
Integrating Natural Language Generation
with XML Web Technology

Graham Wilcock
University of Helsinki

00014 Helsinki, Finland
graham.wilcock@helsinki.fi

Abstract

The paper describes a software demo
integrating Natural Language Genera-
tion (NLG) techniques with recent de-
velopments in XML web technology.
The NLG techniques include a form of
template-based generation, transforma-
tion of text plan trees to text specifi-
cation trees, and a multi-stage pipeline
architecture. The web technology in-
cludes XSLT transformation processors,
an XML database, a Java servlet engine,
the Cocoon web publishing framework
and a Java speech synthesizer. The soft-
ware is all free, open-source.

1 Introduction

XML-based techniques for natural language gen-
eration are described by Wilcock (2001), based on
practical experience in developing an XML-based
generation component for a spoken dialogue sys-
tem (Jokinen and Wilcock, 2001).

The basic approach in the earlier work was to
construct a pipeline of XSLT transformations cor-
responding to the different NLG processing tasks.
The current work extends this by putting the XSLT
pipelines inside an Apache Cocoon XML server,
and by putting the lexicon in an Apache Xindice
native XML database. Also, the earlier speech
synthesizer is replaced by FreeTTS, a speech syn-
thesizer implemented in Java. Some of these ex-
tensions are described by Wilcock (2002).

The paper is organised as follows. Section 2
briefly summarizes the main tasks of NLG and
Section 3 then describes how these tasks can be
implemented using recent XML web technology.

Section 4 gives details of a software demo based
on this approach, showing a concrete example.

2 Brief Summary of NLG

The most common design for NLG systems is a
pipeline architecture. The version described by
Reiter and Dale (2000) has the following modules
and tasks:

• Text Planning
—content determination
—discourse structuring

• Microplanning
—lexicalization
—referring expression generation
—aggregation

• Realization
—linguistic realization
—structure realization

The interface between text planning and micro-
planning is a text plan, a tree whose leaves are
domain-specific concept messages. The interface
between microplanning and realization is a text
specification, another tree whose leaves are lin-
guistic phrase specifications. The various stages
of the NLG pipeline perform transformations on
the text plan tree and the text specification tree.

The status of template-based generation has
been debated by NLG researchers (Becker and
Busemann, 1999), but if it means "making exten-
sive use of a mapping between semantic structures
and representations of linguistic surface structures
that contain gaps" (van Deemter et al., 1999), then
it is a good way to create initial text plan trees that
contain gaps to be filled later when the concept
messages are turned into phrase specifications in
the text specification tree.

247



3 XMLWebTechnology

As described by Wilcock (2001), XML-based
NLG can be performed by a sequence of XSLT
transformations. Template-based generation of the
initial text plan tree can be done by XSLT tem-
plates. Subsequent transformations of the text plan
tree during microplanning can be done by spe-
cialised XSLT transformations to produce the text
specification tree.

Java-based XSLT processors such as Xalan
(Apache XML Project, 2003c) can be embedded
in Java servlets and executed in a servlet engine
such as Tomcat (Apache Jakarta Project, 2003).
Moreover, it is now possible to embed complete
sequences of XSLT transformations, organised as
pipelines, inside Cocoon (Apache XML Project,
2003b). Cocoon runs as a web application inside
Tomcat, and offers high-performance XSLT pro-
cessing and scalability.

As Cocoon supports re-configurable pipelines
of XSLT transformations, pipelines for different
NLG requirements can be set up. For example,
Finnish and English generation pipelines can in-
clude the same XSLT transforms for text planning
stages which are domain-specific, but have differ-
ent sequences of transforms in the microplanning
and realization stages which are language-specific
(Wilcock, 2002).

The Apache Xindice native XML database
(Apache XML Project, 2003a) also runs as a web
application in Tomcat, and can be used together
with Cocoon. Xindice provides suitable support
for a lexicon in XML form, which can be indexed
to meet different processing requirements. For
generation, words can be indexed by concepts in-
stead of by spelling.

FreeTTS (Sun Microsystems, 2002) is a speech
synthesizer implemented in Java, which accepts
JSML, Java Speech Markup Language (Sun Mi-
crosystems, 1999). Because it is Java-based
FreeTTS can be embedded in Java servlets, and as
JSML is XML-based the XSLT pipelines can eas-
ily produce JSML output. However, the current
version of FreeTTS has some restrictions: JSML
markup is accepted but not actually applied to
the speech output, and there are only English and
MBROLA voices.

4 The Demonstration System

The demonstration system performs bilingual gen-
eration of responses, in Finnish and English, as
part of a Helsinki bus timetable enquiry system.
The responses depend on the dialogue context
and can vary from full sentences to short ellipti-
cal phrases. The system demonstrates only gen-
eration - it does not include speech recognition,
language understanding or dialogue management
components.

4.1 Input: an Agenda

The starting point is an agenda, a set of concepts
marked with Topic and NewInfo tags as explained
by Jokinen and Wilcock (2001). In the dialogue
system this is given by the dialogue manager. In
the demo, a number of different starting agendas
are provided, and their contents can be changed as
desired.

<AG id="AG1" type="transcription"
timeline="Timeline1"›

<Anchor id="AG1 anchor1" offset="1"/>
<Anchor id="AG1_anclior2" offset="2"/>
<Annotation id="AG1 ann1" type="Concept"
start="AGl_anchorl" end="AGanchor2"›
<Feat name="score">0.0123</Feat>
<Feat name="name">route</Feat>
<Feat name="status">new-info</Feat>
<Feat name="yalue">81</Feat>

</Annotation>
<Annotation id="AG1_ann2" type="Concept"

start="AG1 anchor1" end="AG1 anchor2"›
<Feat name="score">0.0123</Feat>
<Feat name="name">time</Feat>
<Feat name="status">new-info</Feat>
<Feat name="yalue">11:37</Feat>

</Annotation>
<Annotation id="AG1_ann3" type="Concept"
start="AGl_anchor1" end="AGanchor2"›
<Feat name="score">0.1234</Feat>
<Feat name="name">place</Feat>
<Feat name="constr">depart</Feat>
<Feat name="status">topic</Feat>
<Feat name="yalue">herttoniemenranta
</Feat>

</Annotation>
</AG>

Figure 1: An Agenda

The agenda is represented in the full dialogue
system as an annotation graph (Bird et al., 2001),
as in Figure 1. This example shows an agenda for
a response following the enquiry When does the

248



next bus leave from Herttoniemenranta? The con-
cept for departure place is marked as topic, and
the concepts for route number and departure time
are marked as new information. The response,
which will be generated step-by-step in the next
few sections, will be Number 81 leaves from there
at 11:37.

4.2 Text Planning

In text planning, the content determination stage
simply extracts the concepts from the annotation
graph. Because the dialogue manager has already
decided the relevant concepts and put them in the
agenda, no other content determination is needed.

The discourse structuring stage creates a text
plan tree using the form of template-based genera-
tion described by Wilcock (2001). In the dialogue-
oriented system, the text plan is called a response
plan.

<ResponsePlan>
<Message>

<type>NumFromDepMsg</type>
<concept info="NewInfon>

<type>bus-number</type>
<value>81</value>

</concept>
<concept info="NewInfon>

<type>departure-time</type>
<value>11:37</value>

</concept>
<concept info="Topicn>

<type>departure-place</type>
<value>herttoniemenranta</value>

</concept>
</Message>

</ResponsePlan>

Figure 2: A Text Plan (Response Plan)

The text plans are XML tree structures contain-
ing variable slots, which will be filled in later by
the microplanning stages. In the text planning
stage, the concepts from the agenda are copied di-
rectly into the appropriate slots. So in Figure 2,
the concepts are the same as in Figure 1, only the
format has changed.

Note that in this example there is only one
message, which is typical in spoken dialogue re-
sponses. In multi-paragraph text generation there
would be large numbers of messages. Note also
that the departure place is Topic, and the bus num-
ber and time are NewInfo.

In the demonstration system, tracing can be
switched on so that the text plan is displayed.

4.3 Microplanning

The processing during microplanning is done by
a sequence of XSLT transformations, as described
by Wilcock (2001). The text plan tree is replaced
by a text specification tree, here called a response
specification.

At later stages of the pipeline, further informa-
tion is added to the tree or nodes in the tree are
replaced by new nodes. In the referring expres-
sion stage of microplanning, domain concepts are
replaced with linguistic referring expressions.

<ResponseSpec>
<PhraseSpec>
<head>leave</head>
<subject>
<head>number</head>
<attribute>81</attribute>

</subject>
<adverbial>

<advtype>from-place</advtype>
<head>from</head>
<object>

<head>there</head>
</object>

</adverbial>
<adverbial>

<advtype>at-time</advtype>
<head>at</head>
<object>

<attribute>11:37</attribute>
</object>

</adverbial>
</PhraseSpec>

</ResponseSpec>

Figure 3: A Text Specification

In the text specification in Figure 3 the concepts
of Figure 2 have been replaced by linguistic spec-
ifications. In the lexicalization stage, the <head>
words are inserted with their dependents, using a
form of head-dependency structure.

In the referring expressions stage, the departure-
place concept which was marked as Topic in
Figure 2 has been pronominalized as there. If
the same departure-place concept were marked as
NewInfo, it would be realized by the actual text
value of the departure placename.

In the demonstration system, tracing can also be
switched on so that the generated text specification
is displayed.

249



4.4 Realization

The realization stage produces output which is
marked up in Java Speech Markup Language (Sun
Microsystems, 1999).

<jsml lang="enn>
<div type="sentn>

number
<sayas class="numbern>81</sayas>
leaves from there at
<sayas class="timen>11:37</sayas>

</div>
</jsml>

Figure 4: Speech Markup

In Figure 4, the <head> words of Figure 3
provide the main content. The speech markup is
rather simplistic: < di v type="sent"> marks
sentence boundaries, < s ayas="number"> tells
the speech synthesizer that "81" should be pro-
nounced "eighty-one" not "eight one".

The JSML output is passed to the FreeTTS
speech synthesizer (Sun Microsystems, 2002)
which produces the spoken response, in this case
Number 81 leaves from there at 11:37.

5 Conclusion

The demonstration framework shows natural lan-
guage generation techniques closely integrated
with recent developments in XML web technology
(Xalan XSLT processors, Apache Xindice native
XML database, Tomcat servlet engine, Cocoon
web publishing framework, and FreeTTS speech
synthesizer). The software is all free, open-source,
and implemented in Java.

Using Cocoon, it is possible to modify an XSLT
transformation stylesheet and see the effect imme-
diately. The framework described here can there-
fore be used as a development environment for
XML-based NLG applications.

By switching on tracing to display the interme-
diate text plan and text specification, the approach
can also be used to teach natural language genera-
tion concepts.

The approach is being further developed.

References

Apache Jakarta Project. 2003. Tomcat (latest version).
http://jakarta.apache.org/tomcat/.

Apache XML Project. 2003a. Apache Xindice.
http://xml.apache.org/xindice/.

Apache XML Project. 2003b. Cocoon (latest version).
http://xml.apache.org/cocoon/.

Apache XML Project. 2003c. Xalan-Java (latest ver-
sion). http://xml.apache.org/xalan-j/.

Tilman Becker and Stephan Busemann, editors. 1999.
May I Speak Freely? Between Templates and Free
Choice in Natural Language Generation. Proceed-
ings of the KI-99 Workshop. DFKI, Saarbrficken.

Steven Bird, Kazuaki Maeda, and Xiaoyi Ma. 2001.
AGTK: The annotation graph toolkit. In IRCS Work-
shop on Linguistic Databases, Philadelphia.

Kristiina Jokinen and Graham Wilcock. 2001.
Confidence-based adaptivity in response generation
for a spoken dialogue system. In Proceedings of the
2nd SIGdial Workshop on Discourse and Dialogue,
pages 80-89, Aalborg, Denmark.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press.

Sun Microsystems. 1999. Java Speech
Markup Language Specification, version
0.6. http: //java.sun.com/products/java-media/
speech/forDevelopers/JSML.

Sun Microsystems. 2002. FreeTTS: A speech synthe-
sizer written entirly in the Java programming lan-
guage. http://freetts.sourceforge.net/.

Kees van Deemter, Emiel Krahmer, and Mariet The-
une. 1999. Plan-based vs. template-based NLG: A
false opposition? In Becker and Busemann (1999),
pages 1-5.

Graham Wilcock. 2001. Pipelines, templates and
transformations: XML for natural language genera-
tion. In Proceedings of the 1st NLP and XML Work-
shop, pages 1-8, Tokyo.

Graham Wilcock. 2002. XML-based Natural Lan-
guage Generation. In Towards the Semantic Web
and Web Services: XML Finland 2002 Slide Presen-
tations, pages 40-63, Helsinki.

250


	Page 1
	Page 2
	Page 3
	Page 4

