
Recognizing Textual Parallelisms with edit distance and similarity degree

Marie Guégan and Nicolas Hernandez

LIMSI-CNRS

Université de Paris-Sud, France

guegan@aist.enst.fr | hernandez@limsi.fr

Abstract

Detection of discourse structure is crucial

in many text-based applications. This pa-

per presents an original framework for de-

scribing textual parallelism which allows

us to generalize various discourse phe-

nomena and to propose a unique method

to recognize them. With this prospect, we

discuss several methods in order to iden-

tify the most appropriate one for the prob-

lem, and evaluate them based on a manu-

ally annotated corpus.

1 Introduction

Detection of discourse structure is crucial in many

text-based applications such as Information Re-

trieval, Question-Answering, Text Browsing, etc.

Thanks to a discourse structure one can precisely

point out an information, provide it a local context,

situate it globally, link it to others.

The context of our research is to improve au-

tomatic discourse analysis. A key feature of the

most popular discourse theories (RST (Mann and

Thompson, 1987), SDRT (Asher, 1993), etc.) is

the distinction between two sorts of discourse re-

lations or rhetorical functions: the subordinating

and the coordinating relations (some parts of a

text play a subordinate role relative to other parts,

while some others have equal importance).

In this paper, we focus our attention on a dis-

course feature we assume supporting coordination

relations, namely the Textual Parallelism. Based

on psycholinguistics studies (Dubey et al., 2005),

our intuition is that similarities concerning the sur-

face, the content and the structure of textual units

can be a way for authors to explicit their intention

to consider these units with the same rhetorical im-

portance.

Parallelism can be encountered in many specific

discourse structures such as continuity in infor-

mation structure (Kruijff-Korbayová and Kruijff,

1996), frame structures (Charolles, 1997), VP el-

lipses (Hobbs and Kehler, 1997), headings (Sum-

mers, 1998), enumerations (Luc et al., 1999), etc.

These phenomena are usually treated mostly inde-

pendently within individual systems with ad-hoc

resource developments.

In this work, we argue that, depending on de-

scription granularity we can proceed, computing

syntagmatic (succession axis of linguistic units)

and paradigmatic (substitution axis) similarities

between units can allow us to generically handle

such discourse structural phenomena. Section 2

introduces the discourse parallelism phenomenon.

Section 3 develops three methods we implemented

to detect it: a similarity degree measure, a string

editing distance (Wagner and Fischer, 1974) and a

tree editing distance1 (Zhang and Shasha, 1989).

Section 4 discusses and evaluates these methods

and their relevance. The final section reviews re-

lated work.

2 Textual parallelism

Our notion of parallelism is based on similarities

between syntagmatic and paradigmatic represen-

tations of (constituents of) textual units. These

similarities concern various dimensions from shal-

low to deeper description: layout, typography,

morphology, lexicon, syntax, and semantics. This

account is not limited to the semantic dimension

as defined by (Hobbs and Kehler, 1997) who con-

sider text fragments as parallel if the same predi-

cate can be inferred from them with coreferential

or similar pairs of arguments.

1For all measures, elementary units considered are syn-
tactic tags and word tokens.

281

We observe parallelism at various structural lev-

els of text: among heading structures, VP ellipses

and others, enumerations of noun phrases in a

sentence, enumerations with or without markers

such as frame introducers (e.g. “In France, . . . In

Italy, . . . ”) or typographical and layout markers.

The underlying assumption is that parallelism be-

tween some textual units accounts for a rhetorical

coordination relation. It means that these units can

be regarded as equally important.

By describing textual units in a two-tier frame-

work composed of a paradigmatic level and syn-

tagmatic level, we argue that, depending on the

description granularity we consider (potentially at

the character level for item numbering), we can

detect a wide variety of parallelism phenomena.

Among parallelism properties, we note that the

parallelism of a given number of textual units is

based on the parallelism of their constituents. We

also note that certain semantic classes of con-

stituents, such as item numbering, are more effec-

tive in marking parallelism than others.

2.1 An example of parallelism

The following example is extracted from our cor-

pus (see section 4.1). In this case, we have an enu-

meration without explicit markers.

For the purposes of chaining, each type of link
between WordNet synsets is assigned a direction
of up, down, or horizontal.

Upward links correspond to generalization: for
example, an upward link from apple to fruit indi-
cates that fruit is more general than apple.

Downward links correspond to specialization:
for example, a link from fruit to apple would have
a downward direction.

Horizontal links are very specific specializations.

The parallelism pattern of the first two items is de-

scribed as follows:

[JJ + suff =ward] links correspond to [NN + suff

= alization] : for example , X link from Y to Z .

This pattern indicates that several item con-

stituents can be concerned by parallelism and that

similarities can be observed at the typographic,

lexical and syntactic description levels. Tokens

(words or punctuation marks) having identical

shallow descriptions are written in italics. The

X, Y and Z variables stand for matching any non-

parallel text areas between contiguous parallel tex-

tual units. Some words are parallel based on

their syntactic category (“JJ” / adjectives, “NN” /

nouns) or suffix specifications (“suff” attribute).

The third item is similar to the first two items but

with a simpler pattern:

JJ links U [NN + suff =alization] W .

Parallelism is distinguished by these types of sim-

ilarities between sentences.

3 Methods

Three methods were used in this study. Given a

pair of sentences, they all produce a score of sim-

ilarity between these sentences. We first present

the preprocessing to be performed on the texts.

3.1 Prior processing applied on the texts

The texts were automatically cut into sentences.

The first two steps hereinafter have been applied

for all the methods. The last third was not applied

for the tree editing distance (see 3.3). Punctua-

tion marks and syntactic labels were henceforward

considered as words.

1. Text homogenization: lemmatization together

with a semantic standardization. Lexical chains

are built using WordNet relations, then words are

replaced by their most representative synonym:

Horizontal links are specific specializations.
horizontal connection be specific specialization .

2. Syntactic analysis by (Charniak, 1997)’s parser:

(S1 (S (NP (JJ Horizontal) (NNS links) (VP
(AUX are) (NP (ADJP (JJ specific) (NNS
specializations) (SENT .)))))))

3. Syntactic structure flattening:

S1 S NP JJ Horizontal NNS links VP AUX are
NP ADJP JJ specific NNS specializations SENT.

3.2 Wagner & Fischer’s string edit distance

This method is based on Wagner & Fischer’s

string edit distance algorithm (Wagner and Fis-

cher, 1974), applied to sentences viewed as strings

of words. It computes a sentence edit distance, us-

ing edit operations on these elementary entities.

The idea is to use edit operations to transform

sentence S1 into S2. Similarly to (Wagner and Fis-

cher, 1974), we considered three edit operations:

1. replacing word x ∈ S1 by y ∈ S2: (x → y)

2. deleting word x ∈ S1: (x → λ)

3. inserting word y ∈ S2 into S1: (λ → y)

By definition, the cost of a sequence of edit op-

erations is the sum of the costs2 of the elementary

2We used unitary costs in this study

282

operations, and the distance between S1 and S2 is

the cost of the least cost transformation of S1 into

S2. Wagner & Fischer’s method provides a simple

and effective way (O(|S1||S2|)) to compute it. To

reduce size effects, we normalized by
|S1|+|S2|

2
.

3.3 Zhang & Shasha’s algorithm

Zhang & Shasha’s method (Zhang and Shasha,

1989; Dulucq and Tichit, 2003) generalizes Wag-

ner & Fischer’s edit distance to trees: given two

trees T1 and T2, it computes the least-cost se-

quence of edit operations that transforms T1 into

T2. Elementary operations have unitary costs and

apply to nodes (labels and words in the syntactic

trees). These operations are depicted below: sub-

stitution of node c by node g (top figure), inser-

tion of node d (middle fig.), and deletion of node

d (bottom fig.), each read from left to right.

Tree edit distance d(T1, T2) is determined after

a series of intermediate calculations involving spe-

cial subtrees of T1 and T2, rooted in keyroots.

3.3.1 Keyroots, special subtrees and forests

Given a certain node x, L(x) denotes its left-

most leaf descendant. L is an equivalence rela-

tion over nodes and keyroots (KR) are by definition

the equivalence relation representatives of high-

est postfix index. Special subtrees (SST) are the

subtrees rooted in these keyroots. Consider a tree

T postfix indexed (left figure hereinafter) and its

three SSTs (right figure).

SST(k1) rooted in k1 is denoted:

T [L(k1), L(k1) + 1, . . . , k1]. E.g: SST(3) =
T [1, 2, 3] is the subtree containing nodes a, b, d.

A forest of SST(k1) is defined as:

T [L(k1), L(k1) + 1, . . . , x], where x is a

node of SST(k1). E.g: SST(3) has 3 forests :

T [1] (node a), T [1, 2] (nodes a and b) and itself.

Forests are ordered sequences of subtrees.

3.3.2 An idea of how it works

The algorithm computes the distance between all

pairs of SSTs taken in T1 and T2, rooted in

increasingly-indexed keyroots. In the end, the last

SSTs being the full trees, we have d(T1, T2).

In the main routine, an N1 × N2 array called

TREEDIST is progressively filled with values

TREEDIST(i, j) equal to the distance between the

subtree rooted in T1’s ith node and the subtree

rooted in T2’s jth node. The bottom right-hand

cell of TREEDIST is therefore equal to d(T1, T2).

Each step of the algorithm determines the edit

distance between two SSTs rooted in keyroots

(k1, k2) ∈ (T1 × T2). An array FDIST is ini-

tialized for this step and contains as many lines

and columns as the two given SSTs have nodes.

The array is progressively filled with the distances

between increasing forests of these SSTs, simi-

larly to Wagner & Fischer’s method. The bot-

tom right-hand value of FDIST contains the dis-

tance between the SSTs, which is then stored in

TREEDIST in the appropriate cell. Calculations

in FDIST and TREEDIST rely on the double re-

currence formula depicted below:

The first formula is used to compute the dis-

tance between two forests (a white one and a black

one), each of which is composed of several trees.

The small circles stand for the nodes of highest

postfix index. Distance between two forests is de-

fined as the minimum cost operation between three

possibilities: replacing the rightmost white tree by

the rightmost black tree, deleting the white node,

or inserting the black node.

The second formula is analogous to the first one,

in the special case where the forests are reduced to

a single tree. The distance is defined as the mini-

mum cost operation between: replacing the white

node with the black node, deleting the white node,

or inserting the black node.

283

It is important to notice that the first formula

takes the left context of the considered subtrees

into account3 : ancestor and left sibling orders are

preserved. It is not possible to replace the white

node with the black node directly, the whole sub-

tree rooted in the white node has to be replaced.

The good thing is, the cost of this operation has

already been computed and stored in TREEDIST.

Let’s see why all the computations required at a

given step of the recurrence formula have already

been calculated. Let two SSTs of T1 and T2 be

rooted in pos1 and pos2. Considering the symme-

try of the problem, let’s only consider what hap-

pens with T1. When filling FDIST(pos1, pos2),
all nodes belonging to SST(pos1) are run through,

according to increasing postfix indexes. Consider

x ∈ T [L(pos1), . . . , pos1]:

If L(x) = L(pos1), then x belongs to the left-

most branch of T [L(pos1), . . . , pos1] and forest

T [L(pos1), . . . , x] is reduced to a single tree. By

construction, all FDIST(T [L(pos1), . . . , y],−) for

y ≤ x − 1 have already been computed. If things

are the same for the current node in SST(pos2),
then TREEDIST(T [L(pos1), . . . , x],−) can be

calculated directly, using the appropriate FDIST

values previously computed.

If L(x) 6= L(pos1), then x does not belong

to the leftmost branch of T [L(pos1), . . . , pos1]
and therefore x has a non-empty left context

T [L(pos1), . . . , L(x)−1]. Let’s see why comput-

ing FDIST(T [L(pos1), . . . , x],−) requires values

which have been previously obtained.
• If x is a keyroot, since the algorithm

runs through keyroots by increasing order,

TREEDIST(T [L(x), . . . , x],−) has already

been computed.

• If x is not a keyroot, then there exists a node

z such that : x < z < pos1, z is a keyroot

and L(z) = L(x). Therefore x belongs to

the leftmost branch of T [L(z), . . . , z], which

means TREEDIST(T [L(z), . . . , x],−) has

already been computed.

Complexity for this algorithm is :
O(|T1| × |T2| × min(p(T1), f(T1)) × min(p(T2), f(T2)))

where d(Ti) is the depth Ti and f(Ti) is the num-

ber of terminal nodes of Ti.

3The 2nd formula does too, since left context is empty.

3.4 Our proposal: a degree of similarity

This final method computes a degree of similar-

ity between two sentences, considered as lists of

syntactic (labels) and lexical (words) constituents.

Because some constituents are more likely to in-

dicate parallelism than others (e.g: the list item

marker is more pertinent than the determiner “a”),

a crescent weight function p(x) ∈ [0, 1] w.r.t.

pertinence is assigned to all lexical and syntac-

tic constituents x. A set of special subsentences

is then generated: the greatest common divisor of

S1 and S2, gcd(S1, S2), is defined as the longest

list of words common to S1 and S2. Then for

each sentence Si, the set of special subsentences

is computed using the words of gcd(S1, S2) ac-

cording to their order of appearance in Si. For

example, if S1 = cabcad and S2 = acbae,

gcd(S1, S2) = {c, a, b, a}. The set of subsen-

tences for S1 is {caba, abca} and the set for S2 is

reduced to {acba}. Note that any generated sub-

sentence is exactly the size of gcd(S1, S2).

For any two subsentences s1 and s2, we define

a degree of similarity D(s1, s2), inspired from

string edit distances:

D(s1, s2) =
n

X

i=1

„

dmax − d(xi)

dmax

× p(xi)

«

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

n size of all subsentences

xi ith constituent of s1

dmax max possible dist. between any xi ∈ s1 and its
parallel constituent in s2, i.e. dmax = n − 1

d(xi) distance between current constituent xi

in s1 and its parallel constituent in s2

p(xi) parallelism weight of xi

The further a constituent from s1 is from its

symmetric occurrence in s2, the more similar

the compared subsentences are. Eventually, the

degree of similarity between sentences S1 and S2

is defined as:

D(S1, S2) =
2

|S1| + |S2|
× max

s1,s2
D(s1, s2)

Example

Consider S1 = cabcad and S2 = acbae, along

with their subsentences s1 = caba and s′1 = abca
for S1, and s2 = acba for S2. The degrees of

parallelism between s1 and s2, and between s′1
and s2 are computed. The mapping between the

parallel constituents is shown below.

284

For example:

D(s1, s2) =

4
X

i=1

„

3 − d(xi)

3
× p(xi)

«

= 2/3p(c) + 2/3p(a) + p(b) + p(a)

Assume p(b) = p(c) = 1

2
and p(a) = 1. Then

D(s1, s2) = 2.5 and, similarly D(s′1, s2) ' 2.67.

Therefore the normalized degree of parallelism is

D(S1, S2) = 2

5+6
× 2.67, which is about 0.48.

4 Evaluation

This section describes the methodology employed

to evaluate performances. Then, after a prelimi-

nary study of our corpus, results are presented suc-

cessively for each method. Finally, the behavior of

the methods is analyzed at sentence level.

4.1 Methodology

Our parallelism detection is an unsupervised clus-

tering application: given a set of pairs of sen-

tences, it automatically classifies them into the

class of the parallelisms and the remainders

class. Pairs were extracted from 5 scientific ar-

ticles written in English, each containing about

200 sentences: Green (ACL’98), Kan (Kan et

al. WVLC’98), Mitkov (Coling-ACL’98), Oakes

(IRSG’99) and Sand (Sanderson et al. SIGIR’99).

The idea was to compute for each pair a paral-

lelism score indicating the similarity between the

sentences. Then the choice of a threshold deter-

mined which pairs showed a score high enough to

be classified as parallel.

Evaluation was based on a manual annotation

we proceeded over the texts. In order to reduce

computational complexity, we only considered the

parallelism occurring between consecutive sen-

tences. For each sentence, we indicated the index

of its parallel sentence. We assumed transitivity of

parallelism : if S1//S2 and S2//S3, then S1//S3.

It was thus considered sufficient to indicate the in-

dex of S1 for S2 and the index of S2 for S3 to

account for a parallelism between S1, S2 and S3.

We annotated pairs of sentences where textual

parallelism led us to rhetorically coordinate them.

The decision was sometimes hard to make. Yet

we annotated it each time to get more data and to

study the behavior of the methods on these exam-

ples, possibly penalizing our applications. In the

end, 103 pairs were annotated.

We used the notions of precision (correctness)

and recall (completeness). Because efforts in im-

proving one often result in degrading the other,

the F-measure (harmonic mean) combines them

into a unique parameter, which simplifies compar-

isons of results. Let P be the set of the annotated

parallelisms and Q the set of the pairs automati-

cally classified in the parallelisms after the use of

a threshold. Then the associated precision p, recall

r and F-measure f are defined as:

p =
|P ∩ Q|

|Q|
r =

|P ∩ Q|

|P |
f =

2

1/p + 1/q

As we said, the unique task of the implemented

methods was to assign parallelism scores to pairs

of sentences, which are collected in a list. We

manually applied various thresholds to the list

and computed their corresponding F-measure. We

kept as a performance indicator the best F-measure

found. This was performed for each method and

on each text, as well as on the texts all gathered

together.

4.2 Preliminary corpus study

This paragraph underlines some of the character-

istics of the corpus, in particular the distribution of

the annotated parallelisms in the texts for adjacent

sentences. The following table gives the percent-

age of parallelisms for each text:

Parallelisms Nb of pairs

Green 39 (14.4 %) 270
Kan 12 (6 %) 200

Mitkov 13 (8.4 %) 168
Oakes 22 (13.7 %) 161
Sand 17 (7.7 %) 239

All gathered 103 (9.9 %) 1038

Green and Oakes show significantly more paral-

lelisms than the other texts. Therefore, if we con-

sider a lazy method that would put all pairs in the

class of parallelisms, Green and Oakes will yield

a priori better results. Precision is indeed directly

related to the percentage of parallelisms in the text.

In this case, it is exactly this percentage, and it

gives us a minimum value of the F-measure our

methods should at least reach:

Precision Recall F-measure

Green 14.4 100 25.1
Kan 6 100 11.3

Mitkov 8.4 100 15.5
Oakes 13.7 100 24.1
Sand 7.7 100 14.3

All 9.9 100 18.0

4.3 A baseline: counting words in common

We first present the results of a very simple and

thus very fast method. This baseline counts the

285

words sentences S1 and S2 have in common, and

normalizes the result by
|S1|+|S2|

2
in order to re-

duce size effects. No syntactic analysis nor lexical

homogenization was performed on the texts.

Results for this method are summarized in the fol-

lowing table. The last column shows the loss (%)

in F-measure after applying a generic threshold

(the optimal threshold found when all texts are

gathered together) on each text.

F-meas. Prec. Recall Thres. Loss

Green 45 34 67 0.4 2
Kan 24 40 17 0.9 10

Mitkov 22 13 77 0.0 8
Oakes 45 78 32 0.8 7
Sand 23 17 35 0.5 1

All 30 23 42 0.5 -

We first note that results are twice as good as

with the lazy approach, with Green and Oakes

far above the rest. Yet this is not sufficient for a

real application. Furthermore, the optimal thresh-

old is very different from one text to another,

which makes the learning of a generic threshold

able to detect parallelisms for any text impossible.

The only advantage here is the simplicity of the

method: no prior treatment was performed on the

texts before the search, and the counting itself was

very fast.

4.4 String edit distance

We present the results for the 1st method below:

F-meas. Prec. Recall Thres. Loss

Green 52 79 38 0.69 0
Kan 44 67 33 0.64 2

Mitkov 38 50 31 0.69 0
Oakes 82 94 73 0.68 0
Sand 47 54 42 0.72 9

All 54 73 43 0.69 -

Green and Oakes still yield the best results, but

the other texts have almost doubled theirs. Results

for Oakes are especially good: an F-measure of

82% guaranties high precision and recall.

In addition, the use of a generic threshold on

each text had little influence on the value of the

F-measure. The greatest loss is for Sand and only

corresponds to the adjunction of four pairs of sen-

tences in the class of parallelisms. The selection of

a unique generic threshold to predict parallelisms

should therefore be possible.

4.5 Tree edit distance

The algorithm was applied using unitary edit

costs. Since it did not seem natural to establish

mappings between different levels of the sentence,

edit operations between two constituents of dif-

ferent nature (e.g: substitution of a lexical by a

syntactic element) were forbidden by a prohibitive

cost (1000). However, this banning only improved

the results shyly, unfortunately.

F-meas. Prec. Recall Thres. Loss

Green 46 92 31 0.72 3
Kan 44 67 33 0.75 0

Mitkov 43 40 46 0.87 11
Oakes 81 100 68 0.73 0
Sand 52 100 35 0.73 2

All 51 73 39 0.75 -

As illustrated in the table above, results are

comparable to those previously found. We note an

especially good F-measure for Sand: 52%, against

47% for the string edit distance. Optimal thresh-

olds were quite similar from one text to another.

4.6 Degree of similarity

Because of the high complexity of this method, a

heuristic was applied. The generation of the sub-

sentences is indeed in
∏

Cki
ni

, ki being the number

of occurrences of the constituent xi in gcd, and

ni the number of xi in the sentence. We chose

to limit the generation to a fixed amount of sub-

sentences. The constituents that have a great Cki
ni

bring too much complexity: we chose to eliminate

their (ni − ki) last occurrences and to keep their

ki first occurrences only to generate subsequences.

An experiment was conducted in order to

determine the maximum amount of subsentences

that could be generated in a reasonable amount of

time without significant performance loss and 30

was a sufficient number. In another experiment,

different parallelism weights were assigned to

lexical constituents and syntactic labels. The aim

was to understand their relative importance for

parallelisms detection. Results show that lexical

constituents have a significant role, but conclu-

sions are more difficult to draw for syntactic

labels. It was decided that, from now on, the lex-

ical weight should be given the maximum value, 1.

Finally, we assigned different weights to the

syntactic labels. Weights were chosen after count-

ing the occurrences of the labels in the corpus. In

fact, we counted for each label the percentage of

occurrences that appeared in the gcd of the paral-

lelisms with respect to those appearing in the gcd

of the other pairs. Percentages were then rescaled

from 0 to 1, in order to emphasize differences

286

between labels. The obtained parallelism values

measured the role of the labels in the detection of

parallelism. Results for this experiment appear in

the table below.

F-meas. Prec. Recall Thres. Loss

Green 55 59 51 0.329 2
Kan 47 80 33 0.354 5

Mitkov 35 40 31 0.355 0
Oakes 76 80 73 0.324 4
Sand 29 20 59 0.271 0

All 50 59 43 0.335 -

The optimal F-measures were comparable to

those obtained in 4.4 and the corresponding

thresholds were similar from one text to another.

This section showed how the three proposed

methods outperformed the baseline. Each of them

yielded comparable results.

The next section presents the results at sentence

level, together with a comparison of these three

methods.

4.7 Analysis at sentence level

The different methods often agreed but sometimes

reacted quite differently.

Well retrieved parallelisms

Some parallelisms were found by each method

with no difficulty: they were given a high degree

of parallelism by each method. Typically, such

sentences presented a strong lexical and syntactic

similarity, as in the example in section 2.

Parallelisms hard to find

Other parallelisms received very low scores

from each method. This happened when the an-

notated parallelism was lexically and syntactically

poor and needed either contextual information or

external semantic knowledge to find keywords

(e.g: “first”, “second”, . . .), paraphrases or pat-

terns (e.g: “X:Y” in the following example (Kan)):

Rear: a paragraph in which a link just stopped
occurring the paragraph before.

No link: any remaining paragraphs.

Different methods, different results

Eventually, we present some parallelisms that

obtained very different scores, depending on the

method.

First, it seems that a different ordering of the

parallel constituents in the sentences alter the per-

formances of the edit distance algorithms (3.2;

3.3). The following example (Green) received a

low score with both methods:

When we consider AnsV as our dependent vari-
able, the model for the High Web group is still
not significant, and there is still a high probabil-
ity that the coefficient of LI is 0.

For our Low Web group, who followed signif-
icantly more intra-article links than the High
Web group, the model that results is significant
and has the following equation: <EQN/>.

This is due to the fact that both algorithms do not

allow the inversion of two constituents and thus

are unable to find all the links from the first sen-

tence to the other. The parallelism measure is ro-

bust to inversion.

Sometimes, the syntactic parser gave different

analyses for the same expression, which made

mapping between the sentences containing this ex-

pression more difficult, especially for the tree edit

distance. The syntactic structure has less impor-

tance for the other methods, which are thus more

insensitive to an incorrect analysis.

Finally, the parallelism measure seems more

adapted to a diffuse distribution of the parallel

constituents in the sentences, whereas edit dis-

tances seem more appropriate when parallel con-

stituents are concentrated in a certain part of the

sentences, in similar syntactic structures. The fol-

lowing example (Green) obtained very high scores

with the edit distances only:

Strong relations are also said to exist between
words that have synsets connected by a single
horizontal link or words that have synsets con-
nected by a single IS-A or INCLUDES relation.

A regular relation is said to exist between two
words when there is at least one allowable path
between a synset containing the first word and a
synset containing the second word in the Word-
Net database.

5 Related work

Experimental work in psycholinguistics has

shown the importance of the parallelism effect in

human language processing. Due to some kind

of priming (syntactic, phonetic, lexical, etc.), the

comprehension and the production of a parallel ut-

terance is made faster (Dubey et al., 2005).

So far, most of the works were led in order to

acquire resources and to build systems to retrieve

specific parallelism phenomena. In the field of in-

formation structure theories, (Kruijff-Korbayová

and Kruijff, 1996) implemented an ad-hoc system

287

to identify thematic continuity (lexical relation be-

tween the subject parts of consecutive sentences).

(Luc et al., 1999) described and classified markers

(lexical clues, layout and typography) occurring in

enumeration structures. (Summers, 1998) also de-

scribed the markers required for retrieving head-

ing structures. (Charolles, 1997) was involved in

the description of frame introducers.

Integration of specialized resources dedicated

to parallelism detection could be an improvement

to our approach. Let us not forget that our fi-

nal aim remains the detection of discourse struc-

tures. Parallelism should be considered as an ad-

ditional feature which among other discourse fea-

tures (e.g. connectors).

Regarding the use of parallelism, (Hernandez

and Grau, 2005) proposed an algorithm to parse

the discourse structure and to select pairs of sen-

tences to compare.

Confronted to the problem of determining tex-

tual entailment4 (the fact that the meaning of

one expression can be inferred from another)

(Kouylekov and Magnini, 2005) applied the

(Zhang and Shasha, 1989)’s algorithm on the de-

pendency trees of pairs of sentences (they did not

consider syntactic tags as nodes but only words).

They encountered problems similar to ours due to

pre-treatment limits. Indeed, the syntactic parser

sometimes represents in a different way occur-

rences of similar expressions, making it harder to

apply edit transformations. A drawback concern-

ing the tree-edit distance approach is that it is not

able to observe the whole tree, but only the subtree

of the processed node.

6 Conclusion

Textual parallelism plays an important role among

discourse features when detecting discourse struc-

tures. So far, only occurrences of this phenomenon

have been treated individually and often in an ad-

hoc manner. Our contribution is a unifying frame-

work which can be used for automatic processing

with much less specific knowledge than dedicated

techniques.

In addition, we discussed and evaluated several

methods to retrieve them generically. We showed

that simple methods such as (Wagner and Fis-

cher, 1974) can compete with more complex ap-

proaches, such as our degree of similarity and the

4Compared to entailment, the parallelism relation is bi-
directional and not restricted to semantic similarities.

(Zhang and Shasha, 1989)’s algorithm.

Among future works, it seems that variations

such as the editing cost of transformation for edit

distance methods and the weight of parallel units

(depending their semantic and syntactic charac-

teristics) can be implemented to enhance perfor-

mances. Combining methods also seems an inter-

esting track to follow.

References

Nicholas Asher. 1993. Reference to abstract objects in
discourse. Kluwer, Dordrecht.

E. Charniak. 1997. Statistical parsing with a context-
free grammar and word statistics. In AAAI.

M. Charolles. 1997. L’encadrement du discours -
univers, champs, domaines et espaces. Cahier de
recherche linguistique, 6.

Amit Dubey, Patrick Sturt, and Frank Keller. 2005.
Parallelism in coordination as an instance of syntac-
tic priming: Evidence from corpus-based modeling.
In HLTC and CEMNLP, Vancouver.

S. Dulucq and L. Tichit. 2003. RNA Secondary
Structure Comparison: Exact Analysis of the Zhang-
Shasha Tree Edit Algorithm. Theoretical Computer
Science, 306(1-3):471–484.

N. Hernandez and B. Grau. 2005. Détection au-
tomatique de structures fines du discours. In TALN,
France.

J. R. Hobbs and A. Kehler. 1997. A theory of paral-
lelism and the case of vp ellipsis. In ACL.

M. Kouylekov and B. Magnini. 2005. Recognizing
Textual Entailment with Tree Edit Distance Algo-
rithms. PASCAL Challenges on RTE.

I. Kruijff-Korbayová and G.-J. M. Kruijff. 1996. Iden-
tification of topic-focus chains. In DAARC, vol-
ume 8, pages 165–179. University of Lancaster, UK.

C. Luc, M. Mojahid, J. Virbel, Cl. Garcia-Debanc, and
M.-P. Péry-Woodley. 1999. A linguistic approach
to some parameters of layout: A study of enumera-
tions. In AAAI, North Falmouth, Massachusets.

W. C. Mann and S. A. Thompson. 1987. Rhetori-
cal structure theory: A theory of text organisation.
Technical report isi/rs-87-190.

K. M. Summers. 1998. Automatic Discovery of Logi-
cal Document Structure. Ph.D. thesis, U. of Cornell.

R.A. Wagner and M.J. Fischer. 1974. The String-to-
String Correction Problem. Journal of the ACM,
21(1):168–173.

K. Zhang and D. Shasha. 1989. Simple fast algo-
rithms for the editing distance between trees and
related problems. SIAM Journal on Computing,
18(6):1245–1262.

288

