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Abstract

In this paper, we pursue a multi-
modular, statistical approach to WH de-
pendencies, using a feedforward net-
work as our modeling tool. The empiri-
cal basis of this model and the availabil-
ity of performance measures for our sys-
tem address deficiencies in earlier com-
putational work on WH gaps, which re-
quire richer sources of semantic and lex-
ical information in order to run. The
statistical nature of our models allows
them to be simply combined with other
modules of grammar, such as a syntactic
parser.

1 Overview

This paper concerns the phenomenon of WH de-
pendencies, a subclass of unbounded dependen-
cies (also known as A dependencies or filler-gap
structures). WH dependencies are structures in
which a constituent headed by a WH word (such
as "who" or "where") is found somewhere other
than where it belongs for semantic interpretation
and subcategorization.

A dependencies have played an important role
in syntactic theory, but discovering the location of
a gap corresponding to a WH phrase found in the
syntactic representation of a sentence is also of in-
terest for computational applications. Identifica-
tion of the syntactic gap may be necessary for in-
terpretation of the sentence, and could contribute
to a natural language understanding or machine
translation application. Since WH dependencies
also tend to distort the surface subcategorization
properties of verbs, identifying gaps could also aid

in automatic lexical acquisition techniques. Many
other applications are imaginable as well, using
the gap location to inform intonation, semantics,
collocation frequency, etc.

The contribution of this paper consists in the de-
velopment of a machine-learning approach to the
identification of WH gaps. This approach reduces
the lexical prerequisites for this task, while main-
taining a high degree of accuracy. In addition, the
modular treatment of WH dependencies allows the
model to be easily incorporated with many differ-
ent models of surface syntax. In ongoing work, we
are investigating ways in which our model may be
combined with a syntactic parser.

The idea that the task of associating a WH ele-
ment with its gap can be done in an independent
module of grammar is not only interesting for rea-
sons of computational efficacy. The fact of un-
bounded dependencies has played a central role in
the development of linguistic theory as well. It
has been used as an argument for the necessity of
transformations (Chomsky, 1957), and prompted
the introduction of powerful mechanisms such as
the SLASH feature of GPSG (Gazdar et al., 1985).
To the extent that these phenomena can be de-
scribed in an independent module of grammar, our
theory of the syntax of natural language can be ac-
cordingly simplified.

2 Previous Work

In theoretical linguistics, WH dependencies have
typically been dealt with as part of the syntax (but
cf. Kuno, Takami & Wu (1999) for an alterna-
tive approach). Early generative treatments used a
WH-movement transformation (McCawley, 1998)
to describe the relationship between a WH phrase
and its gap, while later work in the Government &
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Binding framework subsumes this transformation
under the general heading of overt A Movement
(Huang, 1995; Aoun and Li, 1993). Feature-based
syntactic formalisms such as GPSG use feature-
percolation mechanisms to transfer information
from the location in which a WH phrase is sub-
categorized for (the gap), to the location where it
is realized (the filler position) (Gazdar et al., 1985;
Pollard and Sag, 1994).

Most work in computational linguistics has fol-
lowed these theoretical approaches to WH depen-
dencies very closely. Berwick & Fong (1995) im-
plement a transformational account of WH gaps in
their Government & Binding parser, although the
grammatical coverage of their system is extremely
limited. The SRI Core Language Engine (Al-
shawi, 1992) incorporates a feature-based account
of WH gaps known as "gap-threading", which is
essentially identical to the feature-passing mecha-
nisms used in GPSG. Both systems require an ex-
tensive lexical database of valency information in
order to identify potential gap locations.

While there are no published results regarding
the accuracy of these methods in correctly asso-
ciating WH phrases and their gaps, we feel that
these methods can be improved upon by adopting
a corpus-based approach. First, deriving general-
izations about the distribution of WH phrases di-
rectly from corpus data addresses the problem that
the data may not conform to our theoretical pre-
conceptions. Second, we hope to show that much
of the work of identifying WH dependencies can
be done without access to the subcategorization
frame of every verb and preposition in the corpus,
which is a prerequisite for the methods mentioned
above.

The only previous work we are aware of which
addresses the task of identification of WH gaps
from a statistical perspective is Collins (1999),
which employs a lexicalized PCFG augmented
with "gap features". Unfortunately, our results
are not directly comparable to those reported by
Collins, because his model of WH dependencies is
integrated with a syntactic parser, so that his sys-
tem is responsible for producing syntactic phrase
structure trees as well as gap locations. Since our
model takes these trees as given, it identifies the
correct gap location more consistently. Integration

of our model of WH dependencies with a parser is
a goal of future development.

3 Modeling WH dependencies

The task with which we are concerned in this sec-
tion is determining the location of a WH gap,
given evidence regarding the WH phrase and the
syntactic environment. Following much recent
work which applies the tools of machine learn-
ing to linguistic problems, we will treat this as an
example of a classification task. In Section 3.2
below, we describe the neural network classifier
which serves as our grammatical module respon-
sible for WH gap identification.

3.1 Data

The data on which the classifiers are trained and
tested is an extract of 7915 sentences from the
Penn Treebank (Marcus et al., 1993), which are
tagged to indicate the location of WH gaps. This
selection comprises essentially all of the sentences
in the treebank which contain WH gaps. Figure 1
shows a simplified example of WH-fronting from
the Penn Treebank in which the WH word why
is associated with the matrix VP node, despite its
fronted position in the syntax. Note that it cannot
be associated with the lower VP node. The Penn
Treebank already indicates the location of "WH-
traces" (and other empty categories), so it was not
necessary to edit the data for this project by hand,
although they were automatically pre-processed to
prune out any nodes which dominate only phono-
logically empty material.

In treating the identification of WH gaps as a
classification task, however, we are immediately
faced with the issues of identifying a finite num-
ber of classes into which our model will divide the
data, and determining the features which will be
available to the model.

Using the movement metaphor of syntactic the-
ory as our guide, we would ideally like to identify
a complete path downward from the surface syn-
tactic location of the WH phrase to the location of
its associated gap. However, it is hard to see how
such a path could be represented as one of a finite
number of classes. Therefore, we treat the search
downward through the phrase-structure tree for the
location of a gap as a Markov process. That is, we
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Figure 1: Simplified tree from the Penn Treebank.
The fronted WH-word 'why' is associated with a
gap in the matrix VP, indicated by the empty con-
stituent (-NONE- *T*-2).

(SBARQ
(WHADVP-2 (WRB Why) )
(SQ (VBP do)
(NP-SBJ (PRP you) )
(VP (VB maintain)
(SBAR ( -NONE - 0)
(S
(NP (DT the) (NN plan)
(VP (VBZ is)
(NP
(DT a)
(JJ temporary)
(NN reduction) ))))

(S BAR
(WHADVP-1 (WRB when) )
(S
(NP (PRP it) )
(VP (VBZ is) (RB not)
(NP (-NONE- *?*) )
(ADVP (-NONE- *T*-1) ))))

(ADVP (-NONE- *T*-2) )))
(. 	 ?) 	 )

begin at the first branching node dominating the
WH operator, and train a classifier to trace down-
ward from there, eventually predicting the location
of the gap. At each node we encounter, the classi-
fier chooses either to recurse into one of the child
nodes, or to predict the existence of a gap between
two of the overt child nodes. (Since the number
of daughters in a subtree is limited, the number of
classes is also bounded.) This decision is condi-
tioned only on the category labels of the current
subtree, the nature of the WH word extracted, and
the depth to which we have already proceeded in
searching for the gap. This greedy search process
is illustrated in Figure 2.

Each sentence was thus represented as a series
of records indicating, for each subtree in the path
from the WH phrase to the gap, the relevant syn-
tactic attributes of the subtree and WH phrase, and
the action to be taken at that stage (e.g., GAP-
0, RECURSE-2). 1 Sample records are shown in
Figure 3. The "join category" is defined as the
lowest node dominating both the WH phrase and

We indicate the target classes for this task as
RECURSE-n, indicating that the Markov process should re-
curse into the n th daughter node, or GAP-n, indicating that
a gap will be posited at offset n in the subtree.

Figure 2: Illustration of the path a classifier must
trace in order to identify the location of the gap
from Figure 1. At the top level, it must choose to
recurse into the SQ node, and at the second level,
into the VP node. Finally, within the VP subtree
it should predict the location of the gap as the last
child of the parent VP.

SBARQ

its associated gap; the meanings of the other fea-
tures in Figure 3 should be clear.

3.2 Classifier

For our classifier model of WH dependencies, we
used a simple feed-forward multi-layer percep-
tron, with a single hidden layer of 10 nodes. The
data to be classified is presented as a vector of fea-
tures at the input layer, and the output layer has
nodes representing the possible classes for the data
(RECURSE-1, RECURSE-2, GAP-0, GAP-1,
etc.). At the input layer, the information from
records such as those in Figure 3 is presented as
binary-valued inmputs; i.e., for each combination
of feature type and feature value in a record (say,
mother cat = S), there is a single node at the input
layer indicating whether that combination is real-
ized.

We trained the connection weights of the net-
work using the quickprop algorithm (Fahlman,
1988) on 4690 example sentences from the train-
ing corpus (12000 classification stages), reserving
1562 sentences (4001 classification stages) for val-
idation to avoid over-training the classifier. In Ta-
ble 1 we present the results of the neural network
in classifying our 1663 test sentences after train-
ing.

4 Conclusion

These performance levels seem quite good, al-
though at this point there are no published results
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Figure 3: Example records corresponding to the sentence shown in Figures 1 & 2
target class:	 RECURSE-2 -	 target class:	 RECURSE-3	 target class:	 GAP-3
depth:	 0	 depth:	 I	 depth:	 2
WI-teat:	 WHADVP	 WI-I cat:	 WHADVP	 WH cat:	 WHADVP
WIT lea:	 why	 WIT lex:	 why	 WTI lea:	 why
join cat:	 SBARQ	 join cat:	 SBARQ	 join cat:	 SBARQ
mother cat:	 SBARQ	 mother cat:	 SQ	 mother cat:	 VP
daughter catl :	 WHADVP	 daughter call:	 VBP	 daughter catl: 	 VB
daughter cat2:	 SQ	 daughter cat2:	 NP	 daughter cat2:	 SBAR
daughter cat3:	 daughter cat3:	 VP	 daughter cat3:	 SBAR
daughter cat4:	 UNDEFINED	 daughter cat4:	 UNDEFINED	 daughter cat4:	 UNDEFINED
daughter cat5:	 UNDEFINED	 daughter cat5:	 UNDEFINED	 daughter cat5:	 UNDEFINED
daughter cat6:	 UNDEFINED	 daughter cat6:	 UNDEFINED	 daughter cat6:	 UNDEFINED
daughter cat7:	 UNDEFINED	 daughter cat7:	 UNDEFINED	 - daughter cat7:	 UNDEFINED

Table 1: Test-set performance of network
Percentage Correct

Complete path 1530/1663 = 92.0%
String location 1563/1663 = 94.0%

Each stage 4093/4242 = 96.5%

for other systems to which we can compare them.
We take this level of success as an indication of the
feasibility of our data-driven, modular approach.
Additionally, our approach has the advantage of
wide coverage. Since it does not require an exten-
sive lexicon, and is trained on corpus data, it is eas-
ily adaptable to many different NLP applications.
Also, since the treatment of WH dependencies is
factored out from the syntax, it should be possi-
ble to employ a simple model of phrase structure,
such as a PCFG.

In future work, we hope to explore this possibil-
ity, by combining the classifier model of WH de-
pendencies developed here with a syntactic parser,
so that our results can be directly compared with
those of Collins (1999). The general mechanism
for combining these two models is the same one
used by Higgins & Sadock (2003) for combin-
ing a quantifier scope component with a parser,
taking the syntactic component to define a prior
probability P(S) over syntactic structures, and
the additional component to define the probability

P(K1S), where K ranges over the values which
the other grammatical component may take on.
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