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Abstract

In this paper we tackle two unique challenges
in biomedical relation extraction. The first
challenge is that the contextual information
between two entity mentions often involves
sophisticated syntactic structures. We propose
a novel graph convolutional networks model
that incorporates dependency parsing and con-
textualized embedding to effectively capture
comprehensive contextual information. The
second challenge is that most of the bench-
mark data sets for this task are quite imbal-
anced because more than 80% mention pairs
are negative instances (i.e., no relations). We
propose a multi-task learning framework to
jointly model relation identification and clas-
sification tasks to propagate supervision sig-
nals from each other and apply a focal loss
to focus training on ambiguous mention pairs.
By applying these two strategies, experiments
show that our model achieves state-of-the-art
F-score on the 2013 drug-drug interaction ex-
traction task.

1 Introduction

Recently relation extraction in biomedical litera-
ture has attracted increasing interests from med-
ical language processing research community as
an important stage for downstream tasks such as
question answering (Hristovski et al., 2015) and
decision making (Agosti et al., 2019). Biomed-
ical relation extraction aims to identify and clas-
sify relations between two entity mentions into
pre-defined types based on contexts. In this paper
we aim to extract drug-drug interactions (DDIs),
which occur when taking two or more drugs within
a certain period of time that alters the way one
or more drugs act in human body and may result
in unexpected side effects (Figure 1). Extracting
DDI provides important clues for research in drug
safety and human health care.
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mention pair: <drug, drug>
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Interactions of [cobalt]drug and [iron]drug in absorption and retention

Figure 1: Example of drug-drug interaction on depen-
dency tree.

Dependency parses are widely used in relation
extraction task due to the advantage of shorten-
ing the distance of words which are syntactically
related. As shown in Figure 1, the partial de-
pendency path {iron ← cobalt ← interactions}
reveals that these two drugs are interactive, and
the path {interactions→ absorption→ retention}
further indicates the mechanism relation between
these two mentions. Therefore capturing the syn-
tactic information involving the word interaction
on the dependency path {iron ← cobalt ← in-
teractions → absorption → retention} can effec-
tively help on the classification of the relation be-
tween these two mentions 〈cobalt, iron〉. In or-
der to capture indicative information from wide
contexts, we adopt the graph convolutional net-
works (GCN) (Kipf and Welling, 2016; Marcheg-
giani and Titov, 2017) to obtain the syntactic infor-
mation by encoding the dependency structure over
the input sentence with graph convolution opera-
tions. To compensate the loss of local context in-
formation in GCN, we incorporate the contextual-
ized word representation pre-trained by the BERT
model (Devlin et al., 2019) in large-scale biomed-
ical corpora containing over 200K abstracts from
PubMed and over 270K full texts from PMC (Lee
et al., 2019) .

Moreover, we notice that data imbalance is an-
other major challenge in biomedical text as the dis-
tribution of relations among biomedical mentions
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are usually very sparse. Over 80% candidate men-
tion pairs have no relation in DDI 2013 (Herrero-
Zazo et al., 2013) training set. To tackle this
problem, we propose a binary relation identifica-
tion task as an auxiliary task to facilitate the main
multi-classification task. For instance, the detec-
tion of drug interaction on dependency path {iron
← cobalt ← interactions → absorption → re-
tention} will assist the prediction of the relation
typemechanism by using the signals from binary
classification as an inductive bias to avoid misclas-
sifying it as no relation. We also exploit the focal
loss (Lin et al., 2017) to potentially help the multi-
class relation classification task by forcing the loss
implicitly focus on ambiguous examples.

To recap, our contributions are twofold: First,
we adopt the syntax-aware graph convolutional
networks incorporating contextualized represen-
tation. Second, we further design an auxiliary
task to solve the data imbalance problem, which
achieves the state-of-the-art micro F-score on the
DDIExtraction 2013 shared task.

2 Methods
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Figure 2: Framework of syntax-aware multi-task graph
convolutional networks.

2.1 Contextual and Syntax-aware GCN

As a variant of the convolutional neural net-
works (LeCun et al., 1998), the graph convolu-
tional networks (Kipf and Welling, 2016) is de-
signed for graph data and it has been proven ef-
fective in modeling text data via syntactic depen-
dency graphs (Marcheggiani and Titov, 2017).

We encode the tokens in a biomedical sentence
of size n as x = {x1, . . . ,xn}, where xi is a vec-
tor which concatenates the representation of the

token i and the position embeddings correspond-
ing to the relative positions from candidate men-
tion pairs. We feed the token vectors into a L-
layer GCN to obtain the hidden representations
of each token which are directly influenced by its
neighbors no more than L edges apart in the de-
pendency tree. We apply the Stanford dependency
parser (Chen and Manning, 2014) to generate the
dependency structure:

h
(l)
i = σ(

n∑
j=1

ÃijW
(l)hl−1j /di + b(l))

where Ã = A+I with A is the adjacent matrix of
tokens in dependency tree, I is the identity matrix.
W (l) is a linear transformation, b(l) is a bias term,
and σ is a nonlinear function. Following Zhang
et al. (2018), di is the degree of the token i in de-
pendency tree with an additional self-loop.

We notice that some token representations are
more informative by gathering information from
syntactically related neighbors through GCN. For
example, the representation of the token interac-
tions from a 2-layer GCN operating on its two
edges apart neighbors provides inductive informa-
tion for predicting a mechanism relation. Thus,
we adopt attentive pooling (Zhou et al., 2016) to
achieve the optimal pooling:

α = softmax(wT tanh(h))

hattentive = hαT

where w is a trained parameter to assign weights
based on the importance of each token representa-
tion.

We obtain the final representation by concate-
nating the sentence from attentive pooling and the
mention representations from max pooling. We fi-
nally obtain the prediction of relation type by feed-
ing the final representations into a fully connected
neural network followed by a softmax operation.

Graph neural networks (Zhou et al., 2018b)
can learn effective representations but suffer from
the loss of local context information. We be-
lieve the local context information is also crucial
for biomedical relation extraction. For example,
in the following sentence “The response to [Fac-
trel]DRUG may be blunted by [phenothiazines]DRUG

and [dopamine antagonists]DRUG ”, it’s intuitive
to tell Factrel and phenothiazines are interactive
while phenothiazines and dopamine antagonists
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have no interaction according to the sentence or-
der. However, GCNs treat the three drugs as inter-
acting with each other as they are close in depen-
dency structure with no order information.

BERT (Devlin et al., 2019) is a recently pro-
posed model based on a multi-layer bidirectional
Transformer (Vaswani et al., 2017). Using pre-
trained BERT has been proven effective to create
contextualized word embeddings for various NLP
tasks (Han et al., 2019; Wang et al., 2019). The
BioBERT (Lee et al., 2019) is a biomedical lan-
guage representation model pre-trained on large-
scale biomedical corpora. The output of each en-
coder layer of the input token can be used as a
feature representation of that token. As shown
in Figure 2, we encode the input tokens as con-
textualized embeddings by leveraging the last hid-
den layer of the corresponding token in BioBERT.
As the BERT model uses WordPiece (Wu et al.,
2016) to decompose infrequent words into fre-
quent subwords for unsupervised tokenization of
the input token, if the token has multiple BERT
subword units, we use the first one. After getting
the contextualized embedding of each token, we
feed them into the GCN layer to make our model
context-aware.

2.2 Auxiliary Task Learning with Focal Loss

In the DDIExtraction 2013 task, all possible inter-
actions between drugs within one sentence are an-
notated, which means a single sentence with mul-
tiple drug mentions will lead to separate instances
of candidate mention pairs (Herrero-Zazo et al.,
2013). There are 21,012 mention pairs generated
from 3,790 sentences in training set and over 80%
have no relations. This data imbalance problem
due to sparse relation distribution is a main reason
for low recall in DDI task (Zhou et al., 2018a; Sun
et al., 2019).

Here we address this relation type imbalance
problem by adding an auxiliary task on top of the
syntax-aware GCN model. To conduct the auxil-
iary task learning, we add a separate binary classi-
fier for relation identification as shown in Figure 2.
All classifiers share the same GCN representation
and contextualized embeddings, and thus they can
potentially help each other by propagating their
supervision signals.

Additionally, instead of setting the objective
function as the negative log-likelihood loss, here
we optimize the parameters in training by mini-

mizing a focal loss (Lin et al., 2017) which fo-
cuses on hard relation types. For instance, the
int relation indicates drug interaction without pro-
viding any extra information (e.g., Some [anticon-
vulsants]DRUG may interact with [Mephenytoin]DRUG

). This relation type only accounts for 0.82% in
training set and is often misclassified into other
relation types. We denote ti and pi as the ground
truth and the conditional probability value of the
type i in relation types C, the focal loss can be
defined as:

L = −
C∑
i

(αi(1− pi)γti log(pi)) + λ||θ||2

where α is a weighting factor to balance the im-
portance of samples from various types, γ is the
focusing parameter to reduce the influence of well-
classified samples in the loss. λ is the L2 regular-
ization parameter and θ is the parameter set.

The auxiliary task along with the focal loss en-
hances our model’s ability to handle imbalance
data by leveraging the inductive signal from the
easier identification task and meanwhile down-
weighting the influence of easy classified in-
stances thus directing the model to focus on dif-
ficult relation types.

3 Experiments

3.1 Datasets and Task Settings

System Prec Rec F1
CNN (Liu et al., 2016) 75.70 64.66 69.75
Multi Channel CNN (Quan et al.,
2016)

75.99 65.25 70.21

GRU (Yi et al., 2017) 73.67 70.79 72.20
AB-LSTM (Sahu and Anand,
2018)

74.47 64.96 69.39

CNN-GCNN (Asada et al., 2018) 73.31 71.81 72.55
Position-aware LSTM (Zhou
et al., 2018a)

75.80 70.38 72.99

RHCNN (Sun et al., 2019) 77.30 73.75 75.48
LSTM baseline 69.34 62.74 65.88
GCN baseline 71.96 67.14 69.47
–without attentive pooling 77.12 75.03 76.06
–without BioBERT 76.51 73.56 75.01
–without multi-task learning 76.01 71.92 73.91
Our Model 77.62 75.69 76.64

Table 1: Precision (Prec), recall (Rec) and micro F-
score (F1) results on DDI 2013 corpus.

We evaluate our model on the DDIExtraction
2013 relation dataset (Herrero-Zazo et al., 2013).
The corpus is annotated with drug mentions and
their four types of interactions: Mechanism (phar-
macokinetic mechanism of a DDI), Effect (effect
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of a DDI), Advice (a recommendation or advice
regarding a DDI) and Int (a DDI simply occurs
without extra information). We randomly choose
10% from the training dataset as the development
set. Following previous work (Liu et al., 2016;
Quan et al., 2016; Zhou et al., 2018a; Sun et al.,
2019), we use a negative instance filtering strat-
egy to filter out some negative drug pairs based
on manually-formulated rules. Instances contain-
ing drug pair referring to the same thing and drug
pair appearing in the same coordinate structure
with more than two drugs (e.g., drug1, drug2,
and drug3) will be filtered. Entity mentions are
masked with DRUG for better generalization and
avoiding overfitting.

We train the model with GCN hidden state size
of 200, the SGD optimizer with a learning rate of
0.001, a batch size of 30, and 50 epochs. Dropout
is applied with a rate of 0.5 for regularization. The
contextual embedding size from BioBERT is 768.
The focusing parameter γ is set as 1. All hyper-
parameters are tuned on the development set.

3.2 Results and Analysis

The experiment results are reported from a 2-layer
GCN which achieves the best performance and
shown in Table 1. Our model significantly out-
performs all previous methods at the significance
level of 0.05. To analyze the contributions and
effects of the various components in our model,
we also perform ablation tests. The ablated GCN
model outperforms the LSTM baseline by 3.6%
F1 score, which demonstrates the effectiveness of
GCN on modeling mention relations through de-
pendency structure. The utilization of contextu-
alized embedding from BioBERT which encodes
the contextual information involving sequence or-
der and word disambiguation implicitly helps the
model to learn contextual relation patterns, there-
fore the performance is further improved. We
obtain a significant F-score improvement (2.7%)
by applying multi-task learning. As over 80%
mention pairs are negative samples, the multi-task
learning effectively solves the problem by jointly
modeling relation identification and classification
tasks and applying focal loss to focusing on am-
biguous mention pairs, and thus we also gain 3.8%
absolute score on recall. Specifically, the F1 score
of int type is increased from 54.38% to 59.79%.

For the remaining errors, we notice that our
model often fails to predict relations when the sen-

tence are parsed poorly due to the complex con-
tent which suggests us to seek for more powerful
parser tools. Besides, we also observe some errors
occurring in extremely short sentences. For exam-
ple, in the following sentence “[Calcium]DRUG Sup-
plements/[Antacids]DRUG”, our model cannot cap-
ture informative representations as the mentions
are masked with DRUG and the sentence is too
concise to offer indicative evidence.

4 Related Work

Traditional feature/kernel-based models for
biomedical relation extraction rely on engineered
features which suffer from low portability and
generalizability (Kim et al., 2015; Zheng et al.,
2016; Raihani and Laachfoubi, 2017). To tackle
this problem, recent studies apply Convolutional
Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) to automatically learn feature
representations with input words encoded as
pre-trained word embeddings (Zhao et al., 2016;
Liu et al., 2016; Quan et al., 2016; Zhang et al.,
2017; Zhou et al., 2018a; Sun et al., 2019).
Learning representations of graphs are widely
studied and several graph neural networks have
been applied in the biomedical domain. Lim et al.
(2018) proposed recursive neural network based
model with a subtree containment feature. Asada
et al. (2018) encoded drug pairs with CNNs and
used external knowledge base to encode their
molecular pairs with two graph neural networks.
Here we directly apply syntax-aware GCNs on
biomedical text to extract drug-drug interaction.

5 Conclusions and Future Work

We propose a syntax-aware multi-task learning
model for biomedical relation extraction. Our
model can effectively extract the drug-drug in-
teractions by capturing the syntactic information
through graph convolution operations and model-
ing context information via contextualized embed-
dings. An auxiliary task with focal loss is designed
to mitigate the data imbalance by leveraging the
inductive signal from binary classification and in-
creasing the influence of decisive relation types.
In the future, we plan to explore more informa-
tive parsers like the abstract meaning representa-
tion parser to create graph structure and consider
leveraging external knowledge to further enhance
the extraction quality.
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