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Abstract

Clinical notes are essential medical documents
to record each patient’s symptoms. Each
record is typically annotated with medical di-
agnostic codes, which means diagnosis and
treatment. This paper focuses on predicting
diagnostic codes given the descriptive present
illness in electronic health records by leverag-
ing domain knowledge. We investigate vari-
ous losses in a convolutional model to utilize
hierarchical category knowledge of diagnostic
codes in order to allow the model to share se-
mantics across different labels under the same
category. The proposed model not only con-
siders the external domain knowledge but also
addresses the issue about data imbalance. The
MIMIC3 benchmark experiments show that
the proposed methods can effectively utilize
category knowledge and provide informative
cues to improve the performance in terms of
the top-ranked diagnostic codes which is bet-
ter than the prior state-of-the-art. The investi-
gation and discussion express the potential of
integrating the domain knowledge in the cur-
rent machine learning based models and guid-
ing future research directions.

1 Introduction

Electronic health records (EHR) usually contain
clinical notes, which are free-form text gener-
ated by clinicians during patient encounters, and
a set of metadata diagnosis codes from the Inter-
national Classification of Diseases (ICD), which
represent the diagnoses and procedures in a stan-
dard way. ICD codes have a variety of usage, rang-
ing from billing to predictive modeling of the pa-
tient state (Choi et al., 2016). Automatic diagnosis
prediction has been studied since 1998 (de Lima
et al., 1998). Mullenbach et al. (2018) pointed out
the main challenges of this task: 1) the large label
space, with over 15,000 codes in the ICD-9 taxon-
omy, and over 140,000 codes in the newer ICD-

10 taxonomies (Organization et al., 2007), and 2)
noisy text, including irrelevant information, mis-
spellings and non-standard abbreviations, and a
large medical vocabulary. Several recent work at-
tempted at solving this task by neural models (Shi
et al., 2017; Mullenbach et al., 2018).

However, most prior work considered the out-
put labels independently, so that the codes with
few samples are difficult to learn (Shi et al., 2017).
Therefore, Mullenbach et al. (2018) proposed an
attentional model to effectively utilize the textural
forms of codes to facilitate learning. In addition to
textual definitions of codes, the category domain
knowledge may provide additional cues to allow
the codes under same category to share parame-
ters, so the codes with few samples can benefit
from it. To effectively utilize the category knowl-
edge from the ICD codes, this paper proposes sev-
eral refined category losses and incorporate them
into convolutional models and then evaluate the
performance on both MIMIC-3 (Johnson et al.,
2016) and our internal dataset. The experiments
on MIMIC shows that the proposed knowledge in-
tegration model significantly improves the previ-
ous methods and achieves the state-of-the-art per-
formance, and the improvement can also be ob-
served in our internal dataset. The idea is similar
to the prior work (Singh et al., 2018), which con-
sidered the keyword hierarchy for information ex-
traction from medical documents, but our work fo-
cuses on leveraging domain knowledge for clinical
code prediction. Our contributions are three-fold:

• This paper first leverages external domain
knowledge for diagnostic text understanding.

• The paper investigates multiple ways for in-
corporating the domain knowledge in an end-
to-end manner.

• The proposed mechanisms improve all prior
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Figure 1: The architecture with the proposed category knowledge integration.

models and achieves the state-of-the-art per-
formance on the benchmark MIMIC dataset.

2 Methodologies

Given each clinical record in EHR, the goal
is to predict the corresponding diagnostic codes
with the external hierarchical category informa-
tion. This task is framed as a multi-label classifi-
cation problem. The proposed mechanism is built
on the top of various convolutional models to fur-
ther combine with the category knowledge. Be-
low we introduce the previously proposed convo-
lutional models which are used for latter compar-
ison in the experiment and detail the mechanism
that leverages hierarchical knowledge.

2.1 Convolutional Models

There are various models for sequence-level clas-
sification, and this paper focuses on two types of
convolutional models for investigation. The mod-
els are described as follows. Note that the pro-
posed mechanism is flexible for diverse models.

TextCNN Let xi ∈ IRk be the k-dimensional
word embedding corresponding to the i-th word
in the document, represented by the matrix X =
[x1, x2, ..., xN ], where N is the length of the doc-
ument. TextCNN (Kim, 2014) applies both convo-
lution and max-pooling operations in one dimen-
sion along the document length. For instance, a
feature ci is generated from a window of words
xi, xi+1, ..., xi+h, where h is the kernel size of
the filters. The pooling operation is then applied
over c = [c1, c2, ..., cn−h+1] to pick the maximum
value ĉ = max(c) as the feature corresponding to
this filter. We implement the model with kernel

size = 3,4,5, considering different window sizes of
words.

Convolutional Attention Model (CAML) Be-
cause the number of samples of each code is
highly unbalanced, it is difficult to train each la-
bel with very few samples. To resolve this issue,
the CAML model utilizes the descriptive defini-
tion of diagnosis codes, which additionally applies
a per-label attention mechanism, where the addi-
tional benefit is that it selects the n-grams from
the text that are most relevant to each predicted la-
bel (Mullenbach et al., 2018).

2.2 Knowledge Integration Mechanism
Considering the hierarchical property of ICD
codes, we assume that using the higher level la-
bels could learn more general concepts and thus
improve the performance. For instance, the def-
initions of ICD-9 codes 301.2 and 307.1 are
“Schizoid personality disorder” and “Anorexia
nervosa” respectively. If we only use the labels
given by the dataset, they are seen as two indepen-
dent labels; however, in the ICD structure, both
301.2 and 307.1 belong to the same high-level cat-
egory “mental disorders”. The external knowl-
edge shows that category knowledge provides ad-
ditional cues to know code relatedness. Therefore,
we propose four types of mechanisms that incor-
porate hierarchy category knowledge to improve
the ICD prediction below.

Cluster Penalty Motivated by Nie et al. (2018),
we compute two constraints to share the parame-
ters of the ICD codes under the same categories.
The between-cluster constraint, Ωbetween, indi-
cates the total distance of parameters between
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mean of all ICD codes and the mean of each cate-
gory.

Ωbetween =
K∑
k=1

∥∥θ̄k − θ̄∥∥2 , (1)

where θ̄ is the mean vectors of all ICD codes, θ̄k is
the mean vector of the k-th category. The within-
cluster constraint, Ωwithin, is the distance of pa-
rameters between the mean of each category and
its low-level codes.

Ωwithin =

K∑
k=1

∑
i∈J (k)

∥∥θi − θ̄k∥∥2 , (2)

where J (k) is a set of labels that belong to the k-
th category. Ωbetween and Ωwithin are formulated
as additional losses to enable the model to share
parameters across codes with the same categories.

Multi-Task Learning Considering that the
high-level category can be treated as another
task, we apply a multi-task learning approach
to leverage the external knowledge. This model
focuses on predicting the low-level codes, ylow, as
well as its high-level category, yhigh, individually
illustrated in Figure 1.

yhigh = Whigh · h+ bhigh (3)

where Whigh ∈ IRNhigh×d, Nhigh means the num-
ber of high-level categories, and d is the dimension
of hidden vectors derived from CNN.

Hierarchical Learning We build a dictionary
for mapping our low-level labels to the corre-
sponding high-level categories illustrated in Fig-
ure 1. To estimate the weights for high-level cate-
gories, yhigh, two mechanisms are proposed:

• Average meta-label: The probability of the k-
th high-level category can be approximated
by the averaged weights for low-level codes
that belong to the k-th category.

yhigh =
1

k

∑
yklow (4)

• At-least-one meta-label: Motivated by Nie
et al. (2018), meta labels are created by ex-
amining whether any disease label for the k-
th category has been marked as tagged, where
the high-level probability is derived from the
low-level probability of disease labels.

yhigh = 1−
∏
k

(1− yklow) (5)

MIMIC-3 Internal
Full 50 200

# training documents 47,424 8,067 17,762
mean length of texts 1,485 1,530 50.35
vocabulary size 51,917 51,917 25,654
OOV rate 0.137 0.137 0.373
# labels 8,922 50 200
mean number of labels 15.9 5.7 1.7

Table 1: Dataset comparison and statistics. From the
full set of the internal data (1495 labels) to 200, only
6.0% of data points are discarded.

2.3 Training

The knowledge integration mechanisms are built
on top of the multi-label convolutional models,
which treat each ICD label as a binary classifi-
cation. The predicted values for high-level cate-
gories come from the proposed mechanisms. Con-
sidering that learning low-level labels directly is
difficult due to the highly imbalanced label dis-
tribution, we add a loss term indicating the high-
level category in order to learn the general con-
cepts in addition to the low-level labels, and train
the model in an end-to-end fashion. Note that the
high-level loss is set as losshigh = Ωbetween +
Ωwithin for cluster penalty and the binary log loss
for other methods.

loss = losslow + λ · losshigh, (6)

where λ is the parameter to control the influence
of the knowledge category and we choose λ = 0.1.

3 Experiments

In order to measure the effectiveness of the pro-
posed methods, the following experiments are
conducted.

3.1 Setup

We evaluate our model on two datasets, one
is the benchmark MIMIC-3 data and another is
the dataset collected by National Taiwan Univer-
sity Hospital (NTUH). MIMIC-3 (Johnson et al.,
2016) is a benchmark dataset, where the text and
structured records from a hospital ICU. We use the
same setting as the prior work (Mullenbach et al.,
2018), where 47,724 discharge summaries is for
training, with 1,632 summaries and 3,372 sum-
maries for validation and testing, respectively. We
also obtain a subdataset from original MIMIC3-
Full, called MIMIC3-50, which has the top 50
high frequency labels. NTUH dataset is collected
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MIMIC3-50 P@1 P@3 P@5 MAP Macro-F Micro-F Macro-AUC Micro-AUC
CNN (Shi et al., 2017) 82.8 71.2 61.4 72.4 57.9 63.0 88.2 91.2
+ Cluster Penalty 83.5† 71.9† 62.4† 73.1† 58.3† 63.7† 88.5† 91.3†

+ Multi-Task 83.5† 71.3† 61.9† 72.5† 57.6 62.8 88.1 91.1
+ Hierarchical avg 84.5† 72.1† 62.4† 73.5† 58.6† 64.3† 88.9† 91.4†

at-least-one 83.4† 72.1† 62.4† 73.4† 58.5† 63.8† 88.4† 91.3†

MIMIC3-Full P@1 P@3 P@8 P@15 Macro-F Micro-F Macro-AUC Micro-AUC
CNN (Shi et al., 2017) 80.5 73.6 59.6 45.4 3.8 42.9 81.8 97.1
+ Cluster Penalty 80.9† 74.0† 59.5 45.2 3.3 40.5 82.1† 97.0
+ Multi-Task 82.8† 75.8† 61.5† 46.6† 3.6 43.9† 83.3† 97.3†

+ Hierarchical avg 79.0 73.1 59.2 45.2 4.3† 42.7 83.0† 97.1
at-least-one 82.1† 74.3† 59.7† 44.9 2.6 42.0 80.3 96.7

CAML (Mullenbach et al., 2018) 89.6 83.4 69.5 54.6 6.1 51.7 88.4 98.4
+ Cluster Penalty 88.4 82.4 68.8 54.0 5.4 51.2 87.5 98.3
+ Multi-Task 89.7† 83.4 69.7† 54.8 6.9† 52.3† 88.8† 98.5†

+ Hierarchical avg 89.6 83.5† 70.9† 56.1† 8.2† 53.9† 89.5† 98.6†

at-least-one 89.4 83.3 69.5 54.8† 6.2† 51.7 88.3 98.4

Table 2: The results on MIMIC-3 data (%). † indicates the improvement over the baseline.

Data-200 Macro-F1 Micro-F1
CNN 7.6 39.8
+ Multi-Task 11.7† 41.6†

+ Hierarchical (avg) 9.2† 44.1†

CAML 6.2 42.6
+ Multi-Task 14.5† 44.7†

+ Hierarchical (avg) 18.4† 45.7†

Table 3: The results on NTUH data.

from an internal hospital, where each record in-
cludes narrative notes describing a patients stay
and associated diagnostic ICD-9 codes. There are
total 1,495 ICD-9 codes in the data, and the dis-
tribution is highly imbalanced. Our data is noisy
due to typos and different writing styles, where
the OOV rate is 0.373 based on the large vocab-
ulary obtained from PubMed and PMC. As shown
in Table 1, our data, Internal-200, is more chal-
lenging due to much shorter text inputs and higher
OOV rate compared with the benchmark MIMIC-
3 dataset. We split the whole set of 25,375 records
from Internal-200 into 17,762 as training, 2,537 as
validation, and 5,076 as testing.

All models use the same setting as the prior
work (Kim, 2014; Mullenbach et al., 2018)
and use skipgram word embeddings trained on
PubMed1 and PMC2 (Mikolov et al., 2013). We
evaluate the model performance using metrics for
the multi-label classification task, including pre-
cision at K, mean average precision (MAP), and
micro-averaged, macro-averaged F1 and AUC.

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.ncbi.nlm.nih.gov/pmc/

3.2 Results

The baseline and the results of adding the pro-
posed mechanisms are shown in Table 2. For
MIMIC3-50, all proposed mechanisms achieve the
improvement for almost all metrics, and the best
one is from the hierarchical learning with aver-
age meta-label. The consistent improvement indi-
cates that category knowledge provides informa-
tive cues for sharing parameters across low-level
codes under the same categories. For MIMIC3-
Full, our proposed mechanisms still outperform
the baseline CNN model, and the best perfor-
mance comes from the one with multi-task learn-
ing. The reason may be that multi-task learn-
ing has more flexible constraints compared with
hierarchical learning, and it is more suitable for
this more challenging scenario due to data imbal-
ance. In addition, the proposed knowledge inte-
gration mechanisms using multi-task learning or
hierarchical learning with average meta-label are
able to improve the prior state-of-the-art model,
CAML (Mullenbach et al., 2018), demonstrating
the superior capability and the importance of do-
main knowledge.

To further investigate the model effectiveness,
we perform the experiments on the NTUH dataset
in Table 3. Due to shorter clinical notes and higher
OOV rate, this dataset is more challenging and the
results are lower than the ones in MIMIC-3. Nev-
ertheless, the proposed methods still improve the
performance by integrating category knowledge
using multi-task learning or hierarchical learning
with average meta-label. In sum, our proposed
category knowledge integration mechanisms are

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pmc/
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capable of improving the text understanding per-
formance by combining the domain knowledge
with neural models and achieve the state-of-the-
art results.

3.3 Qualitative Analysis
From our prediction results, we find that our pro-
posed mechanisms tend to predict more labels than
the baseline models for both CNN and CAML.
Specifically, our methods can assist models to con-
sider more categories from shared information in
the hierarchy. The additional codes often contain
the right answers and sometimes are in the correct
categories but not exactly matched. Moreover, our
mechanisms have the capability of correcting the
wrong codes to the correct ones which are under
the same category. The appendix provides some
examples for reference.

4 Conclusion

This paper proposes multiple mechanisms using
the refined losses to leverage hierarchical category
knowledge and share semantics of the labels under
the same category, so the model can better under-
stand the clinical texts even if the training sam-
ples are limited. The experiments demonstrate the
effectiveness of the proposed knowledge integra-
tion mechanisms given the achieved state-of-the-
art performance and show the great generalization
capability for multiple datasets. In the future, we
plan to analyze the performance of each label, in-
vestigating which label can benefit more from the
proposed approaches.
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