several interesting statistics arise from the an-
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Sentence Annotation

We have crystallized a complex between human FGF1 and

a two-domain extracellular fragment of human FGFR2.

• template: ‘complex between X and Y’

• transparent head: ‘fragment of X’

CD30 and its counter-receptor CD30 ligand (CD30L) are

members of the TNF-receptor / TNFalpha superfamily and

function to regulate lymphocyte survival and differentiation.

• template: ‘X’s counter-receptor Y’

• apposition

• co-reference

iCdi1, a human G1 and S phase protein phosphatase that

associates with Cdk2.

• template: ‘X associate with Y’

• relative clause

Table 2: Examples of annotations of interacting protein pairs. The annotation describes the normalized

template and the different syntactic phenomena identified.

Template f Template f Template f

X interact with Y 28 interaction of X with Y 12 X Y interaction 5

X bind to Y 22 X associate with Y 11 X interaction with Y 4

X Y complex 17 X activate Y 6 association of X with Y 4

interaction between X and Y 16 binding of X to Y 5 X’s association with Y 3

X bind Y 14 X form complex with Y 5 X be agonist for Y 3

Table 3: The 15 most frequent templates and their instance count (f ) in the development set.

notation. First, 93% of the interacting protein pairs

(537/575) can be potentially identified using the

template-based approach, if the relevant templates

are provided. This is a very promising finding,

suggesting that the template-based approach may

provide most of the requested information. We

term these 537 pairs as template-based pairs. The

remaining pairs are usually expressed by complex

inference or at a discourse level.

Phenomenon % Phenomenon %

transparent head 34 relative clause 8

apposition 24 co-reference 7

conjunction 24 coordination 7

set 13 passive form 2

Table 4: Occurrence percentage of each syntactic

phenomenon within template-based pairs (537).

Second, for 66% of the template-based pairs

at least one syntactic phenomenon was annotated.

Table 4 contains the occurrence percentage of each

phenomenon in the development set. These results

show the need for a powerful syntactic matcher on

top of high performance template acquisition, in

order to correctly match a template in a sentence.

Third, 175 different normalized templates were

identified. For each template we counted its tem-

plate instances, the number of times the tem-

plate occurred, counting only occurrences that ex-

press an interaction of a protein pair. In total,

we counted 341 template instances for all 175

templates. Interestingly, 50% of the template in-

stances (184/341) are instances of the 21 most fre-

quent templates. This shows that, though protein

interaction can be expressed in many ways, writ-

ers tend to choose from among just a few common

expressions. Table 3 presents the most frequent

templates. Table 5 presents the minimal number

of templates required to obtain the range of differ-

ent recall levels.

Furthermore, we grouped template variants

that are based on morphological derivations (e.g.

‘X interact with Y’ and ‘X Y interaction’)

and found that 4 groups, ‘X interact with Y’,

‘X bind to Y’, ‘X associate with Y’ and ‘X com-

plex with Y’, together with their morphological

derivations, cover 45% of the template instances.

This shows the need to handle generic lexical-

syntactic phenomena, and particularly morpholog-

ical based variations, separately from the acquisi-

tion of normalized lexical syntactic templates.

To conclude, this analysis indicates that the

template-based approach provides very high cov-

erage for this RE dataset, and a small number of

normalized templates already provides significant

recall. However, it is important to (a) develop

a model for morphological-based template vari-

ations (e.g. as encoded in Nomlex (Macleod et

al., )), and (b) apply accurate parsing and develop

syntactic matching models to recognize the rather
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complex variations of template instantiations in

text. Finally, we note that our particular figures

are specific to this dataset and the biological ab-

stracts domain. However, the annotation and anal-

ysis methodologies are general and are suggested

as highly effective tools for further research.

R(%) # templates R(%) # templates

10 2 60 39

20 4 70 73

30 6 80 107

40 11 90 141

50 21 100 175

Table 5: The number of most frequent templates

necessary to reach different recall levels within the

341 template instances.

5 Implemented Prototype

This section describes our initial implementation

of the approach in Section 3.

5.1 TEASE

The TEASE algorithm (Szpektor et al., 2004) is

an unsupervised method for acquiring entailment

relations from the Web for a given input template.

In this paper we use TEASE for entailment rela-

tion acquisition since it processes an input tem-

plate in a completely unsupervised manner and

due to its broad domain coverage obtained from

the Web. The reported percentage of correct out-

put templates for TEASE is 44%.

The TEASE algorithm consists of 3 steps,

demonstrated in Table 6. TEASE first retrieves

from the Web sentences containing the input tem-

plate. From these sentences it extracts variable in-

stantiations, termed anchor-sets, which are identi-

fied as being characteristic for the input template

based on statistical criteria (first column in Ta-

ble 6). Characteristic anchor-sets are assumed to

uniquely identify a specific event or fact. Thus,

any template that appears with such an anchor-set

is assumed to have an entailment relationship with

the input template. Next, TEASE retrieves from

the Web a corpus S of sentences that contain the

characteristic anchor-sets (second column), hop-

ing to find occurrences of these anchor-sets within

templates other than the original input template.

Finally, TEASE parses S and extracts templates

that are assumed to entail or be entailed by the

input template. Such templates are identified as

maximal most general sub-graphs that contain the

anchor sets’ positions (third column in Table 6).

Each learned template is ranked by number of oc-

currences in S.

5.2 Transformation-based Graph Matcher

In order to identify instances of entailing templates

in sentences we developed a syntactic matcher that

is based on transformations rules. The matcher

processes a sentence in 3 steps: 1) parsing the sen-

tence with the Minipar parser, obtaining a depen-

dency graph2; 2) matching each template against

the sentence dependency graph; 3) extracting can-

didate term pairs that match the template variables.

A template is considered directly matched in a

sentence if it appears as a sub-graph in the sen-

tence dependency graph, with its variables instan-

tiated. To further address the syntactic phenomena

listed in Table 1 we created a set of hand-crafted

parser-dependent transformation rules, which ac-

count for the different ways in which syntactic

relationships may be realized in a sentence. A

transformation rule maps the left hand side of the

rule, which strictly matches a sub-graph of the

given template, to the right hand side of the rule,

which strictly matches a sub-graph of the sentence

graph. If a rule matches, the template sub-graph is

mapped accordingly into the sentence graph.

For example, to match the syntactic tem-

plate ‘X(N)
subj
← activate(V)

obj
→ Y(N)’ (POS

tags are in parentheses) in the sentence “Prot1

detected and activated Prot2” (see Figure 1) we

should handle the coordination phenomenon.

The matcher uses the transformation rule

‘Var1(V) ⇒ and(U)
mod
← Word(V)

conj
→ Var1(V)’

to overcome the syntactic differences. In this

example Var1 matches the verb ‘activate’, Word

matches the verb ‘detect’ and the syntactic rela-

tions for Word are mapped to the ones for Var1.

Thus, we can infer that the subject and object

relations of ‘detect’ are also related to ‘activate’.

6 Experiments

6.1 Experimental Settings

To acquire a set of entailing templates we first ex-

ecuted TEASE on the input template ‘X
subj
← in-

teract
mod
→ with

pcomp−n
→ Y’, which corresponds to

the “default” expression of the protein interaction

2We chose a dependency parser as it captures directly the
relations between words; we use Minipar due to its speed.
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Extracted Anchor-set Sentence containing Anchor-set Learned Template

X=‘chemokines’,

Y=‘specific receptors’

Chemokines bind to specific receptors on the target

cells

X
subj
← bind

mod
→

to
pcomp−n
→ Y

X=‘Smad3’, Y=‘Smad4’ Smad3 / Smad4 complexes translocate to the nucleus X Y
nn
→ complex

Table 6: TEASE output at different steps of the algorithm for ‘X
subj
← interact

mod
→ with

pcomp−n
→ Y’.

1. X bind to Y 7. X Y complex 13. X interaction with Y

2. X activate Y 8. X recognize Y 14. X trap Y

3. X stimulate Y 9. X block Y 15. X recruit Y

4. X couple to Y 10. X binding to Y 16. X associate with Y

5. interaction between X and Y 11. X Y interaction 17. X be linked to Y

6. X become trapped in Y 12. X attach to Y 18. X target Y

Table 7: The top 18 correct templates learned by TEASE for ‘X interact with Y’.

detect(V )

subj
wwppppppppppp

conj

��

mod

''NNNNNNNNNNN

obj
// Prot2(N)

Prot1(N) activate(V ) and(U)

Figure 1: The dependency parse graph of the sen-

tence “Prot1 detected and activated Prot2”.

relation. TEASE learned 118 templates for this

relation. Table 7 lists the top 18 learned templates

that we considered as correct (out of the top 30

templates in TEASE output). We then extracted

interacting protein pair candidates by applying the

syntactic matcher to the 119 templates (the 118

learned plus the input template). Candidate pairs

that do not consist of two proteins, as tagged in the

input dataset, were filtered out (see Section 4.1;

recall that our experiments were applied to the

dataset of protein interactions, which isolates the

RE task from the protein name recognition task).

In a subsequent experiment we iteratively ex-

ecuted TEASE on the 5 top-ranked learned tem-

plates to acquire additional relevant templates. In

total, we obtained 1233 templates that were likely

to imply the original input relation. The syntactic

matcher was then reapplied to extract candidate in-

teracting protein pairs using all 1233 templates.

We used the development set to tune a small

set of 10 generic hand-crafted transformation rules

that handle different syntactic variations. To han-

dle transparent head nouns, which is the only phe-

nomenon that demonstrates domain dependence,

we extracted a set of the 5 most frequent trans-

parent head patterns in the development set, e.g.

‘fragment of X’.

In order to compare (roughly) our performance

with supervised methods applied to this dataset, as

summarized in (Bunescu et al., 2005), we adopted

their recall and precision measurement. Their

scheme counts over distinct protein pairs per ab-

stract, which yields 283 interacting pairs in our test

set and 418 in the development set.

6.2 Manual Analysis of TEASE Recall

experiment pairs instances

input 39% 37%

input + iterative 49% 48%

input + iterative + morph 63% 62%

Table 8: The potential recall of TEASE in terms of

distinct pairs (out of 418) and coverage of template

instances (out of 341) in the development set.

Before evaluating the system as a whole we

wanted to manually assess in isolation the cover-

age of TEASE output relative to all template in-

stances that were manually annotated in the devel-

opment set. We considered a template as covered

if there is a TEASE output template that is equal

to the manually annotated template or differs from

it only by the syntactic phenomena described in

Section 3 or due to some parsing errors. Count-

ing these matches, we calculated the number of

template instances and distinct interacting protein

pairs that are covered by TEASE output.

Table 8 presents the results of our analysis. The
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1st line shows the coverage of the 119 templates

learned by TEASE for the input template ’X inter-

act with Y’. It is interesting to note that, though we

aim to learn relevant templates for the specific do-

main, TEASE learned relevant templates also by

finding anchor-sets of different domains that use

the same jargon, such as particle physics.

We next analyzed the contribution of the itera-

tive learning for the additional 5 templates to recall

(2nd line in Table 8). With the additional learned

templates, recall increased by about 25%, showing

the importance of using the iterative steps.

Finally, when allowing matching between a

TEASE template and a manually annotated tem-

plate, even if one is based on a morphologi-

cal derivation of the other (3rd line in Table 8),

TEASE recall increased further by about 30%.

We conclude that the potential recall of the cur-

rent version of TEASE on the protein interaction

dataset is about 60%. This indicates that signif-

icant coverage can be obtained using completely

unsupervised learning from the web, as performed

by TEASE. However, the upper bound for our cur-

rent implemented system is only about 50% be-

cause our syntactic matching does not handle mor-

phological derivations.

6.3 System Results

experiment recall precision F1

input 0.18 0.62 0.28

input + iterative 0.29 0.42 0.34

Table 9: System results on the test set.

Table 9 presents our system results for the test

set, corresponding to the first two experiments in

Table 8. The recall achieved by our current imple-

mentation is notably worse than the upper bound

of the manual analysis because of two general set-

backs of the current syntactic matcher: 1) parsing

errors; 2) limited transformation rule coverage.

First, the texts from the biology domain pre-

sented quite a challenge for the Minipar parser.

For example, in the sentences containing the

phrase ‘X bind specifically to Y’ the parser consis-

tently attaches the PP ‘to’ to ‘specifically’ instead

of to ‘bind’. Thus, the template ‘X bind to Y’ can-

not be directly matched.

Second, we manually created a small number of

transformation rules that handle various syntactic

phenomena, since we aimed at generic domain in-

dependent rules. The most difficult phenomenon

to model with transformation rules is transparent

heads. For example, in “the dimerization of Prot1

interacts with Prot2”, the transparent head ‘dimer-

ization of X’ is domain dependent. Transforma-

tion rules that handle such examples are difficult

to acquire, unless a domain specific learning ap-

proach (either supervised or unsupervised) is used.

Finally, we did not handle co-reference resolution

in the current implementation.

Bunescu et al. (2005) and Bunescu and Mooney

(2005) approached the protein interaction RE task

using both handcrafted rules and several super-

vised Machine Learning techniques, which uti-

lize about 180 manually annotated abstracts for

training. Our results are not directly comparable

with theirs because they adopted 10-fold cross-

validation, while we had to divide the dataset into

a development and a test set, but a rough compari-

son is possible. For the same 30% recall, the rule-

based method achieved precision of 62% and the

best supervised learning algorithm achieved preci-

sion of 73%. Comparing to these supervised and

domain-specific rule-based approaches our system

is noticeably weaker, yet provides useful results

given that we supply very little domain specific in-

formation and acquire the paraphrasing templates

in a fully unsupervised manner. Still, the match-

ing models need considerable additional research

in order to achieve the potential performance sug-

gested by TEASE.

7 Conclusions and Future Work

We have presented a paraphrase-based approach

for relation extraction (RE), and an implemented

system, that rely solely on unsupervised para-

phrase acquisition and generic syntactic template

matching. Two targets were investigated: (a) a

mostly unsupervised, domain independent, con-

figuration for RE, and (b) an evaluation scheme

for paraphrase acquisition, providing a first evalu-

ation of its realistic coverage. Our approach differs

from previous unsupervised IE methods in that we

identify instances of a specific relation while prior

methods identified template relevance only at the

general scenario level.

We manually analyzed the potential of our ap-

proach on a dataset annotated with protein in-

teractions. The analysis shows that 93% of the

interacting protein pairs can be potentially iden-

tified with the template-based approach. Addi-
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tionally, we manually assessed the coverage of

the TEASE acquisition algorithm and found that

63% of the distinct pairs can be potentially rec-

ognized with the learned templates, assuming an

ideal matcher, indicating a significant potential re-

call for completely unsupervised paraphrase ac-

quisition. Finally, we evaluated our current system

performance and found it weaker than supervised

RE methods, being far from fulfilling the poten-

tial indicated in our manual analyses due to insuf-

ficient syntactic matching. But, even our current

performance may be considered useful given the

very small amount of domain-specific information

used by the system.

Most importantly, we believe that our analysis

and evaluation methodologies for an RE dataset

provide an excellent benchmark for unsupervised

learning of paraphrases and entailment rules. In

the long run, we plan to develop and improve our

acquisition and matching algorithms, in order to

realize the observed potential of the paraphrase-

based approach. Notably, our findings point to the

need to learn generic morphological and syntactic

variations in template matching, an area which has

rarely been addressed till now.
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