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Abstract
We describe the system presented at the SR’19
shared task by the DipInfoUnito team. Our ap-
proach is based on supervised machine learn-
ing. In particular, we divide the SR task into
two independent subtasks, namely word order
prediction and morphology inflection predic-
tion. Two neural networks with different ar-
chitectures run on the same input structure,
each producing a partial output which is re-
combined in the final step in order to produce
the predicted surface form. This work is a di-
rect successor of the architecture presented at
SR’19.

1 Introduction

Surface Realisation (SR) is one of the main tasks
involved in Natural Language Generation. SR fo-
cuses the final macro-step of the standard NLG
pipeline defined by Reiter and Dale (2000), there-
fore involving the production of producing natu-
ral language sentences and longer documents from
formal abstract representations. Such input is as-
sumed to come from an external source, such as a
macro-planning and micro-planning pipeline, and
therefore it will contain all the necessary infor-
mation to create the final natural language output.
Generating a correct and fluent output in a tar-
get natural language is the main responsibility of
the SR component. In this paper, we report on the
system submitted to the second edition of the Sur-
face Realization Shared Task (Mille et al., 2019,
SR’19), organized in the context of the Multilin-
gual Surface Realization Workshop in 2019.

The SR task, in the version proposed at SR’19,
considers the surface realization of Universal De-
pendency (UD) trees, i.e., syntactic structures
where the words of a sentence are linked by la-
beled directed arcs. In particular, UD represents
natural language syntax with trees where each
node is a word. The labels on the arcs indicate

the syntactic relation holding between each word
and its dependent words — see an example in Fig-
ure 1a. Our approach to the SR task is based on
supervised machine learning. In particular, we
draw inspiration from Basile (2015), subdividing
the task into two independent subtasks, namely
word order prediction and morphology inflec-
tion prediction. Two neural networks with differ-
ent architectures run on the same input structure,
each producing a partial output which is recom-
bined in the final step in order to produce the pre-
dicted surface form. This work is a direct succes-
sor of the architecture presented at last year’s edi-
tion of the shared task (Mille et al., 2018) and ex-
perimented in more detail in (Basile and Mazzei,
2018b). With respect to the last year previous sys-
tem, there are two major differences: i) we took
advantage of a high-performance computing pub-
lic platform (see acknowledgments) in order to op-
timize the learning parameters and avoid overfit-
ting; ii) we select the best model by using the
Kendall’s Tau (Kendall, 1938, τ ), a rank correla-
tion measure used to score the word order at the
subtree level predicted by the model, at different
training epochs (Basile and Mazzei, 2018b). By
following the approach of (Basile, 2015), the fit-
ness of the model at each epoch is computed by
using the number of incorrect item inversions (in-
trinsic evaluation), rather than on the downstream
task score (see Section 3).

In the following, we refer to our system by using
the name DipInfo-UniTo realizer.

2 Method

In this section, we detail the two main components
developed to approach word order prediction (2.1)
and morphology inflection (2.2).
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2.1 Word Ordering

We formulate the task of predicting the correct or-
der of words in a sentence in terms of reordering
the subtrees in its syntactical structure. The algo-
rithm works in three steps:

1. splitting the unordered tree into single-level
unordered subtrees;

2. predicting the local word order for each sub-
tree;

3. recomposing the single-level ordered sub-
trees into a single multi-level ordered tree to
obtain the global word order.

The first step splits the input UD tree into sev-
eral single-level unordered trees composed by a
head (the root) and all its dependents (the chil-
dren), similarly to Bohnet et al. (2012).

elle

rester

actuellement

dans le

attente

de le

verdict

final

ROOT

(a) Tree corresponding to the French sentence “Elle reste
actuellement dans l’attente de le verdict final.” (“She is
currently waiting for the final verdict.”)

elle actuellement attente

rester

dans le verdict

attente

(b) Two subtrees extracted from the main tree.

Figure 1: Splitting the input tree into subtrees to extract
lists of items for learning to rank.

An example is shown in Figure 1: from the
(unordered) tree representing the sentence “Elle
reste actuellement dans l’attente de le verdict fi-
nal.” (1a), each of its component subtrees (limited
to one-level dependency) is considered separately
(1b). The head and the dependents of each sub-
tree form an unordered list of lexical items. We
leverage the flat structure of the subtrees to extract
structures that are suitable as input to the learning
to rank approach we propose, carried out by the
next step of the pipeline.

The second step of the algorithm predicts the
relative order of the head and the dependents of
each subtree with a learning to rank approach. We
employ the list-wise learning to rank algorithm
ListNet (Cao et al., 2007). The limited cardinal-
ity of the lists to rank makes it advantageous to
use a list-wise approach, as opposed to pair-wise
or point-wise approaches, without an unmanage-
able increase of the computation load. ListNet
is a generalized version of the pairwise learning
to rank algorithm RankNet (Burges et al., 2005).
ListNet employ a list-wise loss function based on
the top-one probability, i.e., the probability of an
element of being the first one in the ranking. The
top-one probability model approximates the per-
mutation probability model that assigns a proba-
bility to each possible permutation of an ordered
list. This approximation is necessary to keep the
problem tractable by avoiding the exponential ex-
plosion of the number of permutations. Formally,
the top-one probability of an object j is defined as

Ps(j) =
∑

π(1)=j,π∈Ωn

Ps(π)

that is, the sum of the probabilities of all the pos-
sible permutations of n objects (denoted as Ωn)
where j is the first element. s = (s1, ..., sn) is a
given list of scores, i.e., the position of elements
in the list. Considering two permutations of the
same list y and z (in the case of the SR task, the
predicted order and the reference order) their dis-
tance is computed using cross entropy. The dis-
tance measure and the top-one probabilities of the
list elements are used to compute the loss function:

L(y, z) = −
n∑
j=1

Py(j)log(Pz(j))

A linear neural network model provides the
learning environment, using the list-wise loss
function above. ListNet takes as input a sequence
of ordered lists of feature encoded as numeric vec-
tors. The weights of the network are updated over
several epochs by computing distance between the
reference ranking and the prediction of the model
(list-wise cost function) and passing its value to
the gradient descent algorithm for optimization.
We used an implementation of ListNet1 that was
previously applied in a surface realization task

1https://github.com/valeriobasile/
listnet

https://github.com/valeriobasile/listnet
https://github.com/valeriobasile/listnet
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with a similar supervised setting (Basile, 2015).
On top of the core ListNet algorithm, this imple-
mentation features a regularization parameter to
prevent overfitting.

We manually engineer the features for the su-
pervised learning in the word order module. We
use several word-level features encoded as one-hot
vectors, namely: the universal POS-tag, the tree-
bank specific POS tag, the morphology features
and the head-status of the word (head of the single-
level tree vs. leaf). We also include vectorial word
representations of two different kinds. Content
words are open-class word lemmas, and are repre-
sented by language-specific, pre-trained word em-
beddings. In particular, we employ the multilin-
gual model Polyglot (Al-Rfou’ et al., 2013). Func-
tion words are closed-class word lemmas, and are
encoded as one-hot bag-of-words vectors. An im-
plementation of the feature encoding for the word
ordering module of our architecture is available
online2.

The third step of the word ordering algorithm
reconstructs the global order (i.e., at the sentence
level) from the local order of the one-level trees.
Note that this approach works under the hypoth-
esis of projectivity. The DipInfo-UniTo realizer
cannot predict the correct word order for non-
projective sentences. If the local reordering of the
one-level tree T h1 with root h and children c1...cM
produces an order of nodes n1n2...nM+1, the hy-
pothesis of projectivity implies that in the global
word order the position of all the children of the
node nj will be after the position of the node nj−1

and before the position of the node nj+1. So, the
node global order (O) of a k-level tree T hk rooted
by the node h and with children c1...cM can be
rewritten formally in terms of the local order as:

O(T hk )=


h if k=0
Oln(h, c1, ..., cM ) if k=1
Oln(h,O(T c1k−1), ..., O(T cMk−1)) if k>1

where Oln(h, c1, ..., cM ) is the permutation
learned by the ListNet algorithm from the train-
ing set and parametrized over the feature set
F (h, c1, ..., cM ), that is

Oln(h, c1, ..., cM )
def
= P

F (h,c1,...,cM )
ListNet (h, c1, ..., cM )

2https://github.com/alexmazzei/ud2ln

2.2 Morphology Inflection

The second half of our proposed architecture is the
morphology inflection component. We consider
this task an alignment problem at the level of char-
acter, and approach it with a sequence-to-sequence
supervised model. We employ the deep neural
network based on a hard attention mechanism in-
troduced by Aharoni and Goldberg (2017). The
model consists of a neural network in an encoder-
decoder setting. At each training step, the model
can either write a symbol to the output sequence,
or move the attention pointer to the next state of
the sequence. This architecture models the mono-
tonic alignment between the input and output se-
quences, allowing the freedom to condition the
output on the entire sequence in input.

We employ all the morphological features pro-
vided by the UD annotation and the dependency
relation between the target word and its head. We
transform the training CONLL files into a set of
((lemma, features), form) tuples, in order to
learn the neural inflectional model associating a
(lemma, features) to the corresponding form.
An example of training instance for the morphol-
ogy inflection module is the following:

lemma: rester
features:

uPoS=VERB
rel=root
Number=Sing
Mood=Ind
Person=3
Tense=Pres
VerbForm=Fin

form: reste

Corresponding to the word form reste, an in-
flected form (3rd person, present, indicative) of the
lemma rester (to remain, to stay).

3 Experiments

Since our approach does not rely on language spe-
cific procedures or hand-made rules, we tested it
on three languages, namely English, French and
Chinese, in order to cover different families of lan-
guages. We were not able to provide results for
other language for computational time constraints.
For word ordering, we ran the system on a virtu-
alized GNU/Linux box with 16-core and 64GB of
RAM. The computation time of the word order-
ing component was around one hour per epoch for

https://github.com/alexmazzei/ud2ln
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the English language, which had the larger data
set among the three languages that we considered.
For morphology inflection, we used a GNU/Linux
box with NVIDIA Tesla K40c GPU computing ca-
pability. Similarly to word ordering, the computa-
tion time for each epoch in morphology inflection
was around one hour for the English language.

3.1 Pipelines
We designed two processing pipelines for the
training and testing phase, as depicted in Figure 2.
We applied the pipelines separately for each of the
tested languages (EN-FR-ZH).

In the training pipeline, we created two dis-
tinct files starting from the UD treebank training
files. The first file contains morphological infor-
mation (that is ((lemma, features), form), see
Section 2.2), used to create the morphological in-
flection model with the deep learning architecture
described in Section 2.2. The second file contains
the vector representation of the tree features (word
embeddings or one-hot for function words, mor-
phological features, etc.) and it is used to create
the word order model by using the linear neural
network architecture described in Section 2.1.

In the testing pipeline, we created two distinct
files starting from the test files provided from the
organizers. Both files are created with the same
procedures of the training pipelines. The first file
was used to test the morphological neural model
and to create a mapping from the lemma-features
pair to the inflected form. The second file was used
to test the word order model by providing the local
word orders of the subtrees and the global word
order at the sentence level. In a subsequent step,
the information from the morphological map and
from the word ordered trees are merged into one
single complete, CONLL-compliant tree structure.
Finally, the trees are detokenized (see 3.3) in order
to produce the sentences that are submitted as the
final output of the system.

3.2 Datasets
The rules of the shallow track for the SR’19 do
not allow to use external resources to train the sur-
face realizer. However, of lexical resources such
as word embedding and neural language models
are allowed. In order to investigate about the
syntactic information contained in the Universal
Dependency format and its appropriateness for
the SR task, we decided to focus on information
derived from the Universal Dependency project

(Nivre et al., 2016), with the only exception of pre-
compiled embeddings to encode of the open-class
words.

The task organizers provided twenty training
files and twenty development files, derived from
the version 2.2 of the UD dataset for the eleven
languages included in the shallow track. In partic-
ular, modified versions of the original treebanks
were provided, where the information about the
original word order was replaced by a random or-
dering. Moreover, the original UD feature set was
enriched with new features, i.e. original id
containing the original position of the word in the
sentence. For a number of specific parts of speech
(e.g. PUNCT, punctuation), the feature lin is
added, containing the original relative position of
the word with respect to its head. Note that the
lin feature, in contrast to the original id
feature, is present in the test file too.

We decided not to use the lin feature, therefore
we employ the original versions 2.2 of the tree-
bank files (provided by the shared task organizer)
since they contain both the gold word order and
the inflected forms of the word. However, during
the conversion of the dependency trees into a vec-
tor form (see Section 2.1), we ignored the infor-
mation about word ordering and inflected forms.

For all the three language processed, we de-
cided to use an holistic approach to learning, that
is, we built one single probabilistic model (i.e. one
for word ordering and one for morphology inflec-
tion) by using one single training file obtained by
merging together all the training file for a specific
language.

3.3 Detokenization

In order to produce the final result of the realiza-
tion, one needs to transform the UD tree produced
by the DipInfoUniTo realizer into a single string
containing the sentence. Since the final goal of the
task is to reproduce an output sentence close to the
original sentence, in detokenized form, we post-
processed the English and French syntax trees,
in two additional phases, namely contraction and
space removal.

In contraction, the sentence was modified in or-
der to produce the contracted form for some spe-
cific multi-word constructions. In particular, in
French there are two linguistic phenomena to ac-
count for, typical of romance languages, namely
articulated preposition and clitics. Since they are
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Figure 2: The training and testing pipelines, originally reported in (Basile and Mazzei, 2018a).

special case of multi-word expressions, both ar-
ticulated prepositions and clitics have a special
annotation status into UD treebanks, that we ex-
ploited to obtain the contracted form (see (Basile
and Mazzei, 2018a) for details).

Moreover, each language has additional specific
rules for the treatment of space between words and
punctuation. In order to treat this specific cases we
used the detokenizer script provided in the moses
project3. The detokenizer provides specific rules
for English and French.

3.4 Results
The final results have been produced by training
the neural models for word ordering and morphol-
ogy inflection for exactly 100 epochs and by using
the development set provided by the organizer to
select the best model. Note that the morphology
inflection deep neural network uses a standard ac-
curacy measure to select the best epoch-model. In
contrast, the performance of word ordering is mea-
sured in terms of average Kendall’s Tau (Kendall,
1938, τ ), a rank correlation measure used to score
the rankings predicted by a specific epoch model
for every subtree (cf. (Basile and Mazzei, 2018b)).
τ measures the similarity between two rankings by
counting how many pairs of elements are swapped
with respect to the original ordering out of all pos-
sible pairs of n elements:

τ =
#concordant pairs− #discordant tpairs

1
2n(n− 1)

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/detokenizer.perl

.
In Table 1 the official scores of the DipIn-

foUniTo system for English, French and Chinese
datasets are reported, computed in terms of the au-
tomatic metrics BLUE, NIST, and DIST. With re-
spect to the other teams, our results score are in
the lower half of the leaderboard, raking between
8th and 9th position depending on metrics and de-
tokenization over the 12 teams participating to the
T1-shared task. Since there is no notable differ-
ence in the ranking of our system in tokenized and
detokenized ranks, we hypothesize that our detok-
enization procedure is similar to that of the others
teams.

It is interesting to note the the best values
for BLEU and NIST have been obtained on the
en pud-ud-test test file. This fact seems to
suggest that our model does not overfit on a spe-
cific domain, which could be a consequence of our
design choice to produce domain-agnostic models
for each language.

Moreover, since the performance of the system
for English and French does not correlate to the
dataset size, we speculate that there are other lin-
guistic features influencing the performance of the
system, e.g., average length of the sentences, or
the complexity of the lexicon. More experimenta-
tion is necessary to investigate on this speculation.

4 Conclusions and Future Work

In this paper, we described the DipInfoUnito re-
alizer and its participation to the SR’19 competi-
tion. With respect to the previous year, we have
introduced the evaluation of the models produced

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
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Detokenized Tokenized
BLEU NIST DIST BLEU NIST DIST

en ewt-ud-test 37.88 10.03 60.10 43.5 11.56 60.13
en gum-ud-test 39.59 9.82 56.28 44.24 11.15 56.04
en lines-ud-test 26.83 8.56 52.97 32.42 10.05 53.21
en partut-ud-test 29.47 7.81 51.03 35.11 9.08 51.15

fr gsd-ud-test 25.86 8.19 47.48 27.04 9.58 47.33
fr partut-ud-test 36.77 7.84 55.08 37.69 8.57 54.85

fr sequoia-ud-test 27.4 8.49 49.13 28.95 9.72 48.70
zh gsd-ud-test 0.02 0.01 32.10 32.87 11.16 50.57

en pud-ud-test (OoD) 40.73 10.43 53.53 45.61 11.81 53.26
en ewt-Pred-HIT-edit (Pred) 0.00 0.00 0.00 43.23 11.44 58.72

en pud-Pred-LATTICE (Pred) 39.63 10.28 54.61 44.06 11.67 54.42

Table 1: The official scores of the DipInfoUniTo system for English, French and Chinese datasets, in terms of the
automatic metrics BLUE, NIST, and DIST. Note that the label OoD stands for out of domain and the label Pred
stands for predicted values of the features values.

at each epoch by the word ordering neural network
in the training pipeline in terms of Kendall’s Tau.
Due to computational constraints, we have been
able to run our systems on three languages only,
namely English, French and Chinese. The final
results rank our system in the the mid-lower part
of the final ranking. We believe that a more ef-
ficient implementation of the word ordering, i.e.,
the neural network implementing the ListNet al-
gorithm, could improve the results.

With respect to the problem of generalizing our
approach to account for non-projective structure,
we intend to develop our work in two directions.
First, decomposing the original dependency tree
into structures with a wider domain of locality.
By following the direction by Joshi and Rambow
(2003), we plan to model the prediction of local
order with more complex structures. Second, as
pointed out in (Basile, 2015, Chapter 7), learning
the global order of the words rather (or in addi-
tion to) their local order. However, learning the
word order globally may impact the transparency
of the system, therefore a careful balance between
performance and explainability must be achieved.
On the other hand, global order may alleviate the
problem of non-projective sentences, that is cur-
rently an issue with the local ordering approach. In
future work, we plan to devise a two-step approach
to leverage both approaches and learn jointly from
both global and local order, e.g., in a multi-task
learning fashion.
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