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Abstract

This paper describes a method of inflecting
and linearizing a lemmatized dependency tree
by: (1) determining a regular expression and
substitution to describe each productive word-
form rule; (2) learning the dependency dis-
tance tolerance for each head-dependent pair,
resulting in an edge-weighted directed acyclic
graph (DAG); and (3) topologically sorting the
DAG into a surface realization based on edge
weight. The method’s output for 11 languages
across 18 treebanks is competitive with the
other submissions to the Second Multilingual
Surface Realization Shared Task (SR‘19).

1 Introduction

The goal of the Second Multilingual Surface Real-
ization Shared Task (SR‘19) is to generate a mor-
phologically inflected surface order from a lem-
matized and unordered dependency tree (Mille
et al., 2019). In track 1, all lemmas in the depen-
dency tree are given, and the task is closed in the
sense that only the provided training data may be
used; outside data is not allowed.

Though conceptually straightforward, lineariz-
ing a dependency tree in an automated way is a
relatively difficult task given issues such as projec-
tivity, flexibility or variation in word-order prefer-
ences among humans, polysemy and homography,
among others. Determining surface inflections is
similarly difficult given the sometimes opaque re-
lationship between spoken and written language,
diversity among language varieties, usage pref-
erences changing over time, and vestigial inflec-
tional forms which may or may not be productive.

The approach outlined in this paper tackles the
inflection part of the task by attempting to de-
termine the productive rules for word forms, im-
plemented as a series of regular expressions and
substitutions. Given the closed nature of the

task, these regular expressions are based on ortho-
graphic forms, rather than what would likely be
more accurate phonological representations.

To linearize a dependency tree, the current
study’s approach is two-fold: first, learn the tol-
erance for how far apart a dependent and its head
can be within the context of a given sentence; sec-
ond, use this dependency distance tolerance to sort
the tree into a surface order. The sorting can be
accomplished such that only projective surface or-
ders are generated, or without any baked-in no-
tion of projectivity. Algorithms for both are pre-
sented here, but given the nature of the task—and
based on empirical testing—only projective lin-
earizations were submitted as part of the shared
task.

2 Inflecting

The current model’s approach to inflecting lem-
mas to arrive at wordforms is to first look up the
lemma and target morphological form in the train-
ing data—if the form exists in the training data for
the lemma, it is used in the test data. For exam-
ple, the past participle of the lemma do is most
likely present in the training data, so when the test-
ing data prompts for it, done is simply supplied
from the training set. More interestingly, lemmas
unseen during training are handled with a series
of regular expressions (regex) built up from the
training data in an attempt to define a natural lan-
guage’s productive inflectional rules.

From a linguistic perspective, inflecting unseen
test-set words is analogous to inflecting nonce
words, a rather long-studied area. For example,
the ‘wug’ test (Berko, 1958) shows that children
possess knowledge about morphological rules. It
is intuitive to conceive of these rules as regular or
irregular—box→ boxes illustrates the regular plu-
ral in English, ox→ oxen an irregular form—and
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lemma regex nonce lemma
wordform substitution nonce wordform

like- ˆ(.*)(e)$ chortle
liked \1\2d chortled

attach-- ˆ(.*)(h)$ gallumph
attached \1\2ed gallumphed

presentar ˆ(.*)(t)ar$ risotar
presentó \1\2ó risotó

triunfar ˆ(.*)(f)ar$ galonfar
triunfó \1\2ó galonfó

Table 1: Regular expressions and substitutions for sim-
ple past with nonces from Jabberwocky (Carroll, 1872)
and Spanish translation El Fablistanón (Pascual, 1977).

to subsequently equate productive rules with reg-
ular forms only. However, a more accurate model
is that speakers seem to inflect nonce words ac-
cording to categories which span what we tend
to think of as both regular and irregular classes.
The college students studied by Bybee and Moder
(1983) produce simple past forms for nonces such
as spling← splung, akin to ‘strong’ verbs such as
cling← clung and string← strung (Wiese, 1996).
Prasada and Pinker (1993) find that the production
and acceptance of inflected nonces correlates with
phonological distance from irregular clusters, with
a bias towards regular forms (p. 48).

The current model approximates the phonolog-
ical environment of word stems with regular ex-
pressions and morphological inflections with sub-
stitutions. There is no notion of regular or irreg-
ular classes; regexes and substitutions are built
for all classes and sorted according to frequency.
If a nonce word’s lemma matches the regex of
a morphological class from the training data, the
associated substitution will provide an inflected
form. Importantly, given the closed nature of
SR ‘19—no outside data is allowed—the gener-
ated regexes and substitutions are defined and em-
ployed orthographically rather than phonetically
or phonologically. As such, depending on the
opacity of a language’s orthographic system, in-
formation about allophones, syllables, and other
phonetically important structures is lost. Interest-
ingly, this loss does not seem to impact neural-
network models of inflection (Wiemerslage et al.,
2018), though the current model’s rule-based ap-
proach likely suffers.

Defining the orthographic environment such
that known lemma-to-wordform exemplars can be
used to create a prototypical regex for a given class

can be accomplished by (1) aligning the lemma
and wordform; (2) recording the characters sur-
rounding a replacement as atoms; (3) generalizing
atoms not surrounding substitutions; and (4) deter-
mining the substitution(s).

Table 1 shows this process for a sample of
simple past forms. For example, the English
lemma like is aligned with the target word-
form liked, the regex defining the environment
is ˆ(.*)(e)$, and the substitution with back-
references is \1\2d. When applied to the nonce
lemma chortle, the correct wordform chortled is
produced. That is, the regex matches the lemma
chortle ending in the character e, and the substi-
tution maintains the atomic root chortl, maintains
the final character e, and appends the character d.

Alignment of lemmas and wordforms is ac-
complished with the pairwise2 module from
Biopython (Cock et al., 2009). Regex and
substitution generation is done with a de-
terministic algorithm which generalizes unin-
volved atoms (.*), records adjacent atoms
in the lemma, and produces back-references
and inflectional morphemes for the substitu-
tion. Morphological features are treated as full
strings rather than as discrete features—something
like Mood=Ind|Person=3|Tense=Past|-
VerbForm=Fin|VERB, depending on the cor-
pus. Each of these feature sets is generally associ-
ated with multiple patterns, as in Table 1.

There are at least two intuitive approaches for
choosing a regex pattern for an unknown lemma:
the most detailed or the most frequent. The first
approach relies on a principle going back to Pān. ini
in which inflections obey specific conditions be-
fore general ones (cf. Embick and Marantz, 2005).
However, during testing, this approach resulted in
archaisms or typos in the generated text. Thus the
most frequent pattern was chosen instead.

3 Linearizing

The task of linearizing a dependency tree can
be informed by long-standing linguistic princi-
ples describing the placement of words in gen-
eral—“what belongs together semantically is also
placed close together” (Behaghel, 1932, p. 4), for
example—as well as more recent work on de-
pendency trees specifically, such as Dependency
Distance minimization (DDM) (Hudson, 1995;
Futrell et al., 2015; Liu et al., 2017). DDM is a
general principle of tree ordering based on Head
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(a) DAG of dependency tree
house

big that there

-1
-2

1

(b) Topologically sorted DAG

that big house there

-2
1

-1

Figure 1: Target dependency distance tolerances for
that big house there, represented as (a) a DAG showing
dependency relations and (b) the topological sort.

Proximity (Rijkhoff, 1986), Early Immediate Con-
stituents (Hawkins, 1994), Dependency Locality
Theory (Gibson, 2000), and Minimize Domains
(Hawkins, 2004), among others.

Submissions to SR ‘18, the first multilingual
shared task, are generally based on sequence-to-
sequence machine translation (Elder and Hokamp,
2018; Sobrevilla Cabezudo and Pardo, 2018), bi-
nary classification (Castro Ferreira et al., 2018;
Puzikov and Gurevych, 2018; King and White,
2018; Madsack et al., 2018), or probabilistic n-
gram language models (Singh et al., 2018).

3.1 Dependency distance tolerance

The DepDist approach to linearization relies on
dependency distance tolerance, the idea that a
dependent and head tolerate a certain contex-
tual distance, measured as the number of in-
tervening words, relative to other words in a
sentence (Dyer, 2019). This dependency dis-
tance tolerance is learned from training data
via a graph neural network (GNN) implemented
within the Graph Nets framework (Battaglia et al.,
2018) based on word2vecf syntactic embed-
dings (Levy and Goldberg, 2014). GNNs take
advantage of message-passing neural networks
(MPNN), in which nodes pass information and
spatial-based convolutions and pooling are imple-
mented (Gilmer et al., 2017; Wu et al., 2019).

Specifically, each word’s 300-element syntac-
tic embedding is included as a node attribute for
a networkx graph constructed for each sentence
in the training, dev, and testing sets. Input edge
attributes are the average dependency distance be-
tween words from the training set. For example,
if the determiner the precedes the noun cat by an
average of 1.3 words in the training data, the input
edge attribute for the ← cat will be 1.3. After 5

training epochs of 100 iterations on a GNN with
64 neurons and 8 MPNN layers using an Adam
optimizer in TensorFlow, output edge attributes re-
flect the learned dependency distance tolerances
for each dependent-head pair in a given sentence.

For example, given a simple tree of one
head, houses, three dependents—big, that, and
there—and a target linearization of that big house
there, the learned directed dependency distances
would be that -2← house, big -1← house, and house
1→ there. In other words, the dependent that pre-
cedes its head house by two words, big precedes
house by one word, and there follows house by
one word. This example is shown in Figure 1(a).

The GNN framework allows for non-Euclidean
data representations, such as graphs, to be ex-
plored from a deep learning perspective (Bronstein
et al., 2017). Further, GNNs are invariant to per-
mutations in the graph elements—ideal for this
surface realization shared task—and can operate
on inputs of varying sizes (Battaglia et al., 2018).

3.2 Topological sorting
A dependency tree can be represented by a di-
rected acyclic graph (DAG) based on the [head→
dependent] relation. Adding edge weights repre-
senting directed dependency distances—the num-
ber of words a dependent precedes or follows its
head—allows the DAG to also represent the prece-
dence relation. Thus an edge-weighted DAG is
equivalent to a partially ordered set (poset).

The topological sort of a non-weighted DAG or
poset is not guaranteed to be unique, but adding
edge weights allows a single linear order to be
generated. For example, Figure 1(b) shows the
unique topological sort for that big house there,
based on the precedence relations house -2→ that,
house -1→ big, and house 1→ there1.

The linearization of a dependency tree can be
projective (Marcus, 1965), in which there are no
crossing arcs, or non-projective. More formally,
a projective order is one in which every word w
occurring between a dependent d and head h is
dominated by h (Nivre, 2006), and as such is only
defined for dependency-based DAGs2.

1The notation of house -2→ that indicates the dependency
relation by the direction of the edge and distance by edge

weight. An equivalent notation would be that
2
≺ house.

2Posets can be classified according to their planarity, and
while half-planarity corresponds to the ‘no-crossing-arcs’
sense of projectivity (Pitler et al., 2013), it does not capture
the dominance definition.
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Algorithm 1: Topologically sort DAG (non-projective)

1: function NonProjTopoSort(dag)
2: tuples← ∅
3: tuples.add(0, dag.root)
4: CalcI(root, dag, tuples)
5: return tuples.sort()
6: end function
7: function CalcI(node, dag, tuples)
8: if node.hasHead then
9: head← head(dag, node)

10: edge = dag[node][node.head]
11: tuples.add(head.i+ edge, node)
12: end if
13: for child ∈ node.children do
14: CalcI(child, dag, tuples)
15: end for
16: end function

Algorithm 2: Topologically sort DAG (projective)

1: function ProjTopoSort(dag)
2: tuples← ∅
3: tuples.add(0, dag.root)
4: CalcI(root, dag, tuples)
5: return tuples.sort()
6: end function
7: function CalcI(node, dag, tuples)
8: head← head(dag, node)
9: edge = dag[node][node.head]

10: children← 0
11: for desc ∈ node.descendents do
12: children+← abs(dag[desc][desc.head])
13: end for
14: if edge < 0 then
15: children← −children
16: end if
17: tuples.add(head.i+ edge+ children, node)
18: for child ∈ node.children do
19: CalcI(child, dag, tuples)
20: end for
21: end function

Algorithm 1 sorts an edge-weighted DAG with-
out regard to projectivity. Each node’s distance
from the root is calculated by adding the weight
of the node’s edge with its head to its head’s in-
dex (lines 9-11). This distance becomes an index
i for each word; sorting these indexes from small-
est to largest (line 5) creates a linearization for the
dependency tree which may or may not be projec-
tive. The calculation of root distance in Algorithm
1 runs in O(n) time, since each node is only vis-
ited once and is able to calculate its distance based
on the index of its parent node. The sorting al-
gorithm is not specified, but assuming something
like merge sort (Knuth, 1998) with a time com-
plexity of O(n log n), the overall complexity of
Algorithm 1 would be O(n log n).

Algorithm 2 sorts an edge-weighted DAG into a
projective linearization based on the idea that each
dependent d should be placed vis-à-vis its head

(a) dependency structure used in GNN

[1.1 ...]

scheduled

[-0.3 ...]

hearing

[0.9 ...]

is

[-1.2 ...]

tomorrow

[-0.5 ...]

a

[0.3 ...]

issue

[0.8 ...]

on

[-0.4 ...]

the

[-2.0]

[-1.1] [3.9]

[-0.9]

[3.0]

[-2.1]

[-1.0]

(b) non-projective linearization
a hearing is scheduled on the issue tomorrow

-2.9 -2.0 -1.1 0.0 0.9 2.0 3.0 3.9

(c) projective linearization
a hearing on the issue is scheduled tomorrow

-9.9 -9.0 -5.0 -3.9 -2.9 -1.1 0.0 3.9

Figure 2: Linearizing a DAG. (a) A networkx graph
provides the input and output of the GNN. Input node
attributes are each word’s syntactic embedding, and in-
put edge attributes are the average directed dependency
distances between connected words in the training data.
Target edge attributes are the actual dependency dis-
tances between the words in the sentence. The GNN
learns edge attributes for the test sentences. In prac-
tice, edge directions may be reversed to better take ad-
vantage of MPNN. (b) Non-projective linearization in
which each word’s index reflects its distance from the
root. (c) Projective linearization, in which each word’s
index is set such that all descendents will be adjacent.

h such that all descendents of d could be placed
between d and h. The index i in a linearization
for dependent d is the sum of (1) the index of its
head h (line 8); (2) the edge weight between d and
h (line 9); and (3) the summed absolute value of
the edges of all descendents of d whose polarity
matches that of d (lines 10-16). The calculation of
i in Algorithm 2 runs in O(n log n) time, since
each node is visited once by CalcI, and then in
lines 11-13 each descendent node is visited. Cou-
pled with merge sort, Algorithm 2 overall runs in
O(n log n) time.

Algorithms 1 and 2 are exemplified in Figure
2, in which a dependency tree (a), is sorted into
a valid non-projective linearization (b) and a pro-
jective linearization (c). Due to the nature of
GNNs, the size of the graph need not be stan-
dardized—the graph is simply a series of con-
nected nodes and edges. Input node attributes are
passed along directed edges, and output edges re-
flect learned distance tolerances. These tolerances
are then used to topologically sort the DAG.
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Figure 3: BLEU scores per corpus for all track-1 sub-
missions. DepDist shown by black connected points.
Median indicated by dashed line.

3.3 Projective linearizations

Imposing a projective limitation on generated out-
puts is a theoretically dubious action when de-
scribing natural language (Ferrer-i Cancho and
Gómez-Rodrı́guez, 2016; Yadav et al., 2019).
However, given the strong tendency towards pro-
jectivity (Mambrini and Passarotti, 2013; Gómez-
Rodrı́guez, 2016), the nature of SR‘19 as a fun-
damentally Natural Language Generation (NLG)
rather than descriptive task, as well as empirical
observation of the projective and non-projective
outputs of the current model (§4.1), it was decided
to submit only projective linearizations.

4 Results

DepDist was run on 18 corpora across 11 lan-
guages provided by the organizers of SR‘19, based
on Universal Dependencies corpora. Due to time
constraints, only the largest corpus for each lan-
guage was used for training, though linearizations
were generated for nearly all test corpora3.

Results for the DepDist submission measured
by BLEU score (Papineni et al., 2002) compared

3Though ko kaist was the largest supplied Korean cor-
pus, parsing errors prevented training and generation of out-
put; thus only ko gsd was used. Similarly, the large size of
ru syntagrus inhibited training, so only ru gsd was used.
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Figure 4: BLEU scores from dev sets realized as pro-
jective wordforms (red), projective lemmas (green),
and non-projective lemmas (blue).

to other track-1 submissions for the 18 corpora
are shown in Figure 3. DepDist performed be-
low the median for six corpora: Portuguese (GSD
& Bosque), Russian (GSD), French (GSD & Se-
quoia), and Spanish (Ancora). DepDist was the
median for three corpora: Arabic (GSD), Ko-
rean (GSD), and French (ParTUT). DepDist per-
formed better than the median for nine corpora:
Japanese, (GSD), Spanish (GSD), Chinese (GSD),
English (LinES, EWT, ParTUT, & GUM), Indone-
sian (GSD), and Hindi (HDTB).

While the performance on some corpora was
significantly below the median—especially Rus-
sian and both Portuguese—DepDist generally per-
formed close to or slightly better than the median.
Thus DepDist seems to be fairly average in terms
of BLEU score compared to the other submis-
sions, suggesting that it is a competitive solution.

4.1 Error analysis

Figure 4 plots BLEU scores for the dev set of each
corpus differentiated based on projectivity and in-
flections. The first, red bar shows the projective
linearization of wordforms. The second, green
bars show the scores based on linearization only,
without inflecting. The third, blue bars show non-
projective linearizations of lemmas.
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morph features wordforms

corpus lemmas given % generated %

ar padt 28264 21901 77.5 2138 9.8
en ewt 25096 16653 66.4 2324 14.0
en gum 13326 8880 66.6 1691 19.0
en lines 15623 9796 62.7 1007 10.3
en partut 3408 2179 63.9 179 8.2
es ancora 52617 43676 83.0 8196 18.8
es gsd 12000 6854 57.1 646 9.4
fr gsd 10021 5770 57.6 400 6.9
fr partut 2604 1752 67.3 147 8.4
fr sequoia 10050 6306 62.7 384 6.1
hi hdtb 35430 30137 85.1 2605 8.6
id gsd 11780 6036 51.2 661 11.0
ja gsd 12438 219 1.8 21 9.6
ko gsd 11677 82 0.7 35 42.7
pt bosque 10199 6553 64.3 1062 16.2
pt gsd 31496 3065 9.7 294 9.6
ru gsd 11548 7268 62.9 3236 44.5
zh gsd 12012 1349 11.2 112 8.3

Table 2: The number of lemmas in each test corpus
showing (1) the number and percentage for which mor-
phological features were given and (2) the number and
percentage of wordforms generated via regex.

Across all corpora, projective linearizations of
lemmas in the dev set generate the highest BLEU
scores. The difference between the first two bars
for each corpus indicates how well the inflection
subtask performed, and the difference between the
second and third bars indicates the performance of
the linearization subtask.

In all languages other than Chinese, poor in-
flections hurt the scores, and in Arabic, Japanese,
Korean, and Russian, the inflections were quite
detrimental. The regex methodology used in the
current study depends on a set of morphological
features to use as a key for finding an appropri-
ate pattern, but corpora vary as to what propor-
tion of lemmas have this morphological listing.
Table 2 shows the number and rate of lemmas at
which morphological features are listed, as well
as how many of those were generated by the regex
pattern-substitution methodology. For example, of
the 28,264 lemmas in the Arabic (PADT) test cor-
pus, 21,901 (77.5%) had associated morphological
information; of those 21,901, only 2,138 (9.8%)
were generated via regex substitution—the other
90.2% were found in the training data.

Both Japanese (GSD) and Korean (GSD) pro-
vide exceedingly low rates of morphological
data—1.8% and 0.7%, respectively. Thus the dif-
ferential between the BLEU scores of projective
wordforms (first, red bars) and projective lemmas
(second, green bars) in Figure 4 for these two lan-

guages is likely due to lack of morphological fea-
ture sets in the corpora.

Corpora with especially high rates of word-
forms being generated via regex rather than found
in the training data include Portuguese (Bosque)
at 16.2%, Spanish (Ancora) at 18.8%, English
(GUM) at 19%, Korean (GSD) at 42.7%4, and
Russian (GSD) at 44.5%. While the performance
of the inflection systems for the first three of those
corpora is relatively good, the very poor perfor-
mance of Russian is surprising. The cause of the
exceedingly poor performance of Arabic inflec-
tion is also unclear, given the high rate of pro-
vided morphological features (77.5%) and fairly
normal rate of wordform generation (9.8%); per-
haps the methodology is poorly suited to Arabic
and/or Russian inflectional patterns.

One possible source of error is the use of
the most frequent regex pattern when generating
wordforms, rather than the most detailed or spe-
cific. This likely creates a bias towards overly
‘regular’ forms whereby the phonetic environment
is not able to properly trigger substitutions. This
effect may be more strongly felt by languages with
richer morphologies, such as Arabic and Russian.

In general, the reliance on orthography for
defining phonetic environments for regexes and
substitutions almost certainly contributes to er-
ror. This could probably be improved by using
IPA transcriptions or distinctive phonetic features
rather than standard orthography, as well as a more
flexible regex patterning which could better han-
dle allophones. A relatively straightforward way
to implement a bit of phonetic flexibility would
be to utilize substitution matrices when aligning
lemmas to their target wordforms (Smith and Wa-
terman, 1981). This approach would allow, for ex-
ample, a [b] and [v] to be seen as more similar than
other phones, and could therefore be combined
into a single regex atom for a given language.

The second and third bars in Figure 4 for each
corpus differentiate based on projectivity: in all
cases the non-projective linearizations (third, blue
bars) have lower scores than the projective ones
(second, red bars). This is not too surprising, since
a single misplaced word can drastically reduce
BLEU scores. However, if the GNN were able
to better learn dependency distance tolerances, the
non-projective sorting algorithm should produce

4The exceedingly low rate of provided morphological fea-
tures for Korean (GSD) renders the percentage of generated
wordforms a rather uninformative number for this corpus.
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results similar to the projective algorithm, if not
better, given the existence of non-projective sen-
tences in possibly all natural languages (Ferrer-i
Cancho and Gómez-Rodrı́guez, 2016) and prefer-
ence for certain linearizations such as Figure 2(b).

Because the same GNN is used to learn dis-
tances, and projectivity is only realized during lin-
earization, the difference in performance between
projective and non-projective linearizations sug-
gests that the GNN is learning tendencies for de-
pendents to precede or follow their heads, as well
as the relative tolerances among sibling depen-
dents, to a certain degree. However, the accuracy
of those tolerances with respect to all other words
in a sentence leaves room for improvement, prob-
ably via an enhanced GNN architecture.

5 Discussion

The regex-based approach to inflection employed
in the current study is linguistically motivated.
Regex patterns would seem to be an adequate
method for modeling exemplars and grouping
them into templates, and substitutions allow for
productive inflectional patterns to be applied to
uninflected lemmas. The choice of which regex
pattern to employ for a given lemma may be more
complex than outlined here—a choice between the
most frequent or the most detailed, and given the
error rates around inflections in Figure 4, perhaps
the most detailed would perform better. Still, the
notion is plausible. A trade-off between frequency
and level of regex detail might go some way to-
wards modeling the loss of increasingly obscure
inflectional patterns in favor of those which are
more frequent.

DepDist tackles the problem of linearization en-
tirely within a dependency framework. Words are
represented by their syntactic embeddings, and the
neural network is a graph built from a dependency
tree. The learning of dependency distance toler-
ances is accomplished via these embeddings and
graphs. The only point at which the notion of lin-
earity comes into play is after all learning has com-
pleted, when distance tolerances are fed into a de-
terministic algorithm for topological sorting.

This approach is quite different from an n-gram
language model or one based on machine trans-
lation. With DepDist, if adjacent words are not
connected by a dependency relation, their linear
adjacency is in a sense emergent, a necessary
by-product of converting a two-dimensional tree

into a one-dimensional linearization. Thus the
order of sibling dependents is not directly mod-
eled, but is instead implicitly reflected in the rela-
tive distance tolerances. However, due to message
passing, siblings can be made indirectly aware of
each other—since dependents pass their embed-
ding node attributes to the head, the calculation of
edge attributes between the head and each depen-
dent reflects the presence of other siblings.

Further, DepDist is not an end-to-end machine-
learning model. The actual linearized strings are
not the target; rather, individual dependency dis-
tance tolerances are the target of learning. The
data structure which results from weighting the
edges of a directed graph and its subsequent topo-
logical sort generate a linearization based on de-
pendency distance tolerance.

Although a projectivity constraint was artifi-
cially employed in the implementation of Dep-
Dist outlined here, if the GNN were to better
learn dependency distance tolerances, that con-
straint would not be needed. Instead, observed
rates of projectivity among languages should arise
as a result of topologically sorting based on dis-
tance tolerance. Crucially, the rate of projectivity
is not directly learned. A GNN—or human—is ex-
posed to language in which head-dependent pairs
have certain distance tolerances, tolerances which
can be learned. Assembling the pairs such that
these tolerances are obeyed results in largely pro-
jective linearizations, though not exclusively so,
thereby reflecting a tendency towards projectivity.

Dependency distance tolerance seems to be a
psychologically real measure. In the current study,
the tolerances are learned via GNN, but they
might be operationalized in other ways, especially
by psycholinguistic or information-theoretic mea-
sures (cf. Scontras et al., 2017; Dyer, 2018; Hahn
et al., 2018). That is, a dependent which toler-
ates a large linear distance from its head, such as
the adverb tomorrow in the example in Figure 2,
may have a lower pointwise mutual information
(Church and Hanks, 1989) or surprisal (Futrell and
Levy, 2017) with its head, or may have higher or
lower subjectivity than the auxiliary is. As such,
because tomorrow and scheduled belong together
semantically less than is and scheduled, or they de-
pend on each other less, the adverb is allowed to
be placed farther away. This is a sort of conceptual
inversion of Behaghel (1932)—what does not nec-
essarily belong together can be placed far apart.
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5.1 Future directions
Given that the performance of DepDist is competi-
tive with many of the other submissions to SR ‘19,
the approach seems promising. The error analysis
indicates deficiencies in the rule-based approach
to inflections, possibly due to reliance on orthog-
raphy to approximate phonetic environments, as
well as a reliance on morphological-feature list-
ings which may not always be present in Univer-
sal Dependencies corpora. The GNN’s ability to
learn accurate dependency distance tolerances at
the sentence level is promising, but leaves signif-
icant room for improvement. For example, the
GNN’s architecture may be too small, the syn-
tactic embedding framework may be too old to
properly generalize from training data, the training
data may be too limited, and the training of only 5
epochs may be too few to properly learn distance
tolerances. All of these areas can be explored in
future study.

Finally, training was confined to a single train-
ing corpus per language—future study should at
least take advantage of all available corpora for a
given language. More promisingly, transfer learn-
ing could be employed to take advantage of cross-
linguistic tendencies regarding dependency dis-
tance tolerance.

6 Summary

This paper describes the DepDist submission to
SR ‘19. The approach to inflecting uses regular
expressions and substitutions to learn morphologi-
cal prototypes from training exemplars, which can
be applied to words unseen during training. Lin-
earizing a tree is accomplished by first learning de-
pendency distance tolerances via syntactic word
embeddings and a graph neural network (GNN),
then sorting the resulting edge-weighted directed
acyclic graph (DAG) according to either projec-
tive or non-projective algorithms, only the for-
mer of which were submitted. The results of De-
pDist are competitive, the approach is linguisti-
cally grounded, and there is ample room for im-
provement to both the inflectional module and
GNN architecture.
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