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Abstract

Research on the discovery of terms from
corpora has focused on word sequences
whose recurrent occurrence in a corpus
is indicative of their terminological sta-
tus, and has not addressed the issue of
discovering terms when data is sparse.
This becomes apparent in the case of
noun compounding, which is extremely
productive: more than half of the candi-
date compounds extracted from a corpus
are attested only once. We show how ev-
idence about established (i.e., frequent)
compounds can be used to estimate fea-
tures that can discriminate rare valid
compounds from rare nonce terms in ad-
dition to a variety of linguistic  features
than can be easily gleaned from corpora
without relying on parsed text.

1 Introduction

The nature and properties of compounds have
been studied at length in the theoretical linguistics
literature. It is a well-known fact that compound
noun formation in English is relatively produc-
tive (see (1)). Although compounds are typically
binary (see (1a,b)), they can be also longer than
two words (see (le)). Compounds are commonly
written as a concatenation of words (see (1a,b)), or
as single words (see (lc)), sometimes a hyphen is
also used (see (le)).

income tax
AT & T headquarters
bathroom
public-relations
income-tax relief

The use of noun compounds is frequent not
only in technical writing and newswire text
(McDonald, 1982) but also in fictional prose
(Leonard, 1984), and spoken language (Liberman
and Sproat, 1992). Novel compounds are used as

a text compression device (Marsh, 1984), i.e., to
pack meaning into a minimal amount of linguistic
structure, as a deictic device, or as a means to clas-
sify an entity which has no specific name (Down-
ing, 1977).

Computational investigations of compound
nouns have concentrated on their automatic ac-
quisition from corpora, syntactic disambiguation
(i.e., determine the structure of compounds like
income tax relief), and semantic interpretation
(i.e., determine the semantic relation between in-
come and tax in income tax). The acquisition of
compound nouns is usually subsumed under the
general discovery of terms from corpora. Terms
are typically acquired by either symbolic or sta-
tistical means. Under a symbolic approach, can-
didate terms are extracted from the corpus us-
ing surface syntactic analysis (Lauer, 1995; Juste-
son and Katz, 1995; Bourigault and Jacquemin,
1999) and sometimes are further submitted to ex-
perts for manual inspection. The approach typi-
cally assumes no prior terminological knowledge,
although Jacquemin (1996) proposed the detection
of terminological variants in a corpus by making
use of lists of existing terms.

The main assumption underlying the statistical
approach to term acquisition is that lexically as-
sociated words tend to appear together more of-
ten than expected on the basis of their individual
occurrence frequencies. Once candidate terms are
detected in the corpus, statistical tests (e.g., mu-
tual information, the log-likelihood ratio) are used
to determine which co-occurrences are valid terms
(see Daille, 1996 and Manning and Schiitze, 1999
for overviews).

Most of the statistical tests proposed in the lit-
erature rely on the fact that candidate terms will
occur frequently in the corpus (Justeson and Katz,
1995) or, when hypothesis testing is applied, on
the assumption that two words form a term when
they co-occur more often than chance (Church and
Hanks, 1990). This means that statistical tests can-
not be applied reliably for candidate compounds
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CoocF 	 BNC 	 Sample Ace
>4 52,832 800 93.5
> 1 160,214 800 82.0
> 1 510,673 800 71.0
= 1 350,459 800 57.7

Table 1: Relation of noun co-occurrence frequency
with accuracy

with co-occurrence frequency of one and can-
not be used to distinguish rare but valid noun
compounds from rare but nonce noun sequences
(compare (2b) and (2a) which are extracted from
the British National Corpus; both bracketed terms
were found in the corpus once.).

(2) a. Although no one will doubt their possibilities
for elegance and robustness, sitting on a solid
[woodN seatN1 can test the limits of comfort af-
ter quite a short time and woven seats are little
better.

b. The use of the [termN shilling] derives from a
19th century system of invoicing beer according
to its gravity.

In this paper we present a method that attempts
to distinguish compounds from non-compounds in
cases where very little direct evidence is found in
the corpus and therefore the assumptions under-
lying lexical association scores do not hold. We
restrict our attention to compounds formed by a
concatenation of two nouns (see (1a)) and investi-
gate how surface syntactic and semantic cues can
be used to discriminate valid compounds from rare
nonce terms.

2 Compound Noun Extraction

The extraction of two word compounds (as op-
posed to terms) from a corpus has been previously
addressed by Lauer (1995) who proposed a heuris-
tic which simply looks for consecutive pairs of
nouns which are neither preceded nor succeeded
by a noun (see (3)).

(3) C = {( 4'2, w3) WI W2 W3 W4; , w4 CZ N; W2, W3 E

Here, wi w2 1423 1424 denotes the occurrence of a se-
quence of four words in the corpus and N is a pre-
defined set of unambiguous nouns. Lauer (1995)
used a corpus derived from the Grolier Multime-
dia Encyclopedia (8M words) for his study and a
predefined list of 90,000 nouns which had no part-
of-speech ambiguity. He reports an accuracy of
97.9% on a sample of 1,068 noun-noun sequences.
Note that the above heuristic incorrectly classifies
(2b) as a valid compound.

We replicated Lauer's (1995) study on the
British National Corpus (BNC), a 100 million

word collection of samples of written and spo-
ken language from a wide range of sources de-
signed to represent a wide cross-section of cur-
rent British English (Burnard, 1995). An impor-
tant difference, however, between our study and
Lauer's is that we used a POS-tagged version of
the BNC. Noun sequences were identified using
Gsearch (Corley et al., 2001), a chart parser which
detects syntactic patterns in a tagged corpus by
exploiting a user-specified context free grammar
and a syntactic query. Gsearch was run on a lem-
matised version of the BNC in order to compile
a comprehensive count of all nouns occurring in
a head-modifier relationship. Tokens containing
noun sequences of length two were classified as
candidate compounds unless: (a) the two consecu-
tive nouns were preceded or succeeded by a noun
(e.g., light bulb phobia, see (3)) and (b) either noun
was a number (e.g., flour 100g). This procedure
resulted in a total of 1,624,915 tokens consisting
of 510,673 distinct types of candidate compounds.

We evaluated Lauer's (1995) heuristic as fol-
lows: 800 tokens were randomly selected from the
noun-noun sequences that were classified as com-
pounds; accordingly, a random sample of 800 to-
kens was selected from the sequences that were
discarded as non-compounds (in order to examine
whether valid compounds are missed). The noun
sequences contained in the samples were manually
inspected within context using the corpus concor-
dance tool Xkwic (Christ, 1995) and classified as
to whether they formed a valid compound or not.
Lauer's heuristic expectedly achieved a lower ac-
curacy on the POS-tagged corpus. This was 71%
using cLAws4 (Leech et al., 1994), a probabilis-
tic part-of-speech tagger, with error rate rang-
ing from 3% to 4% and 70.3% using Elworthy's
(1994) HMM part-of-speech tagger, with an error
rate of approximately 4%. The heuristic reached
an accuracy of 98.8% in rejecting noun sequences
as non-compounds.

We further examined how the accuracy of the
heuristic varies when different thresholds are im-
posed on the frequency of the candidate com-
pounds (see Table 1). For example, when we con-
sider noun-noun sequences that appear in the BNC
more than once (CoocF > 1) the heuristic's accu-
racy is increased by 11.0%. However, the number
of potential compounds is reduced by a factor of
three. The majority of the candidate compounds
extracted from the corpus are hapaxes (i.e., words
that occurred only once). These represent 68.6%
of the noun-noun sequences retrieved from the
BNC; 57.7% of the hapaxes are valid compounds.
Analysis of the misclassifications in the case of
hapaxes revealed that 61.9% are tagging errors

236



f (n1)
	

f (n2)
	

p(K n1 )
	

P(M112)
	

f (c , (72) 1

cocaine customer 71 159 1 .18 285.85
baby calf 740 22 .91 .15 35.13
people excitement 1,823 9 .45 1 4.98
may push 0 35 0 .43 76.93

Table 2: Feature values for noun-noun sequences (with CoocF 1)

(i.e., if tagging was perfect these sequences would
have been excluded), 30.6% are due to the absence
of structural information (i.e., they would have
been ruled out if accurate parsing information was
available), 5.30% are acronyms, and 2.20% are
foreign terms or typographical mistakes.

In the next sections we turn to hapaxes and
propose a method that distinguishes valid com-
pounds from nonce noun sequences by modeling
the distributional tendencies observed in lexical-
ized (i.e., frequent) compounds. In Section 3 we
present and motivate these features. Section 4 de-
tails our machine learning experiments and Sec-
tion 5 discusses our results.

3 Features for Discovering Compounds

In this section we introduce the features used in the
machine learning experiments described in Sec-
tion 4 and the motivation behind their selection.
In our experiments we make use of numeric fea-
tures (i.e., frequency, probability) as well as cate-
gorical features (i.e., the context surrounding can-
didate noun-noun sequence). All the numeric fea-
tures detailed below were estimated from a corpus
consisting of noun-noun sequences extracted from
the POS-tagged BNC (via Lauer's 1995 heuristic)
with CoocF greater than four (52,832 in total, see
Table 1). 93.5% of these sequences are valid com-
pounds and can therefore provide reliable infor-
mation about the likelihood of a given noun as a
compound head or modifier.

Noun frequency. Given a noun-noun sequence
ni n2 we look at whether the frequency of the
head n2, f (n2), or the frequency of the modifier
ni, f (ni), are reliable indicators for distinguishing
compounds from non-compounds. Consider for
example the compound cocaine customer which is
attested in the BNC only once. The word cocaine
is attested as a modifier 71 times and the word cus-
tomer is attested as a head 159 (see Table 2). Com-
pare now cocaine customer to people excitement
which is not a valid compound and is also found
in the BNC once (the sequence is attested in the
sentence For some people excitement is only pos-
sible outside marriage.). The modifier frequency
f (people) is 1,823 whereas the head frequency

f (excitement) is nine. Clearly, excitement is less
likely to be a compound head when compared to
customer (see Table 2).

Probability. Given a noun-noun sequence ni n2
we investigate whether it is likely for n2 to be a
head and for fli to be a modifier. We express these
quantities as follows:

P(Mln2) = 
f(M 7) (4)

f (ni,H)
P(1-1 1n1) = f(no (5)

Here, f(M,n2) = En, f (ni ,n2) and f(ni ,H) =
f (ni n2) . Equation (4) expresses the likeli-

hood of n2 as a head (preceded by any noun mod-
ifier) and equation (5) expresses the likelihood of
ni as a modifier (followed by any noun head). We
estimate f (M, n2) and f (n H) from the reliable
noun-noun sequences attested previously in the
corpus (CoocF > 4). The frequencies f (ni) and
f (n2) are the number of times we see ni and n 2 in
our estimation corpus independently of their posi-
tion (i.e., independently of whether they are heads
or modifiers).

Consider the compounds cocaine customer and
baby calf in Table 2. The likelihood of the words
cocaine and baby to be found in a modifier posi-
tion is very high (1 and .91, respectively). Contrast
this with the sequence may push which is the re-
sult of a tagging mistake (i.e., both may and push
are annotated as nouns in the sentence Their dif-
ferent responsibilities in relation to the public may
push them in opposite directions): the likelihood
of the word may to be found in a modifier posi-
tion is zero. Note further that push can be a noun
(denoting the act of pushing) and therefore it is
not entirely unlikely to be found in a head position
(see Table 2). Note also that the fact that may push
is classified as a potential compound indicates that
the preceding word public was mistagged as well.

Concept frequency. Linguistic models of com-
pound noun formation typically involve a hierar-
chical structure of lexical rules, which capture the
regularities of compound noun formation while
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(ci,c2) f(c],c2) Examples

(substance, obj ect) 604.7 iron table
(act, social group) 403.0 mining family
(entity, location) 382.4 girls school
(group. relation) 267.6 world language
(communication, act) 231.1 speech treatment
(person, artef act) 162.1 developer's kit
(institution, person) 38.7 bank spokesman

Table 3: Estimated concept pair frequencies

also ruling out certain compounds as candidates
(Pustejovsky, 1995; Copestake and Lascarides,
1997). Each lexical rule takes a pair of nouns of
certain semantic type as input, and the output of
the rule is a compound noun whose semantic rep-
resentation stipulates the relation between a mod-
ifier and its head. For example, the compounds
metal tube, leather belt and tin cup are the result
of a lexical rule that combines a noun denoting a
substance and a noun denoting an artefact to yield
a compound denoting the artefact made of the sub-
stance.

The noun frequency and probability features do
not capture meaning regularities concerning the
compounding process. For example, we would ex-
pect the combination of the concepts representing
cocaine and customer to be more likely than the
combination of the concepts representing people
and excitement. A way to obtain such likelihoods
is by substituting the head and modifier by the con-
cepts with which they are represented in a taxon-
omy. The frequency of the concept pair f (c , c2)
could then be estimated by counting the number
of times ci corresponding to n I was observed as
the modifier of c2 corresponding to the head nz.
Concept combination frequencies can be thought
of as potential lexical rules which capture regular-
ities and constraints on noun compound formation.

Counting concept frequencies would be a
straightforward task if each word was always rep-
resented in the taxonomy by a single concept or if
we had a corpus of compounds labeled explicitly
with taxonomic information. Lacking such a cor-
pus we need to take into consideration the fact that
words in a taxonomy may belong to more than one
conceptual class. Nouns in WordNet (Miller et al.,
1990) correspond to an average of 11.5 concepts
(the word return belongs to 104 distinct concep-
tual classes), whereas nouns in Roget's thesaurus
correspond to an average of 1.7 concepts (the word
point has 18 distinct concepts). Because a head or
a modifier can generally be the realization of one
of several conceptual classes, counts of modifier-
head configurations must be constructed for all po-
tential concept combinations.

To give a concrete example consider again the
compound cocaine customer. The word cocaine
has one sense in WordNet and belongs to six
conceptual classes ((hard drug), (narcotic),
(drug), (artef act), (object), (entity)). The
word customer has also one sense in Word-
Net and belongs to five conceptual classes
((consumer), (person), (life form), (causal
agent), (entity)). Since we do not know which
particular instantiation of these conceptual classes
cocaine and customer are, we will distribute the
attested frequency of cocaine customer over all
pairwise concept combinations. We formally de-
fine the set of concept combinations as follows:

c(ni,n2) = {(c i ,ci) c i E classes(ni), (6)

c i e class es(n2), cil

Here, c(n i ,n2) is the set of distinct concept
pairs a given noun-noun sequence is an in-
stantiation of. Note that we impose a restric-
tion on the type of concept pairs we generate,
namely we disallow pairs with identical concepts
(see (6)). The motivation for this restriction is
twofold: first, we want to avoid overly general
concept pairs that could potentially represent any
noun-noun combination (e.g., (entity, entity),
(artef act, artef act)); second, it is implicitly
assumed in the theoretical linguistics literature
(Levi, 1978) that compounds are derived through
combinations of distinct concepts l .

For each compound in our corpus we
generate the set of concept pairs it is po-
tentially an instantiation of. The com-
pound cocaine customer generates 29 con-
cept pairs (e.g., (art ef act, consumer),
(artef act, person)). We estimate the fre-
quency of a concept pair f(ci , c2) by summing
over all noun-noun sequences n i n2 that are repre-
sentative of the concept combination (c , c2) . We
divide the contribution of each compound nin2 by
the number of concept combinations it represents
(Resnik, 1993; Lauer, 1995):

Ani,112)
f(ci,c2) (7)

c(ni,n2)1(nl,n2)0-1;c2 /

Here, f(ni,n2) is the number of times a given
noun-noun sequence was observed in the esti-
mation corpus and Ic(n i ,n2)1 is the number of
conceptual pairs nin2 has. Assuming that we
want to take the compound cocaine customer
into account for estimating the frequency of the

I Dvanda or appositional compounds (e.g., mother child,
player coach) are a notable exception.
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f (c, ,c2)

f(n,n 12) = 
Kc1.c2)e c (n t 'W2)

i I c (nti n2' )1
(8)

concept pair (art ef act, person, we will in-
crement the observed co-occurrence count of
(artef act, person) by 2+9 , since cocaine cus-
tomer is represented by 29 distinct concept pairs.
Table 3 shows a random sample of the derived con-
cept pairs and their estimated frequencies.

Assume now that we want to decide whether the
sequence people excitement is a valid compound
or not. We generate all pairs of conceptual classes
represented by people excitement (see (6)). The
word people has four senses and belongs to 6 con-
ceptual classes; excitement has also four senses
and belongs to 15 classes. This means that people
excitement is potentially represented by 90 con-
cept pairs (people and excitement have no con-
cepts in common), the frequency of which can be
estimated from our corpus of valid compounds us-
ing (7). Since we do not know the actual classes
for the nouns people and excitement in the cor-
pus, we weight the contribution of each class pair
by taking the average of the estimated frequencies
for all 90 class pairs:

As shown in Table 2 people excitement is much
less likely than cocaine customer. Also note that
may push is considered fairly likely (in fact more
likely than baby calf which is a valid compound)
since both May and push can be nouns and are
listed as such in the WordNet taxonomy. The es-
timation of the concept frequencies in (7) relies
on the simplifying assumption that a given noun
is equally likely to be represented by any of its
conceptual classes. As a result, the occurrence fre-
quency of a compound is evenly distributed across
all possible concept combinations representing the
nouns forming the compound, since we cannot as-
sess (without access to a corpus annotated with
class information) which concept combinations
are likely and which are not.

Context. Although the numerical features de-
scribed above encode important information with
respect to modifier-head relations and their prop-
erties, they are blind to contextual information that
could potentially make up for tagging errors or
the lack of structural information. Consider again
the noun-noun sequence may push from Table 2,
which is attested in sentence (9a). In this case, the
context strongly indicates that may push is not a
compound given that push is followed by a per-
sonal pronoun (personal pronouns typically pre-
cede compound nouns but never follow them).

We encode contextual information as the words
preceding and succeeding the noun-noun sequence
in question. In order to capture grammatical and
syntactic dependencies we reduce words to their
parts of speech and encode their positions to the
left or right of the candidate compound. An ex-
ample of this type of feature-encoding is given
in (9b) which represents the context surround-
ing may push in sentence (9a). The feature-vector
in (9b) consists of the candidate compound may
push, represented by its parts of speech (NN1 and
NN1, respectively) and a context of four words to
its right and four words to its left, also reduced to
their parts of speech. 2

(9) a. Their different responsibilities in relation to the
public may push them in opposite directions.

b. [NN2, PRP, ATO, AJO, NN1, NN1, PNP, PRP, AJO,

NN 2]

In the following we explore how the two types
of features (i.e., numerical and categorical) per-
form independently as well as in combination.

4 Experiments

4.1 Machine Learning

The different features were combined using the
C4.5 decision tree learner (Quinlan, 1993). Deci-
sion trees are among the most widely used ma-
chine learning algorithms. They perform a general
to specific search of a feature space, adding the
most informative features to a tree structure as the
search proceeds. The objective is to select a min-
imal set of features that efficiently partitions the
feature space into classes of observations and as-
semble them into a tree. For our experiments, the
classification is binary, a noun-noun sequence is
a compound or not. For comparison we also re-
port the performance of the Naive Bayes classifier
(Duda and Hart, 1973). The latter classifier does
not perform a search through the feature space in
order to build a model for classifying future exam-
ples. Instead all features are included in the clas-
sification. The learner is based on the simplifying
assumption that each feature is conditionally inde-
pendent of all other features, given the class of a
given noun-noun sequence. We use the Weka (Wit-
ten and Frank, 2000) implementations of the C4.5
decision tree and Naive Bayes learner.

The classifiers were trained and tested using
10-fold cross-validation on 1,000 noun-sequences
which were attested in the BNC only once. The

2The part-of-speech NN1 stands for singular common
nouns, NN2 stands for plural common nouns, ATO stands for
determiners, PRP for prepositions, PNP for pronouns, and AJO
for adjectives.
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data was annotated by two judges. They were in-
structed to decide whether a noun-noun sequence
is a compound or not and given a page of guide-
lines but had no prior training. The candidate com-
pounds were classified in context: the judges were
given the corpus sentence in which the noun-noun
sequence occurred together with the previous and
following sentence. Using the Kappa coefficient
(Cohen, 1960) the judges' agreement 3 on the clas-
sification task was K = .80 (N = 1000,k = 2). This
translates into a percentage agreement of 89%.

4.2 Experimental Results

Table 4 shows how accuracy varies when the
learners (decision tree (DT) and Naive Bayes
(NB)) use individual numeric features. For the
concept frequency feature we experimented with
two hierarchies, Roget's thesaurus and WordNet.
As can be seen in Table 4 the best feature is con-
cept frequency using WordNet (fm,(n 1 ,n2 )), with
an accuracy of 66.7% (for DT), a significant im-
provement over the baseline (p < .05) which was
measured as the most frequent class (i.e., com-
pound) in our data set (56.3%). Note that WordNet
outperforms Roget's thesaurus even though both
dictionaries contain taxonomic information. This
fact may be due to the size of the taxonomies.
WordNet contains twice as many noun entries as
Roget (47,302 versus 20,448). Another explana-
tion might be that Roget's thesaurus is too coarse-
grained a taxonomy for the task at hand (Ro-
get's taxonomy contains 1,043 concepts, whereas
WordNet contains 4,795).

We further examined the accuracy on the classi-
fication task when solely contextual features are
used. We evaluated the influence of context by
varying both the position and the size of the win-
dow of words (i.e., parts of speech) surrounding
the candidate compound. The window size param-
eter was varied between one and four words be-
fore and after the candidate compounds. We use
symbols 1 and r for left and right context, respec-
tively and number to denote the window size. For
example, 1 = 2, r = 4 represents a window of two
words to the left and four words to the right of the
candidate noun-noun sequence. Table 5 shows the
performance of the two classifiers for some of the
contextual feature sets we examined.

Good performances are attained by both learn-
ers. For DT, the best accuracy (69.1%) is obtained
with windows of three or four words to the left
of the candidate noun-noun sequence (see / = 4
and 1 = 3 in Table 5). NB performs best (70.8%

3 Cases of disagreement were excluded from the data on
which the classifiers were trained and tested.

and 69.8%) with small window sizes (see / = 1,
and 1 = 1, r = 1 in Table 5). All three perfor-
mances are a significant improvement over the
baseline (p < .05). In general, better performance
is achieved when one type of context is used (ei-
ther left or right) instead of their combination
(with the exception of 1 =1, r = 1 and 1 = 2, r = 1
for NB). Our results suggest that even though con-
text is encoded naively as parts of speech without
preserving any structural or semantic knowledge,
it retains enough information to distinguish com-
pounds from non-compounds. This is an impor-
tant result given that the best numerical predictor
(i.e., f,,(ni,n2)) relies heavily on taxonomic in-
formation. The contextual features are straightfor-
ward to obtain—all we need is a concordance of
the candidate compound annotated with parts of
speech.

Table 6 shows various combinations of numeric
features, but also the interaction between numeric
and contextual features. Again, we report some
(i.e., the most informative) of the feature sets we
examined When only numeric features are used,
the best accuracy for DT is attained with the com-
bination of fwn (ni,n2) with P(1-11n1) (67.3%) or
with f„(ni,n2) (67.4%). Similar accuracies are
obtained when fw, (ni , n2) is combined with two
or three features (see Table 6). For the NB classi-
fier, the best overall accuracy (72.3%) is attained
for the feature set ff,,,(ni, n2), P(1-11n1), 1 = 11.
This set of features yields signifiant improvement
over the baseline (p < .05) and outperforms any
other feature combinations including any other
pairings with contextual information.

The DT learner's performance is consistently
better when numeric features are combined with
contextual ones. For all feature combinations
shown in Table 6 the inclusion of context yields
better results and accuracies around 70%. Gen-
erally, a small context (e.g., 1 = 1 or r = 1)
yields better results (over a larger context) when
combined with numeric features. A smaller con-
text captures local syntactic dependencies such as
the fact that compound nouns are typically pre-
ceded by determiners, verbs, or adjectives and suc-
ceded by verbs, prepositions or function words
(e.g., and, or). On the other hand, widening the
context tends to proliferate global syntactic ambi-
guity making local syntactic dependencies harder
to learn. The DT learner achieves its best per-
formance (72.0%) for the feature sets {f(nt),
f (n2), P(I-11n1), f,„(ni. n2), f„(ni,n2), 1 = 2} and
fP(Mln2) , fwn(ni, n2), fro (ni,n2), f (ni), = 11.1t
is worth noting that the second best performance
(71.7%) is attained by the feature set {P
P(Mln2), / = 11. This is an important result given
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1-FeatuipETT-F-17137
Baseline 56.3 56.3
f(n1) 60.7 48.9
f (n2) 57.2 55.3
P(FFni ) 59.7 59.9
P(1\41/12) 61.6 60.0
f.n(n 1 .n2) 66.7 62.3
fro (ni, n2) 58.9 50.2

Table 4: Numeric Features

Features DT NB
Baseline 56.3 56.3
/ = 4 69.1 63.9
1 = 3 69.1 66.2
/ = 2 68.5 67.9
/ = 1 66.7 70.8
r = 4 64.7 65.0
r = 3 63.3 65.7
r = 2 64.3 66.6
r = 1 66.5 69.3
/ = 1, r = 1 63.4 69.8
1 = 2, r= 1 63.5 68.1
/ = 3, r = 1 65.1 66.2
/ = 2, r = 3 63.5 65.9
1 = 3, r = 4 63.5 63.3
1 = 2, r = 3 64.3 66.5
1 = 4, r = 4 65.3 62.8

Table 5: Categorical Features

Features DT NB
Baseline 56.3 56.3
f (n i ),P(M n2) 62.5 60.4
f (ni),P(M n2), 1 = 1 71.1 71.1
f (ni),P (M n2), r= 1 71.0 68.3
P(H ni ),P(M n2) 62.1 63.2
P(H ni),P(M n2), 1 = 1 71.7 69.9
P(H ni),P(M n2), r= 1 69.7 70.5
P(H ni ),fivn(ni ,n2) 67.3 63.9
P(H ni ),,iwn (ni , n2), / = 1 70.8 72.3
P(117/1),,fwn(ni,n2), r= 1 70.4 70.8
fwn(tli , /22),,f;v(nl , n2) 67.4 55.0
.f,,,(ni,n2),.f10(ni,n2), 1 = 1 71.5 65.6
firn(ni,n2),fro(ni,n2), r= 1 71.4 66.5
fwn(n 1 ,n2),,fro (ni n2), f (n1) 67.0 53.7
f,,,(ni,n2),fro(ni,n2), f (ni),1 = 1 70.4 65.0
,fwn(ni ,n2),fro(ni ,n2), f (ni),r = 1 70.3 65.5
P(M n2) , fwn (n 1 , n2) fro (n 1 , n2) 67.3 55.2
P(M n2) , f wn (n 1 , n2) , f ro (n 1 , n2 ) ,1 = 1 71.4 63.1
P(M n2),,lwri(ni , n2),,fro(ni ,n2),r = 1 71.4 67.0
P(M n2), f'w, (ni , n2),,fro (n 1 , n2),,f (1/1) 67.1 55.2
P(M n2), fwn (ni, n2), f ro (ni , n2) , f (n 1 ), 1 = 1 72.0 60.1
P(Kn2),Lvn(ni, n2),.fro(ni,n2),,f (n 2 ), r = 2 70.6 65.6
P(H n1),P(M n2),,f14 ,n(ni , n2) 'fro (n 1 , n2) 66.9 56.0
P(H ni ),P(M n2) , f,,,i (n 1 ,n2),fro(ni ,n2), 1 = 1 68.6 68.8
P( 1-Ini),P(Mn2),.fla/(ni, n2),f,-0 (ni .n2), r = 2 69.8 67.1
f (111),f (n2) ,P (fl ni),,fivn(ni ,n2),fro(ni ,n2) 66.9 55.3
f (ni),f (n2),P(H ni),f(ni ,n2),,f-o(ni. n2), 1 = 2 72.0 61.4
f (ni),f (n2),P(H ni), f,(ni , n2),,fro (ni . n2 ), r = 2 71.2 62.0
f (ni),f (n2),P(H ni ),P(M n2),,fivn(ni,n2),fro(ni,112) 66.7 54.9
f (ni),f (n2),P(H ni),P(M n2), fwn (ni ,n2),.fro(ni . n2), 1 = 1 70.5 64.3
f ( 111),.f ( 112) ,P(1171 1),P(m n2),,fwn (ni, n2), f;-0 (n 1, n2), r = 1 71.5 64.6

Table 6: Combination of numeric and categorical features

that these three features can be simply estimated
from the corpus without recourse to taxonomic in-
formation.

When compared, the two learners yield similar
performances. The NB classifier yields better re-
sults with smaller numbers of features, whereas
the DT's performance remains steadily good, pre-
sumably because the most informative features are
selected during the learning process.

5 Discussion

In this paper we focused on noun-noun sequences
for which little evidence is found in the cor-
pus and attempted to distinguish those which are
valid compounds from nonce terms. The auto-
matic acquisition of compound nouns (as opposed
to terms) from unrestricted wide-coverage text
has not received much attention in the literature.
Lauer's (1995) study was conducted on a cor-
pus exhibiting a uniform register and was further-
more biased in favor of syntactically unambigu-
ous nouns. It cannot therefore be considered rep-
resentative of part-of-speech tagged domain inde-
pendent text.

Our results are encouraging considering the
simplicity of the features we took into account

and the fact that no structural information was
used. Our experiments revealed that surface fea-
tures such as the frequency of the compound
head/modifier, the likelihood of a word as a
head/modifier, or the context surrounding a can-
didate compound perform almost as well as fea-
tures that are estimated on the basis of exist-
ing taxonomies such as WordNet. Our approach
achieved an accuracy of 72% on the compound de-
tection task. Although this performance is a signif-
icant improvement over the baseline (56.3%), it is
16.7% lower than the upper bound of 89% estab-
lished in our agreement study (see Section 4.1).
The task of deciding whether two nouns form a
compound or not crucially depends on a variety of
factors such as world-knowledge, the situation at
hand, and the speaker's and hearer's communica-
tive goals, none of which are directly represented
by our features. We demonstrated that a machine
learning approach can overcome the problem of
sparse data which is closely related to the produc-
tivity of compounding. In particular, by exploiting
information about frequent compounds or frequent
contexts (which can be easily retrieved from the
corpus) we can indirectly recreate evidence about
the likelihood of two nouns to form a valid com-
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pound without necessarily relying on parsed text.
Our approach is conceptually close to

Jacquemin (1996): in both cases a list of
terms is used for the acquisition task. The crucial
difference is that our approach does not pre-
suppose the availability of a list of established
terms external to the corpus for the acquisition to
take place. We rely solely on the corpus for the
discovery of reliable compounds (i.e., noun-noun
sequences with CoocF>4) from which our nu-
merical features are estimated. Another difference
is that we discover novel compounds, whereas
Jacquemin's (1996) method can only discover
variants of already existing terms.

In the future we plan to experiment with bet-
ter estimation schemes for the concept frequency
feature that are appropriate for finding the the
right level of generalisation in a concept hier-
archy (Clark and Weir, 2002) and with smooth-
ing techniques that directly recreate the frequen-
cies of word combinations. We will also investi-
gate in more depth the effect of context (repre-
sented as word-forms and word-lemmas) by tak-
ing into account bigger windows and use learners
that are particularly suited for handling large num-
bers of features (e.g., Support Vector Machines,
AdaBoost).
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