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Introduction

Welcome to The First Workshop Beyond Vision and Language: Integrating Real-World Knowledge
(LANTERN) co-located with EMNLP-IJCNLP 2019. The primary goal of the workshop is to bring
together researchers adopting machine learning techniques to interconnect language, vision, and other
modalities by leveraging external knowledge. By encouraging contributions exploiting very diverse
sources of external knowledge (knowledge graphs, fixed and dynamic environments, cognitive and
neuroscience data, etc.), the workshop aims to foster discussion and promote novel research directions
which acknowledge the importance of knowledge in acquiring, using, and evaluating language in real-
world settings.

In this first edition, we called for both long and short papers. All the accepted ones are published in these
Proceedings.

LANTERN 2019 received 17 submissions, out of which 1 was desk-rejected before the reviewing phase
due to inappropriateness. The remaining 16 papers received 2 highly-qualified double-blind reviews.
Besides considering the average overall score, only papers for which none of the reviewers expressed a
negative opinion (strong or weak reject) were accepted. In total, 9 papers (3 long, 6 short) were accepted
to appear in the workshop, with an acceptance rate of around 53%.

Contributions are representative of a varied number of current problems and approaches and include
novel deep learning techniques and tasks in the domain of visual reasoning, the use of multilingual
embeddings and scene graphs in multimodal tasks, multi-agent language learning, the use of eye-tracking
data in syntactic tagging and of textual adversaries in multimodal machine translation, the extraction of
orthography knowledge from Chinese characters. Such richness of approaches and perspectives is in
line with the purpose of the workshop, and confirms the growing interest for problems going beyond the
task-specific integration of language and vision.

The program of the workshop, besides 4 oral presentations and a poster session, includes 3 invited talks
by Lucia Specia, Mohit Bansal, and Siddharth Narayanaswamy. The workshop received sponsorship by
iDeaL SFB 1102 and Nuance. Best paper and best poster awards are sponsored by SAP.

The LANTERN Workshop Organizers
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Structure Learning for Neural Module Networks

Vardaan Pahuja�∗ Jie Fu†‡ Sarath Chandar†§ Christopher J. Pal†‡

†Mila §Université de Montréal
‡Polytechnique Montréal �The Ohio State University

Abstract

Neural Module Networks, originally proposed
for the task of visual question answering, are
a class of neural network architectures that in-
volve human-specified neural modules, each
designed for a specific form of reasoning. In
current formulations of such networks only the
parameters of the neural modules and/or the or-
der of their execution is learned. In this work,
we further expand this approach and also learn
the underlying internal structure of modules in
terms of the ordering and combination of sim-
ple and elementary arithmetic operators. We
utilize a minimum amount of prior knowledge
from the human-specified neural modules in
the form of different input types and arithmetic
operators used in these modules. Our results
show that one is indeed able to simultaneously
learn both internal module structure and mod-
ule sequencing without extra supervisory sig-
nals for module execution sequencing. With
this approach, we report performance compa-
rable to models using hand-designed modules.
In addition, we do a analysis of sensitivity of
the learned modules w.r.t. the arithmetic oper-
ations and infer the analytical expressions of
the learned modules.

1 Introduction

Designing general purpose reasoning modules is
one of the central challenges in artificial intelli-
gence. Neural Module Networks (Andreas et al.,
2016b) were introduced as a general purpose vi-
sual reasoning architecture and have been shown to
work well for the task of visual question answering
(Antol et al., 2015; Malinowski and Fritz, 2014;
Ren et al., 2015b,a). They use dynamically com-
posable modules which are then assembled into
a layout based on syntactic parse of the question.

∗Corresponding author: Vardaan Pahuja <vardaan-
pahuja@gmail.com> Work done when the author was a stu-
dent at Mila, Université de Montréal.

The modules take as input the images or the at-
tention maps1 and return attention maps or labels
as output. In (Hu et al., 2017), the layout predic-
tion is relaxed by learning a layout policy with a
sequence-to-sequence RNN. This layout policy is
jointly trained along with the parameters of the
modules. The model proposed in (Hu et al., 2018)
avoids the use of reinforcement learning to train the
layout predictor, and uses soft program execution
to learn both layout and module parameters jointly.

A fundamental limitation of these previous mod-
ular approaches to visual reasoning is that the mod-
ules need to be hand-specified. This might not
be feasible when one has limited knowledge of
the kinds of questions or associated visual reason-
ing required to solve the task. In this work, we
present an approach to learn the module structure,
along with the parameters of the modules in an
end-to-end differentiable training setting. Our pro-
posed model, Learnable Neural Module Network
(LNMN), learns the structure of the module, the
parameters of the module, and the way to compose
the modules based on just the regular task loss.
Our results show that we can learn the structure of
the modules automatically and still perform com-
parably to hand-specified modules. We want to
highlight the fact that our goal in this paper is not
to beat the performance of the hand-specified mod-
ules since they are specifically engineered for the
task. Instead, our goal is to explore the possibility
of designing general-purpose reasoning modules in
an entirely data-driven fashion.

2 Background

In this section, we describe the working of the
Stack-NMN model (Hu et al., 2018) as our proposed
LNMN model uses this as the base model. The

1An attention map denotes a H ×W × 1 tensor which
assigns a saliency score to the convolutional features in the
spatial dimension.
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Stack-NMN model is an end-to-end differentiable
model for the task of Visual Question Answering
and Referential Expression Grounding (Rohrbach
et al., 2016). It addresses a major drawback of
prior visual reasoning models in the literature that
compositional reasoning is implemented without
the need of supervisory signals for composing the
layout at training time. It consists of several hand-
specified modules (namely Find, Transform, And,
Or, Filter, Scene, Answer, Compare and NoOp)
which are parameterized, differentiable, and imple-
ment common routines needed in visual reasoning
and learns to compose them without strong supervi-
sion. The implementation details of these modules
are given in Appendix A.2 (see Table 8). The dif-
ferent sub-components of the Stack-NMN model
are described below.

2.1 Module Layout Controller
The structure of the controller is similar to the one
proposed in (Hudson and Manning, 2018). The
controller first encodes the question using a bi-
directional LSTM (Hochreiter and Schmidhuber,
1997). Let [h1,h2, ...,hS ] denote the output of
Bi-LSTM at each time-step of the input sequence
of question words. Let q denote the concatenation
of final hidden state of Bi-LSTM during the for-
ward and backward passes. q can be considered as
the encoding of the entire question. The controller
executes the modules iteratively for T times. At
each time-step, the updated query representation u
is obtained as:

u =W2[W
(t)
1 q + b1; ct−1] + b2

where W (t)
1 ∈ Rd×d, W2 ∈ Rd×2d, b1 ∈ Rd,

b2 ∈ Rd are controller parameters. ct−1 is the
textual parameter from the previous time step. The
controller has two outputs viz. the textual param-
eter at step t (denoted by ct) and the attention on
each module (denoted by vector w(t)). The con-
troller first predicts an attention cvt,s on each of the
words of the question and then uses this attention
to do a weighted average over the outputs of the
Bi-LSTM.

cvt,s = softmax(W3(u� hs))

ct =

S∑

s=1

cvt,s · hs

where,W3 ∈ R1×d is another controller parameter.
The attention on each module w(t) is obtained by

feeding the query representation at each time-step
to a Multi-layer Perceptron (MLP).

w(t) = softmax(MLP (u; θMLP ))

2.2 Operation of Memory Stack for storing
attention maps

In order to answer a visual reasoning question, the
model needs to execute modules in a tree-structured
layout. In order to facilitate this sort of composi-
tional behavior, a differentiable memory pool to
store and retrieve intermediate attention maps is
used. A memory stack (with length denoted by L)
stores H ×W dimensional attention maps, where
H and W are the height and width of image fea-
ture maps respectively. Depending on the number
of attention maps required as input by the mod-
ule, it pops them from the stack and later pushes
the result back to the stack. The model performs
soft module execution by executing all modules
at each time step. The updated stack and stack

Data: Question (string), Image features (I)
Encode the input question into
d-dimensional sequence [h1,h2, ...,hS ]
using Bidirectional LSTM.
A(0) ← Initialize the memory stack (A; p)
with uniform image attention and set the
stack pointer p to point at the bottom of the
stack (one-hot vector with 1 in the 1st

dim.).
for each time-step t = 0, 1, ...., (T-1) do

u =W2[W
(t)
1 q + b1; ct−1] + b2;

w(t) = softmax(MLP (u; θMLP ));
cvt,s = softmax(W3(u� hs));
ct =

∑S
s=1 cvt,s · hs

for every module m ∈M do
Produce updated stack and stack
pointer: (A(t)

m , p
(t)
m ) =

run-module(m,A(t), p(t), ct, I);
end
A(t+1) =

∑
m∈M A

(t)
m · w(t)

m ;

p(t+1) = softmax(
∑

m∈M p
(t)
m · w(t)

m )

end
Algorithm 1: Operation of Module Layout
Controller and Memory Stack.

pointer at each subsequent time-step are obtained
by a weighted average of those corresponding to
each module using the weights w(t) predicted by
the module controller. This is illustrated by the
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equations below:

(A(t)
m , p

(t)
m ) = run-module(m,A(t), p(t))

A(t+1) =
∑

m∈M
A(t)
m · w(t)

m

p(t+1) = softmax(
∑

m∈M
p(t)m · w(t)

m )

Here, A(t)
m and p

(t)
m denote the stack and stack

pointer respectively, after executing module m at
time-step t. A(t) and p(t) denote the stack and stack
pointer obtained after the weighted average of those
corresponding to all modules at previous time-step
(t− 1). The working of module layout controller
and its interfacing with memory stack is illustrated
in Algorithm 1. The implementation details of op-
eration of the stack are shown in Appendix (see
Algorithm 3).

2.3 Final Classifier

At each time-step of module execution, the
weighted average of output of the Answer modules
is called memory features (denoted by f (t)mem =∑

m∈ans. module o
(t)
m w

(t)
m ). Here, o(t)m denotes the out-

put of module m at time t. The memory features
are given as one of the inputs to the Answer mod-
ules at the next time-step. The memory features
at the final time-step are concatenated with the
question representation, and then fed to an MLP to
obtain the logits.

3 Learnable Neural Module Networks

In this section, we introduce Learnable Neural
Module Networks (LNMNs) for visual reasoning,
which extends Stack-NMN. However, the modules
in LNMN are not hand-specified. Rather, they are
generic modules as specified below.

3.1 Structure of the Generic Module

The cell (see Figures 1 and 2) denotes a generic
module, which we suppose can span all the re-
quired modules for a visual reasoning task. Each
cell contains a certain number of nodes. The func-
tion of a node (denoted by O) is to perform a
weighted sum of outputs of different arithmetic op-
erations applied on the input feature maps x1 and
x2. Let α

′
= σ(α) denote the output of softmax

function applied to the vector α such that

O(x1,x2) = α
′
1 ∗min(x1,x2)

+α
′
2 ∗max(x1,x2) +α

′
3 ∗ (x1 + x2)+

α
′
4 ∗ (x1 � x2) +α

′
5 ∗ choose1(x1,x2)

+α
′
6 ∗ choose2(x1,x2)

All of the above operations (min, max, +,
�) are element-wise operations. The last
two non-standard functions are defined as:
choose1(x1,x2) = x1 and choose2(x1,x2) =
x2.

We consider two broad kinds of modules: (i)
Attention modules which output an attention map
(ii) Answer modules which output memory features
to be stored in the memory. Among each of these
two categories, there is a finer categorization:

3.1.1 Generic Module with 3 inputs

This module type receives 3 inputs (i.e. image
features, textual parameter, and a single attention
map) and produces a single output. The first node
receives input from the image feature (I) and the
attention map (popped from the memory stack).
The second node receives input from the textual
parameter followed by a linear layer (W1ctxt), and
the output of the first node.

3.1.2 Generic Module with 4 inputs

This module type receives 4 inputs (i.e. image fea-
tures, textual parameter and two attention maps)
and produces a single output. The first node re-
ceives the two attention maps, each of which are
popped from the memory stack, as input. The sec-
ond node receives input from the image features
along with the output of the first node. The third
node receives input from the textual parameter fol-
lowed by a linear layer, and the output of the second
node.

For the Attention modules, the output of the final
node is converted into a single-channel attention
map using a 1 × 1 convolutional layer. For the
Answer modules, the output of the final node is
summed over spatial dimensions, and the resulting
feature vector is concatenated with memory fea-
tures of previous time-step and textual parameter
features, fed to a linear layer to output memory fea-
tures. The schematic diagrams of Answer modules
are given in the Appendix A.1 (see Figures 6, 7).
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Figure 1: Attention Module schematic diagram (3 inputs).

Figure 2: Attention Module schematic diagram (4 inputs).

3.2 Overall structure

The structure of our end-to-end model extends
Stack-NMN in that we specify each module in terms
of the generic module (defined in Section 3.1). We
experiment with three model ablations in terms of
number of modules for each type being used. See
Table 3 for details2. We train the module structure
parameters (denoted by α =

{
αm,ki

}6

i=1
for kth

node of module m) and the weight parameters (W)
by adopting alternating gradient descent steps in ar-
chitecture and weight spaces respectively. For a par-
ticular epoch, the gradient step in weight space is
performed on each training batch, and the gradient
step in architecture space is performed on a batch
randomly sampled from the validation set. This is
done to ensure that we find an architecture corre-
sponding to the modules which has a low validation
loss on the updated weight parameters. This is in-
spired by the technique used in (Liu et al., 2018)
to learn monolithic architectures like CNNs and
RNNs in terms of basic building blocks (or cells).
Algorithm 2 illustrates the training algorithm. Here,
Ltrain(W,α) and Lval(W,α) denote the training

21 NoOp module is included by default in all ablations.

while not converged do
1. Update weightsW by descending

∇w
[
Ltrain(W,α)− λw

T

T∑
t=1
H(w(t))

]

2. Update architecture α by descending
∇α
[
Lval(W,α)−

λop
M∑
m=1

p∑
k=1

‖σ(αm,k)‖
2

‖σ(αm,k)‖
1

]

end
Algorithm 2: Training Algorithm for LNMN
Modules. Here, α denotes the collection of

module network parameters i.e.
{
αm,ki

}6

i=1

for kth node of module m,W denotes the col-
lection of weight parameters of modules and
all other non-module parameters.
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loss and validation loss on the combination of pa-
rameters (W,α) respectively. For the gradient step
on the training batch, we add an additional loss
term to initially maximize the entropy of w(t) and
gradually anneal the regularization coefficient (λw)
to the opposite sign (which minimizes the entropy
of w(t) towards the end of training). The value of
λw varies linearly from 1.0 to 0.0 in the first 20
epochs and then steeply decreases to −1.0 in next
10 epochs. The trend of variation of λw is shown
in Appendix (see Figure 5). For the gradient steps
in the architecture space, we add an additional loss
term ( l

2

l1
=
‖σ(α)‖2
‖σ(α)‖1

) (Hurley and Rickard, 2009) to
encourage the sparsity of module structure parame-
ters (α) after the softmax activation.

4 Experiments

We train our model on the CLEVR visual rea-
soning task. CLEVR (Johnson et al., 2017a) is
a synthetic dataset for visual reasoning contain-
ing around 700K examples, and has become the
standard benchmark to test visual reasoning mod-
els. It contains questions that test visual reasoning
abilities such as counting, comparing, logical rea-
soning based on 3D shapes like cubes, spheres, and
cylinders of varied shades. A typical example ques-
tion and image pair from this dataset is given in
Appendix (see Figure 4). The results on CLEVR
test set are reported in Table 1. Some ablations
of the model are shown in Table 2. We use the
pre-trained CLEVR model to fine-tune the model
on CLEVR-Humans dataset. The latter is a dataset
of challenging human-posed questions based on
a much larger vocabulary on the same CLEVR
images. The corresponding results are shown in
Table 1 (see last column). In addition, we exper-
iment on VQA v1 (Antol et al., 2015) and VQA
v2 (Goyal et al., 2017) which are VQA datasets
containing natural images. The results for VQA v1
and VQA v2 are shown in Table 4.

The detailed accuracy for each question sub-type
for the VQA datasets is given in Appendix A.4
(see Tables 9 and 10). We use Adam (Kingma
and Ba, 2014) as the optimizer for the weight pa-
rameters with a learning rate of 1e−4, (β1, β2) =
(0.9, 0.999) and no weight decay. For the module
network parameters, we use the same optimizer
with a different learning rate 3e−4, (β1, β2) =
(0.5, 0.999) and a weight decay of 1e−3. The value
of λop is set to 1.0. The code for implementation

of our model is available online3.

4.1 Results
The comparison of CLEVR overall accuracy shows
that our model (LNMN (9 modules)) receives only
a slight dip (1.53%) compared to the Stack-NMN
model. We also experiment with other variants
of our model in which we increase the number
of Answer modules (LNMN (11 modules)) and/or
Attention modules (LNMN (14 modules)). The
LNMN (11 modules) model performs better than
the other two ablations (0.89% accuracy drop w.r.t.
the Stack-NMN model). For the ‘Count’ and ‘Com-
pare Numbers’ sub-category of questions, all of
the 3 variants perform consistently better than the
Stack-NMN model. In case of CLEVR-Humans
dataset, the accuracy drop is a modest 1.71%. Even
for the natural image VQA datasets, our approach
has comparable results with the Stack-NMN model.
The results clearly show that the modules learned
by our model (in terms of elementary arithmetic op-
erations) perform approximately as well as the ones
specified in the Stack-NMN model (that contains
hand-designed modules which were tailor-made
for the CLEVR dataset). The results from the ab-
lations in Table 2 show that a naive concatenation
of all inputs to a module (or cell) results in a poor
performance (around 47 %). Thus, the structure
we propose to fuse the inputs plays a key role in
model performance. When we replace the α vector
for each node by a one-hot vector during inference,
the drop in accuracy is only 1.79% which shows
that the learned distribution over operation weights
peaks over a specific operation which is desirable.

4.2 Measuring the sensitivity of modules
We use an attribution technique called Integrated
Gradients (Sundararajan et al., 2017) to study the
impact of module structure parameters (denoted

by
{
αm,ki

}6

i=1
for kth node of module m) on

the probability distribution in the last layer of
LNMN model. Let Ij and qj denote the (im-
age, question) pairs for the jth example. Let
F (Ij , qj ,α) denote the function that assigns the
probability corresponding to the correct answer in-
dex in the softmax distribution. Here, αm,ki denotes
the module network parameter for the ith operator
in kth node of module m. Then, the attribution
of [αm1 , α

m
2 , α

m
3 , α

m
4 , α

m
5 , α

m
6 ] (summed across all

nodes k = 1, ..., p for a particular module m and
3https://github.com/vardaan123/LNMN
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Model CLEVR Count Exist Compare Query Compare CLEVR
Overall Numbers Attribute Attribute Humans

Human (Johnson et al., 2017b) 92.6 86.7 96.6 86.5 95.0 96.0 -
Q-type baseline (Johnson et al., 2017b) 41.8 34.6 50.2 51.0 36.0 51.3 -
LSTM (Johnson et al., 2017b) 46.8 41.7 61.1 69.8 36.8 51.8 36.5
CNN+LSTM (Johnson et al., 2017b) 52.3 43.7 65.2 67.1 49.3 53.0 43.2
CNN+LSTM+SA+MLP (Johnson et al., 2017a) 73.2 59.7 77.9 75.1 80.9 70.8 57.6
N2NMN* (Hu et al., 2017) 83.7 68.5 85.7 84.9 90.0 88.7 -
PG+EE (700K prog.)* (Johnson et al., 2017b) 96.9 92.7 97.1 98.7 98.1 98.9 -
CNN+LSTM+RN‡ (Santoro et al., 2017) 95.5 90.1 97.8 93.6 97.9 97.1 -
CNN+GRU+FiLM (Perez et al., 2017) 97.7 94.3 99.1 96.8 99.1 99.1 75.9
MAC (Hudson and Manning, 2018) 98.9 97.1 99.5 99.1 99.5 99.5 81.5
TbD (Mascharka et al., 2018) 99.1 97.6 99.2 99.4 99.5 99.6 -

Stack-NMN (9 mod.)†(Hu et al., 2018) 91.41 81.78 95.78 85.23 95.45 95.68 68.06

LNMN (9 modules) 89.88 84.28 93.74 89.63 89.64 94.84 66.35
LNMN (11 modules) 90.52 84.91 95.21 91.06 90.03 94.97 65.68
LNMN (14 modules) 90.42 84.79 95.52 90.52 89.73 95.26 65.86

Table 1: CLEVR and CLEVR-Humans Accuracy by baseline methods and our models. (*) denotes use of extra su-
pervision through program labels. (‡) denotes training from raw pixels. † Accuracy figures for our implementation
of Stack-NMN.

Model Overall Count Exist Compare
number

Query
attribute

Compare
Attribute

Original setting
(T = 5, L = 5,map_dim = 384)

89.78 84.54 93.46 88.70 89.59 94.87

Use hard-max for operation weights
(for inference only)

(T = 5, L = 5,map_dim = 384)
87.99 81.53 94.11 87.70 88.27 91.55

T = 9, L = 9,map_dim = 256 89.96 84.03 93.45 89.98 90.75 93.10
Concatenate all inputs

followed by conv. layer 47.03 42.5 61.15 68.64 38.06 49.43

Table 2: Model Ablations for LNMN (CLEVR Validation set performance). The term ‘map_dim’ refers to the
dimension of feature representation obtained at the input or output of each node of cell.

Model
Attn.

modules
(3 input)

Attn.
modules
(4 input)

Ans.
modules
(3 input)

Ans.
modules
(4 input)

LNMN (9) 4 2 1 1
LNMN (11) 4 2 2 2
LNMN (14) 5 4 2 2

Table 3: Number of modules of each type for different
model ablations.

Model VQA v2 VQA v1

Stack-NMN 58.23 59.84
LNMN (9 modules) 54.85 57.67

Table 4: Test Accuracy on Natural Image VQA datasets

over all examples) is defined as:

IG(αmi ) =

N∑

j=1

p∑

k=1

[
(αm,ki − (αm,ki )

′
)×

∫ 1

ξ=0

∂F (Ij , qj , (1− ξ)× (αm,ki )
′
+ ξ × αm,ki )

∂αm,ki

]

Please note that attributions are defined relative
to an uninformative input called the baseline. We
use a vector of all zeros as the baseline (denoted
by (αm,ki )

′
). Table 5 shows the results for this

experiment.
The module structure parameters (α parameters)

of the Answer modules have their attributions to
the final probability around 1-2 orders of magni-
tudes higher than rest of the modules. The higher
influence of Answer modules can be explained by
the fact that they receive the memory features from
the previous time-step and the classifier receives
the memory features of the final time-step. The
job of Attention modules is to utilize intermediate
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Module ID Module type min max sum product choose_1 choose_2

0 Attn. (3 input) 6.3 e4 2.7 e4 3.6 e4 1.1 e5 5.1 e4 1.6 e4
1 Attn. (3 input) 4.4 e4 1.8 e4 6.2 e4 1.4 e4 2.8 e4 1.7 e5
2 Attn. (3 input) 7.0 e4 3.3 e4 3.8 e4 1.1 e5 5.2 e4 1.5 e4
3 Attn. (3 input) 8.6 e3 6.2 e4 1.7 e4 1.8 e4 4.7 e4 3.0 e4
4 Attn. (4 input) 4.5 e4 3.2 e4 7.6 e4 1.7 e4 3.6 e4 2.1 e5
5 Attn. (4 input) 1.1 e5 5.6 e5 2.3 e5 8.5 e3 2.8 e4 1.8 e5
6 Ans. (3 input) 2.1 e6 4.3 e6 4.4 e6 8.3 e6 2.3 e6 4.9 e5
7 Ans. (4 input) 1.2 e5 5.8 e4 1.7 e5 5.2 e3 1.0 e5 4.5 e5

Table 5: Analysis of gradient attributions of α parameters corresponding to each module (LNMN (9 modules)),
summed across all examples of CLEVR validation set.

attention maps to produce new feature maps which
are used as input by the Answer modules.

Figure 3: Visualization of module structure parameters
(LNMN (11 modules)). For each module, each row de-
notes the α

′
= σ(α) parameters of the corresponding

node.

4.3 Visualization of module network
parameters

In order to better interpret the individual contribu-
tions from each of the arithmetic operators to the
modules, we plot them as color-maps for each type
of module. The resulting visualizations are shown
in Figure 3 for LNMN (11 modules). It is clear
from the figure that the operation weights (orα

′
pa-

rameter) are approximately one-hot for each node.
This is necessary in order to learn modules which
act as composition of elementary operators on input
feature maps rather than a mixture of operations at

each node. The corresponding visualizations for
LNMN (9 modules) and LNMN (14 modules) are
given in Figure 8 and Figure 9 respectively (all of
which are given in the Appendix A.3). The analyti-
cal expressions of modules learned by LNMN (11
modules) are shown in Table 6. The diversity of
modules as given in their equations indicates that
distinct modules emerge from training.

4.4 Measuring the role of individual
arithmetic operators

Each module (aka cell) contains nodes which in-
volves use of six elementary arithmetic opera-
tions (i.e. min, max, sum, product, choose_1 and
choose_2). We zero out the contribution to the
node output for one of the arithmetic operations
for all nodes in all modules and observe the degra-
dation in the CLEVR validation accuracy4. The
results of this study are shown in Table 7. The
trend of overall accuracy shows that removing max
and product operators results in maximum drop in
overall accuracy (∼ 50%). Other operators like
min, sum and choose_1 result in minimal drop in
overall accuracy.

5 Related Work

Neural Architecture Search: Neural Architecture
Search (NAS) is a technique to automatically learn
the structure and connectivity of neural networks
rather than training human-designed architectures.
In (Zoph and Le, 2016), a recurrent neural net-
work (RNN) based controller is used to predict
the hyper-parameters of a CNN such as number
of filters, stride, kernel size etc. They used RE-
INFORCE (Williams, 1992) to train the controller

4The CLEVR test set ground truth answers are not pub-
lic, so we use the validation set instead. However, Table 1
shows results for CLEVR test set (evaluated by the authors of
CLEVR dataset).
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Module type Module implementation

Attention
(3 inputs)

O(img, a, ctxt) = conv2(choose2(conv1(I), a)�W1ctxt) = conv2(a�W1ctxt)
O(img, a, ctxt) = conv2(choose2(choose1(conv1(I), a),W1ctxt)) = conv2(W1ctxt)
O(img, a, ctxt) = conv2(choose2(min(conv1(I), a),W1ctxt)) = conv2(W1ctxt)
O(img, a, ctxt) = conv2(max(conv1(I), a) +W1ctxt))

Attention
(4 inputs)

O(img, a1, a2, ctxt) = conv2(choose1(max(a1, a2), conv1(I))�W1ctxt))
= conv2(max(a1, a2)�W1ctxt)

O(img, a1, a2, ctxt) = conv2(max(choose2(a1, a2), conv1(I))�W1ctxt))
= conv2(max(a2, conv1(I))�W1ctxt))

Answer
(3 inputs)

O(img, a, ctxt) = W2[
∑

min(conv1(I), a)�W1ctxt,W1ctxt, fmem]
O(img, a, ctxt) = W2[

∑
min((conv1(I)� a),W1ctxt),W1ctxt, fmem]

Answer
(4 inputs)

O(img, a1, a2, ctxt) = W2[
∑

min((min(a1, a2)� conv1(I)),W1ctxt),W1ctxt, fmem]
O(img, a1, a2, ctxt) = W2[

∑
((min(a1, a2) + conv1(I))�W1ctxt),W1ctxt, fmem]

Table 6: Analytical expression of modules learned by LNMN (11 modules). In the above equations,
∑

denotes
sum over spatial dimensions of the feature tensor.

Operator
Name Overall Count Exist Compare

number
Query

attribute
Compare
Attribute

min 86.64 77.98 86.79 87.89 88.77 93.10
max 45.54 35.92 55.25 63.66 40.52 51.83
sum 82.67 69.89 80.25 85.22 87.69 90.05

product 34.65 14.55 51.49 48.79 30.31 49.92
choose_1 89.74 84.24 93.81 89.02 89.59 94.67
choose_2 79.45 64.77 76.07 82.96 86.78 84.94

Original Model 89.88 84.28 93.74 89.63 89.64 94.84

Table 7: Analysis of performance drop with removing operators from a trained model (LNMN 9 modules) on
CLEVR validation set.

with validation set accuracy as the reward signal.
As an alternative to reinforcement learning, evolu-
tionary algorithms (Stanley, 2017) have been used
to perform architecture search in (Real et al., 2017;
Miikkulainen et al., 2019; Liu et al., 2017; Real
et al., 2018). Recently, (Liu et al., 2018) proposed
DARTS, a differentiable approach to perform archi-
tecture search and reported success in discovering
high-performance architectures for both image clas-
sification and language modeling. Our approach
for learning the structure of modules is inspired by
DARTS. (Kirsch et al., 2018) proposes an EM style
algorithm to learn black-box modules and their lay-
out for image recognition and language modeling
tasks.

Visual Reasoning Models: Among the end-to-
end models for the task of visual reasoning, FiLM
(Perez et al., 2017) uses Conditional Batch Normal-
ization (CBN) (De Vries et al., 2017; Dumoulin
et al., 2017) to modulate the channels of input con-
volutional features in a residual block. (Hudson and
Manning, 2018) obtains the features by iteratively
applying a Memory-Attention-Control (MAC) cell
that learns to retrieve information from the image
and aggregate the results into a recurrent memory.

(Santoro et al., 2017) constructs the feature repre-
sentation by taking into account the relational inter-
actions between objects of the image. With regards
to the modular approaches, (Andreas et al., 2016b)
proposes to compose neural network modules (with
shared parameters) for each input question based
on layout predicted by syntactic parse of the ques-
tion. (Andreas et al., 2016a) extends this approach
to question-answering in a database domain. In
End-to-end Neural Module Networks (Hu et al.,
2017), the layout prediction is relaxed by learning
a layout policy with a sequence-to-sequence RNN.
This layout policy is jointly trained along with the
parameters of modules. The Stack-NMN (Hu et al.,
2018) model is a differentiable version of End-to-
end Neural Module Networks and we use this as
our baseline model. In (Johnson et al., 2017b),
the modules are residual blocks (convolutional),
they learn the program generator separately and
then fine-tune it along with the modules. TbD-net
(Mascharka et al., 2018) builds upon the End-to-
End Module Networks (Hu et al., 2017) but makes
an important change in that the proposed modules
explicitly utilize attention maps passed as inputs
instead of learning whether or not to use them. This
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results in more interpretability of the modules since
they perform specific functions.

Visual Question Answering: Visual question
answering requires a learning model to answer so-
phisticated queries about visual inputs. Significant
progress has been made in this direction to design
neural networks that can answer queries about im-
ages. This can be attributed to the availability of
relevant datasets which capture real-life images like
DAQUAR (Malinowski and Fritz, 2014), COCO-
QA (Ren et al., 2015a) and most recently VQA (v1
(Antol et al., 2015) and v2 (Goyal et al., 2017)).
The most common approaches (Ren et al., 2015b;
Noh et al., 2016) to this problem include construc-
tion of a joint embedding of question and image
and treating it as a classification problem over the
most frequent set of answers. Recent works (Jabri
et al., 2016; Johnson et al., 2017a) have shown that
the neural networks tend to exploit biases in the
datasets without learning how to reason.

6 Conclusion

We have presented a differentiable approach to
learn the modules needed in a visual reasoning
task automatically. With this approach, we obtain
results comparable to an analogous model in which
modules are hand-specified for a particular visual
reasoning task. In addition, we present an exten-
sive analysis of the degree to which each module
influences the prediction function of the model, the
effect of each arithmetic operation on overall accu-
racy and the analytical expressions of the learned
modules. In the future, we would like to benchmark
this generic learnable neural module network with
various other visual reasoning and visual question
answering tasks.
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Abstract
In this paper, we propose a new approach to
learn multimodal multilingual embeddings for
matching images and their relevant captions
in two languages. We combine two existing
objective functions to make images and cap-
tions close in a joint embedding space while
adapting the alignment of word embeddings
between existing languages in our model. We
show that our approach enables better general-
ization, achieving state-of-the-art performance
in text-to-image and image-to-text retrieval
task, and caption-caption similarity task. Two
multimodal multilingual datasets are used for
evaluation: Multi30k with German and En-
glish captions and Microsoft-COCO with En-
glish and Japanese captions.

1 Introduction

In recent years, there has been a huge and sig-
nificant amount of research in text and image re-
trieval tasks which needs the joint modeling of
both modalities. Further, a large number of image-
text datasets have become available (Elliott et al.,
2016; Hodosh et al., 2013; Young et al., 2014;
Lin et al., 2014), and several models have been
proposed to generate captions for images in the
dataset (Lu et al., 2018; Bernardi et al., 2016; An-
derson et al., 2017; Lu et al., 2016; Mao et al.,
2014; Rennie et al., 2016). There has been a great
amount of research in learning a joint embedding
space for texts and images in order to use the
model in sentence-based image search or cross-
modal retrieval task (Frome et al., 2013; Kiros
et al., 2014; Donahue et al., 2014; Lazaridou et al.,
2015; Socher et al., 2013; Hodosh et al., 2013;
Karpathy et al., 2014).

Previous works in image-caption task and learn-
ing a joint embedding space for texts and images
are mostly related to English language, however,
recently there is a large amount of research in
other languages due to the availability of multilin-
gual datasets (Funaki and Nakayama, 2015; Elliott

et al., 2016; Rajendran et al., 2015; Miyazaki and
Shimizu, 2016; Lucia Specia and Elliott, 2016;
Young et al., 2014; Hitschler and Riezler, 2016;
Yoshikawa et al., 2017). The aim of these mod-
els is to map images and their captions in a single
language into a joint embedding space (Rajendran
et al., 2015; Calixto et al., 2017).

Related to our work, Gella et al. (2017) pro-
posed a model to learn a multilingual multimodal
embedding by utilizing an image as a pivot be-
tween languages of captions. While a text en-
coder is trained for each language in Gella et al.
(2017), we propose instead a model that learns a
shared and language-independent text encoder be-
tween languages, yielding better generalization. It
is generally important to adapt word embeddings
for the task at hand. Our model enables tuning
of word embeddings while keeping the two lan-
guages aligned during training, building a task-
specific shared embedding space for existing lan-
guages.

In this attempt, we define a new objective func-
tion that combines a pairwise ranking loss with a
loss that maintains the alignment in multiple lan-
guages. For the latter, we use the objective func-
tion proposed in Joulin et al. (2018) for learn-
ing a linear mapping between languages inspired
by cross-domain similarity local scaling (CSLS)
retrieval criterion (Conneau et al., 2017) which
obtains the state-of-the-art performance on word
translation task.

In the next sections, the proposed approach
is called Aligning Multilingual Embeddings for
cross-modal retrieval (AME). With experiments
on two multimodal multilingual datasets, we show
that AME outperforms existing models on text-
image multimodal retrieval tasks. The code we
used to train and evaluate the model is available
at https://github.com/alirezamshi/
AME-CMR
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2 Datasets

We use two multilingual image-caption datasets
to evaluate our model, Multi30k and Microsoft
COCO (Elliott et al., 2016; Lin et al., 2014).

Multi30K is a dataset with 31’014 German
translations of English captions and 155’070 inde-
pendently collected German and English captions.
In this paper, we use independently collected cap-
tions which each image contains five German and
five English captions. The training set includes
29’000 images. The validation and test sets con-
tain 1’000 images.

MS-COCO (Lin et al., 2014) contains 123’287
images and five English captions per image.
Yoshikawa et al. (2017) proposed a model which
generates Japanese descriptions for images. We
divide the dataset based on Karpathy and Li
(2014). The training set contains 113’287 images.
Each validation and test set contains 5’000 im-
ages.

3 Problem Formulation

3.1 Model for Learning a Multilingual
Multimodal Representation

Assume image i and captions cXi
and cYi are given

in two languages, X and Y respectively. Our aim
is to learn a model where the image i and its cap-
tions cXi

and cYi are close in a joint embedding
space of dimension m. AME consists of two en-
coders fi and fc, which encode images and cap-
tions. As multilingual text encoder, we use a re-
current neural network with gated recurrent unit
(GRU). For the image encoder, we use a convo-
lutional neural network (CNN) architecture. The
similarity between a caption c and an image i in
the joint embedding space is measured with a sim-
ilarity function P (c, i). The objective function is
as follows (inspired by Gella et al. (2017)):

LR =
∑

(cSi
,i)

(∑

cSj

max
{
0, α− P (cSi

, i) + P (cSj
, i)
}

+
∑

j

max
{
0, α− P (cSi

, i) + P (cSi
, j)
})

(1)

Where S stands for both languages, and α is the
margin. cSj

and j are irrelevant caption and image
of the gold-standard pair (cSi

, i).

3.2 Alignment Model
Each word k in the language X is defined by a
word embedding xk ∈ Rd (yk ∈ Rd in the lan-

guage Y respectively). Given a bilingual lexicon
of N pairs of words, we assume the first n pairs
{(xi, yi)}ni=1 are the initial seeds, and our aim is
to augment it to all word pairs that are not in the
initial lexicons. Mikolov et al. (2013) proposed a
model to learn a linear mapping W ∈ Rd×d be-
tween the source and target languages:

minW∈Rd×d

1

n

n∑

i=1

`(Wxi, yi|xi, yi)

`(Wxi, yi|xi, yi) = (Wxi − yi)2
(2)

Where ` is a square loss. One can find the
translation of a source word in the target lan-
guage by performing a nearest neighbor search
with Euclidean distance. But, the model suffers
from a ”hubness problem”: some word embed-
dings become uncommonly the nearest neighbors
of a great number of other words (Doddington
et al., 1998; Dinu and Baroni, 2014).

In order to resolve this issue, Joulin et al. (2018)
proposed a new objective function inspired by
CSLS criterion to learn the linear mapping:

LA =
1

n

n∑

i=1

−2xT
i W

T yi +
1

k

∑

yj∈NY (Wxi)

xT
i W

T yj

+
1

k

∑

Wxj∈NX (yi)

xT
j W

T yi

(3)

Where NX(yi) means the k-nearest neighbors
of yi in the set of source language X . They con-
strained the linear mapping W to be orthogonal,
and word vectors are l2-normalized.

The whole loss function is the equally weighted
summation of the aforementioned objective func-
tions:

Ltotal = LR + LA (4)

The model architecture is illustrated in Figure
1. We observe that updating the parameters in (3)
every T iterations with learning rate lralign obtains
the best performance.

We use two different similarity functions, sym-
metric and asymmetric. For the former, we use
the cosine similarity function and for the latter, we
use the metric proposed in Vendrov et al. (2015),
which encodes the partial order structure of the
visual-semantic hierarchy. The metric similarity
is defined as:

S(a, b) = −||max(0, b− a)||2 (5)

Where a and b are the embeddings of image and
caption.
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Image to Text Text to Image

R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr Alignment

symmetric
Parallel (Gella et al., 2017) 31.7 62.4 74.1 3 24.7 53.9 65.7 5 -
UVS (Kiros et al., 2014) 23.0 50.7 62.9 5 16.8 42.0 56.5 8 -
EmbeddingNet (Wang et al., 2017) 40.7 69.7 79.2 - 29.2 59.6 71.7 - -
sm-LSTM (Huang et al., 2016) 42.5 71.9 81.5 2 30.2 60.4 72.3 3 -
VSE++ (Faghri et al., 2017) 43.7 71.9 82.1 2 32.3 60.9 72.1 3 -
Mono 41.4 74.2 84.2 2 32.1 63.0 73.9 3 -
FME 39.2 71.1 82.1 2 29.7 62.5 74.1 3 76.81%
AME 43.5 77.2 85.3 2 34.0 64.2 75.4 3 66.91%

asymmetric
Pivot (Gella et al., 2017) 33.8 62.8 75.2 3 26.2 56.4 68.4 4 -
Parallel (Gella et al., 2017) 31.5 61.4 74.7 3 27.1 56.2 66.9 4 -
Mono 47.7 77.1 86.9 2 35.8 66.6 76.8 3 -
FME 44.9 76.9 86.4 2 34.2 66.1 77.1 3 76.81%
AME 50.5 79.7 88.4 1 38.0 68.5 78.4 2 73.10%

Table 1: Image-caption ranking results for English (Multi30k)

Image to Text Text to Image

R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr Alignment

symmetric
Parallel (Gella et al., 2017) 28.2 57.7 71.3 4 20.9 46.9 59.3 6 -
Mono 34.2 67.5 79.6 3 26.5 54.7 66.2 4 -
FME 36.8 69.4 80.8 2 26.6 56.2 68.5 4 76.81%
AME 39.6 72.7 82.7 2 28.9 58.0 68.7 4 66.91%

asymmetric
Pivot (Gella et al., 2017) 28.2 61.9 73.4 3 22.5 49.3 61.7 6 -
Parallel (Gella et al., 2017) 30.2 60.4 72.8 3 21.8 50.5 62.3 5 -
Mono 42.0 72.5 83.0 2 29.6 58.4 69.6 4 -
FME 40.5 73.3 83.4 2 29.6 59.2 72.1 3 76.81%
AME 40.5 74.3 83.4 2 31.0 60.5 70.6 3 73.10%

Table 2: Image-caption ranking results for German (Multi30k)

Figure 1: The AME - model architecture

4 Experiment and Results

4.1 Details of Implementation 1

We use a mini-batch of size 128. We use Adam op-
timizer with learning rate 0.00011 (0.00006) and
with early stopping on the validation set. We set
the dimensionality of joint embedding space and
the GRU hidden layer tom = 1024. We utilize the
pre-trained aligned word vectors of FastText for

1In this section, the hyper-parameters in parentheses are
related to the model trained on MS-COCO.

the initial word embeddings. For Japanese word
embedding, we use pre-trained word vectors of
FastText2, then align it to the English word embed-
ding with the same hyper-parameters used for MS-
COCO. We set the margin α = 0.2 and α = 0.05
for symmetric and asymmetric similarity functions
respectively.

We assign k-nearest neighbors to be 5 (4). We
set T = 500, and lralign = 2 (5). We tokenize
English and German captions with Europarl tok-
enizer (Koehn, 2005). For the Japanese caption,
we use Mecab analyzer (Kudo et al., 2004). We
train the model for 30 (20) epochs with updating
the learning rate (divided by 10) on epoch 15 (10).

To extract features of images, we use a
ResNet152 (He et al., 2015) CNN architecture pre-
trained on Imagenet and extract the image features
from FC7, the penultimate fully connected layer.
We use average features from 10-crop of the re-
scaled images.

For the metric of alignment, we use bilingual
lexicons of Multilingual Unsupervised and Super-

2Available at https://fasttext.cc/docs/en/
crawl-vectors.html, and https://fasttext.
cc/docs/en/aligned-vectors.html.
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Image to Text Text to Image

R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr Alignment

symmetric
UVS (Kiros et al., 2014) 43.4 75.7 85.8 2 31.0 66.7 79.9 3 -
EmbeddingNet (Wang et al., 2017) 50.4 79.3 89.4 - 39.8 75.3 86.6 - -
sm-LSTM (Huang et al., 2016) 53.2 83.1 91.5 1 40.7 75.8 87.4 2 -
VSE++ (Faghri et al., 2017) 58.3 86.1 93.3 1 43.6 77.6 87.8 2 -
Mono 51.8 84.8 93.5 1 40.0 77.3 89.4 2 -
FME 42.2 76.6 91.1 2 31.2 69.2 83.7 3 92.70%
AME 54.6 85 94.3 1 42.1 78.7 90.3 2 82.54%

asymmetric
Mono 53.2 87.0 94.7 1 42.3 78.9 90 2 -
FME 48.3 83.6 93.6 2 37.2 75.4 88.4 2 92.70%
AME 58.8 88.6 96.2 1 46.2 82.5 91.9 2 84.99%

Table 3: Image-caption ranking results for English (MS-COCO)

Image to Text Text to Image

R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr Alignment

symmetric
Mono 42.7 77.7 88.5 2 33.1 69.8 84.3 3 -
FME 40.7 77.7 88.3 2 30.0 68.9 83.1 3 92.70%
AME 50.2 85.6 93.1 1 40.2 76.7 87.8 2 82.54%
asymmetric
Mono 49.9 83.4 93.7 2 39.7 76.5 88.3 2 -
FME 48.8 81.9 91.9 2 37.0 74.8 87.0 2 92.70%
AME 55.5 87.9 95.2 1 44.9 80.7 89.3 2 84.99%

Table 4: Image-caption ranking results for Japanese (MS-COCO)

EN→ DE DE→ EN

R@1 R@5 R@10 R@1 R@5 R@10

FME 51.4 76.4 84.5 46.9 71.2 79.1
AME 51.7 76.7 85.1 49.1 72.6 80.5

Table 5: Textual similarity scores (asymmetric,
Multi30k).

vised Embeddings (MUSE) benchmark (Lample
et al., 2017). MUSE is a large-scale high-quality
bilingual dictionaries for training and evaluating
the translation task. We extract the training words
of descriptions in two languages. For training, we
combine ”full” and ”test” sections of MUSE, then
filter them to the training words. For evaluation,
we filter ”train” section of MUSE to the training
words. 3

For evaluating the benefit of the proposed objec-
tive function, we compare AME with monolingual
training (Mono), and multilingual training with-
out the alignment model described in Section 3.2.
For the latter, the pre-aligned word embeddings
are frozen during training (FME). We add Mono
since the proposed model in Gella et al. (2017) did
not utilize pre-trained word embeddings for the
initialization, and the image encoder is different
(ResNet152 vs. VGG19).

3You can find the code for building bilingual lexicons on
the Github link.

We compare models based on two retrieval met-
rics, recall at position k (R@k) and Median of
ranks (Mr).

4.2 Multi30k Results

In Table 1 and 2, we show the results for English
and German captions. For English captions, we
see 21.28% improvement on average compared to
Kiros et al. (2014). There is a 1.8% boost on aver-
age compared to Mono due to more training data
and multilingual text encoder. AME performs bet-
ter than FME model on both symmetric and asym-
metric modes, which shows the advantage of fine-
tuning word embeddings during training. We have
25.26% boost on average compared to Kiros et al.
(2014) in asymmetric mode.

For German descriptions, The results are
11.05% better on average compared to (Gella
et al., 2017) in symmetric mode. AME also
achieves competitive or better results than FME
model in German descriptions too.

4.3 MS-COCO Results4

In Table 3 and 4, we show the performance of
AME and baselines for English and Japanese cap-
tions. We achieve 10.42% improvement on aver-

4To compare with baselines, scores are measured by aver-
aging 5 folds of 1K test images.
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Figure 2: Alignment ratio in each validation step
(asymmetric mode - image-to-text - Multi30k dataset)

age compared to Kiros et al. (2014) in the sym-
metric manner. We show that adapting the word
embedding for the task at hand, boosts the general
performance, since AME model significantly out-
performs FME model in both languages.

For the Japanese captions, AME reaches 6.25%
and 3.66% better results on average compared to
monolingual model in symmetric and asymmetric
modes, respectively.

4.4 Alignment results

In Tables 1 and 2, we can see that the alignment
ratio for AME is 6.80% lower than FME which
means that the translators can almost keep lan-
guages aligned in Multi30k dataset. In MS-COCO
dataset, the alignment ratio for AME is 8.93%
lower compared to FME.

We compute the alignment ratio and recall at
position 1 (R@1) in each validation step. Figure
2 shows the trade-off between alignment and re-
trieval tasks. At the first few epochs, the model im-
proves the alignment ratio since the retrieval task
hasn’t seen enough number of instances. Then,
the retrieval task tries to fine-tune word embed-
dings. Finally, they reach an agreement near the
half of training process. At this point, we up-
date the learning rate of retrieval task to improve
the performance, and the alignment ratio preserves
constant.

Additionally, we also train AME model with-
out adding the alignment objective function, and
the model breaks the alignment between the initial
aligned word embeddings, so it’s essential to add
the alignment objective function to the retrieval
task.

4.5 Caption-Caption Similarity Scores

Given the caption in a language, the task is to re-
trieve the related caption in another language. In

Table 5, we show the performance on Multi30k
dataset in asymmetric mode. AME outperforms
the FME model, confirming the importance of
word embeddings adaptation.

5 Conclusion

We proposed a multimodal model with a shared
multilingual text encoder by adapting the align-
ment between languages for image-description re-
trieval task while training. We introduced a loss
function which is a combination of a pairwise
ranking loss and a loss that maintains the align-
ment of word embeddings in multiple languages.
Through experiments with different multimodal
multilingual datasets, we have shown that our ap-
proach yields better generalization performance
on image-to-text and text-to-image retrieval tasks,
as well as caption-caption similarity task.

In the future work, we can investigate
on applying self-attention models like Trans-
former (Vaswani et al., 2017) on the shared text
encoder to find a more comprehensive represen-
tation for descriptions in the dataset. Additionally,
we can explore the effect of a weighted summation
of two loss functions instead of equally summing
them together.
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Abstract
In this paper, we experiment with a re-
cently proposed visual reasoning task dealing
with quantities – modeling the multimodal,
contextually-dependent meaning of size adjec-
tives (‘big’, ‘small’) – and explore the impact
of varying the training data on the learning
behavior of a state-of-art system. In previ-
ous work, models have been shown to fail in
generalizing to unseen adjective-noun combi-
nations. Here, we investigate whether, and to
what extent, seeing some of these cases dur-
ing training helps a model understand the rule
subtending the task, i.e., that being big implies
being not small, and vice versa. We show that
relatively few examples are enough to under-
stand this relationship, and that developing a
specific, mutually exclusive representation of
size adjectives is beneficial to the task.

1 Introduction

A recently proposed visual reasoning task chal-
lenges models to learn the meaning of size adjec-
tives (‘big’, ‘small’) from visually-grounded con-
texts (MALeViC; Pezzelle and Fernández, 2019).
Differently from standard approaches in language
and vision treating size as a fixed attribute of ob-
jects (Johnson et al., 2017), in MALeViC what
counts as ‘big’ or ‘small’ is defined contextually,
based on a cognitively-motivated threshold func-
tion evaluating the size of all the relevant objects
in a scene (Schmidt et al., 2009). In the most chal-
lenging version of the task, SET+POS, the subset
of relevant objects (i.e., the reference set) com-
prises all the objects belonging to the same cate-
gory as the queried one. Given a scene depicting
a number of colored shapes (e.g., the leftmost im-
age in Figure 1) and a sentence about one object’s
size (e.g., ‘The white rectangle is a big rectangle’),
models have to assess whether the sentence is true
or false in that context; i.e., whether the white rect-
angle is big given the other rectangles in the scene.

Figure 1: SET+POS. Two original (ORIG) examples.
Left (ORIG): The white rectangle is a big rectangle,
True. Right (ORIG): The blue triangle is a small tri-
angle, False. To test model abilities in handling unex-
pected cases, an increasing number of ORIG training
samples is modified by swapping both the size adjec-
tive and its ground-truth (SWAP). Left (SWAP): small,
False. Right (SWAP): big, True. Best viewed in color.

Among the tested models, FiLM (Perez et al.,
2018) turned out to be the best overall architecture
for the task. However, when tested with adjective-
noun combinations that were never seen in train-
ing (i.e., the model has been taught what means to
be big for circles and rectangles or small for tri-
angles and squares, but not, e.g., what means to
be small for a circle), FiLM was shown to use a
default strategy which ignores the adjective rather
than applying it compositionally. This finding is
in line with previous evidence showing the lack
of compositionality in neural networks (Baroni,
2019), either in multimodal tasks like visual ques-
tion answering (Agrawal et al., 2017) and visual
reasoning (Johnson et al., 2017), or when coping
with language data (Lake and Baroni, 2018; Loula
et al., 2018). To solve this well-known issue, sev-
eral attempts have been made to develop new mod-
els and techniques (Agrawal et al., 2018; Ramakr-
ishnan et al., 2018; Korrel et al., 2019), and several
datasets have been proposed to test compositional
abilities of systems (Agrawal et al., 2017, 2018).
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In this work, we focus on a tightly related prob-
lem, that is, generalization with little data. Since
models do not learn an abstract representation of
‘big’ and ‘small’ that can be applied composi-
tionally to unseen examples, we test whether, and
to what extent, this problem can be alleviated by
seeing some of these ‘unseen’ cases during train-
ing. We refer to these cases as unexpected (due
to their low frequency compared to the more fre-
quent, expected ones), and test whether injecting
an increasing proportion of these examples in the
training data helps models understand the rule sub-
tending the task, i.e., that being big implies being
not small, and vice versa. Intuitively, the model
could (1) stick to the default strategy and correctly
predict only the expected examples, or (2) learn a
more general rule that also accounts for the unex-
pected cases. Here, we are interested in checking
how much data is required to start adopting the lat-
ter strategy, and aim to understand what informa-
tion the model exploits while performing the task.

To explore these issues, we focus on the
SET+POS task and the best-performing FiLM
model, and build 7 new training settings with an
increasing proportion of unexpected cases.1 Such
examples are obtained by simply swapping the
original size adjective and its ground-truth answer,
as described in Figure 1. By training the model on
each of these settings, we show that very little un-
expected data is needed to obtain high generaliza-
tions in testing, and that seeing these examples is
beneficial to learn the rule subtending the task.

2 Generalizing to Unexpected Data

Method We explore whether injecting some un-
expected cases in training data helps the model un-
derstand the relation that holds between the adjec-
tives ‘big’ and ‘small’. We use the 10K-datapoint
(8K training, 1K val, 1K test) SET+POS dataset
(hence, A) used by Pezzelle and Fernández (2019)
in their compositional experiment, and build 7 new
training settings containing an increasing percent-
age of unexpected examples. We refer to these set-
tings using capital letters from B to H. They con-
tain 0.8%, 1.6%, 3.2%, 6.4%, 12.8%, 25.6%, and
50.0% unexpected cases, respectively. To gener-
ate the new training settings, we sample a given
percentage of datapoints (e.g., 0.8% for B) from
the original training/validation files and simply

1Data, code, and trained models are available at: https:
//github.com/sandropezzelle/malevic.

swap the original adjective and ground-truth an-
swer (see Figure 1). While doing so, we ensure
that a balanced number of cases is modified for
each <adjective-noun, ground truth> tuple. To il-
lustrate, out of the 8 modified cases in the valida-
tion split of B, 2 involve circles; out of these, one
is originally a <big-circle, true> case, the other
a <big-circle, false>. This makes all 7 settings
perfectly balanced with respect to shape, size, and
ground truth.2 This prevents biases in the data,
e.g., that circles are more likely to be big than
squares. It is worth mentioning that, compared to
A, only (some) sentences and answers are modi-
fied. As for the visual data, all settings employ the
exact same 10K images and visual features pre-
computed using ResNet-101 (He et al., 2016).

Model We experiment with FiLM (Perez et al.,
2018) using the best configuration of hyper-
parameters and the same experimental pipeline re-
ported in Pezzelle and Fernández (2019). In each
setting, the model is trained for 40 epochs with 3
random initializations. For each of these 3 runs,
the best model epoch based on accuracy on the
validation split is selected and then tested on 3 dif-
ferent test sets: (a) seen (1K datapoints), where all
the examples are expected, (b) unseen (1K), where
all the examples are unexpected, and (c) balanced
(2K), where a balanced number of expected and
unexpected cases is present. All test sets are taken
from Pezzelle and Fernández (2019).

Results In Table 1 we report, for each setting,
average model accuracy and standard deviation
(sd) over 3 runs (the same results are visualized
in Figure 2). Starting from the unseen test set, we
notice that injecting an extremely low percentage
of unexpected cases in B (0.8%, i.e., 64/8000 cases
in training) has already some impact on the accu-
racy, with a 12-point increase (27%) compared to
A (15%). This pattern is observed in the subse-
quent settings, with accuracy increasing to 44%
in C and to 45% in D. The most striking result is
observed in setting E, where model accuracy gets
well above chance level (65%) with a percentage
of just 6.4% unexpected cases seen in training (see
also Figure 2, where the blue line exceeds chance
level in E). This clearly indicates that the model,
instead of just trying to correctly predict all the
expected cases, which would potentially lead to a

2Note that we do not balance with respect to color since
this would increase by 5 the number of modified examples.
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test set average accuracy ± sd
A [0.0]* B [0.8] C [1.6] D [3.2] E [6.4] F [12.8] G [25.6] H [50.0] 16K [50.0]*

seen 0.85 ± 0.01 0.84 ± 0.02 0.83 ± 0.04 0.74 ± 0.01 0.75 ± 0.04 0.81 ± 0.01 0.74 ± 0.03 0.75 ± 0.01 0.91 ± 0.02
unseen 0.15 ± 0.02 0.27 ± 0.03 0.44 ± 0.00 0.45 ± 0.03 0.65 ± 0.04 0.74 ± 0.03 0.72 ± 0.02 0.75 ± 0.03 0.90 ± 0.02
balanced 0.50 ± 0.00 0.54 ± 0.03 0.65 ± 0.04 0.60 ± 0.01 0.71 ± 0.05 0.79 ± 0.03 0.73 ± 0.03 0.77 ± 0.03 0.88 ± 0.02

Table 1: Average accuracy ± standard deviation by FiLM on 3 test sets in settings A-H (in brackets, proportion
of unexpected cases seen in training). For comparison, performance by best model trained with 16K datapoints is
reported (16K). * refers to models trained in Pezzelle and Fernández (2019). In bold, highest number in the row.

93.6% accuracy, employs a learning strategy that
is valuable also for unexpected examples.

It is interesting to note, in this regard, that on the
seen test set the model experiences a performance
drop from A (85%) to H (75%), which shows
how an increasing proportion of unexpected cases
makes guessing the expected ones a bit harder
(this is, to some extent, intuitive since in A there
are only 4 seen adjective-noun combinations); in-
deed, the overall best accuracy in seen is ob-
tained with A, while the best accuracy in unseen
is obtained with H, where the highest proportion
of unexpected examples is given in training. As
for the balanced test set, we observe that an in-
creasing proportion of unexpected cases in train-
ing boosts model generalization, though F turns
out to slightly outperform H (79% vs 77%) due to
its better performance on the expected (seen) in-
stances. Finally, it should be noted that training
with twice as many samples (16K) leads to a sig-
nificantly higher accuracy in all test sets (+11-16
points compared to H), which shows a ‘the big-
ger, the better’ effect of training set size on model
performance in the task.
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Figure 2: FiLM performance on 3 test sets across set-
tings A-H. Average accuracy over 3 runs (dots) and
standard deviation (bars) are reported. The red dashed
line indicates chance level. Best viewed in color.

3 Analysis

Linguistic representations In FiLM, the repre-
sentation of the sentence obtained via the Gated
Recurrent Unit (GRU; Chung et al., 2014) influ-
ences the CNN computation to focus on image
features that are important to solve the task. Thus,
examining it could shed light on the type of lin-
guistic information exploited by the model. Here,
we are interested in checking how much size infor-
mation is encoded by the GRU in each setting. We
run each setting’s best trained model on the bal-
anced test set and, for each sentence, we extract
the final 4096-d GRU hidden state. We then per-
form a 2-dimensional PCA analysis on these 2K
embeddings: if the model pays attention to size
adjectives, embeddings containing ‘big’ (‘small’)
should be overall similar/close to each other, but
different/far from those containing ‘small’ (‘big’).

In Figure 3, we plot the results of the PCA anal-
ysis for settings A, B, C, and H (from left to right).
In A, where each shape type is always either ‘big’
or ‘small’, embeddings are clearly grouped in 4
clusters corresponding to each shape (labels not
reported for clarity of presentation), while no pat-
tern regarding size is observed (i.e., red and blue
dots are mixed together). This shows that, in A,
the GRU does not learn a specific representation
for ‘big’ and ‘small’, in line with the hypothesis
that the model just ignores these words (Pezzelle
and Fernández, 2019). This is confirmed by the
results of an additional analysis where we tested
the models trained in A on sentences (either from
the seen or unseen test set) from which the size
adjective is removed (e.g., ‘The white rectangle is
a rectangle’). As conjectured, no differences in
accuracy compared to the standard setting were
observed (i.e., 0.85 in seen; 0.15 in unseen). In
B, in contrast, some information about size is en-
coded (embeddings containing a ‘big’ shape are
‘South-East’ to those containing the same shape
‘small’), with this pattern becoming clearer in C,
where ‘big’ and ‘small’ are neatly separated by

20
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Figure 3: PCA analysis on 2K GRU sentence embeddings by each best model on the balanced test set in settings
A, B, C, and H (from left to right). Red dots correspond to sentences embedding ‘big’, blue to ‘small’. ‘Big’,
‘small’ become progressively separated as the proportion of unexpected samples increases. Best viewed in color.

PC1. This distance increases in the subsequent
settings (not reported), and becomes extreme in H,
where the size adjective is the most discriminative
linguistic feature. By testing the models trained
in H on the ‘without adjective’ test sentences, in-
deed, we obtain an accuracy that is close to chance
level (i.e., 0.49 in seen; 0.53 in unseen), which
clearly indicates that the model is unable to per-
form the task without the size adjective. In sum,
seeing more and more unexpected cases helps the
model develop an increasingly specific, mutually
exclusive representation of size adjectives, which
goes hand in hand with a better performance.

To quantitatively assess this pattern, we evaluate
the similarity between ‘big’/‘small’ embeddings
by (1) averaging all the embeddings containing the
same adjective, (2) computing the cosine similar-
ity between the two centroids. If the model pro-
gressively develops a mutually exclusive represen-
tation for ‘big’ and ‘small’, the similarity should
decrease across settings; in contrast, such a pat-
tern should not be found for shape (the meaning
of, e.g., square is not supposed to change).3 The
expected pattern is shown in Figure 4, with simi-
larity starting very high in A and rapidly decreas-
ing with an increasing proportion of unexpected
cases. Note that, in A, there is almost no difference
between ‘big’ and ‘small’. This is somehow intu-
itive since, in the balanced test set, the sentences
in the ‘big’ centroid are exactly the same as those
in the ‘small’ one, except for the size adjective. As
for shape, a rather ‘flat’ pattern is observed.

Mutual exclusivity of predictions An insight-
ful way to test whether FiLM has learned a
mutually exclusive representation for ‘big’ and
‘small’ is to consider its predictions for the orig-

3For shape, we obtain an average representation for each
shape (circle, square, etc.), compute all pairwise similarities
between the 4 centroids, and compute the average similarity.

inal (ORIG) and swapped (SWAP) test samples. If
the model has learned that being big implies being
not small, and vice versa, we should expect it not
to output the same answer (e.g., true) to both ques-
tions. To explore this issue, we first obtain model
predictions on both the seen and unseen test set.
We then take either test set and, for each sample,
we swap the size adjective and the ground truth
(see Figure 1). This way, we obtain two SWAP

test sets where ground truths are systematically re-
versed compared to ORIG. We obtain model pre-
dictions on each SWAP test set, compare them to
those on the corresponding ORIG, and count the
number of non-overlapping (i.e., mutually exclu-
sive) predictions. As shown in Figure 5, mutual
exclusivity is close to 0 in A, where FiLM outputs
(almost) always the same answer to both ORIG

and SWAP samples, and progressively increases
across settings, which boosts FiLM’s generaliza-
tion ability. This pattern of results is in line with
what is reported by Gandhi and Lake (2019), i.e.,
that standard neural networks lack the ability to
reason with mutual exclusivity. Until there is a
balanced enough number of ‘big’ and ‘small’ ex-
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amples in training, indeed, the model does not
fully understand the mutually exclusive relation
tying the two adjectives; rather, it makes predic-
tions that are biased toward the most frequent, ex-
pected instances.

4 Generalization vs Compositionality

The results described above show the ability of
FiLM to make powerful generalizations with lit-
tle data. However, this is not informative of its
compositional skills since, in settings B-H, the
same proportion of unexpected cases is seen by
the model for each shape type. As a conse-
quence, the model is not required to apply the
‘big’/‘small’ relation learned for, say, circles to,
say, squares. Here, we test whether learning the
rule for some shape types makes the model able to
apply it to other shapes. Crucially, this is differ-
ent from the compositional experiment in Pezzelle
and Fernández (2019) (here referred to as set-
ting A) where the ‘big’/‘small’ relation had to be
learned across shapes.

We train the model with perfectly balanced data
(as in H) for triangles and circles, and perfectly
unbalanced data (as in A) for squares and rectan-
gles. More in detail, the model is trained with sen-
tences containing the following queries:4 big tri-
angle (1K datapoints), small triangle (1K), big cir-
cle (1K), small circle (1K), small square (2K), big
rectangle (2K), and is then tested with the usual
seen and unseen test sets. If the model learns the
abstract, mutually exclusive relation between ‘big’
and ‘small’ by being exposed to examples of these
two adjectives combined with two different shape

4We employ the same 8K training datapoints and images
used in the previous experiments.

types, it should then be able to compositionally ap-
ply the rule to the other two types of shape. Other-
wise, a similar pattern as the one observed in set-
ting A should be found for squares and rectangles.

On the seen test set, where all the adjective-
noun combinations are seen in training, the model
obtains an average accuracy (over 3 runs) of 0.81.
On the unseen one, in contrast, it stops at 0.64.
As expected, this worse performance is due to the
extremely low accuracy on big square (0.22) and
small rectangle (0.23), i.e., the cases that were
never seen in training. This opposite pattern of re-
sults (triangle and circle vs square and rectangle)
suggests that the model learns a ‘big’/‘small’ rule
that is shape-dependent and cannot be composi-
tionally applied to other shapes. This is confirmed
by the results obtained when testing the model on
the ‘without adjective’ test sentences: in the best
model run, e.g., chance-level accuracy is observed
for triangles and circles in either test set (i.e., the
model ‘needs’ the adjective to perform the task),
while the same numbers as those obtained with
the default sentences are observed for squares and
rectangles (i.e., the adjective is ‘ignored’).

5 Conclusion

Previous work has reported the inability of FiLM
to apply ‘big’, ‘small’ to unseen adjective-noun
combinations (Pezzelle and Fernández, 2019).
Here, we show that seeing some of these cases
in training mitigates the problem, leading to high
generalizations (in line with Lake and Baroni,
2018) and helping the model understand the mutu-
ally exclusive status of size adjectives. Although
the model can learn the ‘big’/‘small’ rule, this rule
is shown to be shape-dependent; i.e., it cannot be
learned for some nouns and compositionally ap-
plied to others for which direct evidence was not
observed during training. Taken together, these
findings indicate that models fail to apply rules
compositionally, but are extremely good at gen-
eralizing to even rarely seen examples.
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Abstract

Chinese characters are unique in its lo-
gographic nature, which inherently en-
codes world knowledge through thousands
of years evolution. This paper proposes an
embedding approach, namely eigencharac-
ter (EC) space, which helps NLP applica-
tion easily access the knowledge encoded
in Chinese orthography. These EC repre-
sentations are automatically extracted, en-
code both structural and radical informa-
tion, and easily integrate with other com-
putational models. We built EC repre-
sentations of 5,000 Chinese characters, in-
vestigated orthography knowledge encoded
in ECs, and demonstrated how these ECs
identified visually similar characters with
both structural and radical information.

1 Introduction
Chinese is unique in its logographic writing
system. The Chinese scripts consists of a se-
quence of characters, each carried rich linguis-
tic information on its own. Chinese characters
are not only mediums for pronunciations and
lexical meanings, they also carry abundant in-
formation in the visual patterns.

Chinese orthography has been closely inves-
tigated in literature, from structural analy-
sis of ShuoWenJieZi in Han dynasty, to con-
temporary sociolinguistic perspective (Tsou,
1981). Recent behavioral studies even argued
that, given the salience of Chinese writing sys-
tem, the orthographic components are acti-
vated first when reading, followed by phono-
logical and semantic activation (Perfetti et al.,
2005). However, emphases of previous or-
thographic approaches were more on radicals,
components, or their respective positions in
the whole characters and how Chinese read-
ers recognize characters in a processing the-

ory. This paper presents a computational ap-
proach, eigencharacter representations, to de-
scribe Chinese characters in a vector space.
The resulting representations encode lexical
knowledge embedded in Chinese characters,
therefore provide unique insights on the in-
tegration between computational models and
linguistics.

2 Previous Works
Chinese characters are visual patterns occu-
pied in a square space. Depending on the
strokes of a character, the visual pattern may
be simple, such as a single stroke character (⼀,
yī, “one”) or complex, such as a 16 stroke char-
acter (⿔, guī, “turtle”). Psychophysics stud-
ies showed that Chinese characters carry more
information in high spatial frequency, com-
pared with alphabetic language (Wang and
Legge, 2018). Although some Chinese char-
acters are unique characters, which there is
no further components can be distinguished in
the whole character, identifying radicals and
components in a character is the most com-
mon way to analyze Chinese orthography.

2.1 Components decomposition
In Chinese classic text, ShuoWenJieZi identi-
fied 540 radicals in Chinese characters, from
which 214 of them are derived and used in
modern Chinese. The radical often carries a
semantic meaning of a character, and rest of
the characters form a component which may
provide hints of character pronunciation. For
example, 燃, rán, “burning” has radical ⽕,
huǒ, “fire”, in the left side, which has apparent
semantic connection between the whole char-
acter. The right side of the character, 然, rán,
“then” provides a phonological cue, which is
the same as the whole character in this exam-
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ple. The decomposition strategy are especially
useful in pedagogical context and behavioral
experiment, since it separates meanings from
pronunciations, so they can be taught or ma-
nipulated separately.

Not all Chinese characters are applicable to
this decomposition strategy. Some characters
has unique structure, which it cannot be eas-
ily separated as radical and components. For
instance, 東, dōng, “east” has radical of ⽊,
mù, “wood”, but the rest of the character, ⽈,
yuē, “say”, is tightly embedded in the charac-
ter and has no phonological relations with the
whole character. There are even some char-
acters cannot be decomposed at all, such as
我, wǒ, “I, me”, cannot be decomposed into a
component after removing the radical (⼽, gē,
“weaponery”).

Some studies tried to decompose characters
into finer components, through which charac-
ters can be divided recursively into a compo-
nent hierarchy (Chuang and Hsieh, 2005). For
example, instead of decomposing燃 into its se-
mantic radical (⽕) and phonological compo-
nent (然), the phonological component can be
further divided into three components: ⼣, xì,
“dusk”, ⽝, quǎn, “dog”, ⺣, huǒ, “fire”. This
approach provides a complete description of
characters, but is not without caveats. Specif-
ically, it is not easy to find visually similar
characters with component hierarchy, (e.g. 已
and ⼰ are visually similar, while not sharing
common components), and the definition of a
components is not always clear (e.g. ⿓, lóng,
dragon could have one, two or three compo-
nents, depending on different definitions).

2.2 Eigendecomposition of Visual
Stimuli

Although decomposing characters into compo-
nents are advantageous in pedagogical context
and in behavioral experiments, the discrete
nature of components prevents a simple cod-
ing scheme of Chinese orthography. Specifi-
cally, there are 214 radicals in modern Chi-
nese, which would require hundreds of dimen-
sion in a vector to encode radicals and other
components. In addition, were positions of
each radicals/components considered, the di-
mensions needed to encoded a single character
would increase exponentially.

An alternative approach to construct a com-

putational representation of Chinese charac-
ter is leveraging the fact scripts are written
in square blocks, each character can be con-
sidered as an information-laden visual pat-
terns. The computation task is to extract com-
mon components among these patterns (char-
acters), and choose fewest possible number of
components to best represent given set of char-
acters. The idea is closely related to eigen-
face decomposition in face recognition and face
processing studies (Sirovich and Kirby, 1987).

Chinese characters and faces are two distant
but striking similar concepts, both in compu-
tational tasks and in cognitive neuroscience.
Face and characters were shown to share sim-
ilar processing mechanisms and even found to
have closely related neural mechanisms (Farah
et al., 1995; Zhang et al., 2018). In addition,
face and (handwritten) character recognition
were both attempted in a low dimensional
space (Sirovich and Kirby, 1987; Long et al.,
2011). The low dimensional face space (eigen-
face) was later applied into cognitive science,
through which a face space was constructed
and was used to explain phenomena concern-
ing face recognition (O’toole et al., 1994).

In this paper, inspired by concepts of eigen-
face, we tried to construct a eigencharacter
space to represent Chinese characters, and in-
vestigate the orthographic information impli-
cated in eigencharacters.

Constructing eigencharacters provides
unique advantages in computational model-
ing. These representations are invaluable that
they are (1) clearly and automatically defined
given a set of characters; (2) helpful when
finding similar characters even when not shar-
ing common components; (3) insightful when
considering Chinese orthography on their
structure and essential components; (4) easily
manipulable and conveniently incorporated,
since they are inherently a vector, into recent
computational models (e.g. neural network
models).

3 Eigencharacter

We constructed eigencharacter space with
5,000 most frequently used characters, which
was the estimated vocabulary size of average
college students in Taiwan (Hue, 2003). Mean
strokes of these characters was 12.24, standard
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Figure 1: Variance explained under different num-
ber of eigencharacter components.

deviation was 4.48. Character with the fewest
stroke (1 stroke) was ⼀, yī, “one”; the one
with most strokes was 籲, yù, “call, implore”.

Each character was first drawn with white
ink on a binary bitmap of black background.
The font used was Microsoft JhenHei, font size
was 64. After drawing characters on bitmaps,
they were reshaped into column vectors of
length 4800 (i.e. 64 × 75). The resulting char-
acter matrix therefore has dimension 4800 ×
5000 matrix.

The character matrix was then decomposed
with singular value decomposition:

M = UΣV T

where M is the original character matrix,
Σ is a diagonal matrix with singular values.
To determine the number of singular vectors,
or number of eigencharacters(ECs) needed to
best represent the character matrix, we first
examined the scree plot of singular values nor-
malized by the Frobenius norm of M (Figure
1).

From Figure 1, proportion of variance ex-
plained quickly dropped after 50 ECs. To
verified the observation, we attempted to re-
construct the character with first 10, 50 and
100 ECs (i.e. the first 10, 50, 100 columns
of U). The resulting construction is shown in
Figure 2. The reconstruction of first 10 ECs
only recovered limited patterns of each charac-
ter. Interestingly, the patterns recovered were
mostly vertical or horizontal stripes. When us-
ing 50 ECs, the resulting patterns started to be
recognizable, and they were identifiable when
using 100 ECs. Basing on the results above,
we chose first 50 ECs to construct eigenchar-
acters space.

Figure 2: Character reconstructed with different
number of eigencharacters. Reconstruction with
10 ECs (upper panel), with 50 ECs (middle panel),
and 100 ECs (lower panel).

4 Experiments

Constructed ECs space serves multiple pur-
poses. Among their potential advantages on
incorporating orthographic knowledge natu-
rally inherited in Chinese writing system, we
demonstrate how ECs reveal structure and
component information in Chinese orthogra-
phy, and how they are particularly effective in
finding visually similar characters.

4.1 Rendering Eigencharacters
ECs are abstract mathematical construct ex-
tracted from singular value decomposition,
which might not be directly interpretable.
However, these ECs are essentially the bases
best represent 5,000 characters, the actual pat-
terns of these ECs could bear interesting in-
sight on Chinese orthography.

We rendered 50 ECs extracted in previous
section, and reconstructed them as if they were
normal character. The renderings were shown
in Figure 3, ECs are ordered descendingly by
their respective singular values.

The rendering showed interesting patterns.
By visual inspection, we can observed that
(1) first few ECs encode “low spatial fre-
qunecy” information, such as the general char-
acter block in EC0, vertical stripes in EC1,
EC2, and horizontal stripes in EC4, EC5; (2)
they do not correspond directly to radicals,
but some important radicals can be identi-
fied nevertheless, such as ⺡ radical, “water”
in EC14, ⾔ radical, “words” in EC15, and ⼥
radical, “female” in EC31.

In addition to visual inspection, we could
also understand ECs by the characters having
the highest or the lowest coefficients in each
ECs. By these positively or negatively loaded
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Figure 3: First 50 Eigencharacters.

characters, we could infer the information each
EC encodes in character space. For example,
the 3 highest loaded characters on EC0 are
轟, 竇 and 鷹, and the 3 lowest loaded charac-
ters are ⼀, ⼘, and ⼆, aided by the EC ren-
dering, we could infer EC0 is a component of
“stroke complexity”. Likewise, the 3 highest
loaded characters of EC1 are 圄, 鬩, and 閘,
the 3 lowest loaded are 值, 椿, and 捧. EC1
is then infered to be a component of “enclos-
ing structure”. These components of struc-
ture echoed the behavioral studies that showed
Chinese readers use structural information to
judge character similarity (Yeh and Li, 2002).
Aside from components of structural represen-
tation, there are also components of radicals.
For instance, EC31, which shows a ⼥ radical
in rendering, is a component of ⼥ radical. It
has highest loading in characters with ⼥ rad-
ical, such as 媒, 娩, and 妮.

Renderings of ECs and inspection of their
loaded characters, suggest ECs are not only
abstract mathematical constructs. Instead,
they automatically encode and reflect struc-
tural and radical aspects in Chinese orthogra-
phy.

4.2 Finding Similar Characters
Eigencharacters encodes structural and rad-
ical information in characters, which would
be ideal to find visual similar characters that
is otherwise impossible using components de-
composition approach.

Table 1 show examples of similar charac-
ters identified with eigencharacters. Charac-
ter similarity is defined as the euclidean dis-
tance between two characters in EC space. In
first row of table 1, EC space found similar
characters with identical radical (⺡), com-
ponents(胡), and remarkably considering the
three parts vertical structure simultaneously.
In the second row of the table, the similar char-
acters of 語, highlighted another property of
EC space: it did not restrict itself on the exact
components, but the visually similar compo-
nents, such as 諮, 晤 and 誤, they either share
the same radical/component, or having similar
right hand side components. The last row also
showed the advantages of EC space in finding
visually similar character. For instance,東 and
泉 are both unique structure, and they share
similar patterns (⽈ in the middle, and two
oblique strokes in lower half) which would be
challenged to accommodate were components-
based decomposition were used.

These illustrative examples showed EC
space, which inherently equipped with knowl-
edge of structural and radical information,
provides an ideal representation to explore
Chinese orthography.

5 Conclusion

This paper introduces eigencharacters, an em-
bedding representation of Chinese orthogra-
phy. It provides unique advantages over
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Seed Similar characters
湖 溯潮漏瑚澗
語 諮晤誤診譜
頭 頹頷頸頌頻
⿓ 鶺廳籠麓韙
東 泉帛柬⾞蒐

Table 1: Similar characters found with eigenchar-
acter space.

component-based character decomposition, in
that it can be automatically extracted, en-
codes both structural and radical information,
and easily integrates with other computational
models. Equipped with EC representations,
human knowledge encoded in Chinese orthog-
raphy becomes easily accessible to downstream
NLP applications.
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Abstract

Scene graphs represent semantic information
in images, which can help image captioning
system to produce more descriptive outputs
versus using only the image as context. Re-
cent captioning approaches rely on ad-hoc ap-
proaches to obtain graphs for images. How-
ever, those graphs introduce noise and it is un-
clear the effect of parser errors on captioning
accuracy. In this work, we investigate to what
extent scene graphs can help image captioning.
Our results show that a state-of-the-art scene
graph parser can boost performance almost as
much as the ground truth graphs, showing that
the bottleneck currently resides more on the
captioning models than on the performance of
the scene graph parser.

1 Introduction

The task of automatically recognizing and describ-
ing visual scenes in the real world, normally re-
ferred to as image captioning, is a long stand-
ing problem in computer vision and computational
linguistics. Previously proposed methods based on
deep neural networks have demonstrated convinc-
ing results in this task, (Xu et al., 2015; Lu et al.,
2018; Anderson et al., 2018; Lu et al., 2017; Fu
et al., 2017; Ren et al., 2017) yet they often pro-
duce dry and simplistic captions, which lack de-
scriptive depth and omit key relations between ob-
jects in the scene. Incorporating complex visual
relations knowledge between objects in the form
of scene graphs has the potential to improve cap-
tioning systems beyond current limitations.

Scene graphs, such as the ones present in the
Visual Genome dataset (Krishna et al., 2017), can
be used to incorporate external knowledge into
images. Because of the structured abstraction
and greater semantic representation capacity than
purely image features, they have the potential to

improve image captioning, as well as other down-
stream tasks that rely on visual components. This
has led to the development of many parsing algo-
rithms for scene graphs (Li et al., 2018, 2017; Xu
et al., 2017; Dai et al., 2017; Yu et al., 2017). Si-
multaneously, recent work also aimed at incorpo-
rating scene graphs into captioning systems, with
promising results (Yao et al., 2018; Xu et al.,
2019). However, these previous work still rely on
ad-hoc scene graph parsers, raising the question
of how captioning systems behave under potential
parsing errors.

In this work, we aim at answering the follow-
ing question: “to what degree scene graphs con-
tribute to the performance of image captioning
systems?”. In order to answer this question we
provide two contributions: 1) we investigate the
performance of incorporating scene graphs gener-
ated by a state-of-the-art scene graph parser (Li
et al., 2018) into a well-established image cap-
tioning framework (Anderson et al., 2018); and 2)
we provide an upper bound on the performance
by comparative experiments with ground truth
graphs. Our results show that scene graphs can
be used to boost performance of image captioning,
and scene graphs generated by state-of-art scene
graph parser, though still limited in the number of
objects and relations categories, is not far below
the ground-truth graphs, in terms of standard im-
age captioning metrics.

2 Methods

Our architecture, inspired by Anderson et al.
(2018) and shown in Figure 1, assumes an off-
the-shelf scene graph parser. To improve perfor-
mance, we also incorporate information from the
original image through a set of region features ob-
tained through an object detection model. Note we
experiment with each set of features in isolation in
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Figure 1: Overview of our architecture for image captioning.

Section 3.1. Given those inputs, our model con-
sists a scene graph encoder, an LSTM-based at-
tention module and another LSTM as the decoder.

2.1 Scene Graph Encoder
The scene graph is represented as a set of node
embeddings which are then updated into contex-
tual hidden vectors using a Graph Convolutional
Network (Kipf and Welling, 2017, GCN). In par-
ticular, we employ the GCN version proposed by
Marcheggiani and Titov (2017), who incorporate
directions and edge labels. We treat each relation
and object in the scene graph as nodes, which are
then connected with five different types of edges.1

Since we assume scene graphs are obtained by a
parser, they may contain noise in the form of faulty
or nugatory connections. To mitigate the influence
of parsing errors, we allow edge-wise gating so the
network learns to prune those connections. We re-
fer to Marcheggiani and Titov (2017) for details of
their GCN architecture.

2.2 Attention LSTM
The Attention LSTM keeps track of contextual in-
formation from the inputs and incorporates infor-
mation from the decoder. At each time step t, the
Attention LSTM takes in contextual information
by concatenating the previous hidden state of the
Decoder LSTM, the mean-pooled region-level im-
age features, the mean-pooled scene graph node
features from the GCN and the previous gener-
ated word representation: x1

t = [h2
t−1,v, f ,Weut]

where We is the word embedding matrix for vo-
cabulary Σ and ut is the one-hot encoding of the
word at time step t. Given the hidden state of the

1We use the following types: subj indicates the edge be-
tween a subject and predicate, obj denotes the edge between
a predicate and an object, subj’ and obj’, their corresponding
reverse edges, and lastly, self, which denotes a self loop.

Attention LSTM h1
t , we generate cascaded atten-

tion features, first over scene graph features, and
then we concatenate the attention weighted scene
graph features with the hidden state of the Atten-
tion LSTM to attend over region-level image fea-
tures. Here, we only show the second attention
step over region-level image features as they are
identical procedures except for the input:

bi,t = wT
b ReLU(Wfbvi +Whb[h

1
t , f̂t])

βt = softmax(bt); v̂t =

Nv∑

i=1

βi,tvi

where wT
b ∈ RH ,Wfb ∈ RH×Df ,Whb ∈ RH×H

are learnable weights. v̂t and f̂t are the attention
weighted image features and scene graph features
respectively.

2.3 Decoder LSTM

The inputs to the Decoder LSTM consist of the
previous hidden state from the Attention LSTM
layer, attention weighted scene graph node fea-
tures, and attention weighted image features. x2

t =
[h1

t , f̂t, v̂t] Using the notation y1:T to refer to
a sequence of words (y1, ..., yT ) at each time
step t, the conditional distribution over possi-
ble output words is given by: p(yt|y1:t−1) =
softmax(Wph

2
t + bp) where Wp ∈ R|Σ|×H and

bp ∈ R|Σ| are learned weights and biases.

2.4 Training and Inference

Given a target ground truth sequence y∗1:T and a
captioning model with parameters θ, we minimize
the standard cross entropy loss. At inference time,
we use beam search with a beam size of 5 and ap-
ply length normalization (Wu et al., 2016).
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3 Experiments

Datasets MS-COCO, (Lin et al., 2014) is the
most popular benchmark for image captioning,
which contains 82,783 training images and 40,504
validation images, with five human-annotated de-
scriptions per image. As the annotations of the
official testing set are not publicly available, we
follow the widely used Kaparthy split (Karpa-
thy and Fei-Fei, 2017), and take 113,287 images
for training, 5K for validation, and 5K for test-
ing. We convert all the descriptions in training
set to lower case and discard rare words which oc-
cur less than five times, resulting in a vocabulary
with 10,201 unique words. For the oracle experi-
ments, we take a subset of MS-COCO that inter-
sects with Visual Genome (Krishna et al., 2017) to
obtain the ground truth scene graphs. The result-
ing dataset (henceforth, MS-COCO-GT) contains
33,569 training, 2,108s validation, and 2,116 test
images respectively.

Preprocessing The scene graphs are obtained
by a state-of-the-art parser: a pre-trained
Factorizable-Net trained on MSDN split (Li et al.,
2017), which is a cleaner version of the Visual
Genome2 that consists of 150 object categories
and 50 relationship categories. Notice that the
number of object categories and relationships are
much smaller than the actual number of objects
and relationships in the Visual Genome dataset.
All the predicted objects are associated with a
set of bound box coordinates. The region-level
image features3 are obtained from Faster-RCNN
(Ren et al., 2017), which is also trained on Visual
Genome, using 1,600 object classes and 400 at-
tributes classes.

Implementation Our models are trained with
AdamMax optimizer (Kingma and Ba, 2015). We
set the initial learning rate as 0.001 with a mini-
batch size as 256. We set the maximum number of
epochs to be 100 with early stopping mechanism.4

During inference, we set the beam width to 5.
Each word in the sentence is represented as a one-
hot vector, and each word embedding is a 1,024-

2The MSDN split might contain training instances that
overlap with the Karpathy split

3These regions are different to those from the scene graph.
To help the model learn to match regions, the inputs to atten-
tion include bounding box coordinates.

4We stop training if the CIDEr score does not improve for
10 epochs, and we reduce the learning by 20 percent if the
CIDEr score does not improve for 5 epochs.

B M R C S

No edge-wise gating
I 34.1 26.5 55.5 108.0 19.9
G 22.8 20.6 46.7 66.3 13.5
I+G 34.2 26.5 55.7 108.2 20.1

With edge-wise gating
G 22.9 21.1 47.5 70.7 14.0
I+G 34.5 26.8 55.9 108.6 20.3

Table 1: Results on the full MS-COCO dataset. “I”,
“G” and “I+G” correspond to models using image fea-
tures only, scene graphs only and both, respectively.
“B”, “M”, “R”, “C” and “S” correspond to BLEU, ME-
TEOR, ROUGE, CIDEr and SPICE (higher is better).

dimensional vector. For each image, we have
K = 36 region features with bounding box coor-
dinates from Faster-RCNN. Each region-level im-
age feature is represented as a 2,048-dimensional
vector, and we concatenate the bounding box coor-
dinates to each of the region-level image features.
The dimension of the hidden layer in each LSTM
and GCN layer is set to 1,024. We use two GCN
layers in all our experiments.

Evaluation We employ standard automatic eval-
uation metrics including BLEU (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007),
ROUGE (Lin, 2004), CIDEr (Vedantam et al.,
2015) and SPICE (Anderson et al., 2016), and we
use the coco-caption tool5 to obtain the scores.

3.1 Quantitative Results and Analysis
Table 1 shows the performances of our mod-
els against baseline models whose architecture is
based on Bottom-up Top-down Attention model
(Anderson et al., 2018). Overall, our proposed
model incorporating scene graph features achieves
better results across all evaluation metrics, com-
pared to image features only or graph features
only. The results show that our model can learn to
exploit the relational information in scene graphs
and effectively integrate those with image fea-
tures. Moreover, the results also demonstrate the
effectiveness of edge-wise gating in pruning noisy
scene graph features.

We also conduct experiments comparing
Factorizable-Net generated scene graph with
ground-truth scene graph, as shown in Table 2. As
expected, the results show that the performance is

5https://github.com/tylin/coco-caption
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GT: a cop riding a motorcycle next to a white van
Image: a police officer riding a motorcycle on a city street

Graph: a man riding on the back of a motorcycle down a street
I + G: a man riding a motorcycle down a city street in front of a white bus

GT: the baby is playing with the phone in the park
Image: a little girl is holding a cell phone

Graph: a woman sitting on a bench with a cell phone
I + G: a little girl is holding a cell phone in a field of grass in a park

Figure 2: Caption generation results on COCO dataset. All results are generated by models trained on the full ver-
sion of Karpathy split, and all graph features are processed by GCN with edge-wise gating. 1) Ground Truth(GT)
2) Image features only(Image) 3) Graph features only(Graph) 4) Ours: Image features plus graph features (I + G)

B M R C S

I 32.0 25.6 54.3 102.2 19.0
G (pred) 17.4 16.5 41.3 49.5 10.6
G (truth) 18.4 17.9 42.5 50.8 11.2
I+G (pred) 32.2 25.8 54.4 103.4 19.1
I+G (truth) 32.5 26.1 54.8 105.2 19.5

Table 2: Results on the MS-COCO-GT dataset.
“G (pred)” refers to the parsed scene graphs from
Factorizable-Net while “G (truth)” corresponds to the
ground truth graphs obtained from Visual Genome.

better with ground-truth scene graph. Notably the
SPICE score, which measures the semantic cor-
relation between generated captions and ground
truth captions, improved by 2.1%, since there
are considerably more types of objects, relations
and attributes present in the ground-truth scene
graphs. Overall, the results show the potential
of incorporating automatically generated scene
graph features for the captioning system, and we
argue with better scene graph parser trained on
more objects, relations and attributes categories,
the captioning system should provide additional
improvements.

Compared to a recent image captioning paper6

(Li and Jiang, 2019) using scene-graph features,
our results are superior, demonstrating the effec-
tiveness of our model. Moreover, compared to
a state-of-art image captioning system (Yu et al.,
2019),7 our scores are inferior, as we do not ap-
ply scheduled sampling, reinforcement learning,

6The Hierarchical Attention Model incorporating scene-
graph features reports scores: Bleu4 33.8, METEOR 26.2,
ROUGE 54.9, CIDEr 110.3, SPICE 19.8

7This transformer-based captioning system reports scores:
Bleu4 40.4, METEOR 29.4, ROUGE 59.6, CIDEr 130.0.

transformer cell or ensemble predictions, which
have all been proven to improve the scores sig-
nificantly. However, our method of incorporating
scene-graph features is orthogonal to the state-of-
art methods.

3.2 Qualitative Results and Analysis
Figure 2 shows some generated captions by differ-
ent approaches trained on the full Karpathy split
of MS-COCO dataset. We can see that all ap-
proaches can produce sensible captions describing
the image content. However, our approach of in-
corporating scene graph features and image fea-
tures can generate more descriptive captions that
more closely narrate the underlying relations in the
image. In the first example, our model correctly
predicts that the motercycle is in front of the white
van while the image-only model misses this rela-
tional detail. On the other hand, purely graph fea-
tures sometimes introduce noise. As shown in the
second example, the graph-only model mistakes
the little girl in a park as a woman on a bench,
whereas the image features in our model helps dis-
ambiguate faulty graph features.

4 Conclusion

We have presented a novel image captioning
framework that incorporates scene graph features
extracted from state-of-art scene graph parser
Factorizable-Net. Particularly, we investigate
the problem of integrating relation-aware scene
graph features encoded by Graph Convolution
with region-level image features to boost image
captioning performance. Extensive experiments
conducted on MSCOCO image captioning dataset
has shown the effectiveness of our method. In the
future, we want to experiment with building an
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end-to-end multi-task framework that jointly pre-
dicts visual relations and captions.
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Abstract
It is assumed that multimodal machine transla-
tion systems are better than text-only systems
at translating phrases that have a direct corre-
spondence in the image. This assumption has
been challenged in experiments demonstrating
that state-of-the-art multimodal systems per-
form equally well in the presence of randomly
selected images, but, more recently, it has been
shown that masking entities from the source
language sentence during training can help to
overcome this problem. In this paper, we con-
duct experiments with both visual and textual
adversaries in order to understand the role of
incorrect textual inputs to such systems. Our
results show that when the source language
sentence contains mistakes, multimodal trans-
lation systems do not leverage the additional
visual signal to produce the correct translation.
We also find that the degradation of translation
performance caused by textual adversaries is
significantly higher than by visual adversaries.

1 Introduction

There has been a surge of interest in tackling ma-
chine translation problems using additional infor-
mation, such as a image or video context. It has
been claimed that systems trained on a combina-
tion of visual and textual inputs produce better
translations than systems trained using only tex-
tual inputs (Specia et al., 2016; Elliott et al., 2017).
However, these claims have been the subject of de-
bate in the literature: Elliott (2018) argued that the
additional visual input is not necessarily used by
demonstrating that the performance of a system
did not change when it was evaluated with ran-
domly selected images, and Grönroos et al. (2018)
observed that their models were insensitive to be-
ing evaluated with an “averaged” visual vector, as
opposed to the expected visual vector. More re-
cently, Caglayan et al. (2019) presented experi-
ments in which the colour and entity tokens (e.g.

blue or woman) were masked during the training
of a multimodal translation model. They found
that training the model under these conditions re-
sulted in the system relying on the visual modal-
ity to recover the masked words during evaluation.
Although, their results show that the visual modal-
ity can be used to recover the masked tokens in the
source sentences, it is not clear if these systems
will perform similarly when there is a mismatch
between the textual and visual concepts.

In this paper, we explore the effect of textual ad-
versaries in multimodal machine translation. We
construct hard negative textual adversaries, which
contradict the original meaning, in order to ex-
plore the robustness of systems to textual adver-
saries. The textual adversaries are based on mini-
mal manipulations to the sentences, for example:

(1) a. Two people walking on the beach.
b. *Two people walking on the grass.

The adversarial sentence (1b) still retains most as-
pects of the original sentence but it depicts a com-
pletely unrelated scene. In our experiments, we
study how significantly these types of textual per-
turbations affect the performance of multimodal
translation systems. If a system is sufficiently
modelling the visual modality, we expect it to ig-
nore this type of perturbation, and to produce the
correct translation by leveraging the visual input.

The main contribution of this paper is an evalua-
tion of multimodal translation systems in the pres-
ence of adversarial textual data. This evaluation
is based on four types of textual adversaries de-
scribed in Section 2. We evaluate the effect of
these adversaries on three state-of-the-art systems,
and we also probe the visual awareness of these
models by exposing them to randomly selected
images. Our results show that although these sys-
tems are not greatly affected by the visual adver-
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Type Original Adversarial

Num Two people walking on the beach. Four people walking on the beach.
Noun Two people walking on the beach. Two people walking on the grass.
NP Two people walking on the beach. The beach walking on two people.
Prep Two people walking on the beach. Two people walking through the beach.

Figure 1: Examples of adversarial textual samples that we use to attack the multimodal translation models. The
underlined text denotes the words or phrases that are perturbed to create the adversarial example.

saries, they are substantially affected by the textual
adversaries.

2 Generating Textual Adversaries

We define visual term as a word or phrase that
can be expected to be clearly illustrated in an im-
age. In our experiments, we evaluate the perfor-
mance of multimodal translation systems by mod-
ifying a visual term in a sentence to create a tex-
tual adversary. We create four types of adver-
sarial samples following the methodology intro-
duced in Young et al. (2014); Hodosh and Hock-
enmaier (2016); Shi et al. (2018) 1 The adversaries
are constructed from syntactic analyses of the sen-
tences using POS tagging, chunking, and depen-
dency parses from the SpaCy toolkit (Honnibal
and Johnson, 2015). Figure 1 presents an overview
and examples of each type of adversary.

Replace Numeral (Num): Our simplest adver-
sary is to replace the numeral in a sentence with
a different quantity. We detect the tokens in a
sentence that represent numbers (based on their
part-of-speech tags) and replace them with alter-
native numerals. In addition, we treat the indefi-
nite articles “a” and “an” as the numeral “one” be-
cause they are typically used as numerals in image
captions. Furthermore, subsequent noun phrase
chunks are either singularized or pluralized ac-
cordingly. We expect that this will have a small
effect on translation quality unless the adversary
introduces a serious inconsistency with the image.

Replace Noun Head (Noun): We extract the
list of all concrete noun heads (Zwicky, 1985)
from the COCO dataset (Chen et al., 2015) and
swap them with the noun heads in our data. We
compute concreteness2 following Turney et al.
(2011) and only consider words with concreteness

1The code to recreate these textual adversaries or
new adversaries is available at https://github.com/
koeldc/Textual-adversaries-generation

2The degree of concreteness in a word’s context is cor-
related with the likelihood that the word is used in a literal
sense and not metaphorically (Turney et al., 2011).

measure θ > 0.6. We use WordNet (Miller, 1998)
heuristic hypernymy rules to replace noun heads
with terms that are semantically different.

(2) a. The girl plays with the LEGOs.
b. The girl plays with the bricks.
c. *The girl plays with the giraffes.

If our aim is to create an adversarial sentence,
given 2(a), then 2(b) is too semantically similar
and does not create a good adversarial example.
However, (2c) creates a better adversarial example
because “giraffes” are more semantically different
to “LEGOs” than “bricks”. We hypothesize that
the system should heavily rely on the information
contained in the visual model and discard these er-
rors to produce correct translation.

Switch Noun Phrases (NP): For each sentence,
the position of the extracted noun phrases are
switched. In the example in Figure 1, we refer
to two people and the beach respectively as the
partitive first noun phrase (NP1) and second noun
phrase (NP2). The position of NP1 and NP2 are
switched. As a result, the new sentence depicts a
different scene. Such examples allow us to eval-
uate whether the models can identify important
changes in word-order.

Replace Preposition (Prep): Finally, we de-
tect the prepositions used in a sentence and ran-
domly replace them with different prepositions.
The translation system should be least sensitive to
this type of adversary because it typically results
in the smallest change in the meaning of the sen-
tence, as compared to switching the noun phrases.

3 Experiments

We use settings similar to that of Elliott (2018) in
order to make the evaluation of textual adversaries
comparable to that of visual adversaries. Each
system in this analysis is trained on the 29,000
English-German-image triplets in the translation
data in the Multi30K dataset (Elliott et al., 2016).
The analysis is performed on the Multi30K Test
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Textual

Original Visual Num Noun NP Prep

decinit 51.5 +0.4 -14.0 -11.1 -11.0 -5.7

trgmul 52.1 +0.2 -14.8 -11.2 -11.2 -5.8

hierattn 48.2 -2.0 -13.2 -9.4 -11.2 -5.4

Text-only 51.5 – -14.6 -10.4 -10.5 -6.3

Table 1: The differences in Corpus-level Meteor scores for the English–German Multi30K Test 2017 data for the
different adversaries compared to the systems evaluated on the Original text and images. Visual: evaluation on
the correct text but adversarial images. Textual: evaluation on the four different textual adversaries and the correct
images. Text-only: performance of a text-only translation model with adversarial sentences.

2017 split (Elliott et al., 2017). The predicted
translations are evaluated against human refer-
ences using Meteor 1.5 (Denkowski and Lavie,
2014). The translations of the sentences with
textual adversaries are evaluated against the gold
standard, and not what the model should predict,
given the adversarial input.

In this analysis, we evaluate the performance
of three off-the-shelf multimodal systems: decinit
uses a learned transformation of a global 2048D
visual feature vector is used to initialise the de-
coder hidden state (Caglayan et al., 2017a). In
trgmul, the target language word embeddings
and 2048D visual representations are interacted
through element-wise multiplication (Caglayan
et al., 2017a). In hierattn, the decoder learns to
selectively attend to a combination of the source
language and a 7×7×512 volume of spatial-
location preserving visual features (Libovickỳ and
Helcl, 2017). We also evaluate an attention-based
text-only NMT system (Bahdanau et al., 2014)
trained on only the English–German sentences in
Multi30K. The model uses a conditional GRU de-
coder (Firat and Cho, 2016) with attention over a
GRU encoder (Cho et al., 2014), as implemented
in nmtpytorch (Caglayan et al., 2017b).

Visual Adversaries: Visual concepts and their
relationships with the text are expected to pro-
vide rich supervision to multimodal translation
systems. In addition to evaluating the robustness
of these systems to textual adversaries, we also de-
termine the interplay with visual adversaries. We
pair each caption with a randomly sampled image
from the test data to break the alignment between
learned word semantics and visual concepts.

3.1 Results

In Table 1 we present the corpus-level Meteor
scores for the text-only and multimodal systems
when evaluated on the original data and the differ-
ence in performance when evaluating these mod-
els using the different adversaries. For visual ad-
versaries, we confirm previously reported results
of no substantial performance losses for the trans-
lations generated by the trgmul and decinit sys-
tems with visual features from unrelated images
(Elliott, 2018). The hierattn model, however, is
affected by the incongruent images, result in a 2.0
Meteor point drop in performance, indicating that
the attention-based model is sensitive to the rele-
vance of the visual input. In the case of the textual
adversaries, all models suffer a significant drop in
Meteor score for all types of adversary, with nu-
meral replacements producing the largest differ-
ences. (This was a surprising result but we believe
it is partially due to unseen numerals, e.g. “Seven-
teen” being mapped to the UNK token.) The hier-
attn model is least affected by noun and numeral
replacements, and all three models are similarly
affected by the noun phrase shuffle and prepo-
sitional swap adversaries. The text-only transla-
tion model is similarly affected by the textual ad-
versaries, with the exception of the prepositional
swap adversary, which has a more marked affect
on performance than in the multimodal models.

In addition to the standard evaluation measures,
we estimate the lexical diversity of the translations
by calculating the type-to-token ratio (Templin,
1957, TTR) of the system outputs when evaluated
with the congruent or incongruent visual inputs.3

3TTR has previously been used to estimate the quality of
machine translation system outputs (Bentivogli et al., 2016).
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Congruent Incongruent

decinit 0.1659 0.1655
trgmul 0.1703 0.1692

hierattn 0.1399 0.1352

Table 2: Type-to-token ratios of the system outputs
given congruent and incongruent visual context.

95 % Confidence Interval

Original 140.01 - 210.62
Num 335.03 - 490.07
Noun 388.02 - 511.52
NP 490.24 - 816.45

Prep 443.94 - 736.79

Table 3: The 95% confidence interval of the sentence-
level perplexity of the original and each textual adver-
sarial data samples, as estimated by GPT-2.

In our experiments, the multimodal systems were
trained on the congruent image-sentence pairs so
any difference in lexical diversity is likely to be
due to the visual component of the respective mod-
els. However, the results in Table 2 indicate that
there is no meaningful difference in TTR when the
models are evaluated with the congruent or incon-
gruent visual inputs.

3.2 Discussion
Given substantial decreases in Meteor score of the
translations, we conducted an analysis to estimate
the well-formedness of the adversarial sentences.
To this end, we measure the perplexity of the per-
turbed sentences in each textual adversarial cate-
gory using the pre-trained GPT-2 language model
(Radford et al., 2018) and further average them to
compute 95% confidence intervals for each cate-
gory. From Table 3, we observe that the bound-
aries of the intervals are not over-lapping, indi-
cating statistically significant differences in distri-
bution between the adversarial categories and the
original sample4.

Qualitative Analysis: Figure 2 shows exam-
ples of translations under textual adversarial con-
ditions for the hierattn system. We also show the
output of the same system given the original text
data. In these examples, we see that the system
produces incorrect translations with respect to ei-

4The higher perplexities for the adversarial samples were,
in part, due to incorrect grammatical conjugations.

ther the sentence or the image. In NUM, pluraliz-
ing “A” to “Two” causes the model to generate an
unknown word5 “Japan” instead of “Halloween”.
The translation model is likely to have good repre-
sentations of “A” and “two” because these words
occur frequently in the training data, but it fails to
distinguish between singulars and plurals, result-
ing in an incorrect translation. In PREP, swapping
“in” for “up” causes the model to make an incor-
rect lexical choice “fische” (“fish”) instead of “wa-
terfall”, which is incorrect, given the image. This
example shows that a small lexical error can have
a catastrophic effect on the output. This may be
because the semantics of spatial relations are not
diverse enough in Multi30K. In NOUN, replac-
ing “man” with “city” causes the model to gen-
erate an output containing the mistranslated unit
“Stadt”(“city”), although a man is clearly visible
in the image. This implies that addition visual sig-
nals is not always helpful in the obvious situations
where we wish to translate direct visual terms. In
NP, we see that the systems fail to fully capture
the information contained in the image, resulting
in under-translation. However, unlike the output
in the adversarial condition, which did not trans-
late the important visual concept “people”, the
model with the original sentence translates “Peo-
ple” into “Menschen”. An inspection of the train-
ing data shows that there are sentences that de-
scribe ‘people fishing”, therefore the model may
be exploiting the distribution in the training data.

Overall, this analysis shows that the visual
modality does not help the system to recover the
correct translation, given textual adversaries.

4 Conclusion

In this paper, we study the potential contribution of
each modality for the task of multimodal machine
translation. We evaluated the performance of three
multimodal translations system with adversarial
source language sentences that share some as-
pects of the correct caption. Our evaluation of-
fers new insights on the limitations of these sys-
tems. The results indicate that the systems are pri-
marily performing text-based translations, which
is supported by the observation that the visual ad-
versaries do not harm the systems as much as
their textual counterparts. However, the textual
adversaries sometimes resulted in ungrammati-
cal sentences, which may be addressed by adopt-

5We use the error taxonomy from Vilar et al. (2006).
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Original: A group of young people dressed up for Halloween.
Baseline: Eine Gruppe junger Menschen verkleidet.

NUM: Two groups of young people dressed up for halloween.
NMT: Zwei Frauen vor einem Glasgebäude.
MMT: Zwei Gruppen von jungen Menschen in Japan.

Reference : Eine Gruppe junger Leute verkleidet sich für Halloween.

Original: A man paddles an inflatable canoe.
Baseline: Ein Mann paddelt in einem aufblasbaren Kanu.

NOUN: A city paddles an inflatable canoe.
NMT: Ein Bewölkter kissen über die Absperrung.
MMT: Eine Stadt paddelt in einem aufblasbaren Kanu.

Reference: Ein Mann paddelt in einem aufblasbaren Kanu.

Original: People fishing off a pier.
Baseline: Menschen beim Angeln.

NP: A pier fishing off people.
NMT: Ein Bewölkter kissen über die Absperrung.
MMT: Ein Pier beim Angeln.

Reference: Leute fischen an einem Pier.

Original: A beautiful waterfall in the middle of a forest.
Baseline: Ein schöner Wasserfall in der Mitte eines Waldes.

PREP: A beautiful waterfall up the middle of a forest.
NMT: Zwei Frauen vor einem Glasgebäude.
MMT: Eine schöne Fische in einem Wald.

Reference: Ein schöner Wasserfall mitten im Wald.

Figure 2: Examples of translations produced by the hierattn multimodal transaltion system. Baseline: the system
output given the Original image-caption pair. NUM / NOUN / NP / PREP: The adversarial caption with the
underlined replacement. NMT: the output of a text-only translation system, given the adversarial input. MMT:
the output of the hierattn system, given the adversarial input.

ing recently-proposed neural perturbation models
(Alzantot et al., 2018). We will also put more em-
phasis on the specific visual term in the image,
aligning them with corresponding mention in the
source data, and we plan on developing models
with an max-margin ranking loss that forces the
model to distinguish important differences (Huang
et al., 2018) between the true image-sentence pair
and well-formed adversarial perturbed sentences.
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Abstract
Previous research into agent communication
has shown that a pre-trained guide can speed
up the learning process of an imitation learn-
ing agent. The guide achieves this by pro-
viding the agent with discrete messages in an
emerged language about how to solve the task.
We extend this one-directional communication
by a one-bit communication channel from the
learner back to the guide: It is able to ask
the guide for help, and we limit the guidance
by penalizing the learner for these requests.
During training, the agent learns to control
this gate based on its current observation. We
find that the amount of requested guidance de-
creases over time and guidance is requested in
situations of high uncertainty. We investigate
the agent’s performance in cases of open and
closed gates and discuss potential motives for
the observed gating behavior.

1 Introduction

A long-term goal of AI is to develop agents that
can help humans execute complex tasks in the real
world. Since reward functions that are aligned
with human intentions are hard to manually spec-
ify (Amodei and Clark, 2016), other approaches
besides Reinforcement Learning are needed for
creating agents that behave in the intended way.
Among these are Reward Modeling (Leike et al.,
2018) and Imitation Learning (Pomerleau, 1991),
but, eventually, it would be useful if we could use
natural language to transmit wishes to the agents.

Recently, Mul et al. (2019) made progress in
this direction by showing how communication can
be used to guide a learner in a gridworld envi-
ronment. Using emergent discrete messages, the
guide is able to speed up the learning process of
the learner and to let it generalize across incremen-
tally more difficult environments.

∗Equal contributions
†Shared senior authorship

In this setting, the communication channel is
completely one-way: in each time step, the guide
transmits a message that may help the learner
make its decisions. In reality, however, commu-
nication is more complex than that: the guidance
may be expensive and it can, therefore, be ben-
eficial to have more sparse messages. Further-
more, the learner may want to ask for clarifica-
tion if something is unclear. Therefore, it would be
worthwhile if there was a communication channel
from the learner back to the guide. It is this in-
teractive nature of communication that arguably is
needed for more advanced AI systems (Mikolov
et al., 2016).

In this paper, we equip the learner introduced
by Mul et al. (2019) with a binary gate to indicate
its need for guidance in each time step. A penalty
for the use of guidance incentivizes a sparse usage
of the gate. By analyzing the relationship between
the learner’s usage of the gate and a number of
measures, we show that the learner indeed learns
to ask for guidance in a smart and economical way.

2 Related Work

In this section we briefly lay out relevant work that
relate to our approach on the dimensions of fol-
lowing language instructions, emergent communi-
cation and the interactions that emerge from guid-
ance requests.

2.1 Following Language Instruction

In recent years, much research has been con-
ducted in the field of following language instruc-
tions. Since language commands build a way to
interact with agents and communicate informa-
tion in an effective and human-interpretable way,
the agent’s processing and understanding of these
commands is relevant for our project. Starting
with manually engineered mappings (Winograd,
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1971), the currently most relevant grounded lan-
guage acquisition methods focus on learning a
parser to map linguistic input to its executable
equivalent, i.e. action specifications using statis-
tical models (Yu et al., 2018), (Kim and Mooney,
2012), (Artzi and Zettlemoyer, 2013), (Mei et al.,
2016). In the BabyAI platform introduced by
Chevalier-Boisvert et al. (2019) a synthetic “Baby
Language” is used, which consists of a subset of
English and whose semantics is generated by a
context-free grammar (as opposed to instruction
templates) and is easily understood by humans.
They employ a single model to combine linguis-
tic and visual information, similar to Misra et al.
(2017). Our setup builds on Mul et al. (2019) who
extend that platform with a guide, like Co-Reyes
et al. (2018), that supplements the agent’s infor-
mation with iterative linguistic messages.

2.2 Emergent Communication
In order to benefit most from the guide, the agent
would ideally communicate back, thus creating a
multi-agent cooperation scenario. Recent research
in this area investigates the emergence and usage
of emergent language, e.g. in the context of ref-
erential games (Lazaridou et al., 2016). Further-
more, Mordatch and Abbeel (2018) show that mul-
tiple agents can develop a grounded compositional
language to fulfill their tasks more effectively with
spoken exchange. In our setup the emergent com-
munication consists of discrete word tokens sim-
ilar to Havrylov and Titov (2017). Jiang and
Lu (2018) propose an attentional communication
model to learn when communication is needed
(and helpful), resulting in more effective (large-
scale) multi-agent cooperation.

2.3 Guidance Requests
In prior work (Mul et al., 2019), guidance is given
at every time step and the communication is one-
way from guide to learner. We extend this ap-
proach by allowing a communication channel in
the other direction. Here we survey work that uses
similar requests for help.

Most similar to our work is Clouse (1997),
where “Ask for help” is proposed: in this setting,
an RL agent has one additional action with which
it can signify to a “trainer” that it wants to re-
ceive help. The trainer then chooses the agent’s
action. Whether to ask for help is based on un-
certainty about the highest action value. This is
different from our setting in which the uncertainty

is only implicitly responsible for queries, as can be
seen in Section 5. Kosoy (2019) studies the “Ask
for help” setting theoretically and proves a regret
bound for agents that act in infinite-horizon dis-
counted MDPs and are able to delegate actions to
an “advisor”.

In Nguyen et al. (2019) there is a help-
requesting policy πhelp that can signify if the agent
needs help. If this is the case, a guide answers with
a language-based instruction of subgoals. Addi-
tionally, there is a budget that limits asking for
help.

Also related is Werling et al. (2015), where
structured prediction problems are considered: a
sequence of words is received and each word is
supposed to be mapped to a label. The system can
query a crowd (as in crowd-sourcing) to obtain an-
swers on specific words in the sequence. As in our
case, querying the crowd is penalized by an addi-
tional loss.

In Krueger (2016), Schulze and Evans (2018),
active reinforcement learning (ARL) is proposed:
different from usual RL, the agent has to choose
in each round if it wants to receive the reward that
results from its action, which results in a constant
query-cost c > 0. Note that in this setting, what
is queried is feedback, whereas in our setting, the
model queries guidance prior to making a deci-
sion. Active Reward Learning (Daniel et al., 2014)
is a similar approach in the context of continuous
control tasks.

3 Approach

3.1 BabyAI Game

All our experiments take place in the BabyAI plat-
form (Chevalier-Boisvert et al., 2019). In this plat-
form, an agent learns to complete tasks given by
instructions in a subset of English in a mini grid-
world environment. The environments are only
partially observable to the agent.

Figure 1 shows two example levels. In total
there are 19 different levels that increase in dif-
ficulty and complexity of tasks. For each level, the
BabyAI framework can randomly generate many
missions that require roughly the same skillset and
are provided with a similar language instruction.
For the following investigation, we only focus on
the levels “GoToObj” and “PutNextLocal”. These
are chosen to be simple but nevertheless require
a representative set of skills. As such, our results
can be understood as a proof of concept.
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(a) GoToObj (b) PutNextLocal

Figure 1: Example levels from BabyAI. GoToObj is the
simplest level, requiring the agent to go to a specific ob-
ject. This task is given by a language instruction to the
agent, such as “Go to the purple ball”. PutNextLocal
is more difficult, requiring a more complex skill-set.
An example task in this setting would be “Put the grey
key next to the red box”. Shown in the images are the
agent (red triangle), different objects (boxes, keys, balls
in different colors) and the observation of the agent (a
brighter 7× 7 visual field that has the agent in the mid-
dle of the bottom row relative to the agent. Parts of this
is outside of the shown images)

3.2 Model
In this section, we describe the model that we use
for a learner that may ask for guidance. We refer
to Figure 2 for a visual explanation.

Based on the observation ot, the instruction i
and its own memory unit, the learner L builds a
representation rt:

rt = L(ot, i). (1)

ot is a 7× 7× 3 tensor describing the viewable
environment (e.g. the brighter area in Figure 1)
and i is a natural language instruction (e.g. ”Go to
the purple ball”). The representation unit L uses
a FiLM module (Perez et al., 2017) followed by a
memory RNN.

First, consider a learner without guidance. In
this setting it directly takes the representation rt
and feeds it into the policy module P that outputs
the next action at = P (rt). For more details on
this baseline setting, see Chevalier-Boisvert et al.
(2019).

A guided learner
Now consider Mul et al. (2019), where a guide is
added. The guide follows the same architecture
as the learner-policy combination, but between the
representing unit and the policy there is a discrete
“bottleneck” that only allows 9 different messages
to pass. The policy then needs to encode this mes-
sage continuously in order to choose the correct

ot i

at

mt

rt

gt

Enc(mt)

hl
t−1 hg

t−1

�

FiLM

Memory
RNN

Policy

Gate

Guidance
Encoder

FiLM

Memory
RNN

Guidance
Decoder

Figure 2: Architecture of a learner that can ask for
guidance. Depicted variables are ot: observation in-
put, i: linguistic instruction, hlt−1 and hgt−1: mem-
ory, rt: learned representation, mt: the discrete guid-
ance message, gt: the gating weight and at: the action
chosen based on rt and possibly the encoded message
Enc(mt). The red part (the guide) is pretrained and
then finetuned, while the blue parts (conceptually be-
longing to the learner) are newly initialized at the be-
ginning of the training.

action out of 7 possibilities. After this guide-
policy combination is trained, the messages are
fed into the policy attached to a newly initialized
learner in order to help it make its decision. In this
later guided training stage, the policy of the guide
is not used anymore.

More formally, the guide uses the same input
and a memory unit to produce a message mt of
two words with 3 possible tokens for each.

mt = G(ot, i). (2)

The message mt is then encoded to a higher di-
mensional continuous encoding Enc(mt) that is
produced by an encoder of the same architecture
as the encoder used while training the guide. The
policy then bases its decision on both the learned
representation rt and encoding Enc(mt), which
are simply concatenated:

at = P (rt,Enc(mt)). (3)

More details can be found in Mul et al. (2019).
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Adding a gate
To enable the learner to decide when to receive
guidance, we extend the learner with a gate mod-
ule G to learn a gating weight gt ∈ {0, 1} that
switches the policy input between (rt,Enc(mt))
(guided) and (rt,0) (unguided):

at = P (rt, gt · Enc(mt))

= P ((1− gt) · (rt,0) + gt · (rt,Enc(mt)))

=

{
P (rt,0), if gt = 0,

P (rt,Enc(mt)), if gt = 1,

(4)

where gt = G(rt). The gate module G is a
two-layered MLP with a tanh activation functions
that outputs a scalar, followed by a sigmoid activa-
tion function and a threshold function with param-
eter 0.5. The module G that produces the gating
weight will from here on be referred to as the gate.

3.3 Training

We use a pretrained Reinforcement Learning
(RL) expert, trained as in Mul et al. (2019) and
Chevalier-Boisvert et al. (2019) by proximal pol-
icy optimization (Schulman et al., 2017). After
training, the expert is placed once in many mis-
sions in order to create training data containing
the expert behavior. Using imitation learning as
in Mul et al. (2019), we have a cross-entropy loss
function Lce that measures how much the distribu-
tion over actions given by the policy of our model
deviates from the “correct” action of the RL ex-
pert.1 Furthermore, we penalize the learner for
asking for guidance by adding the gating weight
to the loss and balance these incentives by a hy-
perparameter λ:

L = Lce + λ · g. (5)

We use λ = 0.3 in all GoToObj experiments and
0.05 for PutNextLocal, values that were found by
hyperparameter search. The combined model con-
sisting of pre-trained guide, also trained by im-
itation learning as in Mul et al. (2019), and the
newly initialized learner is then trained end-to-end
by backpropagating the gradients to all the weights

1For mitigating confusion, we mention explicitly that the
RL expert is not the same as the guide: the expert creates
the data that is used for backpropagating the model and thus
for training it following the choice of the action. The guide,
however, gives its guidance prior to the decision about the
chosen action.

of the combined model. In order to pass the gra-
dients also through the discrete gate G, we use
the straight-through estimator (Bengio et al., 2013;
Courbariaux et al., 2016). In order to allow the
learner to learn the usefulness of the guidance at
the beginning of training, we initialize G with a
positive bias.

4 Experiments

In this section, we describe the experiments con-
ducted in order to test the setting of a learner that
queries the guide for help. In order to assess this,
we train the combined model with λ = 0.3 for 7
runs on the simplest level, GoToObj, until conver-
gence. In this level, the learner is instructed to go
to a specific object. Results with λ = 0.05 for
7 runs on the level PutNextLocal can be found in
Appendix B.

Performance and dynamics. First of all, we
are interested in how our model performs com-
pared to baselines. The first baseline is the learner
on its own trained with imitation learning, which
was the setting in Chevalier-Boisvert et al. (2019).
The second baseline is the learner that receives
guidance in each round without the need to query
for it, which was studied in Mul et al. (2019).
We expect that our model learns faster than the
original learner model, due to its access to guid-
ance, but slower than the guided learner without
the gate, since it does not always receive guidance.
The results can be found in Figure 3 (a), where we
plot the success rate, i.e. portion of successfully
completed episodes, during validation.

We monitor the average gating weight over
epochs, which we call guidance rate, to inspect
the usage of the gate over the course of the train-
ing. Furthermore, we compare the overall accu-
racy with the accuracy conditioned on the cases of
an open or closed gate to assess the influence on
performance. These metrics can be found in Fig-
ure 3 (b)2.

Since the accuracy plots in Figure 3 (b) are
solely correlational, we furthermore plot the val-
idation accuracy for the case where we intervene
during validation in the gate in order to have it
opened or closed to assess the causal influence of
the open gate on the accuracy, see Figure 4.

Economic requests. While the accuracy mea-

2The accuracy is the percentage of chosen actions that co-
incide with the “correct” action of the RL expert that is used
in the imitation learning process.
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(a) Baseline Success Rate Comparison (b) Validation Accuracy Comparison

Figure 3: Results of training our combined model until convergence on GoToObj. Results are averaged over 7
runs. Shaded regions represent standard deviations.

Figure 4: We compare the accuracy during validation
in cases of forced open and closed gates: irrespective
of the gating weight gt computed from the system, we
set gt = 1 (so that the policy bases its decision on the
encoded guidance Enc(mt)) for the red dotted curve
and gt = 0 for the black curve.

sures how often the agent was “right”, the cross-
entropy policy loss gives greater insights into the
performance with respect to the actual training
objective. We would like to assess whether the
learner uses the gate economically, since it is pe-
nalized. This means to ask for guidance in situ-
ations in which it expects the greatest reduction
in the policy loss. The policy loss for cases of
open and closed gate can therefore be found in
Figure 5. We compare it with the counterfactual
policy losses that arise if we force the gate to be
opened if the learner wants it to be closed and vice
versa. This intervention now allows us to assess
the causal influence of the gate on the policy loss.

Guidance semantics. Finally, we are interested
in whether there are meaningful correlations be-
tween the frames in which the learner asks for
guidance and the actions that the learner takes

Figure 5: Policy Loss Comparison

(Figure 6) as well as the messages emitted by the
guide (Figure 7). By analyzing this, we can see if
the learner masters certain situations that require
a certain action or are accompanied by a certain
message.

Figure 6: Frequency of open gate conditioned on ac-
tions and frequencies of actions themselves.

5 Analysis

5.1 Results and analysis of experiments

After outlining the experiments, we now briefly
analyze the results.

Performance and dynamics. First, we notice
in Figure 3 (a) that, while initially our model is
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Figure 7: Frequency of open gate conditioned on mes-
sages and frequencies of messages themselves.

indeed faster than the learner baseline and keeps
up with the guided baseline, from epoch 10 to 30
there is a performance dip not seen in the former
models. This is precisely the phase in which the
gate successively closes more and more, as can be
seen in Figure 3 (b). Our explanation for this dip is
that the policy first needs to adjust to the fact that it
does not get the familiar guidance anymore. Even-
tually, from epoch 30 onward, our model performs
almost perfectly and as well as the baselines.

As mentioned already, the learner becomes in-
deed more independent over time, roughly choos-
ing its action on its own in 80% of the cases from
epoch 50 onward. As soon as the guidance rate be-
gins to drop in epoch 10, we can compute an accu-
racy conditioned on cases where the gate is closed,
as can be seen in the blue line of Figure 3 (b). This
accuracy is lower than the accuracy in case of an
open gate (red dotted line) and only fully catches
up roughly after 25 epochs of training.

About the intervention accuracy in Figure 4: we
observe that the initial phase with a guidance rate
at 1 sees a steep increase in accuracy with guid-
ance but nearly no change in the accuracy with-
out guidance. We suppose that is the case since in
this phase the training happens exclusively with an
open gate. Then, the guidance rate drops and train-
ing happens increasingly without guidance. Ac-
cordingly, the accuracy without guidance starts to
increase and eventually catches up. In many in-
dividual runs, the performance without guidance

is ultimately actually even better. We hypothesize
that this is since the gate is mostly closed and so
the policy doesn’t “expect” the gate to be open
anymore. Consequently, an open gate and addi-
tional encoded message is confusing and leads to
misbehavior. Intuitively, this is similar to how hu-
mans who are very experienced in their profession
may actually just be distracted by someone who
occasionally tries to give them advice instead of
just letting them do their task on their own.

Economic requests. In order to get a better
feeling for how smart the agent is in its guidance
requests, we look at Figure 5. For similar results
about the entropy, see Appendix A. We see an
overall tendency for the policy loss to decrease,
as we would expect due to the training. At the
same time, the situations where the gate is open
are those that are more difficult for the learner
(including in the comparison of the counterfac-
tual cases where we change the gate). Addition-
ally, in those situations the reduction in policy loss
achieved by asking for guidance is greater – this
can be seen by comparing with the counterfactual
situations. We furthermore observe that after the
guidance rate starts to drop around epoch 10, the
policy loss in situations of a closed gate rapidly
sinks as the learner adapts to those novel situa-
tions. In the meantime, the open gate policy loss
stabilizes until around epoch 20, while the coun-
terfactual policy loss in these situations strongly
increases. This indicates that the learner learns to
selectively open the gate in situations that are more
difficult and especially so without guidance.

Guidance semantics. To gain insights about
dependencies between specific actions and the
guidance rate, we now look at Figure 6. We see
that in situations where the learner takes action 2,
which corresponds to “move forward”, the guid-
ance rate drops relatively early to 0. This may be
the case since this is the most common and sup-
posedly most easily identifiable action. For action
0 that corresponds to “turn right” and action 1 that
corresponds to “turn left”, we see that the guidance
rate also decreases, albeit slower and asymmetri-
cally. This may be due to a higher difficulty of
distinguishing those actions from each other. Intu-
itively they are symmetric and it may often be un-
clear what to do if “move forward” is not a promis-
ing action. In some runs, the guidance rate drops
more for action 0 and in some more for action 1.
We may attempt to explain this by the learner ei-
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ther learning to request help in situations where
action 0 is one of the promising options (poten-
tially the only one) or learning the same with ac-
tion 1. In both cases, it is ensured that situations
with confusion between those two actions are en-
compassed.

On the guidance rate conditioned on messages:
as we can see in Figure 7, mainly three messages
are used to convey guidance and for all of them
the guidance rate decreases over time. We suppose
that the overall trends happen due to the close cor-
respondence between messages and actions that
was already observed by Mul et al. (2019).

5.2 Guidance in space and time

So far, we mainly discussed “global” metrics, in
the sense that we aggregate information over com-
plete epochs. This still leaves open the question
how guidance requests evolve with respect to the
position of the agent and temporally during an
episode.

For the first aim, we create heatmaps as in Fig-
ure 8. For more maps, see Figure 13 in Appendix
A.

Figure 8: Two example heatmaps from training in level
GoToObj, one in the beginning of training and one in
an advanced stage. These heatmaps are created as fol-
lows: after an epoch is finished, the agent is placed in a
specific mission. Then, we let it follow its path until the
episode is over. For each point in the agent trajectory
we record whether it asks for guidance. Multiple tra-
jectories are sampled by randomly placing the agent in
a new position. The brightness of the color in the figure
depicts the average guidance rate within that position.

As we can see, the trained agent asks for guid-
ance often specifically if it is near the goal object
in order to find out if it should “turn towards it”,
which would cause the goal to be reached. It is im-
portant for the agent to be reasonably sure about
the goal being reached beforehand, since other-
wise turning to the object will result in two lost
moves.

Figure 9: Observation types in GoToLocal. GoToLocal
is a level different from GoToObj or PutNextLocal and
is used to illustrate some of the extra possibilities ((1,x)
and (x,1)) on further levels. In the left mission, the
agent is tasked to go to the blue ball. This is directly left
from the agent, whereas to the right, there is no feature
in common with the goal. Therefore, the observation
type is (2, 0). In the right mission, the goal is to go to
a grey ball. Since the blue ball shares one feature with
the grey one (namely being a ball), the corresponding
observation type is (1, 2).

In order to test the influence of objects on the
agent more quantitatively, we create another met-
ric that conditions the guidance rate on how “goal-
like” the observation is that the agent faces. For
this matter, we assign tuples (d1, d2) to each ob-
servation, where d1 and d2 signify how goal-like
the object left and right from the agent is. We
measure this by the number of features it has in
common with the goal object, where features are
both color and object-type. di = k means that
the object shares k ∈ {0, 1, 2} features with the
goal object. This creates 9 observation types3. See
Figure 9 for examples. The results can be found
in Figure 10. We can observe strong changes in
the guidance rate if the goal object is to the left or
right: if it is on the left, the guidance rate is signif-
icantly greater and if it is to the right, the guidance
rate is significantly smaller than usually. This is
in line with the plots of the guidance rate condi-
tioned on actions, Figure 6, which already showed
that turning to the left requires considerably more
guidance than turning to the right. This indicates
that the high guidance rate at goal objects may to
a large extend be caused by the high correlation
between turning actions and guidance rates and be
mostly independent of the fact that there is a goal

3Note that even the combination (2, 2) is in principle pos-
sible in higher levels: There are tasks such as “Go to a red
ball” where several red ball can be in the mission. However,
this is unlikely and the expert never places itself between two
goal objects. Furthermore, in GoToObj there is simply just
one object in the mission. Therefore, the graph in Figure 10
corresponding to (2, 2) is empty.
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around.

Figure 10: Frequency of open gate conditioned on ob-
servation types and frequencies of observation types
themselves. For example, type (2, 0) is a situation
where directly left of the agent there is the goal and
right of it there is no object sharing any feature with
the goal-object. In GoToObj there is only one object in
the level so situations like (1, x) or (x, 1) do not occur
and are left out in this plot.

Now we turn to the question about the guidance
rate in time: within one episode, are there usually
phases where more or less guidance is needed?
The heatmaps suggest that the agent mostly asks
for guidance in the end of the episode.

In order to answer this question, we create the
“guidance per time quantile” plot, Figure 11. As
we can see, the guidance rate is in general high
in the beginning of episodes and drops once more
knowledge about the environment is acquired.
However, in the end of the episode, the guidance
rate grows again and is greatest in the very end,
which is in line with the qualitative assessment
from the heatmaps.

One interpretation for this is the following: in
the beginning, the agent needs to roughly figure
out “in which direction to head”. Once this is
clear, it can walk there without further guidance.
But in the very end, it needs more precision and
asks for guidance again in order to finally find its
goal. This is similar to how humans often look at
a map in the beginning of a hike in order to figure
out the direction, and then in the end again in or-
der to reassess how their new position now relates
to the goal.

Figure 11: Guidance per time quantile: roughly speak-
ing, a timepoint t is in quantile k of 10 if t/l ≈ k/10,
where l is the length of the corresponding episode. The
plots show the guidance rate corresponding to the dif-
ferent quantiles. Dark blue curves belong to earlier
epochs whereas red curves belong to later epochs.

6 Conclusion and future research

In this paper, we extended a recently proposed
method to guide a learner in a gridworld envi-
ronment by letting the learner explicitly ask for
help. To accomplish this, we defined a binary gate
in the learner’s model. We brought the original
approach closer to the real world by (i) enabling
bi-directional communication and (ii) attaching a
cost to it.

We showed that the learner successfully learns
to utilize the guidance gate to achieve a favorable
trade-off between learning speed and amount of
guidance requested. Initially using the full guid-
ance to learn faster than a learner without guid-
ance, it eventually learns to request guidance only
where it is especially helpful, acting increasingly
independent.

Future research could consist of retraining the
guide to see if it learns to send more abstract mes-
sages that provide guidance over multiple time
steps. This may be fruitfully combined with giv-
ing the guide an additional information advantage
like a bird’s eye’s view so that the guide has more
foresight than the learner. It would require a way
for the learner to memorize past messages.

Another direction is to replace the gate by an
emergent communication channel from the learner
to the guide, so that the learner can send its guid-
ance requests in more nuanced ways. Further-
more, we saw that the policy may have problems
dealing with the additional guidance it receives
unexpectedly in late training. It may be worth-
while to experiment with policy architectures that
can deal better with spontaneous changes in its in-
put.
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Finally, research might as well aim at finding
ways to meaningfully replace the guide agent by
a human. This might allow for better learning in
tasks that autonomous agents struggle to learn by
themselves.
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Abstract

Readers’ eye movements used as part of the
training signal have been shown to improve
performance in a wide range of Natural Lan-
guage Processing (NLP) tasks. Previous work
uses gaze data either at the type level or at
the token level and mostly from a single eye-
tracking corpus. In this paper, we analyze
type vs token-level integration options with
eye tracking data from two corpora to inform
two syntactic sequence labeling problems: bi-
nary phrase chunking and part-of-speech tag-
ging. We show that using globally-aggregated
measures that capture the central tendency or
variability of gaze data is more beneficial than
proposed local views which retain individual
participant information. While gaze data is in-
formative for supervised POS tagging, which
complements previous findings on unsuper-
vised POS induction, almost no improvement
is obtained for binary phrase chunking, except
for a single specific setup. Hence, caution is
warranted when using gaze data as signal for
NLP, as no single view is robust over tasks,
modeling choice and gaze corpus.

1 Introduction

Digital traces of human cognitive processing can
provide valuable signal for Natural Language Pro-
cessing (Klerke et al., 2016; Plank, 2016a,b). One
emerging source of information studied within
NLP is eye-tracking data (Barrett and Søgaard,
2015a; Klerke et al., 2016; Mishra et al., 2017a;
Jaffe et al., 2018; Barrett et al., 2018b; Hollenstein
et al., 2019). While ubiquitous gaze recording re-
mains unavailable, NLP research has focused on
exploring the value of including gaze information
from large, mostly disjointly labeled gaze datasets
in recurrent neural network models. This mod-
els the assumption that no new gaze data will be
available at test time. The proposed approaches
under this paradigm include gaze as auxiliary task

Figure 1: Gaze (binned) captured during reading.

in multi-task learning (Klerke et al., 2016; Hollen-
stein et al., 2019), gaze as word embeddings (Bar-
rett et al., 2018b), gaze as type dictionaries (Bar-
rett et al., 2016; Hollenstein and Zhang, 2019) and
as attention (Barrett et al., 2018a). We follow this
line of work and require no gaze data at test time.

Choosing a gaze representation means choosing
what to consider as signal and what to consider
as noise. Aggregation is a way to implement this
choice; where the kind of aggregation typically de-
pends on the modeling framework. In this work
we investigate how different levels of aggregation
and the kind of variability preserved in represen-
tations of gaze duration from early and late pro-
cessing states interact with two low-level syntactic
sequence labeling tasks. Specifically, we address
the following questions:

RQ1 Is a local view of individual gaze trace bene-
ficial for syntactic sequence labeling in com-
parison to an aggregate global view, where
information is traced via i) the central ten-
dency (mean) or ii) the variability (variance)
of the gaze behavior?

RQ2 How well does learning from de-
contextualized gaze data represented at
the type-level (as dictionary) perform in
comparison to learning from contextualized
gaze data, represented at the token-level (via
multi-task learning)?
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Contribution The main contribution of this pa-
per is to provide a systematic overview of the in-
fluence of two independent levels of gaze data ag-
gregation on low-level syntactic labeling tasks at
two separate levels of complexity; i.e., a simple
chunk boundary tagging and a supervised POS-
tagging task.

Our results support the claim that learning from
gaze information under maximal (global) aggre-
gation is more helpful than learning from less ag-
gregated gaze representations across two corpora,
two gaze metrics and two modelling setups.

However, we find that caution is warranted, as
no single view, model or even gaze corpus show
consistent improvement and the influence of sin-
gle measures is not robust enough to identify a re-
liably helpful configuration for practical applica-
tions under the explored setups.

2 Background and Motivation

Eye movements during reading consist of fixa-
tions which are short stationary glances on indi-
vidual words. These are interrupted by saccades,
which are the ballistic movements between fixa-
tions. The gaze loosely traces the sequence of
words in a text and gaze research in reading has
at its basis the understanding that deviations from
a monotone eye movement progression tend to oc-
cur when the reader’s cognitive processing is being
challenged by the text.

The raw gaze signal is a time series of (x, y)-
coordinates mapped to word positons on the
screen and clustered into consecutive fixations.
This data must necessarily be pre-processed and
radically filtered to fit the shape of any NLP prob-
lem (Holmqvist et al., 2011). NLP researchers
therefore need to decide how to meaningfully ag-
gregate and filter gaze corpora in order to construct
a mapping of the time series onto the meaningful
unit of the problem at hand, such as a sequence of
words or sentences.

The most commonly applied feature extraction
approach is based on counting durations of fixa-
tions, visits and re-visits per word as pioneered
in the psycholinguistic tradition and most com-
monly aggregating to the global mean across mul-
tiple readers (see orange line in Figure 1).

An alternative paradigm to psycholinguistics-
based feature extraction is to instead represent raw
recorded scanpaths over entire word sequences as
2D or 3D matrices and images (von der Malsburg

et al., 2012; Martı́nez-Gómez et al., 2012; Ben-
fatto et al., 2016; Mishra et al., 2017a). However,
this paradigm has only been explored in a jointly
labeled setting where gaze data is assumed to be
available at test time. This requirement can not
yet be met in most practical NLP-applications.

Positive results have emerged from a range of
diverging representations. In some cases, includ-
ing tens of gaze features show a benefit (Mishra
et al., 2017a; Barrett and Søgaard, 2015b) while
other studies report successful experiments using
a single gaze feature (Barrett et al., 2018a; Klerke
et al., 2016).

The extraction of multiple features from the
same bit of a raw recording can in theory allow
to represent multiple distinct views on the same
data; the number of visits, the order of visits and
the durations of visits are examples of distinct per-
spectives. However, when features partially or
entirely subsume other features1 the inclusion of
multiple views effectively performs a complex im-
plicit weighting of the available gaze information
through partial duplication. In order to eliminate
these subtle effects, this work follow the single-
metric approach, using a strict split of the recorded
fixation durations into an Early and a Late measure
with no overlap (see Section 4 for details). This al-
lows us to isolate the target dimensions of inquiry,
namely effects of the level of aggregation.

The two candidate gaze metrics used in this
work are the first pass fixation duration as our
Early metric and regression duration for our Late
metric, which are the same two metrics as em-
ployed for sentence compression by Klerke et al.
(2016). While they studied only a multi-task learn-
ing setup and one level of aggregation, we focus
on multiple levels of aggregation and two NLP
tasks.

The latter study represents a group of studies
where individual readers’ records are available at
training time (i.e., multiple copies of the data with
annotations obtained from different reading be-
haviour) rather than learning from the aggregate
of multiple readers. This approach which involves
a minimal level of aggregation is frequently ap-
plied where individual readers’ cognition is of
primary interest, such as categorizing individ-
ual language skill level or behaviour (Martı́nez-
Gómez et al., 2012; Matthies and Søgaard, 2013;

1E.g. total reading time subsumes first pass reading time
entirely.
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Augereau et al., 2016; Bingel et al., 2018). Notice-
ably, the opposite approach of using maximally
aggregated type-level representations which aver-
age all readings across all occurrences and all par-
ticipants, has also been shown to contribute to
improvements (Barrett et al., 2016; Bingel et al.,
2018; Hollenstein et al., 2019). The effect of these
two different views (global vs local) on the same
task hence remained unexplored and is a gap we
seek to fill in this paper.

We focus on the use of gaze for syntax-oriented
NLP tasks, because human readers’ eye move-
ments reflect necessary language processing work,
including syntax parsing, to reach comprehen-
sion of a text2 (Rayner et al., 2006; Demberg and
Keller, 2008). Multiple concurrent triggers within
the reader as well as within the text may affect un-
conscious eye movement planning and execution.
For this reason, psycholinguistic research favors
maximal averaging, seeking to eliminate as much
noise as possible. In contrast, NLP-systems pri-
marily suffer from, and seek to handle, specific
hard cases. This indicates that the variability in
the gaze signal is valuable to retain for learning
patterns in the data for disambiguation.

To answer the research questions, we first split
the gaze duration data into an Early and a Late
measure which form two distinct views of the gaze
data. We operationalize between-subject variation
as a local and a global aggregate as described in
Section 4. We then relate gaze variation to the
token and type-level context-modeling distinction
afforded with a multi-task learning setup and a
type dictionary setup, respectively, as detailed in
Section 3. We evaluate on both a simplified and a
typical low-level syntactic sequence labeling task
described in Section 5. Finally we report our re-
sults and draw perspectives to related work in Sec-
tions 6 and 7 and conclude.

3 Token and type modelling – as
multi-task learning and dictionary
supervision

We contrast the impact of learning from token-
level gaze information with learning from a type-
level aggregated representation. A compelling ar-
gument for the token-level representation is that
preserving context-specific information may allow

2For other tasks, non-linguistic aspects such as the
reader’s personal interest or emotional response to the read-
ing material may be a primary argument for using gaze data.

a model to distinguish words and contexts which
elicit more and less predictable gaze behavior.
However, direct comparisons have demonstrated
that the type-level global mean, which discards in-
formation on ambiguity, may be preferable (Bar-
rett et al., 2016; Hollenstein and Zhang, 2019),
which is somewhat surprising as the tasks require
token-level disambiguation. Hence, we test this
distinction for several aggregation ways and cor-
pora, to shed more light on this modeling choice.
The following describes the neural network mod-
elling options which allow this comparison.

Multi-task learning (MTL) trains a neural net-
work model to predict gaze data as an auxiliary
task to the target task (Caruana, 1997). At train-
ing time, an input sentence is drawn from one of
the task specific training sets. The relevant output
is evaluated against the gold labeling and if a loss
is recorded, parameters are updated accordingly.
By forcing the two tasks to share parameters, the
gaze information floats into the shared parameters
through back-propagation. In this way, updates
caused by losses on one task affect the activations
and output on the other task.

Dictionary modelling trains a neural network
model on a target task where the base representa-
tion of each word of an input sentence is concate-
nated with type-level gaze-derived features stored
as a separate set of word embeddings, as further
detailed in Section 5.2.

4 Eye-tracking Data

We extract gaze data from two large-scale eye-
tracking corpora, the English part of the Dundee
corpus (Kennedy et al., 2003) and the monolingual
English reading part of the Ghent Eye-Tracking
Corpus (GECO)3 (Cop et al., 2017). Statistics of
the corpora are provided in Table 1. The GECO
corpus is more recent and contains more tokens
(and utterances). The average sentence length is
shorter compared to the Dundee corpus.

We use the English portion of the Dundee cor-
pus which consists of recordings of 10 native En-
glish speakers’ reading of 20 newspaper articles
from The Independent. The text was presented for
self-paced reading on a screen with a maximum
of 5 lines at a time. The experimental setup in-
cluded a set of comprehension questions after each
article, re-calibration at every three screens and a

3 http://expsy.ugent.be/downloads/geco/
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GECO Dundee
Genre: novel news
Readers: 14 10

Sents Tokens Sents Tokens

Train 4,200 45,004 1,896 41,618
Dev 547 5,614 231 5,176
Test 574 5,792 243 5,206
Types – 11,084 – 8,608

Table 1: Overview of the eye-tracking corpora. Type
information is extracted from the training partition us-
ing the original white-space tokenization.

chin rest and bite bar to fixate head position during
reading (Kennedy and Pynte, 2005). The extrac-
tion of our Early and Late metric use the original
white-space tokenisation.4

From the GECO corpus we use the English
monolingual reading data. This portion con-
sists of recordings of 14 native English speak-
ers’ reading of the full novel The Mysterious Af-
fair at Styles (Christie, 1920). The text was pre-
sented for self-paced reading on a screen with
one paragraph or a maximum of 145 charac-
ters at a time. The novel was read in four ses-
sions with comprehension questions and breaks
after each chapter. Re-calibration was per-
formed every 10 minutes or when drift was de-
tected. The extraction of first pass duration is
the WORD SELECTIVE GO PAST TIME feature
in the published data and total regression dura-
tion is calculated as the total reading time from
the feature WORD TOTAL READING TIME mi-
nus the first pass duration.

No official train–dev–test split has been estab-
lished for the corpora. We use the split of the
Dundee corpus provided by Barrett et al. (2016):
a training set containing 46,879 tokens/1,896 sen-
tences, a development set containing 5,868 to-
kens/230 sentences, and a test set of 5,832 to-
kens/241 sentences. For GECO, we reserve the
first and the last of every ten paragraphs as test
and development sets, respectively.

4.1 Early and Late measures

For our Early metric of gaze processing we ex-
tract first pass fixation duration which is the total
time spent looking on a word when it is first en-

4We follow the extraction procedure described for the
metrics first pass duration and total regression to in Barrett
et al. (2016)

countered, and be fore any subsequent words have
been fixated, as the reader’s gaze passes over the
text. First pass duration may consist of several
fixations accumulated up until the gaze leaves the
word for the first time. When words are occasion-
ally skipped on the first pass, null-values occur in
the Early measure.

For our Late measure we use regression dura-
tion which is defined as the total time spent look-
ing at the word on all later passes. We compute
it as the total fixation time on the word minus the
first pass duration, our Early measure. All words
that were visited at most once will receive null val-
ues for this measure. These two metrics effectively
split the total recorded reading time at every word
with no overlap.

The duration measures are recorded in millisec-
onds with a minimum value defined by the lower
fixation detection threshold as defined in the in the
recording software (most commonly 40-50ms).
This built-in offset and the reading speed variation
between slow and fast readers, means that com-
parable relative variation (e.g., doubling in read-
ing speed) within different readers contribute with
different weight to the raw measure. In order to
represent relative changes in reading speed con-
sistently we standardize the raw durations of both
metrics to each individual’s average duration for
each measure without counting null-values.

The standardization translates the raw measures
into a record of how far a recorded duration on
a given word is from the reader’s typical time
per word, expressed in standard deviations. Once
standardized, the values are aggregated as de-
scribed next.

4.2 Global and local views

As detailed in Section 2, Klerke et al. (2016) used
each individual’s gaze record as representation,
which is a minimally aggregated gaze represen-
tation view that preserves the full width of par-
ticipant’s individual measures. Drawing from this
view, we include a similar local view of the data.
The local view collects the set of observed values
for each type as a dictionary.

In contrast, the global view aggregates over the
readings of all individuals. In particular, while
the commonly-used mean is an estimate of a cen-
tral tendency and produces a smoothed aggregate,
variance is an estimate of how well the mean mod-
els the data and this measure is particularly sensi-
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tive to outliers. We use these two aggregates as
global views; one representing a hypothetical typ-
ical reader; our other novel aggregate is represent-
ing the extent to which the eye movements of mul-
tiple readers agreed on an underlying sample.

4.3 Binning

The local and global measures are split into 6
distinct categorical bins following Klerke et al.
(2016) and outlined below. One bin is reserved for
the null values while the central standard deviation
is considered the typical duration and an additional
half of a standard deviation on each side denotes
short and long duration spans. Values outside the
central two standard deviations are binned as very
short and very long, respectively.

0. x = null, not seen.
1. x < −1 SD, very short duration.
2. −1 SD ≤ x < −0.5 SD, short duration.
3. −0.5 SD ≤ x < 0.5 SD, typical duration.
4. 0.5 SD ≤ x < 1 SD, long duration.
5. 1 SD ≤ x, very long duration.

The binned values assigned for two example
sentences from each corpus are shown in Fig-
ure 2a–2d. Each subject’s (local) Early and Late
measures are shown as a translucent large dot: sev-
eral dots in the same category are represented as
darker dots, and between-subject mean (global) is
included as small connected orange dots. The null
values (purple) are not included in the global ag-
gregate. Practically, this decision means that as
long as a single participant spend time fixating or
re-fixating a word, the information about any par-
ticipants who do not spend time on this particular
word is lost in the global aggregates.

Inspecting the figure reveals how the Early mea-
sure is the most variable: we observe many grey
dots per word, and fewer words with no atten-
tion on first pass (pale purple dots). In contrast,
the Late measure is frequently recorded as null,
reflecting how most words are not revisited. In-
terestingly, the GECO data (right figures), even
though it has more (14) participants, noticeably
it shows more agreement and less spread of the
Late measure compared to the Dundee data. This
difference may be attributable to the difference in
text genre, readability, reading task formulation or
sample differences.5

5The more recent GECO sample population is likely more
accustomed to screen reading

The robust effects of word length, frequency
and wrap-up are discernible in the examples
shown in Figure 2. Specifically, long words such
as “visiting” in Figure 2c and the sentence bound-
ary for example at the end of Figure 2d have
received more attention than surrounding words.
The wrap-up effect occur at boundaries of syn-
tactically meaningful units and mostly reflects the
time needed for the cognitive processing to catch
up to the eyes (Rayner, 1998).

5 Experiments

Our experiments focus on two levels of syntac-
tic influence on gaze data. In order to leverage
the wrap-up effect, we design a simplified chunk
boundary detection task, modelled as a binary se-
quence labeling problem. The second task is the
classic supervised POS-tagging task.

5.1 Data

Chunking data The chunk boundary data was
extracted from the CoNLL2000 chunking data
(Sang and Buchholz, 2000) which consists of
8,936 training sentences. Punctuation is not
treated as separate tokens in gaze data, which is
why we augment the CoNLL2000 data by com-
bining punctuation with any preceding character
and dropping its label. To isolate the boundary
detection problem, we retain only the chunk pre-
fixes B and I. That is, 315 distinct tokens were la-
beled O originally. Of these, O-labeled coordinat-
ing conjunctions were found in 2,803 sentences.
We re-label these as B, positing that these con-
junctions act as unary chunks between the bound-
aries of existing chunks. We proceed to drop all
remaining sentences with any remaining O-labels,
which leaves a dataset of 8,204 sentences, 91,8%
of the original sentences. The new binary labels
show a slightly un-balanced label distribution of
58.8% tokens labeled B. The test set after binariza-
tion has 1881 sentences corresponding to 93.5% of
the original test set with the label B accounting for
58.5% of the tokens.

POS data We use the English part of the Univer-
sal Dependencies (UD version 2.1) POS tagging
data built over the source material of the English
Web Treebank.6 The tagset spans the 17 univer-
sal POS tags. We use the standard splits provided

6https://github.com/
UniversalDependencies/UD_English-EWT
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(a) Dundee (b) Geco

(c) Dundee (d) Geco

Figure 2: Example sentences from the two eye-tracking corpora.

by UD, which contains 12,543 sentences (204k to-
kens) for training, 2,002 sentences (25k tokens)
for development and 2,077 sentences (25k tokens)
for final evaluation. The development data is used
for early stopping.

5.2 Model

In all our experiments, we use a bidirectional long
short-term memory network (bi-LSTM) (Graves
and Schmidhuber, 2005; Hochreiter and Schmid-
huber, 1997; Plank et al., 2016) with a word
encoding model which consists of a hierarchi-
cal model that combines pre-trained word embed-
dings with subword-character representations ob-
tained from a recurrent character-based bi-LSTM.

For chunking and the MTL setup, we use the
cascaded model proposed by (Klerke et al., 2016):
it predicts the chunks at the outermost stacked-bi-
LSTM layer of a 3-layer stacked network; and it
predicts the gaze label at the first bi-LSTM layer.
Note that our model differs from theirs in that we
add a subword bi-LSTM at the character level,
which has shown to be effective for POS tagging.
Moreover, for POS we use a single bi-LSTM layer,
hence the MTL setup reduces to a setup in which

both tasks are predicted from the the single bi-
LSTM layer. For dictionary modeling, we use the
model proposed by (Plank and Agić, 2018) which
integrates type-level information as lexicon em-
beddings concatenated to the word and sub-word
level representations.

Hyperparameters For both tasks we tune
model parameters on the development data for the
respective task. We keep word embedding inputs
fixed, which are set to 64 (size of the pre-trained
Polyglot embeddings). We tune LSTM dimen-
sions, character representations and hidden dimen-
sions on the dev data. Early stopping was impor-
tant to avoid overfitting of the auxiliary task.7

For binary chunking, the hyperparameters are:
character and hidden dimensions 64, hidden layer
size 100, cascaded model for MTL. For POS tag-
ging, the parameters are: character input and hid-

7The gaze representation splits the data into unbalanced
classes. The preliminary results indicated a tendency for
the multi-task setup auxiliary task to learn only the major-
ity class. With the implementation of a patience threshold
for early model stopping, this was eliminated in all but the
local view of the late measure which coincides with the ex-
periments where gaze data is most detrimental to target task
performance.
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Token-level Type-level
Baseline 94.93

Early Late Early Late

Dundee G: mean 94.81 94.48 94.89 94.94
G: var 94.78 94.67 95.01 94.98
L: union 93.79 94.13 94.80 94.93

GECO G: mean 94.61 94.70 94.93 94.80
G: var 94.40 94.57 94.91 94.91
L: union 94.06 93.87 94.74 94.93

Table 2: F1 scores for binary chunking task training
with an early or late gaze metric as an auxiliary task or
as a type-level lexicon. G: global, L: local. Underlined:
above baseline. Best per early/late: boldfaced.

den dimension 64, hidden layer size 150. Both
models were trained with Stochastic Gradient De-
cent (SGD) using a learning rate of 0.1, word
dropout 0.25, and patience 2. The lexicon embed-
ding size was tuned on Dundee data using the de-
velopment data for both the Early and Late mea-
sure. For POS tagging the 40-dimensional lexi-
cal embeddings worked best for both Early and
Late measure, similar to what was found for cross-
lingual POS tagging (Plank and Agić, 2018). For
chunking, the best result was obtained with 40 for
Early and 70 for Late, respectively. In all experi-
ments and tuning setups we average over 3 runs.

The chunking task is evaluated using phrase-
based F1-score implemented by the conlleval
script.8 For POS tagging, performance is reported
as tagging accuracy.

6 Results

6.1 Binary Phrase Chunking Results
Table 2 presents the results for the binary phrase
chunking. Gaze data seems to provide little signal
for this task. Over 2x12 setups, only the global
(yet novel) view using variance at the type level
provides a small increase in F1, but only on one
gaze corpus.

Token vs type-level In more detail, for the
chunking task the results show no benefit from
learning gaze at token level in a multi-task setup
(left two columns in Table 2). In all twelve MTL
setups (two corpora, 2 gaze measures and three ag-
gregations), no improvement is obtained over the
baseline. In contrast, the type level dictionary-
based gaze information is in all cases better than

8github.com/spyysalo/conlleval.py

Figure 3: Relevance-weighted difference in F1 from
baseline performance over chunk lengths and chunk la-
bels for the Dundee data.

the token-level MTL, yet, results largely fall below
baseline. In one specific setup the novel variance
aggregation way, which holds over both the early
and the late measure, results in the best gaze-based
model (boldface). It results in a modest improve-
ment, but it is not robust: the specific setup only
works for Dundee, it does not carry over to the
Geco corpus. We return to these results below.

Global vs local What is interesting to note is a
clear negative effect of using un-aggregated (local)
data: The local view consistently fails to improve
over the no-gaze baseline on the chunk boundary
detection task. This is in marked contrast to re-
sults on sentence compression (Klerke et al., 2016)
(where Dundee local union helped in addition to
integrating CCG tagging). Here, keeping individ-
ual readers’ gaze information confuses the model
and taking an aggregated view is more beneficial.

Analysis To assess the impact of the experimen-
tal conditions, we compare the performance of the
two best setups across chunk length and over the
underlying kinds of chunks (by relating predicted
binary chunks back to their original labeling). Fig-
ure 3 depict the differences between these two
models as the difference in F1-score relative to the
baseline and weighted by the proportion of data
accounted for by each subgroup.

The figures show how differences in perfor-
mance on medium length chunks separate the two
best chunk boundary detection models, despite
their overall similar performance (95.01 vs 94.98).
Early performs worse on short chunks (2 words
long), while this is the case for longer chunks (5
words) for the regression-based Late measure.

With respect to chunk label, there is an inter-
esting difference in performance with respect to
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chunk category: the early measure outperforms
the baseline on VP’s; the late measure outperforms
it on NP’s (for which the two result in near mirror
images). Note that this difference in the Early and
Late metric is observed despite the fact that the
chunk type information was not part of training.
This points to the importance of analyzing perfor-
mance in more detail to reveal differences between
overall similarly-performing models.

6.2 Part-of-Speech Tagging Results
Table 3 shows the results for Part-of-Speech tag-
ging. In contrast to binary chunking, gaze data
provides signal for supervised POS tagging. There
are several take-aways.

Token vs type-level Integrating the gaze data
as type-level dictionary is the most beneficial and
aids Part-of-Speech tagging, more than multi-task
learning does. In particular, for the dictionary-
based approach, we observe improvements in 9
out of 12 cases, yielding to up to +.23 absolute ac-
curacy improvement. This shows that gaze data
aids POS tagging also in our high-resource su-
pervised POS tagging setup, which complements
earlier findings restricted to unsupervised POS in-
duction with naturally lower baselines (Barrett and
Søgaard, 2015a; Barrett et al., 2016). MTL leads
to a few but not consistent improvements for POS.

Global vs local Again, using the globally aggre-
gated gaze measures is better than taking the local
view of the individual readers. For both Dundee
and GECO corpora, results for the local view ap-
proach fall below baseline in almost all cases. This
holds for the local view in both setups, dictionary
and MTL.

Analysis We analyzed the types of tags for
which we observed the most improvement (or
drop) in performance on the best model per cor-
pus relative to proportion in data. For Dundee (G:
mean) we observe that the model using the Late
measure improves the most on content tags (adj,
nouns) and misses the most on function words
(pron, sym). Similarly for Geco (Early) most im-
provements are observed for content words includ-
ing subordinate conjunctions (adj, sconj) while
largest drops are on pronouns and numerals.

7 Related Work and Discussion

Klerke et al. (2016) proposed the applicability of
single gaze metrics for improving sentence com-

Token-level Type-level
Baseline 95.25

Early Late Early Late

Dundee G: mean 95.30 95.37 95.35 95.48
G: var 95.21 95.33 95.35 95.44
L: union 95.01 95.23 95.30 95.17

GECO G: mean 95.23 95.27 95.34 95.35
G: var 95.31 95.22 95.41 95.23
L: union 94.97 95.23 95.14 95.26

Table 3: Accuracy scores for POS tagging with an early
or late gaze metric as type-level lexicon or as an auxil-
iary task. G: global aggregation, L: local. Underlined:
above baseline. Best per measure: boldfaced.

pression. Using the first pass duration and a re-
gression duration measure in a multi-task learning
setup, their study is, to the best of our knowledge,
the only one to report a benefit from using the un-
aggregated (local) data. Our study contributes to
this research lacuna, where our results show that
un-aggregated data is inferior (RQ1)—the detri-
mental effect might be partly due to a possible
higher noise-to-signal ratio, disfavoring such se-
tups.

In contrast, Barrett and Søgaard (2015a) re-
port benefits from aggregating the individual view
of the data away, at first, and later demonstrate
positive influence from aggregating also the indi-
vidual tokens’ context away, proposing the type-
level view of gaze data for NLP (Barrett et al.,
2016). Our results show that these type-level ag-
gregates aid also supervised POS tagging, support-
ing further this type-level view. We here proposed
a type-level view with novel global aggregation
metrics and leveraging dictionary-based embed-
dings (Plank and Agić, 2018).

Recent related work on gaze in NLP rely to a
greater extent on the strong emotional and affec-
tive gaze responses associated with the semantic
content of a text. These works include the classifi-
cation of sentiment (Mishra et al., 2017b; Hollen-
stein et al., 2019), coreferences (Jaffe et al., 2018;
Cheri et al., 2016), named entities (Hollenstein
and Zhang, 2019), sarcasm (Mishra et al., 2016)
and multi-word detection (Yaneva et al., 2017; Ro-
hanian et al., 2017).

8 Conclusions

We analyzed to which degree types of gaze aggre-
gation over two distinct gaze measures impact on
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syntactic tagging.
Our results show that gaze data from a single

feature is informative for supervised POS tagging,
complementing previous findings on unsupervised
POS induction. Results on binary phrase chunk-
ing are however largely negative; only one specific
setup led to a modest improvement. This points to
the importance of evaluating across tasks, aggre-
gation method and gaze corpus.

In particular, we found (RQ1) that the local
view of gaze interaction traces was not helpful in
comparison to a global view of either the mean or
the variance computed over multiple participants.
We could observe a clear detrimental effect of the
local view for both tasks. To the best of our knowl-
edge, only one prior study report a benefit for this
view (cf. Section 7).

Regarding RQ2, our results show that the type-
level dictionary-based learning from an aggre-
gated representation leads to better representations
than the token-based multi-task learning setup.
Overall, our results support that POS-tagging ben-
efits more from the gaze signal than the simpli-
fied chunk-boundary detection task. Inspection of
the best models further indicated that the improve-
ment was based on particular sensitivity to con-
tent word classes and phrases. These observations
collectively agree well with the emerging picture
that particular aspects of some content words are
reflected more reliably in gaze data, compared to
less semantically rich aspects of text.

The two corpora we use show quite different re-
sults which may be an effect of a number of dif-
ferences, pointing to important future directions
of work. The difference in genre and typical sen-
tence length and, not least in number of unique
entities, as discussed in Hollenstein and Zhang
(2019), would very likely have affected readers to
optimize their reading strategy, and thereby their
oculomotor program, accordingly. The distance in
time and technological maturity is likely to have
some effects as well, albeit those are less testable.
Overall, our findings point to the importance of
analyzing overall performance measures in more
detail and evaluating impact across different cor-
pora and NLP tasks.
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Abstract

How can we teach artificial agents to use hu-
man language flexibly to solve problems in
real-world environments? We have an exam-
ple of this in nature: human babies eventu-
ally learn to use human language to solve prob-
lems, and they are taught with an adult human-
in-the-loop. Unfortunately, current machine
learning methods (e.g. from deep reinforce-
ment learning) are too data inefficient to learn
language in this way. An outstanding goal
is finding an algorithm with a suitable ‘lan-
guage learning prior’ that allows it to learn hu-
man language, while minimizing the number
of on-policy human interactions. In this pa-
per, we propose to learn such a prior in sim-
ulation using an approach we call, Learning to
Learn to Communicate (L2C). Specifically, in
L2C we train a meta-learning agent in simula-
tion to interact with populations of pre-trained
agents, each with their own distinct communi-
cation protocol. Once the meta-learning agent
is able to quickly adapt to each population
of agents, it can be deployed in new popula-
tions, including populations speaking human
language. Our key insight is that such pop-
ulations can be obtained via self-play, after
pre-training agents with imitation learning on
a small amount of off-policy human language
data. We call this latter technique Seeded Self-
Play (S2P). Our preliminary experiments show
that agents trained with L2C and S2P need
fewer on-policy samples to learn a composi-
tional language in a Lewis signaling game.

1 Introduction

Language is one of the most important aspects of
human intelligence; it allows humans to coordinate
and share knowledge with each other. We will want
artificial agents to understand language as it is a
natural means for us to specify their goals.

∗Equal contribution.

So how can we train agents to understand lan-
guage? We adopt the functional view of language
(Wittgenstein, 1953) that has recently gained pop-
ularity (Lazaridou et al., 2016; Gauthier and Mor-
datch, 2016; Mordatch and Abbeel, 2017): agents
understand language when they can use language
to carry out tasks in the real world. One ap-
proach to training agents that can use language
in their environment is via emergent communica-
tion, where researchers train randomly initialized
agents to solve tasks requiring communication (Fo-
erster et al., 2016; Lazaridou et al., 2018; Tieleman
et al., 2018). An open question in emergent com-
munication is how the resulting communication
protocols can be transferred to learning human lan-
guage (Baroni, 2019; Hupkes et al., 2019). Existing
approaches attempt to do this using auxiliary tasks
(Lee et al., 2018, 2017), for example having agents
predict the label of an image in English while si-
multaneously playing an image-based referential
game (Evtimova et al., 2017). While this works for
learning the names of objects, it’s unclear if simply
using an auxiliary loss will scale to learning the
English names of complex concepts, or learning to
use English to interact in an grounded environment.

One approach that we know will work (eventu-
ally) for training language learning agents is us-
ing a human-in-the-loop, as this is how human
babies acquire language. In other words, if we had
a good enough model architecture and learning al-
gorithm, the human-in-the-loop approach should
work. However, recent work in this direction has
concluded that current algorithms are too sam-
ple inefficient to effectively learn a language with
compositional properties from humans (Chevalier-
Boisvert et al., 2018). Human guidance is expen-
sive, and thus we would want such an algorithm to
be as sample efficient as possible. An open problem
is thus to create an algorithm or training procedure
that results in increased sample-efficiency for lan-
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Figure 1: Schematic diagram of the L2C framework.
An advantage of L2C is that agents can be trained in
an external environment (which grounds the language),
where agents interact with the environment via actions
and language. Thus, (in theory) L2C could be scaled to
learn complicated grounded tasks involving language.

guage learning with a human-in-the-loop.
In this paper, we present the Learning to Learn

to Communicate (L2C) framework, with the goal
of training agents to quickly learn new (human)
languages. The core idea behind L2C is to lever-
age the increasing amount of available compute for
machine learning experiments (Amodei and Her-
nandez, 2018) to learn a ‘language learning prior’
by training agents via meta-learning in simulation.
Specifically, we train a meta-learning agent in sim-
ulation to interact with populations of pre-trained
agents, each with their own distinct communication
protocol. Once the meta-learning agent is able to
quickly adapt to each population of agents, it can be
deployed in new populations unseen during train-
ing, including populations of humans. The L2C
framework has two main advantages: (1) permits
for agents to learn language that is grounded in an
environment with which the agents can interact (i.e.
it is not limited to referential games); and (2) in
contrast with work from the instruction following
literature (Bahdanau et al., 2018), agents can be
trained via L2C to both speak (output language to
help accomplish their goal) and listen (map from
the language to a goal or sequence of actions).

To show the promise of the L2C framework, we
provide some preliminary experiments in a Lewis
signaling game (David, 1969). Specifically, we
show that agents trained with L2C are able to learn
a simple form of human language (represented by
a hand-coded compositional language) in fewer it-
erations than randomly initialized agents. These
preliminary results suggest that L2C is a promis-
ing framework for training agents to learn human
language from few human interactions.

Figure 2: Schematic diagram of the S2P framework.
Phase 1b and 1c are carried out in alternation or over
some schedule to counter language drift while achiev-
ing high reward in the corresponding task. See Sec 3
for more details.

2 Learning to learn to communicate

L2C is a training procedure that is composed of
three main phases: (1) Training agent popula-
tions: Training populations of agents to solve some
task (or set of tasks) in an environment. (2) Train
meta-learner on agent populations: We train a
meta-learning agent to ‘perform well’ (i.e. achieve
a high reward) on tasks in each of the training pop-
ulations, after a small number of updates. (3) Test-
ing the meta-learner: testing the meta-learning
agent’s ability to learn new languages, which could
be both artificial (emerged languages unseen during
training) or human.

A diagram giving an overview of the L2C frame-
work is shown in Figure 1. Phase 1 can be achieved
in any number of ways, either through supervised
learning (using approximate backpropogation) or
via reinforcement learning (RL). Phases 2 and 3 fol-
low the typical meta-learning set-up: to conserve
space, we do not replicate a formal description of
the meta-learning framework, but we direct inter-
ested readers to Section 2.1 of (Finn et al., 2017). In
our case, each ‘task’ involves a separate population
of agents with its own emergent language. While
meta-training can also be performed via supervised
learning or RL, Phase 3 must be done using RL, as
it involves interacting with humans which cannot
be differentiated through.

3 Seeded self-play

Seeded self-play (S2P) is a straightforward tech-
nique for training agents in simulation to develop
complex behaviours. The idea is to ‘seed’ a pop-
ulation of agents and use that data to train other
populations. Fig 2 gives a pictorial representation
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Figure 3: Lewis Signalling game with 2 agents, a
Speaker and a Listener. For more details refer to Sec 4.

of S2P.
We collect some data which is sampled from a

fixed seed population. This corresponds to the ac-
tual number of samples that we care about which is
basically the number of human demonstrations. We
first train each agent (a listener and a speaker) that
performs well on these human samples. We call
this step as the imitation-learning step. Then we
take each of these trained agents (a pair of speaker
and a listener) and deploy them against each other
to solve the task via emergent communication. We
call this step as the fine-tuning step. While these
agents are exchanging messages in their emergent
language, we make sure that the language does not
diverge too much form the original language (i.e.
the language of the fixed seed population). We en-
force this by having a schedule over the fine-tuning
and the imitation-learning steps such that both the
agents are able to solve the task while also keep-
ing a perfect accuracy over the seed data. We call
this process of generating populations as seeded
self-play (S2P).

4 Problem set-up

A speaker-listener game We construct a refer-
ential game similar to the Task & Talk game from
(Kottur et al., 2017), except with a single turn. The
game is cooperative and consists of 2 agents, a
speaker and a listener. The speaker agent observes
an object with a certain set of properties, and must
describe the object to the listener using a sequence
of words (represented by one-hot vectors). The lis-
tener then attempts to reconstruct the object. More
specifically, the input space consists of p properties
(e.g. shape, color) and t types per property (e.g.
triangle, square). The speaker observes a symbolic
representation of the input x, consisting of the con-
catenation of p one-hot vectors, each of length t.
The number of possible inputs scales as tp. We

define the vocabulary size (length of each one-hot
vector sent from the speaker) as |V |, and fix the
number of words sent to be w.

Developing a compositional language To simu-
late a simplified form of human language on this
task, we programatically generate a perfectly com-
positional language, by assigning each ‘concept’
(each type of each property) a unique symbol. In
other words, to describe a blue shaded triangle,
we create a language where the output description
would be “blue, triangle, shaded”, in some arbitrary
order and without prepositions. By ‘unique sym-
bol’, we mean that no two concepts are assigned
the same word. We call these agents speaking com-
positional language as Compositional Bots. By gen-
erating this language programmatically, we avoid
the need to have humans in the loop for testing,
which allows us to iterate much more quickly. This
is feasible because of the simplicity of our speaker-
listener environment; we do not expect that gen-
erating these programmatic languages is practical
when scaling to more complex environments.

Implementation details The speaker and lis-
tener are parameterized by recurrent policies, both
using an embedding layer of size 200 followed by
an LSTM of size 200. Both the speaker and the
listener agents use the same number of parameters
for encoding/decoding the message. The message
produced by the speaker is a sequence of p cate-
gorical random variables which are discretized us-
ing Gumbel-Softmax relaxation (Jang et al., 2016;
Maddison et al., 2016) with an initial temperature
τ = 1 which is annealed over a schedule with
γ = 0.7 for every 10000 iterations. We set the
vocabulary size to be equal to the total number of
concepts p · t. In our initial experiments, we train
our agents using Cross Entropy which is summed
over each property p. We use the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
0.001 and a scheduler which anneals the learning
rate with a γ = 0.5. We first demonstrate the re-
sults with a meta-learning listener (a meta-listener),
that learns from the different speakers of each train-
ing population.

5 Experiments

5.1 Meta-learning improves sample efficiency

Here, we describe our initial results into the fac-
tors affecting the performance of L2C. Since our
ultimate goal is to transfer to learning a human
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Figure 4: Performance of the meta-learner (in terms of
number of training samples required to achieve >95%
test accuracy on a test population) over the course of
meta-training (horizontal axis), while varying the num-
ber of training encoders. Results averaged over 5 seeds,
with standard error shown. Note the vertical axis is in
log scale.

language in as few human interactions as possible,
we measure success based on the number of sam-
ples required for the meta-learner to reach a certain
performance level (95%) on a held-out test popula-
tion, and we permit ourselves as much computation
during pre-training as necessary.

As can be inferred from Figure 4, having more
training populations improves performance. Hav-
ing too few training populations (eg: 5 train en-
coders) results in overfitting to the set of training
populations and as the meta-learning progresses,
the model performs worse on the test populations.
For more than 10 training encoders, models trained
with L2C require fewer samples to generalize to a
held-out test population than a model not trained
with L2C.

5.2 Self-play improves sample efficiency

We wanted to see if we can further reduce the num-
ber of samples required after L2C. So instead of
doing L2C on a population of compositional bots,
we train the population of agents using Seeded self-
play (S2P). We collect some seed data from a single
compositional bot which we call as seed dataset.
Now we partition this data into train and test sets
where the train set is used to train the agents via
S2P. This set of trained populations is now used
as the set of populations for meta-training (L2C).
Fig 5 compares the results of populations trained
via S2P and the compositional bots. It is evident
that we need 40 fewer samples to generalize on the
test set, when the populations are trained via S2P

Figure 5: Varying performance across different number
of test samples for all combinations of proposed frame-
works. L2C+S2P performs the best, only needing 20
samples as compared to the 60 samples for L2C and
150 samples for randomly initialized agent.

than using hard-coded bots.

6 Outstanding challenges

There are several immediate directions for future
work: training the meta-agent via RL rather than
supervised learning, and training the meta-agent as
a joint speaker-listener (i.e. taking turns speaking
and listening), as opposed to only listening. We
also want to scale L2C training to more compli-
cated tasks involving grounded language learning,
such as the Talk the Walk dataset (de Vries et al.,
2018), which involves two agents learning to navi-
gate New York using language.

More broadly, there are still many challenges
that remain for the L2C framework. In fact, there
are unique problems that face each of the phases de-
scribed in Section 2. In Phase 1, how do we know
we can train agents to solve the tasks we want?
Recent work has shown that learning emergent
communication protocols is very difficult, even for
simple tasks (Lowe et al., 2017). This is particu-
larly true in the multi-agent reinforcement learning
(RL) setting, where deciding on a communication
protocol is difficult due to the non-stationary and
high variance of the gradients (Lowe et al., 2017).
This could be addressed in at least two ways: (1)
by assuming the environment is differentiable, and
backpropagating gradients using a stochastic dif-
ferentiation procedure (Jang et al., 2016; Mordatch
and Abbeel, 2017), or (2) by ‘seeding’ each popula-
tion with a small number of human demonstrations.
Point (1) is feasible because we are training in sim-
ulation, and we have control over how we build
that simulation — in short, it doesn’t really matter
how we get our trained agent populations, so long
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as they are useful for the meta-learner in Phase 2.
In Phase 2, the most pertinent question is: how

can we be sure that a small number of updates is
sufficient for a meta-agent to learn a language it
has never seen before? The short answer is that
it doesn’t need to completely learn the language
in only a few updates; rather it just needs to per-
form better on the language-task in the host pop-
ulation after a few updates, in order to provide
a useful training signal to the meta-learner. For
instance, it has been shown that the model agnos-
tic meta-learning (MAML) algorithm can perform
well when multiple gradient steps are taken at test
time, even if it is only trained with a single inner
gradient step. Another way to improve the meta-
learner performance is to provide a dataset of agent
interactions for each population. In other words,
rather than needing to meta-learner perform well af-
ter interacting with a population a few times, we’d
like it to perform well after doing some supervised
learning on this dataset of language, and after a
few interactions. After all, we do have lots of avail-
able datasets of human language, and not using this
seems like a waste.
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