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Introduction (TBD)

The International Workshop on Health Text Mining and Information Analysis (LOUHI) provides
an interdisciplinary forum for researchers interested in automated processing of health documents.
Health documents encompass electronic health records, clinical guidelines, spontaneous reports for
pharmacovigilance, biomedical literature, health forums/blogs or any other type of health-related
documents. The LOUHI workshop series fosters interactions between the Computational Linguistics,
Medical Informatics and Artificial Intelligence communities. The eight previous editions of the
workshop were co-located with SMBM 2008 in Turku, Finland, with NAACL 2010 in Los Angeles,
California, with Artificial Intelligence in Medicine (AIME 2011) in Bled, Slovenia, during NICTA
Techfest 2013 in Sydney, Australia, co-located with EACL 2014 in Gothenburg, Sweden, with EMNLP
2015 in Lisbon, Portugal, with EMNLP 2016 in Austin, Texas; in 2017 was held in Sydney, Australia;
and in 2018 was co-located with EMNLP 2018 in Brussels, Belgium. This year the workshop is co-
located with EMNLP 2019 in Hong Kong.

The aim of the LOUHI 2019 workshop is to bring together research work on topics related to health
documents, particularly emphasizing multidisciplinary aspects of health documentation and the interplay
between nursing and medical sciences, information systems, computational linguistics and computer
science. The topics include, but are not limited to, the following Natural Language Processing techniques
and related areas:

• Techniques supporting information extraction, e.g. named entity recognition, negation and
uncertainty detection

• Classification and text mining applications (e.g. diagnostic classifications such as ICD-10 and
nursing intensity scores) and problems (e.g. handling of unbalanced data sets)

• Text representation, including dealing with data sparsity and dimensionality issues

• Domain adaptation, e.g. adaptation of standard NLP tools (incl. tokenizers, PoS-taggers, etc) to
the medical domain

• Information fusion, i.e. integrating data from various sources, e.g. structured and narrative
documentation

• Unsupervised methods, including distributional semantics

• Evaluation, gold/reference standard construction and annotation

• Syntactic, semantic and pragmatic analysis of health documents

• Anonymization/de-identification of health records and ethics

• Supporting the development of medical terminologies and ontologies

• Individualization of content, consumer health vocabularies, summarization and simplification of
text

• NLP for supporting documentation and decision making practices

• Predictive modeling of adverse events, e.g. adverse drug events and hospital acquired infections

• Terminology and information model standards (SNOMED CT, FHIR) for health text mining

• Bridging gaps between formal ontology and biomedical NLP
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The call for papers encouraged authors to submit papers describing substantial and completed work
but also focus on a contribution, a negative result, a software package or work in progress. We also
encouraged to report work on low-resourced languages, addressing the challenges of data sparsity and
language characteristic diversity.

This year we received a high number of submissions (50), therefore the selection process was very
competitive. Due to time and space limitations, we could only choose a small number of the submitted
papers to appear in the program.

Each submission went through a double-blind review process which involved three program committee
members. Based on comments and rankings supplied by the reviewers, we accepted 23 papers. Although
the selection was entirely based on the scores provided by the reviewers, we regretfully had to set a
relatively high threshold for acceptance. The overall acceptance rate is 46%. After the decision about
acceptance, 2 papers were withdrawn by the authors. During the workshop, 11 papers will be presented
orally, and 10 papers will be presented as posters.

Finally, we would like to thank the members of the program committee for providing balanced reviews
in a very short period of time, and the authors for their submissions and the quality of their work.
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Abstract 

In this paper, we discuss a cross-document 
coreference annotation schema that we 
developed to further automatic extraction 
of timelines in the clinical 
domain.  Lexical senses and coreference 
choices are determined largely by context, 
but cross-document work requires 
reasoning across contexts that are not 
necessarily coherent.  We found that an 
annotation approach that relies less on 
context-guided annotator intuitions and 
more on schematic rules was most 
effective in creating meaningful and 
consistent cross-document relations. 

1 Introduction 

The ability to learn cross-document 
coreference and temporal relationships in clinical 
text is crucial for the automatic extraction of 
comprehensive patient timelines of events 
(Raghavan et al., 2014). To that end, we present a 
gold corpus of 198 clinical-narrative document 
sets, where each set consists of three notes for a 
given patient (594 individual notes total). Each 
file is annotated with intra-document temporal, 
coreference, and bridging relations (SET-
SUBSET, WHOLE-PART, CONTAINS-
SUBEVENT), and each set is annotated with 
cross-document coreference and bridging 
relations. 

The goal of the current project was to leverage 
the inherited, intra-document annotations from 
two prior projects (discussed in Section 2) to 
capture longer, more developed timelines of 
patient information. We did this by creating 
human-annotated cross-document coreference and 
bridging links and then using inference to 
combine this information with the knowledge 

already gained from the intra-document temporal 
and coreference/bridging links.   

In this paper, we discuss the impacts of cross-
document-specific phenomena on human 
annotation and machine learning, most notably 
the effect of disjunct narratives on cross-
document coreference judgments. Cohesive 
discourse is a crucial linguistic tool for 
determining coreference, yet the cross-document 
relations annotation task fundamentally takes 
place across discontinuous narratives. We found 
an approach that is governed more by annotation 
rules than annotator intuition to be most effective, 
producing an inter-annotator agreement score of 
93.77% for identical relations. While an approach 
that moves away from linguistically-intuitive 
judgments may seem surprising at first, it is in 
fact quite fitting for a task that is inherently void 
of the discourse-level linguistic cues that humans 
employ to make those intuitive associations.  

We also discuss other cross-document 
phenomena, inter-annotator agreement, and, 
briefly, areas for future work. Related work is 
discussed throughout. 

2 The THYME colon cancer corpus 

This annotation effort merged and expanded on 
document-level annotations created by two prior 
projects – a temporal relations project1 (Styler et 
al., 2014), and a coreference and bridging 
relations project. 2  These two projects will be 
referred to as THYME 1 (Temporal History of 
Your Medical Events) and Clinical Coreference. 

                                                           
1 Corpus publicly available from TempEval. Guidelines available at 
http://clear.colorado.edu 
/compsem/documents/THYME_guidelines.pdf. 
2 Clinical Coreference Annotation Guidelines available at 
http://clear.colorado.edu/compsem/documents/c
oreference_guidelines.pdf. 
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The  corpus 3  consists of de-identified 
physicians’ notes on colon cancer patients. The 
examples used throughout this paper are 
artificially created; however, we have done our 
best to replicate the relevant linguistic contexts. 
Each set of three notes consists of a clinical 
report, a pathology report, and a second clinical 
report, in that chronological order and spanning a 
period of weeks or months. Capturing such 
temporally-extensive information gives us the 
ability to track the status of the disease over time 
and responses (or not) to treatment. 

The THYME colon cancer corpus now 
includes: a) intra-document gold annotations for 
all markables (events, entities, and temporal 
expressions) and several types of temporal, 
coreference, and bridging relations; and b) cross-
document gold annotations for four coreference 
and bridging relation types, which represent a 
subset of the intra-document types 4  and are 
described in Table 1. 
                                                           
3This corpus has also been annotated according to the Penn 
Treebank, PropBank, and Unified Medical Language 
System (UMLS) Semantic Network schemas (Albright et 
al., 2013), though these data did not influence the current 
project. 
4 The intra-document relations additionally include the 
following types: CONTAINS, BEFORE, OVERLAP, 
BEGINS-ON, ENDS-ON, NOTED-ON, and APPOSITIVE. 
These are all temporal relations, except APPOSITIVE, 
which is a coreference relation. All were used by either 
Clinical Coreference or THYME 1 (Styler et al., 2014), 
except for CONTAINS-SUBEVENT and NOTED-ON, which 
are new to the current project. All are discussed in detail in 
our guidelines: https://www.colorado.edu/lab/ 
clear/projects/computational-
semantics/annotation. 

Many prior studies have noted the intractability 
of creating cross-document gold annotations on 
large corpora (Day et al., 2000, for example). 
Each cross-document effort has therefore 
restricted the scope of their annotations in some 
way (e.g., Song et al., 2018; Cybulska and 
Vossen, 2014) and/or developed machine-
produced annotations for cross-document 
relations, rather than human-produced (Raghavan 
et al., 2014; Dutta and Weikum, 2015; Baron and 
Freedman, 2008; Gooi and Allen 2004; etc.). We 
likewise restricted our approach by limiting the 
cross-document relations to the groups of three 
files which represent each patient, and by limiting 
the number of annotated relation types. However, 
the THYME corpus is the largest dataset of gold-
annotated clinical narratives to-date that we are 
aware of, in terms of types of markables and 
relations annotated. 

We are indebted to the contributions of the 
projects that preceded us. Much of the technical 
and conceptual groundwork had already been laid 
for our task. In particular, the notion of narrative 
containers (Styler et al., 2014; Pustejovsky and 
Stubbs, 2011) informed our addition of the 
CONTAINS-SUBEVENT temporal link and our 
cross-document annotation process. 

However, we found that the segregation of 
tasks during the creation of the single-file gold 
annotations caused a variety of technical and 
conceptual conflicts once their outputs were 
merged. Furthermore, aspects of the temporal task 
suffered from focusing only on local-context 
relations; a global grasp of the text, which 
coreference annotation facilitates, reveals 

Relation Type Description Link 
IDENTICAL (IDENT) M1 refers to the same event/entity as M2 

 
[M1] IDENT 
[M2] 
 

SET-SUBSET (S-SS) M2 refers to one or more members of a larger group, 
represented by M1. 
 

[M1]SET - 
[M2]SUBSET 
 

CONTAINS-SUBEVENT 
(CON-SUB) 

M1 temporally contains M2, and M2 is inherently part 
of the structure of M1. 
 

[M1] CON-SUB 
[M2] 
 

WHOLE-PART (W-P) M2 is compositionally part of a larger entity, 
represented by M1. 
 

[M1]WHOLE - 
[M2]PART 
 

Table 1: Gold-annotated cross-document relation types in the THYME colon cancer corpus. M1 refers to 
Markable 1 and M2 refers to Markable 2. Markables include events, entities, or temporal expressions. W-P 
was used only for entities; CON-SUB only for events. All four relation types are coreference or bridging 

links rather than temporal links, except for CON-SUB, which conveys both temporal and structural 
information and is represented as a temporal link (TLINK) in our annotation tool. This TLINK type is 

discussed in Section 3.1. 
 
 

2



 

temporally significant information that may be 
otherwise missed or misinterpreted. 

Early experiments showed that conflicts in the 
merged annotations rendered meaningful cross-
document annotation untenable. To reconcile 
these conflicts, we therefore introduced an intra-
document corrections-style manual annotation 
pass prior to cross-document double-annotation 
and adjudication. 

3 Cross-document annotation: Process, 
assumptions, phenomena 

It has been well-attested that determining 
cross-document relations poses a unique set of 
challenges for both systems and annotators. Song 
et al. (2018) discuss the cognitive strain on 
annotators, and others have observed the decrease 
in linguistic cues that occurs cross-document 
(Raghavan et al., 2014; Hong et al., 2016). In this 
paper, we are most interested in the latter, 
particularly the impacts of cross-document mode 
on identical relations. 

Many coreference annotation guidelines, 
including ours, use a straightforward definition of 
coreference, which may be summarized as two 
different mentions in a text having the same real- 
or hypothetical-world referent (e.g., Cybulska and 
Vossen, 2014; Richer Event Description 
Annotation Guidelines, 2016 5 ; Cohen et al., 
2017). This definition leads to a binary approach 
to identical judgments – two mentions either refer 
to the same thing or they do not. Annotators are 
forced to make a polar choice about 
representations of meaning, when those 
representations in fact exist on a spectrum. This is 
not a new discovery:  “There are cases where 
variant readings of a single lexical form would 
seem to be more appropriately visualized as 
points on a continuum – a single fabric of 
meaning with no clear boundaries” (Cruse, 1986). 
However, the natural language processing 
community is still learning how to deal with this. 

Others have identified the problems that this 
oversimplified definition creates for annotation: 
“Degrees of referentiality as well as relations that 
do not fall neatly into either coreference or non-
coreference—or that accept both interpretations—
are a major reason for the lack of inter-coder 
agreement in coreference annotation” (Recasens, 
2010). Hovy et al. (2013) also recognized the 

                                                           
5https://github.com/timjogorman/RicherEv
entDescription/blob/master/guidelines.md 
 

need for a more nuanced approach and introduced 
membership and subevent relations as a result. 

Furthermore, both Recasens and Hovy discuss 
the role that pragmatics plays in determining 
coreference: 

x “Two mentions fully corefer if their 
activity/event/state DE [discourse element] 
is identical in all respects, as far as one can 
tell from their occurrence in the text”    
(Hovy et al., 2013, emphasis added). 

x “We redefine coreference as a scalar 
relation between two (or more) linguistic 
expressions that refer to discourse entities 
considered to be at the same granularity 
level relevant to the linguistic and 
pragmatic context” (Recasens et al., 2011, 
emphasis added). 

Context, therefore, contributes in a crucial way 
to determining sense for a given lexical unit – and 
therefore also to determining coreference relations 
for that unit. We agree with Cruse, Recasens, and 
Hovy and observe the unique challenge this poses 
for cross-document annotation, since distinct 
narratives do not share a coherent discourse 
context. Recasens et al. (2011) propose that 
categorization and meaning are constructed in a 
temporary, active process; in cross-document 
work, we are attempting to create meaningful 
relations between temporally disconnected 
discourses. Put differently, the coherence of 
context is decreased while the number of contexts 
for lexical senses is increased.  

While not surprising, this phenomenon does 
have interesting consequences for annotation. In 
fact, by the definitions given above, “doing” 
coreference between disjunct linguistic and 
pragmatic contexts could be viewed, on some 
level, as impossible. 

But not all hope is lost. Particularly for our 
corpus, texts are very closely related and it is 
possible to create meaningful relations. However, 
the phenomenon just described requires an 
approach to cross-document coreference 
annotation that is unique from within-document.  
We dealt with this primarily by adding a subevent 
relation that was governed more by annotation 
rules and less by annotators’ intuitions. We 
present the reasons for and outcome of this 
approach in the next section, followed by 
discussion of other cross-document phenomena 
and our technical cross-document linking process. 
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3.1 An approach to coreference across 
disjunct contexts 

Consider the following single-file example: 
 
(1) October 15th, 2015 – Dr. Wu performed 
resection of the primary tumor. Ms. Smith’s 
recovery from surgery has been without 
complication. 

 
The choice here about whether to link resection 
and surgery as coreferential is likely to produce a 
disagreement. Annotator A may decide they are 
IDENTICAL (IDENT) since they clearly refer on 
some level to the same cancer treatment 
procedure; a significant semantic relationship 
would be lost if we did not link them. Annotator 
B, however, may decide resection refers only to 
the literal act of removing the tumor, while 
surgery points to the entire procedure. Essentially, 
the annotators disagree about whether the two 
terms are “close enough” on the meaning 
spectrum to warrant an IDENT link. More 
precisely, the disagreement stems from different 
interpretations of semantic granularity – 
Annotator A’s identity “lens” is more coarse-
grained, while Annotator B’s is more fine-grained. 

Consider a second example: 
 
(2) PLAN: Resection of primary tumor and 
gallbladder removal.  Patient is scheduled for 
surgery on October 15th, 2015. 

 
Here, the finer-grained approach to Resection and 
surgery is supported – required, in fact – by the 
context.  No coreference relationship is possible 
since the surgery clearly consists of two 
subprocedures, the tumor resection and the 
gallbladder removal. 

Now consider the two examples together, 
where (2) is from the chronologically earlier note 
and (1) is from the later note in a single set: 

 
(3)  Note A: PLAN: Resection of primary 
tumor and gallbladder removal.  Patient is 
scheduled for surgery on October 15th, 2015. 
x No coreference link 
x surgery CONTAINS Resection 
x surgery CONTAINS removal 

 
Note B: October 15th, 2015 – Dr. Wu 

performed resection of the primary tumor. Ms. 
Smith’s recovery from surgery has been without 
complication. 
x resection IDENTICAL surgery 

The IDENT link shown for Note B represents the 
original gold annotation in our data, i.e., the more 
coarse-grained approach to identity described 
above. This is arguably the better perspective 
here, based on Recasens’ definition of coreference 
above (“discourse entities considered to be at the 
same granularity level relevant to the linguistic 
and pragmatic context”); Note B’s narrative is 
quite broad-brushed and supports what Hovy 
terms a “wide reading” of resection (Hovy et al., 
2013). Pragmatically, resection and surgery are 
the same in Note B; pragmatically, they are not 
the same in Note A.   

The predicament for cross-document linking is 
obvious. If we link resectionA to resectionB, this 
entails that resectionA is IDENT to surgeryB; if we 
then link surgeryA to surgeryB, this now entails 
that the procedure temporally contains itself. If 
we leave resectionA unlinked to resectionB to 
avoid this conflict, problematically, we miss the 
relation between identical strings that refer to the 
same event (?resection of primary tumor IDENT 
resection of primary tumor), not to mention that 
leaving these unlinked would be extremely 
counterintuitive for annotators. 

This type of situation is common in cross-
document work. Since identity judgments are based 
on granularity levels that are in turn determined by 
the pragmatics of the narrative, and since the 
pragmatic contexts of two or more disjunct 
narratives are not necessarily coherent, cross-
document mode frequently forces annotators to 
choose between: (a) not linking two mentions that 
are obviously and significantly semantically related, 
or (b) linking these mentions and thereby forcing 
logically-conflicting information as in (3), which in 
turn renders the existing temporal links much less 
meaningful. 

To account for this variation in context-
determined granularity, we introduced the 
CONTAINS-SUBEVENT (CON-SUB) link, which 
says that EVENT B is both temporally contained by 
EVENT A and it composes part of EVENT A’s 
essential structure (modeled after the subevent 
relation in O’Gorman et al., 2016). We added this 
new relation intra-document in the corrections pass, 
as well as in the later cross-document pass. For 
examples like (3), this meant the Note B IDENT 
relation was re-interpreted as a subevent relation: 
surgery CON-SUB resection. This allowed us to 
preserve the close semantic connection between the 
two EVENTs in both narratives, while avoiding the 
logical conflicts that would have rendered our 
output much less meaningful and informative. We 
can also assume the inter-annotator agreement 
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achieved (discussed in section 4) is much higher 
than it would have been had we left annotators in 
the predicament shown in (3). 

The consistency noted above was achieved by an 
approach that relied less on discourse cues and 
more on general semantic distinctions. Instead of 
allowing annotators to intuitively judge between 
wide and narrow readings (borrowing Hovy’s terms 
again) of lexical items based on the context, we 
required IDENT and CON-SUB relations to be 
based more on the dictionary definitions of the 
terms.  This is because we could not predict the 
granularity distinctions that cross-document 
information would expose, as shown in (3). For 
example, annotators were required to differentiate 
between “general” surgery terms (e.g., surgery, 
procedure, operation, etc.) and “specific” surgery 
terms (colectomy, resection, excision, etc.), such 
that the general term nearly always contained the 
specific term as a subevent. This compensated for 
the majority of granularity distinctions in the 
THYME corpus (though not all, since there can 
always be more fine-grained levels of nuance). This 
framework therefore facilitated more 
straightforward cross-document linking, though it 
did also force annotators to make some 
counterintuitive within-document choices since 
senses are influenced by the context. 

Song et al. (2018) took an opposite approach to 
cross-document coreference linking through their 
use of event hoppers, which permit “coreference of 
two events that are intuitively the same although 
certain features may differ” (emphasis added). We 
found this approach did not suit our needs since the 
ultimate goal was to capture a coherent timeline of 
clinical events, and intuitive coreference linking 
produced temporal conflicts, as shown above. 

While coreference linking is not possible on the 
cross-document level in the same nuanced and 
intuitive way that it is within-document, there is still 
a great deal of important information we can 
capture. The texts in our corpus are topically very 
similar and there are typically a lot of corroborating 
details, such as dates and locations (again, these 
have been de-identified, but in a consistent fashion). 
Additionally, the clinically-delineated sections and 
the note types and structure provide clues about 
how to interpret the events; for example, due to the 
date and descriptive details, we can know which 
procedure in the clinical note the pathology note 
refers to, even if the overall procedure is not 
explicitly mentioned in the pathology note. 

Time constraints prevented us from adding 
CON-SUB for all event types. We annotated it for 
four event categories, chosen based on clinical 

significance and demonstrated need due to cross-
document conflicts like the one in (3): (a) patient 
treatment events, including surgical procedures and 
chemotherapy/radiation treatments; (b) cancer 
events (cancer, adenocarcinoma, tumor, etc.); (c) 
medications; and (d) chronic disease events. 

Due to other conflicts arising from the 
disconnected contexts that the subevent relation 
was not able to reconcile, we permitted the cross-
document adjudicators (but not annotators) to make 
within-document annotation changes when 
absolutely necessary. 

In summary, we found that it is possible to 
capture meaningful cross-document coreference 
relations, but the approach must differ from intra-
document annotation because pragmatically-
directed within-document intuitions may conflict in 
unpredictable ways on the cross-document level. 

3.2 Other cross-document phenomena 
    We have discussed in depth the way identical 
judgments are affected by disjunct contexts.  We 
discuss two more cross-document phenomena 
here: (1) the use of inference in linking stative 
events; and (2) how cross-document work 
exposes typos and misinformation. Notably, this 
could be leveraged to identify mistakes in the text, 
which may contribute to current efforts to reduce 
medical errors in patient treatment. 
 
Inference and stative events 
    Cross-document coreference is typically easier 
for punctual events (such as tests and procedures) 
and harder for durative events that can change in 
value over time (for example, a mass that is 
initially benign but becomes malignant). As with 
many other cross-document challenges, this issue 
is also present within-document, but is 
exacerbated in the cross-document setting 
because context is reduced. Consider the 
following example: 

 
(4) Note A (March 24 2012 SECTIONTIME): 
Pulse Rate: Regular 
Note B (March 26 2012 SECTIONTIME): 
Heart: Regular rate  

 
Here we have two clinically-relevant states 
associated with two different times: the regularity 
of the patient’s heart rate on March 24, 2012, and 
the regularity of the patient’s heart rate on March 
26, 2012. The question for a cross-doc annotator 
is whether these two EVENTs are IDENTICAL.  

For the current example, it is likely the regular 
condition has continued, but the fact is we do not 
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know, especially since the patient may have a 
medical condition that causes sporadic 
irregularity. Furthermore, we might be initially 
inclined to infer sameness due to the close 
temporal proximity of the two measurements (two 
days apart), but that thought trajectory quickly 
leads to problems: When are two continuous 
events not temporally near enough to infer 
sameness? A week? A month? How do we 
decide? 

Song et al. (2018) discuss a similar example 
across four notes, in which they corefer the first 
three events because they occur in “about the 
same time period and same place” (occurring over 
the timespan of a month), but they do not corefer 
the fourth event “as it happened at a different 
time” (about four months after the most recent 
other mention). However, it is not clear how they 
determined that a month is a reasonably close 
enough timespan to infer sameness, while four 
months is not. 

Our approach, therefore, was that when 
condition or attributive EVENTs – events that 
vary in value – are measured or identified at two 
different times, they should not be linked, unless 
there is explicit linguistic evidence (e.g., use of 
the present perfect tense) they are the same event. 
Essentially, we decided that temporal proximity 
alone was not enough to infer an identical relation 
for two condition/value events. 

Of course, inference is a source of inter-
annotator disagreement for other cross-document 
choices as well. A comprehensive analysis is 
outside the scope of this paper, but the topic is 
discussed further in the following point.  

 
How cross-document annotation exposes 
mistakes in the data 
    We discuss this in detail not only because it has 
implications for discovering misinformation in 
the text, but also because it demonstrates two 
more significant challenges to cross-document 
clinical annotation: the heavy cognitive burden on 
annotators, and the need for clinical knowledge. 
Consider the following example: 

 
(5) Note A (DOCTIME: August 21, 2012): 
We have ordered a CT abdomen and pelvis to 
rule out liver metastases prior to surgery.  Mr. 
Olson will also need an EKG and bloodwork.  
Testing was negative. 
x CT assigned DocTimeRel of AFTER, i.e., it 

occurs after  DOCTIME (Aug 21, 2012). 
Note B (DOCTIME: September 30, 2012): 

CT abdomen and pelvis was compared to the 
prior study of August 20, 2012, Mr. Olson had 
low-anterior resection. 

x August 20, 2012 CONTAINS study 
 
CTA and studyB are in fact IDENTICAL. 
Combined with the temporal information noted 
above, this entails that the same event both occurs 
after Aug. 21, 2012, and is temporally contained 
by Aug. 20, 2012 – a logical impossibility. 

We know they are the same event based 
primarily on real-world knowledge of the 
standard order of medical procedures, as 
follows:  It is clear in Note B that there are two 
different CT scans. The question facing a cross-
document annotator is which one, if either, is 
IDENT to CTA? We know explicitly from the text 
that CTA occurred prior to the patient’s surgery. 
CTB occurred after the patient’s surgery, since, 
however cryptically, it references observation of 
the surgery (“Mr. Olson had low-anterior 
resection”). Therefore, CTA and CTB are not 
referring to the same scan. 

Now the question is whether studyB is IDENT 
to CTA. The initial evidence is to the contrary –
 studyB is explicitly said to occur on Aug. 20, 
while CT is inferably after (or later in the day on) 
Aug. 21. However: (a) it is unusual to have two  
CT scans back-to-back, without further 
discussion; (b) an Aug. 20 CT is not discussed in 
the Aug. 21 note; (c) in Note A, immediately after 
noting that several tests have been ordered, the 
text says, “Testing was negative.” Based on the 
verb tenses in the paragraph, the assumption 
would likely be that Testing here refers to other 
tests, not the ones just ordered. However, the flow 
of discourse suggests otherwise, along with the 
fact that no other prior testing is referred to in the 
same section. With the additional information we 
have from Note B, a more reasonable 
interpretation presents itself: studyB is IDENT to 
CTA, and Aug. 20 is the correct date of the scan. 
The note was likely originally written on Aug. 20, 
prior to the scan that was done later that day, and 
was later updated with the test results but without 
any indication of the update being written at a 
later time. This analysis was confirmed by review 
of all notes by our medical expert consultant. 
    There are several noteworthy observations 
about this: First, there is quite a bit of oncological 
knowledge required to notice the conflict above. 
Furthermore, the non-standard syntax in Note B 
would make it easy for an annotator to miss the 
fact that CTB is after the resection. 
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Second, even armed with the necessary clinical 
knowledge, there is still a fair amount of inference  
involved in making the above choice. However, 
note that all of the annotation options here, 
including the option to not link at all, require a lot 
of inference (as is the nature of many cross- 
document analyses). There are different types of 
inference based on different kinds of information. 
While we decided that temporal closeness is not  
enough by itself to infer a relation for 
condition/value events, we decided here that  
medical knowledge of standard processes is 
enough to infer a relation. 

Third, assuming the above observations were 
made, an impossible annotation choice presents 
itself: Do we make the coreference link even 
though it forces a temporal conflict, or do we 
keep the timeline clean and lose the coreference 
relation? We decided on the former, and kept 
track of the noted temporal conflicts in order to 
inform systems training. 

Finally, note the time, attention, and careful 
thought process required for determining this 
single cross-document link. While certainly not 
all decisions are this demanding, the amount of 
time necessary to produce high-caliber 
annotations should be apparent. It took highly-
experienced annotators about 1.5 hours on 
average to complete one document set, or an 
estimated 891 hours total for two annotators and 
one adjudicator to produce 198 gold sets with a 
total of 10,560 cross-document links. This does 
not include time spent on initial annotation 
experiments, process and guidelines development, 
annotator training, and post-processing steps. 

3.3 Cross-document annotation process 
To manage the potentially vast number of 

cross-document links, we established a set of 

assumptions about inferable relations that guided 
the following process and are further discussed in 
Table 2 (note: “structural links” refers to links that 
have a hierarchical rather than identical 
relationship: CON-SUB, S-SS, W-P): 

(a) Link topmost mention to topmost mention. 
We assume the other relations can be inferred 
from within-document chains. 

(b) If there is a within-document structural link 
between two markables, do not create that same 
link cross-document for the same two 
events/entities. Put differently, create cross-
document structural links only when both 
components of the relation do not have a cross-
document IDENT link. Again, we assume that 
other relations can be inferred. 

(c) Always create IDENT links whenever 
appropriate. 

4  Inter-annotator agreement 

    We scored inter-annotator agreement (IAA) 
only for annotation categories that were new to 
the current project, i.e., intra-document CON-
SUB links and all cross-document links. 
Furthermore, we only scored annotator-annotator 
agreement (not annotator-gold), since adjudicators 
were permitted to change single-file annotations 
while annotators were not. The total number of 
gold markables and relations are shown in Table 
3; IAA results are shown in Table 4 and are 
averaged over all the documents (both tables 
shown on following page).  
    The IDENT score is much higher than the 
structural linking scores because the structural 
links were only created in cases where neither 
component of the link had a cross-document 
IDENT relation (see Section 3.3). These relations 
were therefore brand-new and had to be identified 

Example Text Within-doc links Cross-doc links 

File Set 1 Note A: ...screening tests… 
Note B: ...screening tests...MRI 

testsB SET-SUBSET MRIB testsA IDENT testsB 

File Set 2 Note A: ...screening tests… 
Note B: ...MRI... 

None testsA SET-SUBSET MRIB 

File Set 3 Note A: ...screening tests...MRI 
Note B: ...screening tests...MRI 

testsA SET-SUBSET MRIA 
testsB SET-SUBSET MRIB 

testsA IDENT testsB 
MRIA IDENT MRIB 

Table 2: For File Set 1, there is no cross-doc S-SS link between testsA and MRIB because this can be inferred 
from the cross-doc IDENT link and the within-doc S-SS link shown. For File Set 3, the fact that MRIA has 

the same referent as MRIB is not inferable from the intra-document structural links; hence, we create a cross-
doc IDENT link.  (Crucially, all examples assume that context allows us to know that these mentions do in 

fact refer to the same testing events.) 
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without the benefit of a single coherent discourse, 
as discussed in depth above. On the other hand,  
annotators were able to draw on the information 
conveyed in intra-document relations when 
determining cross-document IDENT relations.  

The WHOLE-PART (W-P) IAA score is zero 
because there were very few cross-document W-P 
relations in the corpus, under our guidelines. W-P 
is used only for entities, and we did not do W-P 
cross-document linking for anatomical entities 
(due to the massive amount of mentions, the 
spider-webbed relations, and the number of vague  
terms – tissue portions, etc. – we only created 
IDENT anatomy relations at the cross-document 
level). Therefore, the only cross-narrative W-P 
relations were between organizations/departments 
and members of those entities, which were only 
rarely knowable from the text.  

The CONTAINS-SUBEVENT (CON-SUB) 
agreement score is likely higher than the SET-
SUBSET (S-SS) score because we applied it to 
four specific event categories (see Section 3.1) 
that consist of oft-repeated terms. S-SS, on the 
other hand, had no such constraints, making this 
relation much more challenging to identify over 
the scope of three often-lengthy documents.  
Furthermore, while some set-member relations 
are obvious, others are not. For example: 
 
(6)  Note A: Pt denies alcohol or tobacco use. 
       Note B: He denies drinking. 

x useNEG S-SS drinkingNEG 
 

One of our annotators identified the S-SS link 
shown, while the other did not. In the future, more 
examples and/or constraints of fringe S-SS 
relations in the annotation guidelines could be 
developed to improve S-SS agreement. 

5 Conclusion 

As demonstrated, developing an extensive 
timeline of patient events that occur over multiple 
weeks and months is an extremely complicated 
process. Understanding the breadth of complexity 
and the heavy demands on annotators is necessary 
for projecting annotation budgets and timelines, 
and for understanding the nature and quality of 
the resulting data for predicting machine learning 
performance. Two of the most pressing areas for 
future research include: (a) further development 
and testing of our approach to cross-document 
linking presented in section 3.1; and (b) 
development of a comprehensive methodology 
for incorporating medical expertise, as alluded to 
in section 3.2 (building on but extending beyond 
the light-annotation tasks methodology proposed 

Intra-document IAA Cross-document IAA 
CON-SUB:  34.14% 

 
IDENTICAL: 93.77% 
CON-SUB: 36.43% 
SET-SUBSET: 6.88% 
WHOLE-PART: 0.00% 

 

Table 4: Intra-document and cross-document inter-
annotator agreement scores in terms of percentage 

agreement. 
 

**CON-SUB is listed twice 
under the second column 
since it’s both a temporal 
link and a bridging link. 

 

Markables  
(594 documents) 

143,147 
total 

Relations, within-doc and 
cross-doc 
(594 documents) 

70,572 
total 

Cross-doc relations  
(198 documents) 

10,762 
total 

TIMEX3s 7,796 Temporal links 35,428 total IDENTICAL 9,102 
Entities* 47,355      CONTAINS 14,037 SET-SUBSET 405 
EVENTs 86,172      CON-SUB** 4,718 WHOLE-PART 13 
SECTIONTIME 1,230      BEFORE 4,217 CON-SUB 1,242 
DOCTIME 594      OVERLAP 5,091   
       BEGINS-ON 1,200   
       ENDS-ON 557   
       NOTED-ON 5,608   
  Aspectual links 873 total   
       INITIATES 259   
       CONTINUES 302   
       TERMINATES 278   
       REINITIATES 34   
  Coreference and bridging links 38,337 total   
       IDENTICAL 23,827   
       SET-SUBSET 5,907   
       WHOLE-PART 3,885   
       CON-SUB** 4,718   

Table 3: Total gold markables and relations for the THYME colon cancer corpus.  

*Entities are referred 
to as MARKABLEs in 
our guidelines, due to 
the naming practice of 
the prior Clinical 
Coreference project.  
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by Stubbs, 2013). It is critical that wherever 
possible the annotation process is based on clear 
rules rather than annotator intuition as the former 
lends itself to automation whereas the latter at 
best results in a non-scalable solution with a 
narrow field of implementation. Developing these 
rules requires medical domain expertise. 

Our results for cross-document coreference 
annotation leave ample room for improvement. 
Yet we believe that the approaches discussed here 
will serve as another significant step in the 
development of automatic extraction of event 
timelines in medical data. 
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Abstract

Pre-trained word embeddings are becoming
increasingly popular for natural language-
processing tasks. This includes medical ap-
plications, where embeddings are trained for
clinical concepts using specific medical data.
Recent work continues to improve on these
embeddings. However, no one has yet sought
to determine whether these embeddings work
as well for one field of medicine as they do
in others. In this work, we use intrinsic meth-
ods to evaluate embeddings from the various
fields of medicine as defined by their ICD-9
systems. We find significant differences be-
tween fields, and motivate future work to in-
vestigate whether extrinsic tasks will follow a
similar pattern.

1 Introduction

The application of natural language processing
(NLP) and machine learning to medicine presents
an exciting opportunity for tasks requiring predic-
tion and classification. Examples so far include
predicting the risk of suicide or accidental death
after a patient is discharged from general hospitals
(McCoy et al., 2016) or classifying which patients
have peripheral vascular disease (Afzal et al.,
2017). A common resource across NLP for such
tasks is to use high-dimensional vector word rep-
resentations. These word embedding include the
popular word2vec system (Mikolov et al., 2013)
which was initially trained on general English text,
using a skip-gram model on a Google News cor-
pus.

Due to considerable differences between the
language of medical text and general English
writing, prior work has trained medical embed-
dings using specific medical sources. Generally,
these approaches have trained embeddings to rep-

resent medical concepts according to their ‘clin-
ical unique identifiers’ (CUIs) in the Unified Li-
brary Management System (ULMS) (Bodenreider,
2004). Words in a text can then be mapped to
these CUIs (Yu and Cai, 2013). Various sources
have been used, such as medical journal arti-
cles, clinical patient records, and insurance claims
(De Vine et al., 2014), (Minarro-Giménez et al.,
2014), (Choi et al., 2016).

Prior authors have sought to improve the qual-
ity of these embeddings, such as using different
training techniques or more training data (Beam
et al., 2018). In order to judge the quality of
these embeddings, they have primarily used evalu-
ation methods quantifying intrinsic qualities, such
as their ability to predict drug-disease relations
noted in the National Drug File - Reference Ter-
minology (NDF-RT) ontology (Minarro-Giménez
et al., 2014), or whether similar types of clinical
concepts had cosine similiar vectors (Choi et al.,
2016).

To date these embeddings have been both
trained and evaluated on general medical data.
That is, no fields of medicine were specified or ex-
cluded; data could be from an obstetrician deliver-
ing a baby, a cardiologist placing a stent, or a der-
matologist suggesting acne treatment. It is unclear
how well such embeddings perform for a specific
field of medicine. For example, we can consider
psychiatry, the field of medicine concerned with
mental illnesses such as depression or schizophre-
nia. Prior work has shown that psychiatric symp-
toms are often described in a long, varied, and sub-
jective manner (Forbush et al., 2013) which may
present a particular challenge for training these
embeddings and NLP tasks generally.

As these pre-trained embeddings may increas-
ingly be used for down-stream NLP tasks in spe-
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cific fields of medicine, we seek to determine
whether embeddings from one field perform rel-
atively well or poorly relative to others. Specif-
ically, we aim to follow prior work using intrin-
sic evaluation methods, comparing the geomet-
ric properties of embedding vectors against others
given known relationships. This will offer a foun-
dation for future work that may compare the per-
formance on extrinsic NLP tasks in different med-
ical fields. Finding relative differences may sup-
port that certain medical fields would benefit from
embeddings trained on data specific to their field,
or using domain adaptation techniques as some-
times used in the past (Yu et al., 2017).

2 Methods

2.1 Sets of Embeddings

We sought to compare a variety of clinical con-
cept embeddings trained on medical data. Ta-
ble 1 contains details of the sets compared in
this project, all of which are based on word2vec.
We obtained DeVine200 (De Vine et al., 2014),
ChoiClaims300, and ChoiClinical300 (Choi et al.,
2016) all from the latter’s Github. We down-
loaded BeamCui2Vec500 (Beam et al., 2018) from
this site. Unfortunately, we were unable to obtain
other sets of embeddings mentioned in the litera-
ture (Minarro-Giménez et al., 2014), (Zhang et al.,
2018) (Xiang et al., 2019).

2.2 Determining a Field of Medicine’s
Clinical Concepts

A clinical concept’s corresponding field of
medicine is not necessarily obvious. In order to
have an objective and unambiguous classification,
we utilized the ninth revision of the International
Statistical Classification of Diseases and Related
Health Problems (ICD-9) (Slee, 1978). This is
a widely used system of classifying medical dis-
eases and disorders, dividing them into seventeen
chapters representing medical systems/categories
such as mental disorders, or disease of the respi-
ratory system. While the 10th version is available,
we chose this version based on prior work using
it, and the pending release of the 11th version. We
will use these ICD9 systems to define the different
medical fields.

We determined a CUI’s field of medicine ac-
cording to a CUI-to-ICD9 dictionary available
from the UMLS (Bodenreider, 2004). We con-
sider pharmacological substance related to a field

of medicine system if it treats or prevents a dis-
ease with an ICD9 code within a particular ICD9
system. We determine this by using the NDF-RT
dictionary, which maps CUIs of substances to the
CUIs of conditions they treat or prevent, and then
convert these CUIs to the ICD9 systems as be-
fore. As such, A CUI representing a drug may
have multiple ICD9 systems and therefore medi-
cal fields.

2.3 Evaluation Methods
We sought to compare multiple methods for eval-
uating the quality of a medical field’s embeddings
based on prior work. We were unable to use Yu et
al’s (2017) method, based on comparing the cor-
relation of vector cosine similarity against human
judgements from the UMNSRS-Similarity dataset
(Pakhomov, 2018) due to there being too few ex-
amples across many medical fields. The code for
all implemented methods will be publicly avail-
able upon publication of this work from the first
author’s GitHub.

Medical Relatedness Measure (MRM) This
method from Choi et al (2016) is based on quan-
tifying whether concepts with known relations are
neighbours of each other. They use known rela-
tionships between drugs and the diseases they treat
or prevent, and also the relations between diseases
that are grouped together in the Clinical Classifi-
cations Software (CCS) hierarchical groupings, a
classification from the Agency for Healthcare Re-
search and Quality (Cli). The scoring utilizes Dis-
counted Cumulative Gain, which attributes a di-
minishing score the further away a known relation-
ship is found if within k neighbours.

In our implementation, we calculate the Med-
ical Relatedness Measure (MRM) based on the
‘coarse’ groupings from the CCS hierarchies.
Scores are calculated for CUIs that represent
diseases with a known ICD9 code. The mean
MRM is then calculated for all CUIs within a
given ICD9 system. The implementation was
adapted from Python 2.7 code available from the
original author’s Github. We calculate MRM as:

MRM(V, F, k) = 1
|V (F )|

∑
v∈V (F )

1
|V (G)|

k∑
i=1

1G(v(i))
log2(i+1)

Where V are medical conditions, F a field of
medicine, V (F ) the medical conditions within an
ICD-9 system/field of medicine, G the CCS group
that medical condition v ∈ V (F ) is part of, and
V (G) the subset of medical conditions found in
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Name Dimension Number Number of Training Data Type of Training Data
DeVine200 200 52,102 17k + 348k clinical narratives

journal abstracts
ChoiClaims300 300 14,852 4m health insurance claims
ChoiClinical300 300 22,705 20m clinical narratives
BeamCui2Vec500 500 109,053 60m + 20m + 1.7m health insurance claims

clinical narratives
full journal texts

Table 1: Characteristics of the embeddings compared, including the name referred, the embedding dimensions, the
number of embeddings in the dataset, and the type of data used to train them.

Drug Actual Medical Field Predicted Medical Field Correct?
Fluoxetine Mental Disorders Mental Disorders Yes
Sertraline Mental Disorders Neoplasms No
Risperidone Mental Disorders Mental Disorders Yes
Olanzapine Mental Disorders Mental Disorders Yes

Valproic Acid
Mental Disorders

Diseases of the Nervous System
Mental Disorders

Congenital Abnormalities
Yes

Lamotragine
Mental Disorders

Diseases of the Nervous System
Diseases of the Skin

Diseases of the Nervous System
No

Mental Disorders SysVec Score: 4/6 = 0.67

Table 2: Illustrative example showing how System Vector Accuracy (SysVec) would be calculated for the medical
field “Mental Disorders” if it contained only six drugs. Predicted medical field is the medical field/ICD9 system
vector closest to the drug, or n closest fields if a drug treats conditions in n multiple fields. System vectors are the
normalized mean vector of that system’s medical conditions.

this group. 1G is 0 or 1 depending on whether
v(i), the ith closest neighbour to a condition v, is
in the same group. k neighbours are considered.

To illustrate this, consider calculating the MRM
for F “Diseases of the Musculoskeletal System”.
It involves summing the scores for its conditions,
such as rheumatoid arthritis (v ∈ V (F )). This
condition is part of the CCS-coarse grouping (G),
“Rheumatoid arthritis and related disease”. This
group contains twelve conditions, such as Felty’s
syndrome and Rheumatoid lung. With Choi et al’s
choice of k = 40, the score for rheumatoid arthri-
tis would depend on how many of the eleven other
conditions in this group are within the 40 near-
est neighbours (v(i)) to rheumatoid arthritis, and
would give a higher score the nearer they are, the
highest being if they are the eleven nearest neigh-
bours.

Medical Conceptual Similarity Measure
(MCSM) The other method used by Choi et
al’s work evaluates whether embeddings known
to be of a particular set are clustered together.
They use conceptual sets from the UMLS such

as ‘pharmacologic substance’ or ‘disease or
syndrome’. Discounted Cumulative Gain is again
used, based on whether a CUI has other CUIs of
its set within k neighbours.

We reimplement this method, but instead of us-
ing the UMLS conceptual sets, we create sets from
the ICD9 systems, again giving a score to neigh-
bours that are diseases or drugs from the same
field of medicine/ICD9 system. Again, this was
adapted from code from Choi et al’s Github. The
Medical Conceptual Similarity Measure (MCSM)
can be represented as:

MCSM(V, F, k) = 1
|V (F )|

∑
v∈V (F )

k∑
i=1

1F (v(i))
log2(i+1)

Similar to MRM, F is a medical field/ICD9 sys-
tem, V (F ) the medical conditions within a sys-
tem, and 1F 0 or 1 depending on whether neigh-
bour v(i) is also in this medical field.

For illustration, consider an example calculat-
ing the MCSM for the medical field/system (F )
“Infectious and Parasitic Diseases”. This involves
calculating the score for the medical condition (v)
primary tuberculous infection. If rifampin, an an-
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tibiotic, was found to be nearby, it would con-
tribute to the MCSM, as it treats conditions in “In-
fectious and Parasitic Diseases” and so would be
classified as being part of this system. On the other
hand, if the respiratory illness asthma was one of
the k nearest neighbours, it would add nothing to
the MCSM score, as it is a disease in a different
system, “Diseases of the Respiratory System”.

Significance against Bootstrap Distribution
(Bootstrap) Beam et al (2018) also evaluate
how well known relationships between concepts
are represented by embedding vector similarity.
For a given known relation, they generate a boot-
strap distribution by randomly calculating cosine
similarities between embedding vectors of the
same class (eg. a random drug and disease when
evaluating drug-disease relations). For a given
known relation, they consider that the embeddings
produced an accurate prediction if their cosine
similarity is within the top 5%, the equivalent of
p < 0.05 for a one-sided t-test.

Our implementation considers the may-treat or
may-prevent known relationships from the NDF-
RT dataset. We calculate the percentage of known
relations for drug-disease pair within each medi-
cal field. Beam et al have not yet made their code
publicly available, so we reimplemented this tech-
nique in Python.

System Vector Accuracy (SysVec) We imple-
ment a new, simple method to evaluate a medi-
cal field’s embeddings. A representative vector
is calculated for each medical field/ICD9 system
by taking the mean of the normalized embedding
vectors of a field’s diseases. We then consider all
of the drugs known to treat or prevent a disease
of a given medical field. A field’s System Vec-
tor Accuracy is then the percentage of these drugs
whose most similar (by cosine similarity) system
vector is this field’s. A higher score indicates bet-
ter performance. We implemented this method in
Python.

For example, a system vector for “Mental Dis-
orders” would be calculated from the embeddings
for diseases such as schizophrenia and major de-
pressive disorder. “Mental Disorders’” System
Vector Accuracy is the percentage of its medi-
cations (e.g. fluoxetine, risperidone, paroxetine)
whose embedding vectors are more similar to the
“Mental Disorders” system vector than all others.
Fluoxetine is an anti-depressant medication solely

used to treat “Mental Disorders”, so we would ex-
pect its vector to be more similar to this system
vector than, say, the system vector representing
“Diseases of the Skin and Subcutaneous Tissue”.

Some drugs treat or prevent diseases in n multi-
ple medical field. For a field, such a drug is clas-
sified as being accurately predicted if the field’s
system vector is amongst the n most similar sys-
tem vectors. For instance, valproic acid is an anti-
convulsant used to treat both mental disorders and
those of the nervous system. “Mental Disorders’”
System Vector Accuracy would take into account
whether its system vector was one of the n=2 most
similar system vectors. For further illustration, Ta-
ble 2 shows an example SysVec calculation.

2.4 Comparing Scores

Comparing Sets of Embeddings We calculated
the mean scores for an embedding set, only includ-
ing embeddings with corresponding ICD9 values
and present in all of the compared sets. For the
MCSM and MRM scores, we conducted two-way
paired t-tests between the scores from each em-
bedding set, adjusted with the Bonferroni correc-
tion. For the binary Bootstrap and SysVec scores,
we judged statistical significance by calculating
z-scores and their corresponding Bonferroni cor-
rected p-values.

A negative control set of embeddings was con-
structed by taking the embeddings from Beam et
al (2018) and randomly arranging which clinical
concepts an embedding corresponds to.

Comparing Fields of Medicine As the embed-
dings from Beam et al (2018) are most recent,
trained on the most data, and have significantly
higher scores than the other embeddings com-
pared, we used these embeddings to compare
scores from the different fields of medicine. This
set also contained the most embeddings, allowing
more embeddings from each field to be compared.

We sought to determine whether a field of
medicine’s embeddings were significantly worse
or better than the average. As such, for each field
of medicine we calculated the mean score from
each evaluation method. We then used statisti-
cal tests to compare a field’s scores from a given
evaluation method with the same scores from all
other fields. For MCSM and MRM scores we used
two-tailed t-tests, and for Bootstrap and SysVec,
z-scores, all corrected with the Bonferroni correc-
tion.
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To aggregate a medical field’s results, we cal-
culated a ‘Net Significance’ metric by taking how
many of the four method’s scores were signifi-
cantly above the mean, minus how many were sig-
nificantly below. We found this more interpretable
than other methods such as aggregating normal-
ized scores.

3 Results

3.1 Differences Between Sets of Embeddings
Comparing the sets of embeddings (Table 3)
shows consistent differences. BeamCui2Vec500’s
scores are the highest across all methods, and
this difference is very significant, with p-value
� 10−5 after Bonferonni correction. The
ChoiClaims300 embeddings seem next best, and
the remaining sets still have much higher scores
than those of the negative control.

3.2 Differences Between Medical Systems
Differences are also observed between embed-
dings from the various fields of medicine as rep-
resented by the ICD-9 systems (Table 4). For
instance, embeddings related to the medical field
Mental Disorders have scores significantly above
the mean score across all systems for two eval-
uation methods, while those of the field Symp-
toms, Signs, and Ill-defined Conditions are signif-
icantly below for three. Due to a smaller number
of documented drug-disease relationships across
two medical fields, scores were not calculated with
those methods using these relationships.

4 Discussion and Future Direction

To our knowledge, this is the first investigation
into whether clinical concept embeddings from a
given field of medicine perform relatively well or
poorly compared to others. We conducted this in-
vestigation comparing available sets of such em-
beddings, using a variety of previously described
intrinsic evaluation methods in addition to a new
one. Given that one set of embeddings performed
better than others, we used this set to compare the
different fields of medicine, and found significant
results between various fields.

The superior performance of one set of embed-
dings - those from Beam et al (2018) - are con-
sistent with the depth and breadth of data used to
train these embeddings. Training used three differ-
ent types of data, including that from health insur-
ance claims, clinical narratives, and full texts from

medical journals. The size of the dataset was also
much larger than that of the others. Our work vali-
dates their findings that their embeddings offer the
best performance. However, it would be interest-
ing to also consider the recent clinical concept em-
beddings developed by (Xiang et al., 2019). They
use a similar amount of data (50 million) as Beam
et al, using a large dataset from electronic health
records, and apply a novel method to incorporate
time-sensitive information. At the time of submis-
sion, we were unable to obtain their embeddings,
and so leave this comparison to future work.

Examining the differences between fields of
medicine, we note that the poor performance of
embeddings from the system “Symptoms, Signs,
and Ill-defined Conditions” may support validity
of the results. This collection of miscellaneous
medical conditions would not be expected to have
the intrinsic vector similarity and cohesion evalu-
ated by our evaluation methods.

Further work may explore why the other sys-
tems have varied performance. We wonder if the
observed results correlate with possible distinc-
tiveness of the various medical fields. For exam-
ple, one of the best performing systems was “Neo-
plasms”. The conditions in this field are often un-
ambiguous - a cancer like non-small cell lung can-
cer has little other meaning - and the drugs used
for these diseases tend to be similarly specific. On
the other hand, poorly performing systems such as
“Diseases of the Skin and Subcutaneous Tissue”
and ”Diseases of the Musculoskeletal Systems and
Connective Tissue” often utilize immunosuppres-
sant medications that are used across many fields
of medicine. Future work could investigate this
conjecture by comparing scores when restricting
what clinical concepts are compared, such as only
common or distinct medications.

This work evaluated embeddings using intrin-
sic measures of embedding quality. This presents
some advantages, but also the most obvious lim-
itation and direction for future work. These in-
trinsic methods allowed a consistent evaluation
to be carried out between medical fields, and al-
lowed a wide variety of embedding sets to be com-
pared. The methods all evaluate qualities that
well-trained embeddings should have, though still
represent artificial use-cases. Evaluating these
embeddings on extrinsic, down-stream tasks may
provide more practically relevant comparisons.
However, these tasks will need to be comparable
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Embedding Set MRM MCSM Bootsrap SysVec
Negative Control 0.02 1.24 0.05 0.35
DeVine200 0.24 5.14 0.27 0.79
ChoiClaims300 0.43 5.34 0.42 0.80
ChoiClinical300 0.33 4.49 0.42 0.74
BeamCui2Vec500 0.52 6.39 0.67 0.90

Table 3: Mean scores for embedding sets for each evaluation method. See Methods section for abbreviations

ICD-9 Systen MRM MCSM Bootstrap SysVec Net Significance
All Systems (Negative Control) 0 1.08 0.04 0.25 -
All Systems 0.55 8.07 0.89 0.63 -
Infectious and Parasitic Diseases 0.45 7.72 0.93 0.92 0
Neoplasms 0.62 9 0.94 0.55 +2
Endocrine, Nutritional and Metabolic
Diseases, and Immunity Disorders

0.44 5.64 0.89 0.53 -2

Diseases of the Blood
and Blood-forming Organs

0.31 4.36 0.82 0.79 -2

Mental Disorders 0.53 9.34 0.96 0.83 +2
Diseases of the Nervous System
and Sense Organs

0.76 8.44 0.87 0.33 +1

Diseases of the Circulatory System 0.59 8.12 0.96 0.72 +2
Diseases of the Respiratory System 0.36 5.85 0.94 0.82 +1
Diseases of the Digestive System 0.61 7.93 0.77 0.62 0
Diseases of the Genitourinary System 0.61 6.82 0.86 0.58 0
Complications of Pregnancy,
Childbirth, and the Puerperium

0.51 10.27 - - 0

Diseases of the Skin
and Subcutanous Tissue

0.37 5.1 0.81 0.58 -2

Diseases of the Musculoskeletal
System and Connective Tissue

0.47 8.22 0.88 0.29 -2

Congenital Anomalies 0.5 6.24 0.73 0.73 -1
Certain Conditions Originating
in the Perinatal Period

0.48 9.84 - - 0

Symptoms, Signs, and
Ill-defined Conditions

0.26 2.68 0.77 0.56 -3

Injury and Poisoning 0.59 9.09 0.75 0 0

Table 4: Comparison of mean scores using different evaluation methods for the fields of medicine as represented
by their ICD-9 system. The row All Systems shows the mean score for each method across embeddings from all
systems. A bold score indicates that a system’s score was significantly above the All Systems score, while an italic
score indicates it was below. Significance is judged by having a p-value <0.05 after Bonferroni correction. Net
Significance is the number of these significant differences above the All Systems score minus the number below.
A system’s score is not calculated if there are fewer than ten examples for a method. See Methods section for
evaluation method abbreviations. All scores in this table are calculated using the embeddings from Beam et al.

and available for multiple medical fields. For in-
stance, the recent work by Xiang et al (2019) com-
pared embeddings trained by different methodolo-
gies on a task predicting the onset of heart failure
(Rasmy et al., 2018). This would be an appropri-

ate task to judge embeddings from “Diseases of
the Circulatory System”; others would be needed
for other systems. We also plan to investigate the
validity of these intrinsic evaluation methods by
comparing them to extrinsic results.
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Another future direction could be to investigate
what could be done to improve performance in the
fields with lower scores. For instance, Zhang et al
(2018) used domain adaptation techniques for psy-
chiatric embeddings, and this could also be car-
ried out for those systems we identified as doing
poorly. Alternatively, one could train embeddings
solely on data from one field of medicine and in-
vestigate how this affects performance.
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Abstract

Deep learning models have achieved state-of-
the-art performances on many relation extrac-
tion datasets. A common element in these
deep learning models involves the pooling
mechanisms where a sequence of hidden vec-
tors is aggregated to generate a single rep-
resentation vector, serving as the features to
perform prediction for RE. Unfortunately, the
models in the literature tend to employ differ-
ent strategies to perform pooling for RE, lead-
ing to the challenge to determine the best pool-
ing mechanism for this problem, especially
in the biomedical domain. In order to an-
swer this question, in this work, we conduct a
comprehensive study to evaluate the effective-
ness of different pooling mechanisms for the
deep learning models in biomedical RE. The
experimental results suggest that dependency-
based pooling is the best pooling strategy for
RE in the biomedical domain, yielding the
state-of-the-art performance on two bench-
mark datasets for this problem.

1 Introduction

In order to analyze the entities in text, it is crucial
to understand how the entities are related to each
other in the documents. In the literature, this prob-
lem is formalized as relation extraction (RE), an
important task in information extraction. RE aims
to identify the semantic relationships between two
entity mentions within the same sentences in text.
Due to its important applications on many areas
of natural language processing (e.g., question an-
swering, knowledge base construction), RE has
been actively studied in the last decade, featuring
a variety of feature-based or kernel-based models
for this problem (Zelenko et al., 2002; Zhou et al.,
2005; Bunescu and Mooney, 2005; Sun et al.,
2011; Chan and Roth, 2010; Nguyen et al., 2009).
Recently, the introduction of deep learning has
produced a new generation of models for RE with

the state-of-the-art performance on many different
benchmark datasets (Zeng et al., 2014; dos San-
tos et al., 2015; Xu et al., 2015; Liu et al., 2015;
Zhou et al., 2016; Wang et al., 2016; Zhang et al.,
2017, 2018b). The advantage of deep learning
over the previous approaches for RE is the abil-
ity to automatically learn effective features for the
sentences from data via various network architec-
tures. The same trend has also been observed for
RE in the biomedical domain where deep learning
is gaining more and more attention from the re-
search community (Mehryary et al., 2016; Björne
and Salakoski, 2018; Nguyen and Verspoor, 2018;
Verga et al., 2018).

The typical deep learning models for RE have
involved Convolutional Neural Networks (CNN)
(Zeng et al., 2014; Nguyen and Grishman, 2015b;
Zeng et al., 2015; Lin et al., 2016; Zeng et al.,
2017), Recurrent Neural Networks (RNN), (Miwa
and Bansal, 2016; Zhang et al., 2017), Trans-
former (self-attention) networks (Verga et al.,
2018), and Graph Convolutional Neural Networks
(GCNN) (Zhang et al., 2018b). There are two
major common components in such deep learn-
ing models for RE, i.e., the representation com-
ponent and the pooling component. First, in the
representation component, some deep learning ar-
chitectures are employed to compute a sequence
of vectors to represent an input sentence for RE
for which each vector tends to capture the spe-
cific context information for a word in that sen-
tence. Such word-specific representation sequence
is then fed into the second pooling component
(e.g., max pooling) that aggregates the represen-
tation vectors to obtain an overall vector to repre-
sent the whole input sentence for the classification
problem in RE.

While there have been many work in the liter-
ature to compare different deep learning architec-
tures for the representation component, the pos-
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sible methods for the pooling component of the
deep learning models have not been systemati-
cally benchmarked for RE in general and for the
biomedical domain in particular. Specifically, the
prior work on relation extraction with deep learn-
ing has only assumed one form of pooling in the
model without considering the possible alterna-
tives for this component. In this work, we argue
that the pooling mechanisms also have significant
impact on the performance of the deep learning
models for RE and it is important to understand
how well different pooling methods perform in
this case. Consequently, in this work, we conduct
a comprehensive investigation on the effectiveness
of different max pooling methods for the deep
learning models of RE, focusing on the biomed-
ical domain as the case study. Our goal is to deter-
mine the best pooling methods for the deep learn-
ing models in biomedical RE. We also want to em-
phasize the experiments where the pooling meth-
ods are compared in a compatible manner with
the same representation components and resources
for the biomedical RE models in this work. Such
compatible comparison is unfortunately very rare
in the current literature about deep learning for RE
as new models are being intensively proposed, em-
ploying a diversity of options and resources (i.e.,
pre-trained word embeddings, optimizers, etc.).
Therefore, this is actually the first work to com-
pare different pooling methods for deep relation
extraction on the same setting.

In the experiments, we find that syntactic in-
formation (i.e., dependency parsing) can be ex-
ploited to provide the best pooling strategies for
biomedical RE. In fact, our experiments also sug-
gest that it is more beneficial to apply the syntac-
tic information in the pooling component of the
deep learning models for biomedical RE than that
in the representation component. This is different
from most of the prior work on relation extraction
that has only employed the syntactic information
in the representation component of the deep learn-
ing models (Xu et al., 2016; Miwa and Bansal,
2016). Based on the syntax-based pooling mecha-
nism, we achieve the state-of-the-art performance
on two benchmark datasets for biomedical RE.

2 Model

Relation Extraction can be seen as a multi-class
classification problem that takes a sentence and
two entity mentions of interest in that sentence as

the input. The goal is to predict the semantic re-
lation between these two entity mentions accord-
ing to some predefined set of relations. Formally,
let W = [w1, w2, . . . , wn] be the input sentence
where n is the number of tokens and wi is the i-
th word/token in W . As entity mentions can span
multiple consecutive words/tokens, let [s1, e1] be
the span of the first entity mention M1 where s1
and e1 are the indexes for the first and last token
of M1 respectively. Similarly, we define [s2, e2]
as the span for the second entity mention M2. For
convenience, we assume that the entity mentions
are not nested, i.e., 1 ≤ s1 ≤ e1 < s2 ≤ e2 ≤ n.

2.1 Input Vector Representation

In order to encode the positions and the entity
types of the two entity mentions in the input sen-
tence, following (Zhang et al., 2018b), we first re-
place the tokens in the entity mentions M1 and M2

with the special tokens of format M1-Type1 and
M2-Type2 respectively (Type1 and Type2 represent
the entity types of M1 and M2 respectively). The
purpose of this replacement is to help the models
to abstract from the specific tokens/words of the
entity mentions and only focus on their positions
and entity types, the two most important pieces of
information of the entity mentions for RE.

Given the enriched input sentence, the first step
in the deep learning models for RE is to convert
each word in the input sentence into a vector to fa-
cilitate the real-valued computation of the models.
In this work, the vector vi for wi is obtained by
concatenating the following two vectors:

1. The word embeddings of wi: The embed-
dings for the special tokens are initialized ran-
domly while the embeddings for the other words
are retrieved from the pre-trained word embedding
table provided by the Word2Vec toolkit with 300
dimensions (Mikolov et al., 2013).

2. The embeddings for the part-of-speech
(POS) tag of wi in W : We assign a POS tag for
each word in the input sentence using the Stanford
CoreNLP toolkit. The embedding for each POS
tag is also randomly initialized in this case.

Note that both the word embeddings and the
POS embeddings are updated during the training
time of the models in this work. The word-to-
vector conversion transforms the input sentence
W = [w1, w2, . . . , wn] into a sequence of vectors
V = [v1, v2, . . . , vn] (respectively) that would be
used as the input for all the deep learning mod-

19



els considered in this work to ensure a compati-
ble comparison. As mentioned in the introduction,
the deep learning models for RE involves two ma-
jor components, i.e., the representation component
and the pooling component. We describe the op-
tions for such components in the following sec-
tions.

2.2 The Representation Component for RE

Given the input sequence of vectors V =
[v1, v2, . . . , vn], the next step in the deep learn-
ing models for RE is to transform this vector se-
quence into a more abstract vector sequence A =
[a1, a2, . . . , an] so ai would capture the underly-
ing representation for the context information spe-
cific to the i-th word in the sentence. In this work,
we examine the following typical architectures to
obtain such an abstract sequence A for V :

1. CNN (Zeng et al., 2014; Nguyen and Gr-
ishman, 2015b; dos Santos et al., 2015): CNN is
one of the early deep learning models for RE. It
involves an 1D convolution layer over the input
vector sequence V with multiple window sizes for
the filters. CNN produces a sequence of vectors in
which each vector capture some n-grams specific
to a word in the sentence. This sequence of vectors
is used as A for our purpose.

2. BiLSTM (Nguyen and Grishman, 2015a): In
BiLSTM, two Long-short Term Memory Networks
(LSTM) are run over the input vector sequence V
in the forward and backward direction. The hid-
den vectors generated at the position i by the two
networks are then concatenated to constitute the
abstract vector ai for this position. Due to the
recurrent nature, ai involves the context informa-
tion over the whole input sentence W although a
greater focus is put on the context of the current
word.

3. BiLSTM-CNN: This models resembles the
MASS model presented in (Le et al., 2018). It first
applies a bidirectional LSTM layer over the input
sequence V whose results are further processed by
a Convolutional Neural Network (CNN) layer as
in CNN. We also use the output of the CNN layer
as the abstract vector sequence A for this model.

4. BiLSTM-GCNN (Zhang et al., 2018b): Simi-
lar to BiLSTM-CNN, BiLSTM-GCNN also first em-
ploys a bidirectional LSTM network to abstract
the input vector sequence V . However, in the sec-
ond step, different from BiLSTM-CNN, BiLSTM-
GCNN introduces a Graph Convolutional Neural

Network (GCNN) layer that consumes the LSTM
hidden vectors and augments the representation
for a word with the representation vectors of the
surrounding words in the dependency trees. The
output of the GCNN layer is also a sequence of
vectors to represent the contexts for the words
in the sentence and functions as the abstract se-
quence A in our case. BiLSTM-GCNN (Zhang
et al., 2018b) is one of the current state-of-the-art
models for RE in the literature.

Note that there are many other variants of such
models for RE in the literature (Xu et al., 2016;
Zhang et al., 2017; Verga et al., 2018). However,
as our goal in this paper is to evaluate different
pooling mechanisms for RE, we focus on these
standard representation learning methods to avoid
the confounding effect of the complicated models,
thus better revealing the effectiveness of the pool-
ing methods.

2.3 The Pooling Component for RE

The goal of the pooling component is to aggregate
the representation vectors in the abstract sequence
A to constitute an overall vector F to represent
the whole input sentence W and the two entity
mentions of interest (i.e., F = aggregate(A)).
The overall representation vector should be able
to capture the most important features induced in
A. The typical method to achieve such aggrega-
tion in the RE models is to apply the element-wise
max-pooling operation over subsets of vectors in
A whose results are combined to obtain the over-
all representation vector. While there are differ-
ent methods to select the vector subsets for the
max-pooling operation, the prior work for RE has
only employed one particular selection method in
their deep learning models (Nguyen and Grish-
man, 2015a; Zhang et al., 2018b; Le et al., 2018).
This raises the question about the impact of the
other subset selection methods for such prior RE
models. Can these methods benefit from differ-
ent pooling mechanisms? What are the best pool-
ing methods for the deep learning models in RE?
In order to answer these questions, besides the ar-
chitectures for the representation component in the
previous section, we investigate the following sub-
set selection methods for the pooling component
of the RE models in this work:

1. ENT-ONLY: In this pooling method, we use
the subsets of the vectors corresponding to the
words in the two entity mentions of interest in
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A for the max-pooling operations (i.e., M1 with
the words in the range [s1, e1] and M2 with the
words in the range [s2, e2]). This is motivated by
the utmost importance of the two entity mentions
of interest for RE and employed in some prior
work (Nguyen and Grishman, 2015a; Zhang et al.,
2018b):

FM1 = max-pool (as1 , as1+1, . . . , ae1)

FM2 = max-pool (as2 , as2+1, . . . , ae2)

FENT−ONLY = [FM1 , FM2 ]

2. ENT-SENT: Besides the entity mentions,
the other context words in the sentence might
also involve important information for the rela-
tion prediction in RE. For instance, in the sentence
“Acetazolamide can elevate cyclosporine levels.”,
the context word “elevate” is crucial to deter-
mine the semantic relations between the two en-
tity mentions of interest “Acetazolamide and “cy-
closporine”. In order to capture such important
contexts for pooling, the typical approach in the
prior work for RE is to perform the max-pooling
operation over the abstract vectors for every word
in the sentence (i.e., the whole set A) (Zeng et al.,
2014; dos Santos et al., 2015; Le et al., 2018). The
rationale is to select the features of the abstract
vectors in A with the highest values in each di-
mension to reveal the most important context for
RE. The max-pooled vector over the whole set A
is combined with the FENT−ONLY vector in this
method:

FSENT = max-pool (a1, a2, . . . , an)

FENT−SENT = [FENT−ONLY , FSENT ]

3. ENT-DYM: Similar to ENT-SENT, this
method also seeks the important context informa-
tion beyond the two entity mentions of interest.
However, instead of taking the whole vector se-
quence A for the pooling, ENT-DYM divides A
into three separate vector subsequences based on
the start and end indexes of the first and second
entity mentions (i.e., s1 and e2) respectively. The
max-pooling operation is then applied over these
three subsequences and the resulting vectors are
combined to form an overall vector (i.e., dynamic

pooling) (Zeng et al., 2015):

FLEFT = max-pool (a1, a2, . . . , as1−1)

FMIDDLE = max-pool (as1 , as1+1, . . . , ae2)

FRIGHT = max-pool (ae2+1, ae2+2, . . . , an)

FENT−DYM = [FLEFT , FMIDDLE , FRIGHT ,

FENT−ONLY ]

4. ENT-DEP0: The previous pooling methods
have only relied on the sequential structures of
the sentence where the chosen subsets of A for
pooling always contain vectors for the consecu-
tive words in the sentence. Unfortunately, such se-
quential pooling might introduce irrelevant words
into the selected subsets of A, potentially caus-
ing noise in the pooling features and impeding
the performance of the RE models. For instance,
in the previous sentence example “Acetazolamide
can elevate cyclosporine levels.”, the ENT-SENT
and ENT-DYM methods woulds also include the
word “levels” in the pooling subsets that is not
very important for the relation prediction in this
case. Consequently, in ENT-DEP0, we explore the
possibility to use the dependency parse tree of the
input sentence W to filter out the irrelevant words
for the pooling operation. In particular, instead
of considering every word in the input sentence,
ENT-DEP0 only pools over the abstract vectors in
A that correspond to the words along the short-
est dependency path (SDP) between the two entity
mentions M1 and M2 in the dependency tree for
W (called SDP0(M1,M2)). Note that the short-
est dependency paths have been shown to be able
to select the important context words for RE in
many previous work (Zhou et al., 2005; Chan and
Roth, 2010; Xu et al., 2016). Similar to ENT-SENT
and ENT-DYM, we also include FENT−ONLY in
this method:

FDEP0 = max-poolai∈SDP0(M1,M2)(ai)

FENT−DEP0 = [FDEP0, FENT−ONLY ]

5. ENT-DEP1: This method is similar to
ENT-DEP0. However, instead of directly pool-
ing over the words in the shortest dependency path
SDP0(M1,M2), ENT-DEP1 extends this path to
also include every word that is connected to some
word in SDP0(M1,M2) via an edge in the de-
pendency tree for W (i.e., one edge distance from
SDP0(M1,M2)). We denote this extended word
set by SDP1(M1,M2) for which the correspond-
ing abstract vectors in A would be chosen for
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the max-pooling operation. The motivation for
SDP1(M1,M2) is that the representations of the
words close to the shortest dependency path be-
tween M1 and M2 might also provide useful infor-
mation to improve the performance for RE. In our
experiments, we find that one edge is the optimal
distance to enlarge the shortest dependency paths.
Using larger distance for the pooling mechanism
would hurt the performance of the deep learning
models for RE:

FDEP1 = max-poolai∈SDP1(M1,M2)(ai)

FENT−DEP1 = [FDEP1, FENT−ONLY ]

Once the overall representation vector F for
the input sentence W and the two entity men-
tions of interest has been produced, we feed it
into a feed-forward neural network with a softmax
layer in the end to obtain the probability distribu-
tion P (y|W,M1,M2) = feed-forward(F ) over
the possible relation types for our RE problem.
This probability distribution would then be used
for both making prediction (i.e., by taking the re-
lation type with the highest probability) and train-
ing models (i.e., by optimizing the negative log-
likelihood function).

3 Experiments

3.1 Datasets

In order to evaluate the performance of the models
in this work, we employ the following biomedical
datasets for RE in the experiments:

DDI-2013 (Herrero-Zazo et al., 2013): This
dataset contains 730 documents from the Drug-
bank database, involving about 25,000 examples
for the training and test sets (each example con-
sists of a sentence and two entity mentions of in-
terest for classification). There are 4 entity types
(i.e., drug, brand, group and brand n) and 5 rela-
tion types (i.e., mechanism, advise, effect, int, and
no relation) in this dataset. The no relation is to
indicate any example that does not belong to any
relation types of interest. This dataset is severely
imbalanced, containing 85% negative examples in
the training dataset. In order to deal with such im-
balanced data, we employ weighted sampling that
equally distributes the selection probability for the
positive and negative examples.

BB3 (Deléger et al., 2016). This dataset con-
tains 95 documents; each of them involves a title
and abstract from a document from the PubMed

database. There are 800 examples in this dataset
divided into two separate sets (i.e., the training set
and the validation set). BB3 also include a test
set; however, the relation types for the examples
in this test set are not provided. In order to obtain
the performance of the models on the test set, the
performers need to submit their system outputs to
an official API that would evaluate the output and
return the model performance. We train the mod-
els in this work on the training data and employ the
official API to obtain their test set performance to
be reported in the experiments for this dataset.

Following the prior work on these datasets
(Chowdhury and Lavelli, 2013; Lever and Jones,
2016; Zhou et al., 2018; Le et al., 2018), we use
the micro-averaged F1 scores as the performance
measure in the experiments to ensure a compatible
comparison.

3.2 Parameters and Resources

As the DDI-2013 dataset does not involve a de-
velopment set, we tune the parameters for the
models in this work based on the validation data
of the BB3 dataset and use the selected param-
eters for both datasets in the experiments. The
best parameters from this tuning process include
the learning rate of 0.5 and momentum of 0.8 for
the stochastic gradient descent (SGD) optimizer
with nesterov’s momentum to optimize the mod-
els. In order to regularize the models, we ap-
ply dropout between layers with the drop rate for
word embeddings set to 0.7 and other drop rates
set to 0.5. We also employ the weight dropout
DropConnect in (Wan et al., 2013) to regular-
ize the hidden-to-hidden transition matrix within
each bidirectional LSTM in the models (Merity
et al., 2017). For all the models that involve bidi-
rectional LSTMs (i.e., BiLSTM, BiLSTM-CNN,
and BiLSTM-GCNN), two layers of bidirectional
LSTMs are utilized with 300 hidden units for each
LSTM network. For the models with CNN com-
ponents (i.e., CNN and BiLSTM-CNN), we use one
CNN layer with multiple window sizes of 2, 3, 4,
and 5 for the filters (200 filters for each window
size). For the BiLSTM-GCN model, two GCNN
layers are employed with 300 hidden units in each
layer. Finally, for the final feed-forward neural
network to compute the probability distribution
(i.e., feed-forward), we utilize two hidden layers
for which 1000 hidden units are used for the first
layer and the number of hidden units for the sec-

22



ond layer is determined by the number of relation
types in the datasets.

3.3 Evaluating the Pooling Methods for RE
This section evaluates the performance of different
pooling methods when they are applied to the deep
learning models for RE on the two datasets DDI-
2013 and BB3. In particular, we integrate each
of the pooling methods in Section 2.3 (i.e., ENT-
ONLY, ENT-SENT, ENT-DYM, END-DEP0, and
END-DEP1) into each of the deep learning models
in Section 2.2 (i.e., CNN, BiLSTM, BiLSTM-CNN,
and BiLSTM-GCN), resulting 20 different model
combinations to be investigated in this section. For
each model combination, we train five versions of
the model with different random seeds for param-
eter initialization over the training datasets. The
performance of such versions over the test sets
is averaged to serve as the overall model perfor-
mance on the corresponding dataset. Tables 1 and
2 report the performance of the models on the
DDI-2013 dataset and BB3 dataset respectively.

Model P R F1
CNN
+ ENT-ONLY 52.7 43.1 47.4
+ ENT-SENT 75.8 60.7 67.3
+ ENT-DYM 66.5 70.6 68.5
+ ENT-DEP0 59.8 61.5 60.6
+ ENT-DEP1 67.6 65.1 66.3
BiLSTM
+ ENT-ONLY 74.0 69.4 71.6
+ ENT-SENT 74.8 71.7 73.1
+ ENT-DYM 71.5 73.4 72.4
+ ENT-DEP0 72.8 69.4 71.1
+ ENT-DEP1 71.6 76.4 73.9
BiLSTM-CNN
+ ENT-ONLY 69.6 72.3 70.9
+ ENT-SENT 69.4 74.9 72.0
+ ENT-DYM 71.0 69.7 71.8
+ ENT-DEP0 72.2 69.5 70.8
+ ENT-DEP1 71.0 74.3 72.6
BiLSTM-GCNN
+ ENT-ONLY 69.3 71.4 70.4
+ ENT-SENT 72.2 71.9 72.0
+ ENT-DYM 69.7 73.9 71.7
+ ENT-DEP0 70.1 71.1 70.6
+ ENT-DEP1 72.7 72.9 72.8

Table 1: Results on DDI 2013

From the tables, we have the following observa-
tions about the effectiveness of the pooling meth-
ods for RE with deep learning:

1. Comparing ENT-SENT, ENT-DYM and ENT-
ONLY, we see that the pooling methods over the
whole sentence (i.e., ENT-SENT and ENT-DYM)
are significantly better than ENT-ONLY that only
focuses on the two entity mentions of interest in

Model P R F1
CNN
+ ENT-ONLY 54.2 65.7 59.1
+ ENT-SENT 55.0 62.5 59.1
+ ENT-DYM 54.6 53.3 53.5
+ ENT-DEP0 55.9 65.8 60.6
+ ENT-DEP1 55.7 67.7 61.1
BiLSTM
+ ENT-ONLY 58.9 59.6 59.2
+ ENT-SENT 60.7 59.2 59.9
+ ENT-DYM 50.2 66.0 56.9
+ ENT-DEP0 51.6 78.0 61.9
+ ENT-DEP1 54.7 72.6 62.4
BiLSTM-CNN
+ ENT-ONLY 56.4 66.2 60.8
+ ENT-SENT 53.6 69.2 60.5
+ ENT-DYM 47.1 78.0 58.7
+ ENT-DEP0 55.9 71.4 62.5
+ ENT-DEP1 54.1 74.7 62.4
BiLSTM-GCNN
+ ENT-ONLY 62.7 56.1 58.9
+ ENT-SENT 58.4 58.7 58.5
+ ENT-DYM 56.8 58.4 56.6
+ ENT-DEP0 55.6 67.4 60.8
+ ENT-DEP1 54.4 71.1 61.5

Table 2: Results on BioNLP BB3

the DDI-2013 dataset. This is true across differ-
ent deep learning models in this work. However,
this comparison is reversed for the BB3 dataset
where ENT-ONLY is in general better or compa-
rable to ENT-SENT and ENT-DYM over different
deep learning models. We attribute such phenom-
ena to the fact that the BB3 dataset often contains
many entity mentions and relations within a single
sentence (i.e., overlapping contexts) while the sen-
tences in DDI-2013 tend to involve only a single
relation with few entity mentions. This make ENT-
SENT and ENT-DYM) ineffective for BB3 as the
pooling mechanisms over the whole sentence are
likely to involve the contexts for the other entity
mentions and relations in the sentences, causing
the low quality of the resulting representations and
the confusion of the model for the relation predic-
tion. This problem is less severe in DDI-2013 as
the context of the whole sentence (with a single re-
lation) is more aligned with the important context
for the relation prediction. We call the many entity
mentions and relations in a single single sentence
of BB3 as the multiple relation effect for conve-
nient discussion in this paper.

2. Comparing ENT-SENT and ENT-DYM, their
performance are comparable in DDI-2013 (except
for CNN where ENT-DYM is better); however, in
the BB3 dataset, ENT-SENT singificantly outper-
forms ENT-DYM over all the models. This sug-
gests the amplification of the multiple relation ef-
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fect in BB3 due to ENT-DYM where the separation
of the sentence context for pooling encourages the
emergence of context information for multiple re-
lations in the final representation vector and in-
creases the confusion of the models.

3. Comparing the syntax-based pooling meth-
ods and the non-syntax pooling methods, the
pooling based on dependency paths (i.e., ENT-
DEP0) is worse than the non-syntax pooling meth-
ods (i.e., ENT-SENT and ENT-DYM) and perform
comparably with ENT-ONLY in the DDI-2013
dataset over all the models (except for the CNN
model where ENT-ONLY is much worse). These
evidences suggest that the dependency paths them-
selves are not able to capture effective contexts for
the pooling operation beyond the entity mentions
for biomedical RE in DDI-2013. However, when
we switch to the BB3 dataset, it turns out that
ENT-DEP0 is significantly better than all the non-
syntax pooling methods (i.e., ENT-ONLY, ENT-
SENT and ENT-DYM) for all the comparing mod-
els. This can be explained by the multiple relation
effect in BB3 for which the dependency paths help
to identify the most related context words for the
two given entity mentions and filter out the con-
fusing context words for the other relations in the
sentences. The models would thus become less
confused with different contexts for multiple re-
lations as those in ENT-SENT and ENT-DYM for
better performance in this case.

4. Finally, among all the pooling methods,
we find that ENT-DEP1 significantly outperforms
the other pooling methods across different models
and datasets (except the CNN model on DDI-2013
and BiLSTM on BB3). In particular, the perfor-
mance improvement is substantial over the non-
syntax pooling methods in BB3 where ENT-DEP1
is up to 2% better than ENT-SENT, ENT-DYM
and ENT-ONLY on the absolute F1 scores. This
helps to demonstrate the benefits of ENT-DEP1
for biomedical RE to both recognize the impor-
tant context words for pooling in DDI-2013 and
reduce the confusion effect of the multiple rela-
tions in single sentences for the models in BB3.

3.4 Comparing the Deep Learning Models
for RE

Regarding the comparison among different deep
learning models, the major observations from
from Tables 1 and 2 include:

1. The performance of CNN is in general

worse that the other models with the bidirectional
LSTM components (i.e., BiLSTM, BiLSTM-CNN
and BiLSTM-GCN) over different pooling meth-
ods and datasets. This illustrates the importance of
bidirectional LSTMs to capture the effective fea-
ture representations for biomedical RE.

2. Comparing BiLSTM and BiLSTM-CNN, we
find that BiLSTM is better in DDI-2013 while
BiLSTM-CNN achieves better performance in BB3
(over different pooling methods). In other words,
the CNN layer is only helpful for the BiLSTM
model in the BB3 dataset. This can also be at-
tributed to the multiple relation effect in BB3
where the CNN layer helps to further abstract the
representations from BiLSTM to better reveal the
underlying structures in such confusing and com-
plicated contexts in the sentences of BB3 for RE.

3. Graph convolutions over the dependency
trees are not effective for biomedical RE as in-
corporating it into the BiLSTM model hurts the
performance significantly. In particular, BiLSTM-
GCNN is significantly worse than BiLSTM no mat-
ter which pooling methods are applied and which
datasets are used for evaluation.

4. Interestingly, comparing the BiLSTM model
with the ENT-DEP1 pooling method (i.e., BiL-
STM + ENT-DEP1) and the BiLSTM-GCN model
with the non-syntax pooling methods (i.e., ENT-
ONLY, ENT-SENT and ENT-DYM), we see that
BiLSTM + ENT-DEP1 is significantly better with
large performance gaps over both datasets DDI-
2013 and BB3. For example, BiLSTM + ENT-
DEP1 is 1.9% better than BiLSTM-GCNN + ENT-
SENT in the DDI-2013 dataset and 3.5% better
than BiLSTM-GCNN + ENT-ONLY in BB3 with
respect to the absolute F1 scores. In fact, BiL-
STM + ENT-DEP1 also achieves the best perfor-
mance among the compared models in this sec-
tion for both datasets. The major difference be-
tween BiLSTM + ENT-DEP1 and BiLSTM-GCN
with the non-syntax pooling methods lies at the
specific component of the models where the syn-
tactic information (i.e., the dependency trees) is
applied. In BiLSTM-GCN with the non-syntax
pooling methods, the syntactic information is em-
ployed in the representation learning component
while in BiLSTM + ENT-DEP, the application of
the syntactic information is postponed all the way
to the pooling component. Our experiments thus
demonstrate that it is more effective to utilize the
syntactic information in the pooling component
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than in the representation learning component of
the deep learning models for biomedical RE. This
is an interesting and unique observation given that
the prior work for RE has only focused on us-
ing the syntactic information in the representation
component and never explicitly investigated the
effectiveness of the syntactic information for the
pooling component of the deep learning models.

3.5 Comparing to the State-of-the-art Models
In order to further demonstrate the advantage of
the syntactic information for the pooling com-
ponent for biomedical RE, this section compares
BiLSTM + ENT-DEP1 (i.e., the best model with
the ENT-DEP1 pooling in this work) with the best
reported models on the two datasets DDI-2013 and
BB3. For a fair comparison between models, we
select the previous single (non-ensemble) models
for the comparison in this section. Tables 3 and 4
presents the model performance.

Models P R F1
(Raihani and Laachfoubi, 2017) 73.6 70.1 71.8
(Zhang et al., 2018a) 74.1 71.8 72.9
(Zhou et al., 2018) 75.8 70.3 73.0
(Björne and Salakoski, 2018) 75.3 66.3 70.5
BiLSTM + ENT-DEP1 71.6 76.4 73.9

Table 3: Comparison with the state-of-the-art systems
on the DDI-2013 test set

Models P R F1
(Lever and Jones, 2016) 51.0 61.5 55.8
(Mehryary et al., 2016) 62.3 44.8 52.1
(Li et al., 2016) 56.3 58.0 57.1
(Le et al., 2018) 59.8 51.3 55.2
BiLSTM + ENT-DEP1 54.7 72.6 62.4

Table 4: Comparison with the state-of-the-art systems
on the BB3 test set

The most important observation from the tables
is that the BiLSTM model, once combined with the
ENT-DEP1 pooling method, significantly outper-
forms the previous models on DDI-2013 and BB3,
establishing new state-of-the-art performance for
these datasets. In particular, in the DDI-2013
dataset, BiLSTM + ENT-DEP1 is 0.9% better than
the current state-of-the-art model in (Zhou et al.,
2018) while the performance improvement over
the best reported model for BB3 in (Li et al., 2016)
is 5.3% (over the absolute F1 scores). Such sub-
stantial improvement clearly demonstrates the ad-

vantages of the syntactic information and its de-
layed application in the pooling component of the
deep learning models for biomedical RE.

4 Related Work

Traditional work on RE has mostly used feature
engineering with syntactical information for sta-
tistical or kernel based classifiers (Zelenko et al.,
2002; Zhou et al., 2005; Bunescu and Mooney,
2005; Sun et al., 2011; Chan and Roth, 2010). Re-
cently, deep learning has been shown to advance
many benchmark datasets for this RE problem
due to its representation learning capacity. The
typical architectures for such deep learning mod-
els involve CNN, LSTM, the attention mechanism
and their variants (Zeng et al., 2014; dos Santos
et al., 2015; Zhou et al., 2016; Wang et al., 2016;
Nguyen and Grishman, 2015a; Miwa and Bansal,
2016; Zhang et al., 2017, 2018b). Deep learn-
ing has also been applied to biomedical RE in
the last couple of years and started to demonstrate
much potentials for this area (Mehryary et al.,
2016; Björne and Salakoski, 2018; Nguyen and
Verspoor, 2018; Verga et al., 2018).

Pooling is a common and crucial component in
most of the deep learning models for RE. (Nguyen
and Grishman, 2015b; dos Santos et al., 2015) ap-
ply the pooling operation over the whole sentence
for RE while Zeng et al. (2015) proposes the dy-
namic pooling mechanism in the CNN models.
However, none of these prior work systematically
examines different pooling mechanisms for deep
learning in RE as we do in this work.

5 Conclusion

We conduct a comprehensive study on the effec-
tiveness of different pooling mechanisms for the
deep learning models in biomedical relation ex-
traction. Our experiments suggest that the pooling
mechanisms have a significant impact on the per-
formance of the deep learning models and a care-
ful evaluation should be done to decide the appro-
priate pooling mechanism for the biomedical RE
problem. From the experiments, we also find that
syntactic information (i.e., dependency parsing)
provides the best pooling methods for the mod-
els and biomedical RE datasets we investigate in
this work (i.e., ENT-DEP1). We achieve the state-
of-the-art performance for biomedical RE over the
two datasets DDI-2013 and BB3 with such syntax-
based pooling methods.
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Abstract

In this paper we tackle two unique challenges
in biomedical relation extraction. The first
challenge is that the contextual information
between two entity mentions often involves
sophisticated syntactic structures. We propose
a novel graph convolutional networks model
that incorporates dependency parsing and con-
textualized embedding to effectively capture
comprehensive contextual information. The
second challenge is that most of the bench-
mark data sets for this task are quite imbal-
anced because more than 80% mention pairs
are negative instances (i.e., no relations). We
propose a multi-task learning framework to
jointly model relation identification and clas-
sification tasks to propagate supervision sig-
nals from each other and apply a focal loss
to focus training on ambiguous mention pairs.
By applying these two strategies, experiments
show that our model achieves state-of-the-art
F-score on the 2013 drug-drug interaction ex-
traction task.

1 Introduction

Recently relation extraction in biomedical litera-
ture has attracted increasing interests from med-
ical language processing research community as
an important stage for downstream tasks such as
question answering (Hristovski et al., 2015) and
decision making (Agosti et al., 2019). Biomed-
ical relation extraction aims to identify and clas-
sify relations between two entity mentions into
pre-defined types based on contexts. In this paper
we aim to extract drug-drug interactions (DDIs),
which occur when taking two or more drugs within
a certain period of time that alters the way one
or more drugs act in human body and may result
in unexpected side effects (Figure 1). Extracting
DDI provides important clues for research in drug
safety and human health care.

[cobalt]drug

[iron]drug

Interactions

of and in

absorption

and retention
mention pair: <drug, drug>
relation: mechanism, pharmacokinetic mechanism of two entities

Interactions of [cobalt]drug and [iron]drug in absorption and retention

Figure 1: Example of drug-drug interaction on depen-
dency tree.

Dependency parses are widely used in relation
extraction task due to the advantage of shorten-
ing the distance of words which are syntactically
related. As shown in Figure 1, the partial de-
pendency path {iron ← cobalt ← interactions}
reveals that these two drugs are interactive, and
the path {interactions→ absorption→ retention}
further indicates the mechanism relation between
these two mentions. Therefore capturing the syn-
tactic information involving the word interaction
on the dependency path {iron ← cobalt ← in-
teractions → absorption → retention} can effec-
tively help on the classification of the relation be-
tween these two mentions 〈cobalt, iron〉. In or-
der to capture indicative information from wide
contexts, we adopt the graph convolutional net-
works (GCN) (Kipf and Welling, 2016; Marcheg-
giani and Titov, 2017) to obtain the syntactic infor-
mation by encoding the dependency structure over
the input sentence with graph convolution opera-
tions. To compensate the loss of local context in-
formation in GCN, we incorporate the contextual-
ized word representation pre-trained by the BERT
model (Devlin et al., 2019) in large-scale biomed-
ical corpora containing over 200K abstracts from
PubMed and over 270K full texts from PMC (Lee
et al., 2019) .

Moreover, we notice that data imbalance is an-
other major challenge in biomedical text as the dis-
tribution of relations among biomedical mentions
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are usually very sparse. Over 80% candidate men-
tion pairs have no relation in DDI 2013 (Herrero-
Zazo et al., 2013) training set. To tackle this
problem, we propose a binary relation identifica-
tion task as an auxiliary task to facilitate the main
multi-classification task. For instance, the detec-
tion of drug interaction on dependency path {iron
← cobalt ← interactions → absorption → re-
tention} will assist the prediction of the relation
typemechanism by using the signals from binary
classification as an inductive bias to avoid misclas-
sifying it as no relation. We also exploit the focal
loss (Lin et al., 2017) to potentially help the multi-
class relation classification task by forcing the loss
implicitly focus on ambiguous examples.

To recap, our contributions are twofold: First,
we adopt the syntax-aware graph convolutional
networks incorporating contextualized represen-
tation. Second, we further design an auxiliary
task to solve the data imbalance problem, which
achieves the state-of-the-art micro F-score on the
DDIExtraction 2013 shared task.

2 Methods

Contextual	
Embedding	Layer
via	BioBERT

GCN	Layer

Pooling	Layer

Output	Layer
Relation

Identification
Relation

Classificaton

Max	Pooling

BioBERT	encoder

[Cimetidine]DRUG	has	been	shown	to	increase	the	bioavailability	of			[labetalol	HCl]DRUG

Attentive	Pooling

Focal	Loss

Figure 2: Framework of syntax-aware multi-task graph
convolutional networks.

2.1 Contextual and Syntax-aware GCN

As a variant of the convolutional neural net-
works (LeCun et al., 1998), the graph convolu-
tional networks (Kipf and Welling, 2016) is de-
signed for graph data and it has been proven ef-
fective in modeling text data via syntactic depen-
dency graphs (Marcheggiani and Titov, 2017).

We encode the tokens in a biomedical sentence
of size n as x = {x1, . . . ,xn}, where xi is a vec-
tor which concatenates the representation of the

token i and the position embeddings correspond-
ing to the relative positions from candidate men-
tion pairs. We feed the token vectors into a L-
layer GCN to obtain the hidden representations
of each token which are directly influenced by its
neighbors no more than L edges apart in the de-
pendency tree. We apply the Stanford dependency
parser (Chen and Manning, 2014) to generate the
dependency structure:

h
(l)
i = σ(

n∑

j=1

ÃijW
(l)hl−1j /di + b(l))

where Ã = A+I with A is the adjacent matrix of
tokens in dependency tree, I is the identity matrix.
W (l) is a linear transformation, b(l) is a bias term,
and σ is a nonlinear function. Following Zhang
et al. (2018), di is the degree of the token i in de-
pendency tree with an additional self-loop.

We notice that some token representations are
more informative by gathering information from
syntactically related neighbors through GCN. For
example, the representation of the token interac-
tions from a 2-layer GCN operating on its two
edges apart neighbors provides inductive informa-
tion for predicting a mechanism relation. Thus,
we adopt attentive pooling (Zhou et al., 2016) to
achieve the optimal pooling:

α = softmax(wT tanh(h))

hattentive = hαT

where w is a trained parameter to assign weights
based on the importance of each token representa-
tion.

We obtain the final representation by concate-
nating the sentence from attentive pooling and the
mention representations from max pooling. We fi-
nally obtain the prediction of relation type by feed-
ing the final representations into a fully connected
neural network followed by a softmax operation.

Graph neural networks (Zhou et al., 2018b)
can learn effective representations but suffer from
the loss of local context information. We be-
lieve the local context information is also crucial
for biomedical relation extraction. For example,
in the following sentence “The response to [Fac-
trel]DRUG may be blunted by [phenothiazines]DRUG

and [dopamine antagonists]DRUG ”, it’s intuitive
to tell Factrel and phenothiazines are interactive
while phenothiazines and dopamine antagonists
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have no interaction according to the sentence or-
der. However, GCNs treat the three drugs as inter-
acting with each other as they are close in depen-
dency structure with no order information.

BERT (Devlin et al., 2019) is a recently pro-
posed model based on a multi-layer bidirectional
Transformer (Vaswani et al., 2017). Using pre-
trained BERT has been proven effective to create
contextualized word embeddings for various NLP
tasks (Han et al., 2019; Wang et al., 2019). The
BioBERT (Lee et al., 2019) is a biomedical lan-
guage representation model pre-trained on large-
scale biomedical corpora. The output of each en-
coder layer of the input token can be used as a
feature representation of that token. As shown
in Figure 2, we encode the input tokens as con-
textualized embeddings by leveraging the last hid-
den layer of the corresponding token in BioBERT.
As the BERT model uses WordPiece (Wu et al.,
2016) to decompose infrequent words into fre-
quent subwords for unsupervised tokenization of
the input token, if the token has multiple BERT
subword units, we use the first one. After getting
the contextualized embedding of each token, we
feed them into the GCN layer to make our model
context-aware.

2.2 Auxiliary Task Learning with Focal Loss

In the DDIExtraction 2013 task, all possible inter-
actions between drugs within one sentence are an-
notated, which means a single sentence with mul-
tiple drug mentions will lead to separate instances
of candidate mention pairs (Herrero-Zazo et al.,
2013). There are 21,012 mention pairs generated
from 3,790 sentences in training set and over 80%
have no relations. This data imbalance problem
due to sparse relation distribution is a main reason
for low recall in DDI task (Zhou et al., 2018a; Sun
et al., 2019).

Here we address this relation type imbalance
problem by adding an auxiliary task on top of the
syntax-aware GCN model. To conduct the auxil-
iary task learning, we add a separate binary classi-
fier for relation identification as shown in Figure 2.
All classifiers share the same GCN representation
and contextualized embeddings, and thus they can
potentially help each other by propagating their
supervision signals.

Additionally, instead of setting the objective
function as the negative log-likelihood loss, here
we optimize the parameters in training by mini-

mizing a focal loss (Lin et al., 2017) which fo-
cuses on hard relation types. For instance, the
int relation indicates drug interaction without pro-
viding any extra information (e.g., Some [anticon-
vulsants]DRUG may interact with [Mephenytoin]DRUG

). This relation type only accounts for 0.82% in
training set and is often misclassified into other
relation types. We denote ti and pi as the ground
truth and the conditional probability value of the
type i in relation types C, the focal loss can be
defined as:

L = −
C∑

i

(αi(1− pi)γti log(pi)) + λ||θ||2

where α is a weighting factor to balance the im-
portance of samples from various types, γ is the
focusing parameter to reduce the influence of well-
classified samples in the loss. λ is the L2 regular-
ization parameter and θ is the parameter set.

The auxiliary task along with the focal loss en-
hances our model’s ability to handle imbalance
data by leveraging the inductive signal from the
easier identification task and meanwhile down-
weighting the influence of easy classified in-
stances thus directing the model to focus on dif-
ficult relation types.

3 Experiments

3.1 Datasets and Task Settings

System Prec Rec F1
CNN (Liu et al., 2016) 75.70 64.66 69.75
Multi Channel CNN (Quan et al.,
2016)

75.99 65.25 70.21

GRU (Yi et al., 2017) 73.67 70.79 72.20
AB-LSTM (Sahu and Anand,
2018)

74.47 64.96 69.39

CNN-GCNN (Asada et al., 2018) 73.31 71.81 72.55
Position-aware LSTM (Zhou
et al., 2018a)

75.80 70.38 72.99

RHCNN (Sun et al., 2019) 77.30 73.75 75.48
LSTM baseline 69.34 62.74 65.88
GCN baseline 71.96 67.14 69.47
–without attentive pooling 77.12 75.03 76.06
–without BioBERT 76.51 73.56 75.01
–without multi-task learning 76.01 71.92 73.91
Our Model 77.62 75.69 76.64

Table 1: Precision (Prec), recall (Rec) and micro F-
score (F1) results on DDI 2013 corpus.

We evaluate our model on the DDIExtraction
2013 relation dataset (Herrero-Zazo et al., 2013).
The corpus is annotated with drug mentions and
their four types of interactions: Mechanism (phar-
macokinetic mechanism of a DDI), Effect (effect
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of a DDI), Advice (a recommendation or advice
regarding a DDI) and Int (a DDI simply occurs
without extra information). We randomly choose
10% from the training dataset as the development
set. Following previous work (Liu et al., 2016;
Quan et al., 2016; Zhou et al., 2018a; Sun et al.,
2019), we use a negative instance filtering strat-
egy to filter out some negative drug pairs based
on manually-formulated rules. Instances contain-
ing drug pair referring to the same thing and drug
pair appearing in the same coordinate structure
with more than two drugs (e.g., drug1, drug2,
and drug3) will be filtered. Entity mentions are
masked with DRUG for better generalization and
avoiding overfitting.

We train the model with GCN hidden state size
of 200, the SGD optimizer with a learning rate of
0.001, a batch size of 30, and 50 epochs. Dropout
is applied with a rate of 0.5 for regularization. The
contextual embedding size from BioBERT is 768.
The focusing parameter γ is set as 1. All hyper-
parameters are tuned on the development set.

3.2 Results and Analysis

The experiment results are reported from a 2-layer
GCN which achieves the best performance and
shown in Table 1. Our model significantly out-
performs all previous methods at the significance
level of 0.05. To analyze the contributions and
effects of the various components in our model,
we also perform ablation tests. The ablated GCN
model outperforms the LSTM baseline by 3.6%
F1 score, which demonstrates the effectiveness of
GCN on modeling mention relations through de-
pendency structure. The utilization of contextu-
alized embedding from BioBERT which encodes
the contextual information involving sequence or-
der and word disambiguation implicitly helps the
model to learn contextual relation patterns, there-
fore the performance is further improved. We
obtain a significant F-score improvement (2.7%)
by applying multi-task learning. As over 80%
mention pairs are negative samples, the multi-task
learning effectively solves the problem by jointly
modeling relation identification and classification
tasks and applying focal loss to focusing on am-
biguous mention pairs, and thus we also gain 3.8%
absolute score on recall. Specifically, the F1 score
of int type is increased from 54.38% to 59.79%.

For the remaining errors, we notice that our
model often fails to predict relations when the sen-

tence are parsed poorly due to the complex con-
tent which suggests us to seek for more powerful
parser tools. Besides, we also observe some errors
occurring in extremely short sentences. For exam-
ple, in the following sentence “[Calcium]DRUG Sup-
plements/[Antacids]DRUG”, our model cannot cap-
ture informative representations as the mentions
are masked with DRUG and the sentence is too
concise to offer indicative evidence.

4 Related Work

Traditional feature/kernel-based models for
biomedical relation extraction rely on engineered
features which suffer from low portability and
generalizability (Kim et al., 2015; Zheng et al.,
2016; Raihani and Laachfoubi, 2017). To tackle
this problem, recent studies apply Convolutional
Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) to automatically learn feature
representations with input words encoded as
pre-trained word embeddings (Zhao et al., 2016;
Liu et al., 2016; Quan et al., 2016; Zhang et al.,
2017; Zhou et al., 2018a; Sun et al., 2019).
Learning representations of graphs are widely
studied and several graph neural networks have
been applied in the biomedical domain. Lim et al.
(2018) proposed recursive neural network based
model with a subtree containment feature. Asada
et al. (2018) encoded drug pairs with CNNs and
used external knowledge base to encode their
molecular pairs with two graph neural networks.
Here we directly apply syntax-aware GCNs on
biomedical text to extract drug-drug interaction.

5 Conclusions and Future Work

We propose a syntax-aware multi-task learning
model for biomedical relation extraction. Our
model can effectively extract the drug-drug in-
teractions by capturing the syntactic information
through graph convolution operations and model-
ing context information via contextualized embed-
dings. An auxiliary task with focal loss is designed
to mitigate the data imbalance by leveraging the
inductive signal from binary classification and in-
creasing the influence of decisive relation types.
In the future, we plan to explore more informa-
tive parsers like the abstract meaning representa-
tion parser to create graph structure and consider
leveraging external knowledge to further enhance
the extraction quality.
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Abstract

Word embeddings, in their different shapes
and evolutions, have changed the natural lan-
guage processing research landscape in the last
years. The biomedical text processing field
is no stranger to this revolution; however, re-
searchers in the field largely trained their em-
beddings on scientific documents, even when
working on user-generated data. In this pa-
per we show how training embeddings from a
corpus collected from user-generated text from
medical forums heavily influences the perfor-
mance on downstream tasks, outperforming
embeddings trained both on general purpose
data or on scientific papers when applied to
user-generated content.

1 Introduction

In the Natural Language Processing community,
user-generated content, i.e. data from social me-
dia, user forums, review websites, and so on, has
been the subject of many studies in the past years;
the same holds for the biomedical domain, where
there has been a great effort on the applications
of NLP techniques for biomedical scientific pub-
lications, patient records, and so on. However,
the intersection of the two fields is still in its
infancy, even when dealing with relatively basic
NLP tasks. For instance, in the field of user-
generated biomedical natural language processing
(hence UG-BioNLP), to the best of our knowledge
there are no publicly available corpora for Named
Entity Recognition (NER) akin in size and purpose
e.g. to the CoNLL 2003 dataset. (Tjong Kim Sang
and De Meulder, 2003), making it hard to com-
pare systems effectively. Moreover, while there
have been experiments on training word embed-
dings with biomedical data, we are not aware of
any publicly available word embeddings trained
on UG-BioNLP data.

For this reason, we decided to investigate the
impact of using purpose-trained word embed-
dings in the Bio-UG field. In order to train
such embeddings, we collected a dataset from
Reddit, scraping posts from medical-themed sub-
reddits, both on general health topics such as
‘r/AskDocs’, or on disease-specific subreddits,
such as ‘r/cancer’, ‘r/asthma’, and so on.
We then trained word embeddings on this cor-
pus using different off-the-shelf techniques. Then,
to evaluate the embeddings, we collected a sec-
ond dataset of 4800 threads from the health fo-
rum HealthUnlocked, which was annotated for the
NER task. Then, we analyzed the performance
of the embeddings on the tasks of NER and of
adverse effect mention detection. For NER, we
used Conditional Random Fields as a baseline.
We compared them against Bidirectional LSTM-
CRFs (Lample et al., 2016), on which we ana-
lyzed the impact of using our custom-trained word
embeddings against embeddings trained on gen-
eral purpose data and scientific biomedical pub-
lications when evaluating on our purpose-built
HealthUnlocked dataset and on the PsyTar and
CADEC corpora. Finally, we evaluated the per-
formance of a simple architecture for adverse re-
action mention detection on the PsyTAR corpus.
We conclude the paper explaining our intentions
for future research, in other to obtain other results
that confirm the preliminary findings we present in
this work.

2 Related Work

The benefit of using in-domain embeddings for
the biomedical domain has already been proven
effective. For example, (Pakhomov et al., 2016)
and (Wang et al., 2018) found that using clinical
notes or biomedical articles for training word em-
beddings has generally a positive impact on down-
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stream NLP tasks. (Nikfarjam et al., 2015) trained
embeddings on user-generated medical content
and used them successfully on the pharmacovig-
ilance task; however, they trained the embeddings
an adverse reaction mining corpus, hence making
them too task-specific to be considered useful on
generic UG-BioNLP tasks.

3 Datasets

3.1 BioReddit

To train our embeddings on user-generated
biomedical text, we choose to scrape data from the
discussion website Reddit. The website is orga-
nized by forums, called subreddits, where the dis-
cussion is restricted to a topic, e.g. general news,
computer science, and so on. There is a great num-
ber of health-themed subreddits, where users from
all around the world discuss their health problems
or ask for medical advice, which is ideal for train-
ing our embeddings.

We also evaluated the micro-blogging platform
Twitter as a possible source for the embeddings,
but we quickly discarded it due to its unstructured
nature. On Twitter, in fact, information is not pre-
aggregated by subject, and one has to search for
the required posts by searching for keyword or
hashtag. This, along with the restrictive limits im-
posed by Twitter APIs, makes it hard to find rele-
vant content, so we decided to continue with Red-
dit instead.

We designed a scraping script that downloaded
discussions from 68 health themed subreddits. We
selected subreddits where users
• could ask for advice, e.g.
/r/AskDocs, /r/DiagnoseMe,
r/AskaPharmacist,
• discuss a specific illness, e.g. r/cancer,
r/migraine, r/insomnia,
• can discuss on any health-related topic,

e.g. r/health, r/HealthIT,
r/HealthInsurance.

We collected all the posts from these subreddits
from the beginning of 2015 to the end of 2018. Af-
ter that, we cleaned the corpus for bot-generated
content, e.g. bots automatically suggesting to seek
professional medical advice. We obtained a cor-
pus with 300 million tokens and a vocabulary
size of 780,000 words. While the number of to-
kens is considerably lower than the size of other
word embedding training datasets, which could be
two orders of magnitude bigger, the vocabulary is

quite big; for example, GloVE (Pennington et al.,
2014) was trained with a 1.2 million big vocabu-
lary and 27 billion tokens when using Twitter, and
on a 600,000 word vocabulary and 6 billion tokens
when using Wikipedia.

3.2 HealthUnlocked
In order to evaluate our embeddings, as a first step,
we decided to focus on the Named Entity Recog-
nition task. We obtained 4800 forum threads
from HealthUnlocked1, a British social network
for health where users can discuss their health with
people with similar conditions and obtain advice
from professionals.

We annotated the dataset by marking the enti-
ties belonging to seven categories, namely: Phe-
notype, Disease, Anatomy, Molecule, Gene, De-
vice, and Procedure. We describe in detail the cat-
egories in Table 1.

Since the dataset is collected from patients’ dis-
cussions, the language used is far from technical.
For example2,
• an user describes paresthesia of arm as “a

tickling sensation in my arms”;
• another patient, to describe her swollen ab-

domen, writes that she “looked six months
pregnant”,
• another user writes that “her mood is low”,

to explain her depression.
All these phrases, while expressed in layman’s

language, describe very specific symptoms. For
this reason, we developed a set of annotation
guidelines where the annotators were asked to
mark any possible mention of an entity belong-
ing to the seven categories above, even if not ex-
pressed with technical language. After running a
pilot annotation task on a small set of discussions,
we fine tuned the annotation guidelines, and we
asked PhD-qualified biomedical experts to anno-
tate 4800 threads from the forums. After the an-
notation, the files were shuffled and split in train,
test, and development set, obtaining 8750, 2526,
and 1250 sentences respectively. The number of
annotations per category and per set is described
in Table 1.

3.3 PsyTAR
The PsyTAR dataset “contains patients expres-
sion of effectiveness and adverse drug events as-

1https://healthunlocked.com/
2Please note that we use feminine pronouns to preserve

the privacy of the patients.
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Category Description Train Dev Test
Anatomy Any anatomical structure, organ, bodily fluids, tissues, etc. 1060 146 308
Device Any medical device used in diagnosis, therapy or prevention. 276 26 82
Disease Any disorder or abnormal condition. 1234 203 363
Gene Any molecule carrying genetic information. 342 47 87
Molecule Any chemical substance. 1791 240 544
Phenotype Any abnormal morphology, physiology or behaviour. 2963 421 872
Procedure Any medical procedure used in diagnosis, therapy or prevention. 1158 163 294

Table 1: Description and statistics of the HealthUnlocked dataset used for the experiments.

sociated with psychiatric medications.” (Zol-
noori et al., 2019). The dataset contains 6000
sentences annotated for mentions and spans (i.e.
NER) of Adverse Drug Reactions, Withdrawal
Symptoms, Drug Effectiveness, Drug Ineffec-
tiveness, Sign/Symptoms/Illness, and Drug In-
dications. Each entity is grounded against the
Unified Medical Language System (UMLS) and
SNOMED Clinical Terms. The source of the cor-
pus is the drug review website Ask a Patient3. The
language used is very simple, without the use of
specialist terms, and with no guarantee of gram-
matical/spelling correctness.

3.4 CADEC
The CADEC corpus (Karimi et al., 2015) is a cor-
pus of consumer reviews for pharmacovigilance.
It is sourced from Ask a Patient too and it is an-
notated for mentions of concepts such as drugs,
adverse reactions, symptoms and diseases, which
are linked against SNOMED and MedDRA.

4 Experiments

4.1 Embeddings
Using the dataset described in Section 3.1, we
trained three word embedding models, namely
GloVe (Pennington et al., 2014), ELMo (Peters
et al., 2018), and Flair (Akbik et al., 2018). We
choose these models due to their popularity, per-
formance, and relative low resource requirements.
In particular, GloVe requires just hours to be
trained on a CPU, while ELMo and Flair ob-
tained state-of-the-art results in the NER task at
the time of their publication, and both models can
be trained in relatively short time (∼1 week) using
1 or 2 GPUs. As general purpose and PubMed
embeddings, we use the ones provided or rec-
ommended by the respective architecture authors;
unfortunately, we are not aware of any GloVe

3https://www.askapatient.com/

Algorithm P R F
CRF 69.7 60.1 64.5
GloVe-Default 69.6 68.3 68.9
GloVe-BioReddit-50 68.7 65.7 67.2
GloVe-BioReddit-100 70.2 71.7 70.9
GloVe-BioReddit-200 72.1 70.3 71.2
ELMo-Default 72.3 72.8 72.5
ELMo-PubMed 73.7 73.7 73.7
ELMo-BioReddit 73.9 76.7 75.3
Flair-Default 75.0 75.8 75.4
Flair-PubMed 75.8 75.1 75.4
Flair-BioReddit 76.5 76.2 76.4

Table 2: Performance of different embeddings tech-
nique on NER, when trained and evaluated on the
dataset described in Section 3.2.

PubMed pre-trainer embeddings available in the
public domain. Using our BioReddit dataset, we
trained all the embeddings with their default pa-
rameters, as described in their respective papers.

4.2 Named Entity Recognition

In order to evaluate our embeddings we use Con-
ditional Random Fields and as a baseline, and
then we evaluate our embeddings using a Bidirec-
tional LSTM-CRF sequence tagging neural net-
work (Lample et al., 2016). We refer the reader to
the original paper for an explanation on how this
architecture works, as the details are outside to the
scope of the present paper.

We present our results in Table 2. As expected,
all the neural architectures largely improve the re-
sults obtained by the CRF and, in line with the lit-
erature, Flair performs slightly better than ELMo,
which in turn performs better than GloVe. Using
our purpose-built embeddings, called BioReddit in
the Table, we always obtain an improvement with
respect to using embeddings trained on general-
purpose data (Default in Table) or on PubMed,
barring the smallest GloVe vectors.
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Category P R F
Anatomy 72.2 76.6 74.3
Device 67.2 50.0 57.3
Disease 76.8 80.2 78.4
Gene 80.4 85.0 82.7
Molecule 88.4 88.6 88.5
Phenotype 70.5 66.9 68.6
Procedure 76.6 80.2 78.4

Table 3: Performance on the NER task of the Flair-
BioReddit on the HealthUnlocked dataset on the seven
categories defined in Section 3.2.

Corpus Task Embedding P R F
Default 65.3 59.7 62.4

PsyTAR NER PubMed 65.0 55.3 59.8
BioReddit 63.7 63.8 63.7
Default 81.3 69.2 74.8

PsyTAR ADR PubMed 77.5 72.6 75.0
BioReddit 79.5 73.7 76.5
Default 77.1 76.0 76.5

CADEC NER PubMed 77.2 76.1 76.7
Bioreddit 78.6 77.4 78.0

Table 4: Performance of the Flair embeddings on the
NER and Adverse Reaction Mention Detection on the
PsyTAR and CADEC corpora.

In Table 3 we provide a per-category breakdown
of the best performing embeddings, i.e. Flair em-
beddings trained on our BioReddit corpus. It’s in-
teresting to note how the most difficult categories
are Device and Phenotype. We explain this re-
sults by noting that the former is the least repre-
sented category in the corpus, while the latter was
actually expected to be the hardest category. In
fact, looking into the corpus, we found that users
are relatively precise when talking about disease
names, genes, molecules, and so on, while they
don’t necessarily describe their symptoms using
“proper” medical language.

In Table 4 we see the results we obtain on the
NER task on the PsyTAR and CADEC corpora
while using Flair embeddings, where BioReddit
embeddings always outperform general-purpose
and PubMed trained ones. Interestingly, PubMed
embeddings behave considerably worse than the
others on the PsyTAR corpus, which seems to sup-
port the intuition that using a specialized scientific
corpus is not always the guarantee of better per-
formance.

4.3 Adverse Reaction Mention Detection

The task of Adverse Reaction Mention Detection
(hence ADR) consists in detecting whether in a
sentence a user mentions that he is experienc-
ing/experienced an adverse reaction to a drug. For
this task, we designed a simple neural architec-
ture, where a bidirectional GRU (Cho et al., 2014)
reads a sentence, and a softmax layer on its top
performs the binary classification task of detect-
ing wether the input sentence contains an ADR or
not. When evaluating on the PsyTAR corpus we
again obtain the best performance when using our
BioReddit embeddings, followed by the PubMed
trained ones and the default ones.

5 Conclusions

In this paper we showed how training ad-hoc em-
beddings for the task of user-generated biomedical
text processing improves the results in the tasks
of named entity recognition and adverse reaction
mention detection. While preliminary, our results
show a strong indication that embeddings trained
on biomedical scientific literature only are not
guaranteed to be effective when used on user-
generated data, since people use “layman terms”
which are seldom, if ever, used in scientific liter-
ature. As future work, we acknowledge the need
to better investigate the results we present here. A
good starting point would be to analyze other em-
bedding techniques, in order to investigate if the
performance improvement is due to embedding
techniques themselves or to the datasets used.
Moreover, we need to analyze the performance of
our BioReddit embeddings on non-user generated
content, as e.g. scientific abstracts, in order to
investigate whether they are able to perform
effectively on this domain too. Finally, we think
that a manual investigation of the results of the
downstream tasks is important, to investigate e.g.
if the improvement in the ADR task is due to the
embeddings helping to classify sentences with
more colloquial language. Unfortunately, due to
licensing and privacy issues, we are not allowed
to release the HealthUnlocked corpus. However,
we make available our BioReddit embeddings
trained on GloVe, ELMo and Flair at https://
github.com/basaldella/bioreddit.
For the sake of reproducibility, we also we make
available our PsyTAR preprocessed splits online
at https://github.com/basaldella/
psytarpreprocessor.
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Abstract

Clinical notes are essential medical documents
to record each patient’s symptoms. Each
record is typically annotated with medical di-
agnostic codes, which means diagnosis and
treatment. This paper focuses on predicting
diagnostic codes given the descriptive present
illness in electronic health records by leverag-
ing domain knowledge. We investigate vari-
ous losses in a convolutional model to utilize
hierarchical category knowledge of diagnostic
codes in order to allow the model to share se-
mantics across different labels under the same
category. The proposed model not only con-
siders the external domain knowledge but also
addresses the issue about data imbalance. The
MIMIC3 benchmark experiments show that
the proposed methods can effectively utilize
category knowledge and provide informative
cues to improve the performance in terms of
the top-ranked diagnostic codes which is bet-
ter than the prior state-of-the-art. The investi-
gation and discussion express the potential of
integrating the domain knowledge in the cur-
rent machine learning based models and guid-
ing future research directions.

1 Introduction

Electronic health records (EHR) usually contain
clinical notes, which are free-form text gener-
ated by clinicians during patient encounters, and
a set of metadata diagnosis codes from the Inter-
national Classification of Diseases (ICD), which
represent the diagnoses and procedures in a stan-
dard way. ICD codes have a variety of usage, rang-
ing from billing to predictive modeling of the pa-
tient state (Choi et al., 2016). Automatic diagnosis
prediction has been studied since 1998 (de Lima
et al., 1998). Mullenbach et al. (2018) pointed out
the main challenges of this task: 1) the large label
space, with over 15,000 codes in the ICD-9 taxon-
omy, and over 140,000 codes in the newer ICD-

10 taxonomies (Organization et al., 2007), and 2)
noisy text, including irrelevant information, mis-
spellings and non-standard abbreviations, and a
large medical vocabulary. Several recent work at-
tempted at solving this task by neural models (Shi
et al., 2017; Mullenbach et al., 2018).

However, most prior work considered the out-
put labels independently, so that the codes with
few samples are difficult to learn (Shi et al., 2017).
Therefore, Mullenbach et al. (2018) proposed an
attentional model to effectively utilize the textural
forms of codes to facilitate learning. In addition to
textual definitions of codes, the category domain
knowledge may provide additional cues to allow
the codes under same category to share parame-
ters, so the codes with few samples can benefit
from it. To effectively utilize the category knowl-
edge from the ICD codes, this paper proposes sev-
eral refined category losses and incorporate them
into convolutional models and then evaluate the
performance on both MIMIC-3 (Johnson et al.,
2016) and our internal dataset. The experiments
on MIMIC shows that the proposed knowledge in-
tegration model significantly improves the previ-
ous methods and achieves the state-of-the-art per-
formance, and the improvement can also be ob-
served in our internal dataset. The idea is similar
to the prior work (Singh et al., 2018), which con-
sidered the keyword hierarchy for information ex-
traction from medical documents, but our work fo-
cuses on leveraging domain knowledge for clinical
code prediction. Our contributions are three-fold:

• This paper first leverages external domain
knowledge for diagnostic text understanding.

• The paper investigates multiple ways for in-
corporating the domain knowledge in an end-
to-end manner.

• The proposed mechanisms improve all prior
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Figure 1: The architecture with the proposed category knowledge integration.

models and achieves the state-of-the-art per-
formance on the benchmark MIMIC dataset.

2 Methodologies

Given each clinical record in EHR, the goal
is to predict the corresponding diagnostic codes
with the external hierarchical category informa-
tion. This task is framed as a multi-label classifi-
cation problem. The proposed mechanism is built
on the top of various convolutional models to fur-
ther combine with the category knowledge. Be-
low we introduce the previously proposed convo-
lutional models which are used for latter compar-
ison in the experiment and detail the mechanism
that leverages hierarchical knowledge.

2.1 Convolutional Models

There are various models for sequence-level clas-
sification, and this paper focuses on two types of
convolutional models for investigation. The mod-
els are described as follows. Note that the pro-
posed mechanism is flexible for diverse models.

TextCNN Let xi ∈ IRk be the k-dimensional
word embedding corresponding to the i-th word
in the document, represented by the matrix X =
[x1, x2, ..., xN ], where N is the length of the doc-
ument. TextCNN (Kim, 2014) applies both convo-
lution and max-pooling operations in one dimen-
sion along the document length. For instance, a
feature ci is generated from a window of words
xi, xi+1, ..., xi+h, where h is the kernel size of
the filters. The pooling operation is then applied
over c = [c1, c2, ..., cn−h+1] to pick the maximum
value ĉ = max(c) as the feature corresponding to
this filter. We implement the model with kernel

size = 3,4,5, considering different window sizes of
words.

Convolutional Attention Model (CAML) Be-
cause the number of samples of each code is
highly unbalanced, it is difficult to train each la-
bel with very few samples. To resolve this issue,
the CAML model utilizes the descriptive defini-
tion of diagnosis codes, which additionally applies
a per-label attention mechanism, where the addi-
tional benefit is that it selects the n-grams from
the text that are most relevant to each predicted la-
bel (Mullenbach et al., 2018).

2.2 Knowledge Integration Mechanism
Considering the hierarchical property of ICD
codes, we assume that using the higher level la-
bels could learn more general concepts and thus
improve the performance. For instance, the def-
initions of ICD-9 codes 301.2 and 307.1 are
“Schizoid personality disorder” and “Anorexia
nervosa” respectively. If we only use the labels
given by the dataset, they are seen as two indepen-
dent labels; however, in the ICD structure, both
301.2 and 307.1 belong to the same high-level cat-
egory “mental disorders”. The external knowl-
edge shows that category knowledge provides ad-
ditional cues to know code relatedness. Therefore,
we propose four types of mechanisms that incor-
porate hierarchy category knowledge to improve
the ICD prediction below.

Cluster Penalty Motivated by Nie et al. (2018),
we compute two constraints to share the parame-
ters of the ICD codes under the same categories.
The between-cluster constraint, Ωbetween, indi-
cates the total distance of parameters between
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mean of all ICD codes and the mean of each cate-
gory.

Ωbetween =
K∑

k=1

∥∥θ̄k − θ̄
∥∥2 , (1)

where θ̄ is the mean vectors of all ICD codes, θ̄k is
the mean vector of the k-th category. The within-
cluster constraint, Ωwithin, is the distance of pa-
rameters between the mean of each category and
its low-level codes.

Ωwithin =

K∑

k=1

∑

i∈J (k)

∥∥θi − θ̄k
∥∥2 , (2)

where J (k) is a set of labels that belong to the k-
th category. Ωbetween and Ωwithin are formulated
as additional losses to enable the model to share
parameters across codes with the same categories.

Multi-Task Learning Considering that the
high-level category can be treated as another
task, we apply a multi-task learning approach
to leverage the external knowledge. This model
focuses on predicting the low-level codes, ylow, as
well as its high-level category, yhigh, individually
illustrated in Figure 1.

yhigh = Whigh · h+ bhigh (3)

where Whigh ∈ IRNhigh×d, Nhigh means the num-
ber of high-level categories, and d is the dimension
of hidden vectors derived from CNN.

Hierarchical Learning We build a dictionary
for mapping our low-level labels to the corre-
sponding high-level categories illustrated in Fig-
ure 1. To estimate the weights for high-level cate-
gories, yhigh, two mechanisms are proposed:

• Average meta-label: The probability of the k-
th high-level category can be approximated
by the averaged weights for low-level codes
that belong to the k-th category.

yhigh =
1

k

∑
yklow (4)

• At-least-one meta-label: Motivated by Nie
et al. (2018), meta labels are created by ex-
amining whether any disease label for the k-
th category has been marked as tagged, where
the high-level probability is derived from the
low-level probability of disease labels.

yhigh = 1−
∏

k

(1− yklow) (5)

MIMIC-3 Internal
Full 50 200

# training documents 47,424 8,067 17,762
mean length of texts 1,485 1,530 50.35
vocabulary size 51,917 51,917 25,654
OOV rate 0.137 0.137 0.373
# labels 8,922 50 200
mean number of labels 15.9 5.7 1.7

Table 1: Dataset comparison and statistics. From the
full set of the internal data (1495 labels) to 200, only
6.0% of data points are discarded.

2.3 Training

The knowledge integration mechanisms are built
on top of the multi-label convolutional models,
which treat each ICD label as a binary classifi-
cation. The predicted values for high-level cate-
gories come from the proposed mechanisms. Con-
sidering that learning low-level labels directly is
difficult due to the highly imbalanced label dis-
tribution, we add a loss term indicating the high-
level category in order to learn the general con-
cepts in addition to the low-level labels, and train
the model in an end-to-end fashion. Note that the
high-level loss is set as losshigh = Ωbetween +
Ωwithin for cluster penalty and the binary log loss
for other methods.

loss = losslow + λ · losshigh, (6)

where λ is the parameter to control the influence
of the knowledge category and we choose λ = 0.1.

3 Experiments

In order to measure the effectiveness of the pro-
posed methods, the following experiments are
conducted.

3.1 Setup

We evaluate our model on two datasets, one
is the benchmark MIMIC-3 data and another is
the dataset collected by National Taiwan Univer-
sity Hospital (NTUH). MIMIC-3 (Johnson et al.,
2016) is a benchmark dataset, where the text and
structured records from a hospital ICU. We use the
same setting as the prior work (Mullenbach et al.,
2018), where 47,724 discharge summaries is for
training, with 1,632 summaries and 3,372 sum-
maries for validation and testing, respectively. We
also obtain a subdataset from original MIMIC3-
Full, called MIMIC3-50, which has the top 50
high frequency labels. NTUH dataset is collected
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MIMIC3-50 P@1 P@3 P@5 MAP Macro-F Micro-F Macro-AUC Micro-AUC
CNN (Shi et al., 2017) 82.8 71.2 61.4 72.4 57.9 63.0 88.2 91.2
+ Cluster Penalty 83.5† 71.9† 62.4† 73.1† 58.3† 63.7† 88.5† 91.3†

+ Multi-Task 83.5† 71.3† 61.9† 72.5† 57.6 62.8 88.1 91.1
+ Hierarchical avg 84.5† 72.1† 62.4† 73.5† 58.6† 64.3† 88.9† 91.4†

at-least-one 83.4† 72.1† 62.4† 73.4† 58.5† 63.8† 88.4† 91.3†

MIMIC3-Full P@1 P@3 P@8 P@15 Macro-F Micro-F Macro-AUC Micro-AUC
CNN (Shi et al., 2017) 80.5 73.6 59.6 45.4 3.8 42.9 81.8 97.1
+ Cluster Penalty 80.9† 74.0† 59.5 45.2 3.3 40.5 82.1† 97.0
+ Multi-Task 82.8† 75.8† 61.5† 46.6† 3.6 43.9† 83.3† 97.3†

+ Hierarchical avg 79.0 73.1 59.2 45.2 4.3† 42.7 83.0† 97.1
at-least-one 82.1† 74.3† 59.7† 44.9 2.6 42.0 80.3 96.7

CAML (Mullenbach et al., 2018) 89.6 83.4 69.5 54.6 6.1 51.7 88.4 98.4
+ Cluster Penalty 88.4 82.4 68.8 54.0 5.4 51.2 87.5 98.3
+ Multi-Task 89.7† 83.4 69.7† 54.8 6.9† 52.3† 88.8† 98.5†

+ Hierarchical avg 89.6 83.5† 70.9† 56.1† 8.2† 53.9† 89.5† 98.6†

at-least-one 89.4 83.3 69.5 54.8† 6.2† 51.7 88.3 98.4

Table 2: The results on MIMIC-3 data (%). † indicates the improvement over the baseline.

Data-200 Macro-F1 Micro-F1
CNN 7.6 39.8
+ Multi-Task 11.7† 41.6†

+ Hierarchical (avg) 9.2† 44.1†

CAML 6.2 42.6
+ Multi-Task 14.5† 44.7†

+ Hierarchical (avg) 18.4† 45.7†

Table 3: The results on NTUH data.

from an internal hospital, where each record in-
cludes narrative notes describing a patients stay
and associated diagnostic ICD-9 codes. There are
total 1,495 ICD-9 codes in the data, and the dis-
tribution is highly imbalanced. Our data is noisy
due to typos and different writing styles, where
the OOV rate is 0.373 based on the large vocab-
ulary obtained from PubMed and PMC. As shown
in Table 1, our data, Internal-200, is more chal-
lenging due to much shorter text inputs and higher
OOV rate compared with the benchmark MIMIC-
3 dataset. We split the whole set of 25,375 records
from Internal-200 into 17,762 as training, 2,537 as
validation, and 5,076 as testing.

All models use the same setting as the prior
work (Kim, 2014; Mullenbach et al., 2018)
and use skipgram word embeddings trained on
PubMed1 and PMC2 (Mikolov et al., 2013). We
evaluate the model performance using metrics for
the multi-label classification task, including pre-
cision at K, mean average precision (MAP), and
micro-averaged, macro-averaged F1 and AUC.

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.ncbi.nlm.nih.gov/pmc/

3.2 Results

The baseline and the results of adding the pro-
posed mechanisms are shown in Table 2. For
MIMIC3-50, all proposed mechanisms achieve the
improvement for almost all metrics, and the best
one is from the hierarchical learning with aver-
age meta-label. The consistent improvement indi-
cates that category knowledge provides informa-
tive cues for sharing parameters across low-level
codes under the same categories. For MIMIC3-
Full, our proposed mechanisms still outperform
the baseline CNN model, and the best perfor-
mance comes from the one with multi-task learn-
ing. The reason may be that multi-task learn-
ing has more flexible constraints compared with
hierarchical learning, and it is more suitable for
this more challenging scenario due to data imbal-
ance. In addition, the proposed knowledge inte-
gration mechanisms using multi-task learning or
hierarchical learning with average meta-label are
able to improve the prior state-of-the-art model,
CAML (Mullenbach et al., 2018), demonstrating
the superior capability and the importance of do-
main knowledge.

To further investigate the model effectiveness,
we perform the experiments on the NTUH dataset
in Table 3. Due to shorter clinical notes and higher
OOV rate, this dataset is more challenging and the
results are lower than the ones in MIMIC-3. Nev-
ertheless, the proposed methods still improve the
performance by integrating category knowledge
using multi-task learning or hierarchical learning
with average meta-label. In sum, our proposed
category knowledge integration mechanisms are
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capable of improving the text understanding per-
formance by combining the domain knowledge
with neural models and achieve the state-of-the-
art results.

3.3 Qualitative Analysis
From our prediction results, we find that our pro-
posed mechanisms tend to predict more labels than
the baseline models for both CNN and CAML.
Specifically, our methods can assist models to con-
sider more categories from shared information in
the hierarchy. The additional codes often contain
the right answers and sometimes are in the correct
categories but not exactly matched. Moreover, our
mechanisms have the capability of correcting the
wrong codes to the correct ones which are under
the same category. The appendix provides some
examples for reference.

4 Conclusion

This paper proposes multiple mechanisms using
the refined losses to leverage hierarchical category
knowledge and share semantics of the labels under
the same category, so the model can better under-
stand the clinical texts even if the training sam-
ples are limited. The experiments demonstrate the
effectiveness of the proposed knowledge integra-
tion mechanisms given the achieved state-of-the-
art performance and show the great generalization
capability for multiple datasets. In the future, we
plan to analyze the performance of each label, in-
vestigating which label can benefit more from the
proposed approaches.
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Abstract

The paper addresses experiments to expand
ad hoc ambiguous abbreviations in medical
notes on the basis of morphologically anno-
tated texts, without using additional domain
resources. We work on Polish data but the
described approaches can be used for other
languages too. We test two methods to se-
lect candidates for word abbreviation expan-
sions. The first one automatically selects all
words in text which might be an expansion
of an abbreviation according to the language
rules. The second method uses clustering of
abbreviation occurrences to select representa-
tive elements which are manually annotated to
determine lists of potential expansions. We
then train a classifier to assign expansions to
abbreviations based on three training sets: au-
tomatically obtained, consisting of manual an-
notation, and concatenation of the two previ-
ous ones. The results obtained for the manu-
ally annotated training data significantly out-
perform automatically obtained training data.
Adding the automatically obtained training
data to the manually annotated data improves
the results, in particular for less frequent ab-
breviations. In this context the proposed a pri-
ori data driven selection of possible extensions
turned out to be crucial.

1 Introduction

Saving time and effort is a crucial reason for using
abbreviations and acronyms in all types of texts.
In informal texts like e-mails, communicator mes-
sages, and notes, it is very common to create ad
hoc abbreviations, which are easy for the author
(in the case of personal notes) or a reader to inter-
pret in the context of a topic discussed by a group
of people.

The time/effort saving principle is also valid for
medical notes prepared by physicians during pa-
tient visits, hospital examinations, and for nursing

notes. They are often written in a hurry, but have to
be understandable for other people involved in the
treatment of a patient. They cannot be completely
hermetic, but usually, they are difficult to inter-
pret both for patients and nonspecialists (Mow-
ery et al., 2016b). Ad hoc abbreviations are also
difficult for automatic data processing systems to
handle. But proper understanding and normaliza-
tion of all types of abbreviations is indispensable
for the correct operation of information extraction
systems (Pradhan et al., 2014), data classification
(Névéol et al., 2016; Mowery et al., 2016a), ques-
tion answering (Kakadiaris et al., 2018), and many
other applications.

The interpretation of an abbreviation consists of
two aspects: its recognition and expansion. The
recognition of well established abbreviations and
acronyms is usually done with the help of dictio-
naries. For the English medical domain, several
dictionaries such as the resources of the U.S. Na-
tional Library of Medicine are available. Ad hoc
abbreviations are not present in dictionaries and
they are mainly recognized as unknown words.
Sometimes, they are ambiguous with correct full
word forms listed in general language dictionar-
ies. For example, dept might be an abbreviation of
‘department’ or ‘deputy’; in Polish medical notes
temp ‘rate’ is an abbreviation of temperatura ‘tem-
perature’. In informal texts, the period after ab-
breviations, required after some of them in Polish,
English and many other languages, is often omit-
ted, which makes the distinction between word
and abbreviation more difficult. Ad hoc abbrevi-
ations are also ambiguous with standard language
abbreviations, and their interpretation is different
from those used in standard language: literature,
papers or everyday use. For example, in many lan-
guages (e.g. English, German, Polish) the abbrevi-
ation op means the opus number in musical com-
position. In Polish medical notes, it can be opa-
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trunek ‘dressing’ especially in the context of ‘gyp-
sum dressing’ of broken bones, oko prawe ‘right
eye’ in the context of ophthalmic examinations or
opakowanie ‘package’ of medications in recom-
mendations. But it can have several other mean-
ings e.g. opuszek ‘fingertip’ – unit of cervical di-
lation used by gynecologists. So, if we want to
recognize ad hoc abbreviations in informal texts it
is necessary not only to consider unknown strings
but also short words and abbreviations recognized
during morphologic analysis of text.

Our study focuses on expanding word abbrevi-
ations in medical notes in Polish. We are not sys-
tematically considering phrase abbreviations, usu-
ally called acronyms, as selecting candidates for
their expansions requires different methods. In the
paper we test two approaches for selecting candi-
dates for word abbreviation expansions which are
used for training a classifier to assign the appropri-
ate expansion to an abbreviation, see (Pakhomov,
2002). In the first method, we check a hypothesis
that full forms of ad hoc abbreviations are repre-
sented in texts of the same domain and type. So,
for each candidate for abbreviation, we select all
words which might be expansions for the abbre-
viation according to the language rules. We test
if the occurrences of potential expansions in text
can be sufficient for training the classifier. This
method provides us with many suggestions which
might never be used. To limit this number, we
modified the method by selecting words with dis-
tributed representation close to the representation
of the abbreviation. In the second method, we se-
lect candidates for abbreviation expansions based
on annotation of selected elements of abbrevia-
tion occurrences clusters. Clustering is done by
the Chinese whispers algorithm (Biemann, 2006)
according to their contexts. For each cluster, we
expand a manually randomly selected 2 to 6 ele-
ments of each cluster. This procedure gives us a
short list of potential expansions.

2 Related Work

The problem of abbreviation recognition and ex-
pansion, has so far been addressed mainly for En-
glish data, e.g. (Nadeau and Turney, 2005) and
(Moon et al., 2012) where supervised machine
learning algorithms are used, and (Du et al., 2019)
who describes a complex system for English data
that recognizes many types of abbreviations. But,
there are papers describing the problem for other

languages too, e.g. Swedish (Kvist and Velupil-
lai, 2014) – SCAN system based on lexicon, and
German, e.g. (Kreuzthaler et al., 2016) where ab-
breviation identification linked to the disambigua-
tion of period characters in clinical narratives is
addressed.

Methods of dealing with acronyms are de-
scribed among others in (Schwartz and Hearst,
2003) where the authors look for acronym def-
initions in data and identify them as a text in
parentheses adjacent to the acronym/abbreviation;
(Tengstrand et al., 2014) where experiments for
Swedish are described; and (Spasic, 2018) where
terminology extraction methods are applied.

Experiments in which similar to our data driven
approach is tested, are described in (Oleynik et al.,
2017). They used a method of abbreviation expan-
sion based on N-grams and achieved an F1 score
of 0.91, evaluated on a test set of 200 text excerpts.

3 Data

Medical reports which we used to carry out the
experiments are an annomyzed sample of data col-
lected by the company providing electronic health
record services. The research is a part of a project,
the purpose of which is, among other things, auto-
matic preparation of statistics concerning data on
diseases, symptoms and treatments. The statistics
should be based on information extracted automat-
ically from descriptions of patients visits. The data
was collected in many clinics and concerned vis-
its to doctors of various specialties. Identification
information was removed from texts, and only de-
scriptions of interrogation, examination and rec-
ommendations were processed.

As Polish is an inflectional language we prepro-
cessed text to obtain base word forms and POS
tags. Medical reports usually contain a limited
dictionary but a lot of words are not present in
general dictionaries, thus specialized medical tag-
gers would be the most appropriate for perform-
ing this task. However, manually annotated data
to train the medical tagger is not available for Pol-
ish, thus we had to processed texts with the gen-
eral purpose morphological tagger. In this work
we used Concraft2 – the new version of the Con-
craft (Waszczuk, 2012) tagger which cooperates
with the general purpose morphological analyzer
Morfeusz2 (Woliński, 2014) and also performs
tokenization and sentence identification. Addi-
tionally, we ensured that line breaks were treated
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as sentence delimiters, as often a dot was not
used at the end of a line, while the topic was
changed. The quality of automatic tagging of
medical texts in Polish is not high, see (Marciniak
and Mykowiecka, 2011). Medical notes contain
a large number of spelling errors, there are many
acronyms/abbreviations1 and specialized words
not present in the general purpose morphological
analyzer. Thus, we performed our experiments us-
ing both exact word forms and lemmas.

The entire dataset consists of about 10 million
tokens and 15,000 different word forms. This
number is larger than for English data of the same
size as Polish is an inflectional language. It means
that one word can have several forms, e.g.: kropla
‘drop’ is represented in our data as: krople, kropli,
kroplach, kroplami. As we differentiate between
capital and small letters we additionally have the
following forms: Krople, KROPLE. The latter de-
cision resulted from a desire to preserve informa-
tion about acronyms for future work. For example,
the form PSA is rather the acronym of an exami-
nation while the form psa might be interpreted as
a ‘dog’ in the genitive (in medical texts it mainly
occurs in the phrase sierść psa ‘dog fur’ in the con-
text of allergens).

Around 7% of tokens are recognized as un-
known words and this group of tokens consists
of about 91,000 different elements: abbrevia-
tions; acronyms; proper names such as med-
ications and illnesses containing proper names
(e.g. Hashimoto’s thyroiditis); and typos that oc-
cur in large numbers in medical notes. Some ab-
breviations are represented in Morfeusz2 but often
their meaning is not appropriate for medical texts,
e.g.: a string ‘por’ is recognized as an abbreviation
of ‘lieutenant’ or ‘compare’ while in medical data
it is ‘clinic’.

Tokens which are not recognized by dictionar-
ies, are natural candidates for being abbreviations.
In many papers addressing the problem of abbre-
viation recognition, the authors limit themselves
to considering such tokens, see (Park and Byrd,
2001), (Kreuzthaler et al., 2016). In our approach,
when selecting potential abbreviations, we took
into account all forms out of the dictionary, and
short words (up to 5 letters) which were in the dic-
tionary. As we wanted to use contexts in our ex-
periment, we decided to consider forms which oc-

1Marciniak and Mykowiecka (2011) reported that around
6% of tokens in hospital records are acronyms and abbrevia-
tions.

curred in the data more than 15 times. This limited
the list of unknown tokens to 2808 and the list of
word forms considered as potential abbreviations
to 3152.

The data set was divided into ten parts, one was
left for evaluation purposes and the remaining 9
were used as a training set and a source of infor-
mation on the number and types of abbreviations
used.

The test set consists of about 996.000 tokens
and thousands of abbreviation occurrences. To
make manual checking of the results feasible we
decided to perform our experiment on a small sub-
set of 15 abbreviations. This short list consists
of abbreviations which seem to be ambiguous (a
few likely interpretations) and are rather common
– 3069 occurrences in test data which means 0.3%
of tokens. Their proper recognition is, therefore,
important for correct text interpretation. All oc-
currences of these 15 abbreviations in the test set
were manually expanded by a person with experi-
ence in medical data processing. All difficult cases
were consulted with a specialist. A fragment of the
list together with exemplary variations is given in
Table 1.

4 Language Models

On the basis of the entire data set, we trained
four word2vec (Mikolov et al., 2013) versions of
language models (the choice of specialized data
seems to be straightforward, but was also sup-
ported by (Charbonnier and Wartena, 2018)). One
pair of models was trained on the original (tok-
enized) texts – inflected forms of words. The sec-
ond pair of models was trained on the lemmatized
text (in Polish, nouns, verbs and adjectives have
many different inflectional variants). In both pairs
we calculated vectors of length 100; one model
was trained on all tokens which occurred at least
5 times and the second one was trained on text in
which all numbers were replaced by one symbol.
In the final experiments form based models turned
out to be the most efficient.

5 Baseline

We solve the problem of abbreviation expansion
as the task of word sense disambiguation where a
classifier is trained on all expansions represented
in the data. As it is difficult to compare our ap-
proach to other work as the assumptions of the
tasks related to abbreviation expansion were dif-
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Abr. Variations All Possible Meanings in Test Data
fiz FIZ, fiz, Fiz, 15 fizjologiczny, fizycznie, fizyczny, fizykalnie, fizykalny, fizykoterapia

Physiological, Physically, Physical, Physical, Physical Therapy
cz CZ, Cz 44 czerwień, czołowy, czynnik, czynność, częstość, część

redness, frontal, factor, activity, frequency, part
gł gł 22 głowa, główkowy, głównie, główny, głęboki

head, head(adj), mainly, main, deep
op OP Op 30 opak, opakowanie, opatrunek, opera, operacja, operacyjnie, operacyjny, oko prawy

operowany, opieka, opis, opuszek, opór
awry, package, dressing, opera, operation, operationally, operational, right eye
operated, care, description, pad, resistance

Table 1: Four from the list of 15 abbreviations with variations, the number of all different longer words found in
the training data.

simulated train data annotated
abbr. AL SL CL train test

cz 51022 46172 25642 96 137
fiz 10769 10684 9895 61 59
gł 15591 14460 9988 55 48
kr 37381 24349 20053 81 224

mies 9021 8949 6874 35 206
op 24677 21673 9285 410 1785

poj 4386 4035 3293 75 147
pow 22517 5037 17271 69 65

pr 88312 20386 57809 105 100
rodz 6459 6459 4903 26 52

śr 3894 2922 2316 61 65
wz 9942 6914 3345 42 31

zab 8670 8085 7755 69 90
zaw 3826 1296 2012 28 29
zał 1657 1544 717 18 31

total 298149 182965 181140 1231 3069

Table 2: Number of occurrences in train and test data.
The three potential extensions lists for simulated train-
ing sets: AL – all words being potential expansions,
SL – all the possible words in our distributional model
whose similarity to a particular abbreviation was higher
than 0.2 for a language model created on forms, CL –
annotations of randomly selected cluster elements.

ferent, we suggest an artificial baseline, which
consists of the most common interpretation of
manually annotated abbreviations in the test set.
Table 3 gives appropriate statistics. If we assign
the most common interpretation of an abbreviation
to all its occurrences we obtain the weighted pre-
cision equal to 0.568, the recall equal to 0.742 and
the F1 measure equal to 0.64.

6 Methods for Determining Expansions

We checked two methods for determining poten-
tial ad hoc abbreviation expansions. The first one
assumes that full versions of abbreviated forms
are available somewhere in the data. So the prob-
lem can be seen as an attempt to determine which
words from the text data can be abbreviated to a
considered token and which of them correspond

to an abbreviation in the given context. The sec-
ond method uses clustering of abbreviation occur-
rences to select representative elements from each
cluster to determine lists of potential expansions.
This method allows a considered token that can
abbreviate a phrase to be taken into account, while
the first method is only oriented on word expan-
sions.

6.1 All Words and Similar Word Methods

When we look for potential expansions of a se-
lected token without any additional resources, we
have to consider two cases. The first, is that we
should leave the token unchanged as it could be
a correct word or acronym. We do not address
this problem. The second, is that we should select
all words from the data that can be abbreviated to
the considered token according to language rules.
So, the list of potential expansions consists of all
forms from the data which met the conditions of
being an abbreviation in Polish. We analyse cases
in which a token x might be an abbreviation of a
word y if:

• the beginning of y is equal to x;

• the POS tag does not indicate an abbreviation
or an unknown word (to avoid using incor-
rectly written words as potential extensions);

• the abbreviation does not cross Polish two-
letter compounds (‘rz’, ‘sz’, ‘cz’, ‘ch’).

The first potential extensions list (AL) contains all
words meeting the above conditions. It consists
of 1345 elements. The AL list contains forms
which are never shortened. Their usage should
thus be different from that of the abbreviation it-
self. To eliminate such unlikely expansions and to
limit the number of potential labels, we selected
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abbr. test anot. expansions
cz 137 czerwień(1), czynnik(3), czynność(14), częstość(14) część(102)

redness, factor, activity, frequency, part
fiz 59 fizjologiczny(2), fizycznie(1), fizyczny(5),fizykalnnie(45), fizykalny(6)

physiological, physically, physical, physically, physical
gł 48 gładki(1), głowa(16), główkowy(4), głównie(17), główny(10)

smooth, head, head, mainly, main
kr 224 krawędź(1), kreatynina(2), kropla(68), krople(4), kręgosłup(149)

edge, creatinine, drop, drops, spine
mies 206 miesiąc(187), miesiączka(18), miesięczny(1)

month, menstruation, monthly
op 1785 oko prawe (349), ostatni poród (1), opakowanie(1384), opatrunek(6), operacja(22), operacyjnie(3),

operacyjny(10), operować(1), opieka(7), opuszek(2)
right eye, last delivery, package, dressing, surgery, surgically, surgical, operate, care, fingertip

poj 147 pojawić(2), pojedynczy(127), pojemnik(18)
appear, single, container

pow 65 powierzchnia(17), powiększony(6), powiększyć(8), powlekać(9), powyżej(24), powód(1)
surface, enlarged, enlarge,coated, above, reason

pr 100 Pogotowie Ratunkowe(5), public relations(3), prawa ręka(1), PR(1), per rectum(5), prawidłowo(17),
prawidłowy(34), prawy(20), preparat(2), prostata(4), przewód(1), przychodnia(1), próba(6)
Emergency Service, public relations, right hand, PR(in ECG), per rectum, properly, normal, right,
preparation, prostate, tract, clinic, test

rodz 52 rodzeństwo(8), rodzice(3), rodzina(4), rodzinne(1), rodzinnie(20), rodzinny(16)
sibling, parents, family, family, family, family

wz 31 wziernik(9), wzrost(4)
speculum, high

śr 65 średni(3), średnica(47), średnio(10), środa(1), środek(3), środkowy(1)
medium, diameter, medium, Wednesday, middle, middle

zab 90 zabieg(14), zaburzenie(76)
surgery, disorder

zaw 29 zawiesina(23), zawód(6)
suspension, profession

zał 31 załamek(10), założyć(5), załączyć(16)
crinkle, put on, attach

Table 3: Test set abbreviation expansions in numbers

from all the possible word forms in our distribu-
tional model, those whose similarity to a particu-
lar abbreviation was higher than 0.2 for a language
model created on forms, see Section (4). These
candidates form the second expansion list of 259
elements (SL). The numbers of occurrences of all
expansions of these three lists in the training data
are given in Table 2.

6.2 Clustering and Manual Annotation

To check whether abbreviation usages form any
differentiable clusters, we identified all their oc-
currences in the training data. For each such oc-
currence, we determined the context vector, which
was equal to the average of vectors of surround-
ing tokens. In the experiment, we set the context
as three tokens before and after each abbreviation.
Then, we clustered occurrences of the abbrevia-
tion via the Chinese whispers algorithm (Biemann,
2006) which does not impose defining a priori a
number of clusters. As we aimed to select ex-
amples of various interpretations of the same ab-
breviation and various usage of the same interpre-

tation of the abbreviation, we established quite a
high level of similarity between nodes in the initial
graph. The similarity was counted as the cosine
between vectors and we set it experimentally to
0.7 (it had no theoretical justification). Increasing
the parameter of similarity we obtain more clusters
and they represent higher granularity of abbrevia-
tion contexts.

For each cluster, we randomly selected from 2
to 6 elements (depending on the cluster size) and
manually annotated them and the representative
elements of the cluster pointed out by the algo-
rithm, with proper expansions in the data. 85 el-
ements used in this manual annotation constitutes
the third list (CL) used in our experiments. In Ta-
ble 2 the number of annotated examples in both
train and test data are give. In test data a very
high variance of abbreviations occurrences caused
mainly by the big number of clusters obtained for
the most frequent abbreviation (op) can be seen
(from 29 to 1785).
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6.3 Training Data
The core training set (SIM) is constructed via sim-
ulation by shortening word forms beginning with
any of the abbreviation from the appropriate list
processed in the exact experiment: AL, SL, and
CL. The longest list AL contains 1345 potential
expansions, SL limits the number of potential ex-
pansions to 259 elements while the manually cre-
ated list CL has 85 elements. However, the SIM
set may be biased as some of the words from these
lists might be never shortened. What is more, in
some typical places in which the chosen abbrevi-
ations occur, the full form may never or almost
never be used. To check the real value of such sim-
ulated training set and, to test if a much smaller
training set could be sufficient for this task, we
also prepared manually annotated training set. It
was built from all the manually annotated exam-
ples (a procedure described in 6.2). In Table 2,
there is a comparison of the numbers of considered
abbreviations in simulated (depending on the cho-
sen expansion list) and manually annotated train-
ing and test data. As it turned out that nearly
every abbreviation can also be an acronym, and
one of them oko prawy – op occurs many times
in our annotated data, to make comparisons more
complete we also prepared a version of our train-
ing data (SIM-ac) in which two consecutive words
recognized during manual annotation as a possi-
ble full form of an acronym, are abbreviated to the
sequence of their first letters.

7 Neural Net Architecture

In the experiment, we used bidirectional LSTM
nets as being most frequently judged as good for
sequence processing. We formulated our task as a
prediction task in which we predict a word on the
basis of its context (and, optionally, on the basis of
a representation of the abbreviation used instead
of it). As clinical notes are short, concise and fre-
quently change subject, we assign a label (which
is a full word form) to a word on the basis of its
left and right contexts of 3 or 5 words.

Input to a net consists of a subset of the follow-
ing data (names given after features descriptions
are used in Table 4 headings):

• word vectors form the models trained on the
entire dataset,

• POS tags encoded as one-hot vector (pos) (31
most frequent categories),

a) b)

Figure 1: Two neural net architectures tested

• vector representing an abbreviation itself
(padded with zeros if needed), (c),

• all possible longer versions of the particu-
lar abbreviations coded in a vector represent-
ing all possible forms of all the abbreviations
taken into account. This vector was added
as the additional information which was com-
bined with the LSTM output layer (only one
output value is considered), (cd), Figure 1b.

Two net architectures tested are given in Fig-
ure 1.2 On the left side, a basic BiLSTM net with
input consisting of seven word representation is
shown (the central word is an abbreviation – being
actually in the data or inserted in place of a full
word form in the simulation variant). Represen-
tation consisted either of word embeddings only,
or of embeddings concatenated with the POS one-
hot encodings. We also tested variants in which
only context words were used. The architecture
given on the right takes only context words as
input. The additional input vector represents all
valid extensions of a given abbreviation (cd). In
both cases, the last layer is a standard classifica-
tion dense layer with a sigmoid activation func-
tion. Its size depends on the length of a particu-
lar extensions list. The implementation is done in
Keras with Tensorflow backend. The Adam opti-
mizer was used and the other settings are standard
values used in Keras implementation.

8 Results

The net architecture for further experiments was
chosen on the basis of the 10-fold cross valida-
tion results for one configuration, see Table 4.

2The picture was obtained using Netron https://
lutzroeder.github.io/netron/
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The number of epochs was established on the ba-
sis of validation on 1/10th of the training data
while learning on the remaining training set to 2
for models which use big simulated data, and 5
for models which use only small annotated data.
The batch size was equal to 32 and 1 respectively.
Apart from the first model which does not take into
account either the abbreviation representation (c)
or the list of possible expansions (cd), other results
do not vary much. We decided to choose the sec-
ond best variant with the list of possible extensions
added as an additional layer but with the three not
five word context. As our annotated data is not
big, we preferred a comparable model with fewer
parameters.

The chosen set of features (second column in
Table 4) was used for building models for all ab-
breviation lists and four variants of training sets
(only annotated data – ANOT, only simulated –
SIM (only word abbreviations) and SIM-ac (word
abbreviations and acronyms), and the sum of both.

The results on cross validation (Table 5) are the
best for simulated data, probably because of their
size and repetitiveness. Only for the longest ex-
pansion list the results are the best on the small-
est annotated set. The small number of exam-
ples could have just been memorized more eas-
ily. With this one exception it is also generally
the rule that the bigger the training set the better,
although adding annotated examples lowered the
results slightly for SL list.

The results for the test set (Table 6) are better
than those obtained for the cross validation on the
training set in many cases. This is probably due
to the small size of the test data set and many oc-
currences of the easy to resolve cases, for example
the frequent occurrences of the ‘op’ abbreviation,
which was correctly identified as ‘opakowanie’
package. However, models trained on the simu-
lated set alone, performed significantly worse in
terms of the recall (precision only deteriorated a
little).

Using simulated data for training models has
one important advantage – it saves time and ef-
fort. But there are also some disadvantages which
have to be carefully analyzed. A few examples of
miss-interpretation of ‘pr’ strings are given in Ta-
ble 7. In our particular task, the possible problems
can have different sources. First, some abbrevia-
tions are never (or almost never) expanded within
the corpus. These are for example very common

acronyms (like OP – ‘right eye’) which are rarely
written in the full form, or an abbreviation meta
which is never used in its full form metastaza
‘metastasis’ in our corpus. We did not fully ad-
dress the problem in this work and phrase exten-
sions which were recognized during manual anno-
tation were added manually to the expansion lists.
The second problem is that some words are never
abbreviated, but we automatically added them to
our expansion lists making the problem harder to
solve. However, the good results obtained for the
AL list show that this situation was not very con-
fusing for our models (which have access to an-
notated data). The third problem is the fact that
the contexts in which the abbreviated form are
used may differ from the contexts where the full
form occurs. If in some contexts, only abbrevia-
tions are used and the full form never occurs, it
is not possible to learn this pattern. For example,
when prescribing the number of medicine pack-
ages, doctors always use op instead of opakowanie
‘package’, e.g. Lantus (1 op. 30%). Our experi-
ment confirmed that this is really the case. Re-
sults obtained by the models trained on simulated
data only, although having very good cross valida-
tion results, have much worse recall on test data
than models trained on annotated examples. How-
ever, adding annotated data to the simulated train
set improved the results. For all but the AL list,
the results obtained on the entire data even outper-
formed those obtained for the annotated data.

9 Conclusions

In the paper, we wanted to test if simulated abbre-
viations can be used to expand ambiguous ad hoc
abbreviations in medical notes. Although simula-
tion of the training data is a very useful practice, as
manual data annotation is an expensive and time
consuming process, our work shows that the ob-
tained results are not always satisfactory. The F1
measure we obtained is below the artificially es-
tablished baseline (the F1 measure equal to 0.64).
Moreover, the experiments show that annotation
of a small number of thoroughly selected exam-
ples of abbreviation occurrences gives satisfactory
results for the task with the F1 measure equal
to 0.92. It significantly outperforms the artificial
baseline – the most common expansion e.g. the
standard baseline for the word sense disambigua-
tion task. However, the best results are obtained
when the simulated data are combined with man-
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context=3, model based on forms lemas context=5
pos-c-cd- pos-c-cd+ pos-c+cd- pos-cd+c+ pos+c-cd+ pos-c-cd+ pos-c-cd+

weighted precision 0.562 0.690 0.662 0.691 0.689 0.677 0.693
recall 0.652 0.770 0.757 0.764 0.764 0.764 0.778

F1 0.597 0.721 0.702 0.719 0.717 0.711 0.726
macro precision 0.367 0.469 0.458 0.471 0.472 0.475 0.484

recall 0.391 0.502 0.493 0.493 0.505 0.492 0.519
F1 0.368 0.476 0.465 0.472 0.478 0.473 0.491

Table 4: Results for 10-fold cross validation for different bidirectional LSTM settings for one training set (a subset
of randomly selected cluster elements) and a chosen extension list. In all but the sixth case, word embeddings based
on word forms were used. Additional information used in the models: pos – part of speech, c – vector representing
an abbreviation itself, cd – vector codding possible extensions of the particular abbreviations (architecture from
Figure 1b).

Trainset
List

AL SL CL

P R F1 P R F1 P R F1
ANOT-rd 0.874 0.885 0.875 0.809 0.837 0.817 0.866 0.888 0.875

ANOT 0.854 0.869 0.853 0.855 0.855 0.855 0.884 0.901 0.891
SIM 0.864 0.872 0.866 0.896 0.901 0.897 0.968 0.969 0.968

ANOT+SIM 0.864 0.872 0.866 0.893 0.899 0.894 0.968 0.969 0.968

Table 5: Results for 10-fold cross validation of the selected net architecture for all extension lists and training set
variants (notation explained in the text). The three potential extensions lists for simulated training sets: AL – all
words being potential expansions, SL – all the possible words in our distributional model whose similarity to a
particular abbreviation was higher than 0.2 for a language model created on forms, CL – annotations of randomly
selected cluster elements. The best results for each expansion list are shown in bold.

Model trained on
List

AL SL CL

P R F1 P R F1 P R F1
weighted results

ANOT 0.914 0.926 0.917 0.891 0.906 0.893 0.909 0.921 0.910
SIM 0.800 0.482 0.556 0.770 0.545 0.611 0.806 0.735 0.758

SIM-ac 0.907 0.386 0.441 0.888 0.472 0.537 0.930 0.748 0.777
ANOT+SIM 0.947 0.749 0.824 0.911 0.749 0.809 0.944 0.911 0.918

ANOT+SIM-ac 0.947 0.715 0.798 0.915 0.776 0.828 0.943 0.928 0.930
macro results

ANOT 0.516 0.514 0.500 0.492 0.513 0.479 0.495 0.540 0.489
SIM 0.308 0.314 0.286 0.317 0.359 0.304 0.460 0.539 0.469

SIM-ac 0.302 0.299 0.268 0.329 0.354 0.309 0.499 0.522 0.461
ANOT+SIM 0.357 0.363 0.343 0.372 0.409 0.370 0.571 0.616 0.570

ANOT+SIM-ac 0.384 0.383 0.369 0.366 0.406 0.366 0.546 0.588 0.546

Table 6: Results for the test set of the models trained on different datasets for all extension lists (notation explained
in the text). The best results for each expansion list are shown in bold. The artificial baseline results, when we
consider only those expansions which really occurred in the data and the most frequent expansion is taken as a
solution, are (weighted) P=0.568, R=0.742, F1=0.64. Most of our results are well above this baseline and only
models trained on simulated data gave lower results on two expansions lists.

ual annotation. Is it particularly important for less
frequent expansions, as the increase of macro F1 is
significantly greater than increase of the weighted
one. This conclusion is somewhat in contradic-
tions with a claim of (Oleynik et al., 2017) who
suggested that the manual annotation is not neces-
sary to obtain relatively high results. In this con-

text, the suggested method of selecting extensions
candidates turned out to be important – the results
on the list of every possible word extension (the
AL list) for the combined training set are much
lower than for the SL and CL lists.

As the results obtained for the SL expansion
list (a list of all words from the data whose dis-
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Excerpt Expansion SIM ANOT+SIM
Jama ustna, gardło: pr [line break] prawidłowy prawy prawidłowy
‘Mouth,throat: normal’ ‘normal’ ‘right’ ‘normal’
bez o. patologicznych, pr. Romberg [aprawidlowa] próba prawidłowy prawidłowy
‘without pathological symptoms, Romberg’s test [spelling error] ‘test’ ‘normal’ ‘normal’
ogr. ruchomości kolana pr, przykurcz prawy prawy prawidłowy
‘limitation of the right knee mobility, contracture’ ‘right’ ‘right’ ‘normal’

Table 7: Examples of miss-interpretation of ‘pr’ for the CL list of potential expansions and for two training data:
SIM and ANOT+SIM.

tributional similarity was higher than 0.2) and the
ANOT+SIM training data are very good, it would
be interesting to test how important the selection
of annotated examples is and to test how many
manually annotated data is necessary for obtain-
ing satisfactory results. In the future work we want
to test our method on a large set of abbreviations
and include strings which are ambiguous between
words and abbreviations.
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Abstract

We investigate the impact of using emotional
patterns identified by the clinical practition-
ers and computational linguists to enhance
the prediction capabilities of a mental illness
detection (in our case depression and post-
traumatic stress disorder) model built using a
deep neural network architecture. Over the
years, deep learning methods have been suc-
cessfully used in natural language process-
ing tasks, including a few in the domain of
mental illness and suicide ideation detection.
We illustrate the effectiveness of using multi-
task learning with a multi-channel convolu-
tional neural network as the shared represen-
tation and use additional inputs identified by
researchers as indicatives in detecting men-
tal disorders to enhance the model predictabil-
ity. Given the limited amount of unstruc-
tured data available for training, we managed
to obtain a task-specific AUC higher than 0.90.
In comparison to methods such as multi-class
classification, we identified multi-task learn-
ing with multi-channel convolution neural net-
work and multiple-inputs to be effective in de-
tecting mental disorders.

1 Introduction

Social media platforms have revolutionized the
way people interact as a society and have become
an integral part of everyday life where many peo-
ple have started sharing their day to day activities
on these platforms. Such real-time data portray-
ing one’s daily life could reveal invaluable insights
into one’s cognition, emotion, and behavioral as-
pects. With its rapid growth among different de-
mographics and being a source enriched with valu-
able information, social media can be a significant
contributor to the process of mental disorder and
suicide ideation detection.

In the domain of mental illness detection and
especially when using social media text, lack of

sufficiently-large annotated data and the inabil-
ity to extract explanation on the derived outcome
have restricted researchers to use traditional ma-
chine learning algorithms other than state-of-the-
art methods such as deep neural networks. The
proposed research explores the feasibility of ap-
plying the state-of-the-art processes in combina-
tion with features identified using manual feature
engineering methods to enhance the prediction ac-
curacy while maintaining low false negative and
false positive rates. Also, this research looks into
detecting multiple mental disorders at the same
time by sharing lower level features among the dif-
ferent tasks. Intuitively, learning multiple mental
disorders using a single neural network architec-
ture in comparison to using a single network to
identify only one mental illness is a logical ap-
proach considering the psychological and linguis-
tic characteristics shared among the individuals
susceptible of being diagnosed with different men-
tal disorders.

Mental illness detection in social media using
Natural Language Processing (NLP) methods is
considered as a difficult task due to the com-
plex nature of mental disorders. According to
the American Psychiatric Association (2013), a
mental disorder is a “syndrome characterized by a
clinically significant disturbance in an individual’s
cognition, emotion regulation, or behavior that re-
flects a dysfunction in the psychological, biologi-
cal, or developmental processes underlying mental
functioning”. Mental disorders have become and
continue to be a global health problem. More than
300 million people from varied demographics suf-
fer from depression (World Health Organization,
2018a), and have broader implications where 23%
deaths in the world were caused due to mental and
substance use disorders (World Health Organiza-
tion, 2014). In Canada, one in every five Cana-
dians has experienced some form of mental ill-
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ness (Canadian Mental Health Association, 2016).
The adverse impact of mental disorders is promi-
nent when looking into the number of Canadians
who have committed suicide, where 90% of them
were suffering from some form of a mental disor-
der (Mental Health Commission of Canada, 2016).

When considering the current treatment proce-
dures for mental illnesses, the first step is to screen
the individual for symptoms using questionnaires.
With such an approach, the interviewee could be
more vulnerable to memory bias and also could
adapt to the guidelines prescribed by the asses-
sor. Using such screening procedures might not
expose the actual mental state of an individual,
and hence, the prescribed treatments could be in-
adequate. Also, due to various socio-economic as-
pects, people with mental disorders have not been
able to receive adequate treatments. The lack of
sufficient treatments can be seen in countries with
all types of income levels. For example, between
76% to 85% of the people from countries in low
to middle-class income do not receive sufficient
treatments for their mental illnesses, while 35%
to 50% of the people from high-income countries
do not receive adequate treatments (World Health
Organization, 2018b). In addition to insufficient
treatments, social stigma and discrimination have
prohibited people from getting proper treatment
and social support (World Health Organization,
2018b). Due to the constraints as mentioned above
and social media becoming an integral part of
everyday life for many individuals, researchers
have identified the importance of using social me-
dia data as a source for ascertaining individuals
susceptible of mental disorders (De Choudhury,
2013, 2014). Due to the rapid growth in social me-
dia users within different demographics (Statista,
2017), and the abundance of information that can
be extracted about the users could bring invaluable
insights that can be used to detect signs of mental
illnesses and suicide ideation that can be challeng-
ing to obtain using structured questionnaires. Tak-
ing the factors mentioned above into considera-
tion, we have proposed a solution that incorporates
certain profound features manually engineered by
researchers into a multi-task learning architecture,
to enhance the model predictability to distinguish
neurotypical users from users susceptible to men-
tal disorders. We hope that our research will en-
courage other researchers to investigate further the
possibilities of incorporating verified manually en-

gineered features into architectures similar to the
proposed one, to enhance the prediction accura-
cies in identifying users susceptible to mental dis-
orders.

Key Contributions

• We demonstrate the applicability of a convo-
lutional neural network with a multi-channel
architecture on different classification tasks
using unstructured and limited social media
data.

• We illustrate the use of multi-task learning
to predict users susceptible to depression and
PTSD (Post Traumatic Stress Disorder).

• We built an emotion classifier to identify the
emotion category (i.e., sad, anger, fear, joy)
associated with the tweets posted by the users
and used those categories as multiple inputs
within the deep neural network architecture.
We also explore the impact of using meta-
data (age and gender) as multiple inputs to
enhance the model predictability.

2 Ethical Considerations

It is of greater importance to follow strict guide-
lines on ethical research conduct when the re-
search data resembles vulnerable users who could
be compromised. The researchers working with
data that could be used to single out individuals
must take adequate precautions to avoid further
psychological distress. During our research, we
have given thorough considerations to these ethi-
cal facets and have adopted strict guidelines to en-
sure the anonymity and privacy of the data. Sim-
ilar to the guidelines proposed by Benton et al.
(2017a), we have exercised strict hardware and
software security measures. Our research does not
involve any intervention and has focused mainly
on the applicability of machine learning models in
determining users susceptible to mental disorders.

3 Related work

As social media has become an integral part of
ones’ day-to-day-life, it will be insightful to iden-
tify to what extent an individual has disclosed
her/his personal information and whether accu-
rate and sufficient information is being published
to determine whether or not a person has a men-
tal disorder. Considering the Twitter platform,
rather than just sharing depressed feelings, users
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are more likely to self-disclose to the extent where
they reveal detailed information about their treat-
ment history (Park et al., 2013). The same level
of self-disclosure can be identified in the Red-
dit forums (Balani and De Choudhury, 2015) and
specifically by users with anonymous accounts
(Pavalanathan and De Choudhury, 2015). Also,
it was identified that personality traits and meta-
features such as age and gender could have a
positive impact on the model performances when
detecting users susceptible to PTSD and depres-
sion (Preot et al., 2015). Similarly, we have
also identified that age and gender as multiple in-
puts have positively impacted model predictability
when used with multi-task learning.

Text extracted from social media platforms such
as Twitter, Facebook, Reddit, and other similar fo-
rums has been successfully used in various nat-
ural language processing (NLP) tasks to identify
users with different mental disorders and suicide
ideation. Social media text was used to classify
users with insomnia and distress (Jamison-Powell
et al., 2012; Lehrman et al., 2012), postpartum de-
pression (De Choudhury et al., 2013a,b, 2014),
depression (Resnik et al., 2015a, 2013, 2015b;
Schwartz et al., 2014; Tsugawa et al., 2015), Post-
Traumatic Stress Disorder (Coppersmith et al.,
2014a,b), schizophrenia (Loveys et al., 2017) and
many other mental illnesses such as Attention
Deficit Hyperactivity Disorder (ADHD), Gener-
alized Anxiety Disorder, Bipolar Disorder, Eat-
ing Disorders and obsessive-compulsive disorder
(OCD) (Coppersmith et al., 2015a).

With the advancements in neural network-based
algorithms, more research has been conducted
successfully in detecting mental disorders, despite
the limited amount of data. Kshirsagar et al.
(2017) have used recurrent neural networks with
attention to detect social media posts resembling
crisis. Husseini Orabi et al. (2018) demonstrated
that using convolution neural network-based ar-
chitectures produces better results compared to re-
current neural network-based architectures when
detecting users susceptible to depression. Even
though our experiments are to categorize users
into three classes (i.e., control, depression, PTSD),
the proposed multi-channel architecture have pro-
duced comparable results to the ones presented by
Husseini Orabi et al. (2018) using binary classifi-
cation to distinguish users susceptible to depres-
sion.

4 Proposed solution

The proposed solution consists of two key com-
ponents. The first identifies the type of emotion
expressed by each user using the model trained on
the WASSA 2017 shared task dataset. The iden-
tified emotion categories are used as multiple in-
puts within the multi-task learning environment.
The second component is the model that predicts
users susceptible to PTSD or depression. When
structuring the two neural network models (i.e.,
for emotion classification and mental illness de-
tection), a common base architecture is used. The
base architecture is a multi-channel Convolutional
Neural Network (CNN) with three different ker-
nel sizes (i.e., 1, 2, and 3). Through experiments,
we identified that the multi-channel CNN archi-
tecture manages to produce better validation ac-
curacies compared to the accuracies produced by
Recurrent Neural Network (RNN) based models,
which are commonly used with sequence data.

4.1 Data

Emotion Classification We use the data from
the 8th Workshop on Computational Approaches
to Subjectivity, Sentiment & Social Media Anal-
ysis (WASSA-2017). The data was used in the
shared task to identify emotion intensity (Moham-
mad and Bravo-Marquez, 2017). The tweets in
the dataset were assigned with the labels: anger,
fear, joy and sadness, and their associated intensi-
ties. Table 1 presents the detailed statistics of the
dataset.

Emotion Train Test Dev Total
Anger 857 760 84 1701
Fear 1147 995 110 2252
Joy 823 714 79 1616
Sadness 786 673 74 1533
Total 3613 3142 347 7102

Table 1: The number of tweets under each emotion cat-
egory

The dataset contains 194 tweets that belong to
multiple emotion categories. For example, the
tweet: “I feel like I am drowning. #depression
#anxiety #falure #worthless” is associated with
the labels ‘fear’ and ‘sadness’. When training
the model, we created a single training dataset by
combining both the train and test data and tested
the trained model on the development dataset. The
main reason for using such an approach is to im-
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prove the neural network model training by pro-
viding as much data as possible so that model
overfitting will be reduced while increasing the
model generalization. During our training, we did
not take into consideration the emotional intensity
and expect to use it in our future research as an
additional input.

Mental Illness Detection To detect whether a
user is a neurotypical user or if the user is suscep-
tible to having either PTSD or depression, we used
the dataset from the Computational Linguistics
and Clinical Psychology (CLPsych) 2015 shared
task (Coppersmith et al., 2015b). Table 2 presents
the detailed statistics of this dataset.

Control PTSD Depressed
Number of users 572 246 327
Average age 24.4 27.9 21.7
Gender (female)
distribution per class

74% 67% 80%

Table 2: CLPSych 2015 shared task dataset statistics

Preprocessing: All the URLs, @mentions,
#hashtags, RTweets, emoticons, emojis, and num-
bers were removed. We removed a selected set
of stopwords but kept first, second, and third per-
son pronouns. It was discovered that users suscep-
tible to mental disorders such as depression have
frequently used the first-person singular pronouns
compared to neurotypical users (Pennebaker et al.,
2007). Also, the punctuation marks except for a
selected few were removed. The full stop, comma,
exclamation point, and the question mark were
kept while removing all the other punctuation
marks. The NLTK (Natural Language Toolkit)
tweet tokenizer was used to tokenize the tweets.
We selected 200,000 unique tokens to build the
vocabulary, rather than choosing all the unique
words, which could lead to sparse word vectors
with high dimensionality.

Vocabulary Generation: To obtain an enriched
dictionary containing the most relevant terms, we
introduced a novel approach instead of the tradi-
tional approach used in many deep learning APIs
(e.g., Keras deep learning high-level API1). Our
approach takes into account the top ‘K’ terms
based on their term frequency and inverse doc-
ument frequency (TF-IDF) scores. To build the

1https://keras.io/preprocessing/text/

dictionary, first, we calculated the TF-IDF val-
ues under each user (i.e., by considering all the
train/validation tweets of a single user as one sin-
gle document). Then we took the maximum score
out from all the assigned TF-IDF scores given the
word. The reason for taking the maximum is to
extract the words identified as closely related to a
given user. Based on the computed TF-IDF scores,
we picked the top ‘K’ words (K=200,000) to con-
struct the vocabulary. A dictionary created us-
ing the above approach allows the model to cap-
ture the underlying relationships between the crit-
ical words. In comparison to the word frequency-
based approach, using the vocabulary based on
the TF-IDF scores has produced relatively better
results for the recorded matrices (refer Table 4).
When analyzing the model’s prediction accuracy
and loss (i.e., on training and validation data) over
five-fold cross-validation, we identified that the
model trained using the TF-IDF based vocabulary
has been more stable with less randomness com-
pared to the model trained using the vocabulary
based on word frequencies.

When choosing the maximum sequence length
for the input data, it is essential to capture as
much information as possible from each user, es-
pecially given consideration to the research do-
main of mental illness detection. Since we have
concatenated all the individual tweets belonging to
one user as a single string, a high variance in the
sequence length was identified among users. On
average, a single user has used around 15,800 to-
kens, where the maximum number of tokens used
by an individual user is nearly 64,800. Rather than
experimenting with different sequence lengths, we
selected the maximum length for the sequence by
adding three standard deviations to the average se-
quence length covering 99% of users with a se-
quence length of 46,200 tokens. The shorter se-
quences were padded with zeros (to the end of the
sequence), and the longer sequences were trun-
cated (from the end of the sequence).

Model Architecture The selected model archi-
tecture consists of three main components: multi-
task learning, CNN with multi-channel, and multi-
inputs. Multi-task learning is known to be suc-
cessful when the data is noisy and limited so that
when trying to learn one task, it could gain ad-
ditional information from the other tasks to iden-
tify the most relevant features. Learning a shared
representation so that individual tasks can benefit
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from one another (Caruana, 1997) can be consid-
ered as one of the most appropriate architectures
when trying to detect multiple mental illnesses.
Benton et al. (2017b) demonstrated the success-
ful use of multi-task learning to recognize men-
tal illnesses and suicide ideation. Different from
their approach, we add multiple features discov-
ered by researchers in the fields of computational
linguistics and psychology, to enhance the model
performances. We consider that it is important to
identify the impact of manually engineered fea-
tures on the model’s predictability. We also rec-
ognized that using a CNN multi-channel architec-
ture is best suited for tasks dealing with limited
unstructured data compared to RNN architectures
or multilayer perceptrons (MLP).

We used a multi-channel model as the base
model in both emotion classification (i.e., to de-
tect anger, sadness, joy, fear) and mental illness
detection (i.e., to detect PTSD and depression).
The multi-channel model uses three versions of
a standard CNN architecture with different ker-
nel sizes. We identified that using different kernel
sizes (different n-grams sizes) with Global Maxi-
mum Pooling produces better results compared to
a standard CNN architecture. The optimal valida-
tion accuracies for both emotion and mental illness
detection models were derived using three chan-
nels with kernel sizes 1, 2, and 3. Increasing the
kernel sizes or the number of channels reduced the
validation accuracies.

For the emotion classification task, the CNN
in each channel was tested with 64 filters, same
padding and a stride of 1 (distance between suc-
cessive sliding windows). We used Rectified Lin-
ear Unit (ReLU) as the activation function. To nor-
malize the data and to reduce the impact of model
overfitting, we used the batch normalization layer
and used a dropout (Srivastava et al., 2014) as the
regularization technique with a probability of 0.2.
As the final layer in each channel, we used global
maximum pooling to reduce the number of param-
eters needed to learn so that it could further re-
duce the impact of model overfitting. The outputs
from each global maximum pooling layers (from
each channel) were concatenated and fed into a
fully connected layer with four hidden units that
use sigmoid activation to generate the output. All
the inputs were sent through trainable embedding
layers (randomly initialized) with a dimension of
300 for the emotion classification task and 100 for

the mental illness detection task.
Throughout our research, we did not emphasize

much on word embeddings as our primary objec-
tive was to identify the impact of merging features
derived using deep learning methods with few of
the notable features that were identified over the
years by researchers on detecting mental illnesses.
Even though our best results were obtained by in-
stantiating the embedding layer weights with ran-
dom numbers (refer Table 4), we conducted sev-
eral preliminary experiments using word embed-
dings trained on the fastText (Joulin et al., 2017)
algorithm. We decided to use fastText because
given the unstructured nature of the twitter mes-
sages we could obtain a more meaningful repre-
sentation by expressing a word as a vector con-
structed out of the sum of several vectors for dif-
ferent parts of the word (Bojanowski et al., 2017).
One of the reasons for the low measurements
could be due to the reason that we used fewer data
to train our embeddings.

Mental illness detection When building the
multi-task learning model to detect mental ill-
nesses, the base model architecture (i.e., for the
shared representation) has used a structure simi-
lar to the one used in emotion classification. The
fundamental changes to the base model include:
using 256 filters instead of 64 and using L1 ker-
nel regularization in each convolution layer. We
used the trained model on the emotion data to pre-
dict the emotion category of the individual Twit-
ter messages in the CLPSych 2015 dataset. We
grouped the predicted probabilities for each user
under the different emotion categories by calculat-
ing the standard deviation. We used the predicted
probabilities for each emotion category as mul-
tiple inputs when detecting neurotypical and de-
pressed users, while age and gender were used as
inputs when predicting users with PTSD. Before
concatenating the multiple-inputs with the output
from the multi-channel architecture, the multiple-
inputs were transformed using a fully connected
layer with 128 hidden units and ReLU activation.
The output from the shared layers and the trans-
formed multiple inputs were merged before being
used as the input to the fully connected layer with
three individual hidden units and sigmoid activa-
tion. Before applying multiple-inputs to the neural
network architecture, all the relevant inputs were
normalized using a minimum, maximum scaler
initialized within the range 0 and 1. The neu-
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ral network architecture used for the multi-task,
multi-channel, multi-input model for mental ill-
ness detection is shown in Figure 1.

Model Training When training both the emo-
tion and the mental illness detection models, we
minimized the validation loss to learn the opti-
mal neural network parameters. To train both the
models, we used minibatch gradient descent with
smaller batch sizes. Using a smaller batch size is
known to stabilize model training while increas-
ing the model generalizability. In many cases, the
optimal results were obtained by using batch sizes
smaller or equal to 32 (Masters and Luschi, 2018).
In our experiments, we used batch sizes 32 and
8 respectively for training the emotion and men-
tal illness detection models. Both models were
trained for 15 epochs and used early stopping
when the validation loss has stopped improving.
The Adam optimizer (Kingma and Ba, 2014) was
used when training both the models with the de-
fault learning rate of 0.001.

5 Results

5.1 Emotion classification

The emotion detection task was implemented as
a multi-class, multi-label classification because
the same Twitter message can belong to multiple
classes. Since we would like to have indepen-
dent probability values for each class rather than
a probability distribution over the four classes,
we used binary cross-entropy as the loss function.
Having independent probability values is better-
oriented towards the identification of independent
emotion categories. Table 3 reports the emo-
tion classification results obtained using multi-
channel CNN (MCCNN), and in addition, results
from several other experiments: CNN with max-
pooling (CNNMax) and bidirectional Long Short
Term Memory module (biLSTM) were reported
for comparison.

Acc
(%)

F1(%) P(%) R(%)
P rank

(%)
MCCNN 88.88 77.41 79.68 75.67 84.85
CNNMax 85.82 68.95 76.97 62.70 81.39
biLSTM 85.07 68.66 75.97 63.49 80.97

Table 3: Emotion multi-class, multi-label classification
results

In Table 3, the recorded accuracy is based on

the Keras API2 accuracy calculation on the multi-
class, multi-label models where it takes into ac-
count the individual label predictions rather than a
complete match (i.e., if there is more than one la-
bel per instance). The F1-score, precision, and re-
call measures are calculated based on the ‘macro’
averaging on the exact match and hence the low
percentages. We have also reported the label rank-
ing average precision score, which averages over
the individual ground truth label per instance. This
metric is mainly used in tasks that involve multi-
label ranking. From the reported results, it can be
seen that the multi-channel CNN model has given
the best results compared to the standard CNN
model and the RNN based model. Based on the
outcome, we have used the above trained multi-
channel CNN model to make predictions on the
CLPsych 2015 individual tweets.

5.2 Mental illness detection

For detecting mental illnesses, we used binary
cross-entropy loss as the loss function and sig-
moid activation as the final layer activation. The
data was sampled using Stratified Shuffle Split to
maintain class distribution between 80%/20% of
training and validation data. Our models were
evaluated only on the validation data because the
CLPSych 2015 shared task test data labels were
not made available. To ascertain the model reli-
ability, we performed 5-fold cross-validation and
discovered that having multi-inputs on a multi-
task, multi-channel architecture does increase the
model performances. The recorded model accura-
cies were averaged over five folds with a standard
deviation of 0.01.

Table 4 demonstrates the model performances
according to different combinations of the multi-
task, multi-channel, and multi-input architectures.
To demonstrate the effectiveness of the proposed
approach, we conducted several experiments us-
ing variants of two deep learning architectures;
Convolutional Neural Networks, and Recurrent
Neural Networks and also to measure a base-
line, we used the shallow learning approach; Sup-
port Vector Machine. The experiments: MtMcMi
(Multi-task Multi-channel, Multi-input), MtMc
(Multi-task, Multi-channel), MtMcMiFT(Multi-
task, Multi-channel, Multi-input, using FastText
word representations), MtMcMiFr (Multi-task,
Multi-channel, Multi-input, using word Frequen-

2https://keras.io/metrics/
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Figure 1: Multi-task, multi-channel, multi-input model for mental illness detection

Accuracy(%) Avg. F1(%) Avg. Precision(%) Avg. Recall(%) Avg. AUC(%)
C D P C D P C D P C D P C D P

MtMcMi 89.08 87.59 91.35 89.07 83.81 86.06 89.19 86.61 89.81 89.07 82.05 83.50 95.30 92.24 93.18
MtMc 88.55 86.89 91.96 88.53 83.06 87.02 88.82 85.11 90.54 88.54 81.75 84.64 94.62 90.74 92.54
MtMcMiFT 85.50 86.28 91.26 85.45 82.73 85.90 85.91 84.06 89.70 85.49 81.97 83.30 93.88 91.01 91.91
MtMcMiFR 87.42 86.72 91.52 87.41 83.07 86.52 87.48 84.63 89.49 87.41 82.00 84.36 94.88 91.55 92.53
McMclass 92.00 75.69 76.73 89.05 76.83 81.22 86.34 78.25 86.93 92.00 75.69 76.73 92.44 84.55 86.32
biLSTMMtMi 51.35 71.61 78.60 41.27 41.73 44.00 41.92 35.80 39.30 51.52 50.00 50.00 56.87 59.89 60.28
biLSTMMt 52.48 72.31 78.60 47.48 46.40 44.00 47.84 59.81 39.30 52.57 52.06 50.00 56.32 59.96 54.89
svmMclass 81.73 52.91 42.85 75.82 57.01 46.87 70.76 62.11 51.97 81.73 52.91 42.85 81.18 79.12 77.70

Table 4: Mental illness detection using multi-task, multi-channel, multi-input architecture. The labels ‘C’, ‘D’ and
‘P’ denotes ‘Control’, ‘Depressed’ and ‘PTSD’

cies), McMclass (Multi-channel, Multi-class),
biLSTMMtMi (bidirectional Long Short Term
Memory, Multi-task, Multi-input), biLSTMMt
(bidirectional Long Short Term Memory, Multi-
task), svmMclass (support vector machine, Multi-
class) were conducted to identify a fitting ap-
proach to discover individuals who are susceptible
of mental disorders.

The metrics used for the evaluation are accu-
racy, precision, recall, F1-score, and Area Un-
der the Receiver Operating Characteristic curve
(AUC). The AUC score is used to compare the
model performances where the average AUC is
calculated with standard deviation. The standard
deviation is used as a mechanism to identify vari-
ance among model performances, which could
bring insight into the reliability of the trained
model. For each experiment, we recognized that
the standard deviation is approximately around
0.01, which provides an empirical confirmation
that the sampling using stratified shuffle splits pro-
vides an accurate representation of the complete
dataset.

The “MtMcMi” architecture uses features based

on emotion as multi-inputs on the control and de-
pressed users while age and gender were used on
the users with PTSD. In comparison to “MtMc”
which is multi-task, multi-channel without multi-
inputs, we could see that using multiple inputs
have increased the average AUC score, as well as
most of the other evaluation matrices (i.e., preci-
sion, recall, and F1-score). Even though the in-
crease could not be considered as significant, the
potential room for improvement is high if provided
with more accurate emotion prediction and addi-
tional profound features identified by researchers.
Concerning the emotion detection task, we could
have obtained considerable improvements in pre-
diction accuracies if provided with additional data
when training the deep learning model.

When analyzing the result for “MtMcMiFr”,
which is using the Multi-task, Multi-channel,
Multi-input architecture with the vocabulary cre-
ated using the default word frequencies; we could
identify that our proposed approach, which uses
the vocabulary constructed using the weighted TF-
IDF words has produced comparatively better re-
sults. Even though the gained improvements could
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not be considered as significant, the proposed
method can be regarded as an effective approach
when initiating the vocabulary, that provides a bal-
ance between the rare and frequently used words.

In the experiment ”MtMcMiFT”, where we
used the fastText embeddings layer with the num-
ber of dimensions equal to 100 as an input to
the Multi-channel convolutional neural network, it
was observed that the results obtained using the
randomly initialized embedding layer are higher
than with the fastText pre-trained embeddings.
This could be due to embeddings not being trained
on a sufficiently large dataset (we trained them
only on the CLPSych 2015 dataset). In future
work, we will conduct further research to enhance
the embedding layer word representation by us-
ing state-of-the-art language modeling approaches
trained on larger datasets.

The effectiveness of using convolutional neu-
ral network models can be identified when eval-
uating the results obtained using Recurrent Neural
Network (RNN) based architectures. The “biLST-
MMtMi” method uses a bidirectional Long Short
Term Memory (“biLSTM”) model in a Multi-task,
Multi-input design and comparatively has pro-
duced poor results for different combinations of
hyperparameters. This could be due to several rea-
sons such as the unstructured nature of the Twitter
text as well as the non-existence of long-term de-
pendencies. For example, our best results were ob-
tained when using the kernel sizes (i.e., the num-
ber of consecutive tokens) one, two, and three
and ones the kernel sizes are increased the over-
all model predictability decreases. When using a
“biLSTM” model as the shared layer in multi-task
learning without multiple inputs (“biLSTMMt”),
the results are somewhat better compared to when
using multi-inputs.

To demonstrate the effectiveness of using multi-
task learning to detect multiple mental disor-
ders, we compared the proposed approach with
multiclass classification to distinguish neurotypi-
cal users from users susceptible to having either
PTSD or depression. First, we used a multi-
channel convolutional neural network to predict
the three classes (i.e., control, depress, and PTSD).
In comparison to our proposed approach, we can
identify that multiclass classification using CNN
have produced slightly better results on two oc-
casions, which is for average accuracy and recall
under the control class. Through further analysis,

we see that average precision, F1-score, and AUC
scores are higher for all three classes when us-
ing the proposed approach. Overall the multiclass
classification task has produced low scores (espe-
cially for precision, F1-score, and AUC) when de-
tecting users susceptible to depression and PTSD
while the proposed approach has contributed sig-
nificantly better results. The better results could
be due to the reason that depression is commonly
identified among individuals with PTSD, and the
shared layer has managed to learn such common
characteristics while the task-specific layers have
learned the individual features unique to each dis-
order.

As a baseline, we used the linear SVM classifier
with TF-IDF features (200,000 features) in a mul-
ticlass classification task (i.e., svmMclass). When
sampling the data, five splits of 80% training and
20% testing were created using the Stratified Shuf-
fle Split method to maintain class distribution. We
also computed a majority class baseline, which
classifies everything in the largest class (the con-
trol class in the training data). It achieved an ac-
curacy of 50.21% on the test data. Overall, we can
see that using limited unstructured data with an
architecture based on CNN have produced better
results compared to the solution based on RNN.
Notably, the multi-task, multi-channel architec-
ture with multiple-inputs has provided the best re-
sults and confirms that using multiple-inputs has
a positive influence on the overall model perfor-
mances. Also, the appropriateness of using multi-
task learning instead of multiclass classification
to detect multiple mental disorders is highlighted.
Similar to the fact that certain mental disorders
share specific common symptoms (American Psy-
chiatric Association, 2013), multi-task learning
has managed to learn such characteristics through
a shared representation followed with task-specific
layers to identify the unique attributes to differen-
tiate multiple mental disorders.

6 Comparison to related work

Even though our work could not be directly com-
pared with (Benton et al., 2017b), we can iden-
tify that our model has produced competitive re-
sults, especially when comparing the AUC score
for detecting users with PTSD and depression.
Our best model has scored an AUC score >0.90
in identifying all three individual classes (con-
trol, depression, PTSD) in comparison to an AUC
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score <0.80 for detecting PTSD and depression
and an AUC score >0.90 for detecting the neu-
rotypical users (Benton et al., 2017b). In the
CLPSych 2015 shared task (Coppersmith et al.,
2015b), Resnik et al. (2015a) have reported AUC
scores of 0.86 (depression vs. control), 0.84 (de-
pression vs. PTSD) and 0.89 (PTSD vs. control)
and similarly Preotiuc-Pietro et al. (2015) have re-
ported an average AUC score around 0.86 in dif-
ferentiating neurotypical users from users suscep-
tible to PTSD and depression. Even though we
have produced better results using the validation
dataset, we could not directly compare our results
with the shared task participants as they have eval-
uated their models against the test dataset which
was not made available to us. In our future work,
we will conduct experiments using public forum
post data extracted from platforms such as Red-
dit3. In comparison, the proposed approach can be
tested with adequate adjustments to detect multi-
ple mental disorders such as depression, anxiety,
PTSD, and six others using the dataset introduced
by Cohan et al. (2018). The authors have achieved
an F1-score of 27.83% for multi-class classifica-
tion and 53.56% and 57.60% respectively, when
detecting depression and PTSD as binary classifi-
cation tasks.

7 Conclusion

In this paper, we investigated the impact of merg-
ing features derived using deep neural network
architectures with profound manually engineered
features identified by researchers over the years
using shallow learning to detect mental disor-
ders using social media text. In particular, we
have identified that by using a multi-channel con-
volutional neural network as a shared layer in
a multi-task learning architecture with multiple-
inputs (e.g., different emotion categories, age, and
gender) have produced comparatively competitive
results in detecting multiple mental disorders (in
our case depression and PTSD). For future work,
we will continue our research on suicide risk de-
tection, and the temporal impact different mental
disorders have on suicide ideation.
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Abstract

We present a system for automatically extract-
ing pertinent medical information from dia-
logues between clinicians and patients. The
system parses each dialogue and extracts en-
tities such as medications and symptoms, us-
ing context to predict which entities are rele-
vant. We also classify the primary diagnosis
for each conversation. In addition, we extract
topic information and identify relevant utter-
ances. This serves as a baseline for a system
that extracts information from dialogues and
automatically generates a patient note, which
can be reviewed and edited by the clinician.

1 Introduction

In recent years, electronic medical record (EMR)
data have become central to clinical care. How-
ever, entering data into EMRs is currently slow
and error-prone, and clinicians can spend up to
50% of their time on data entry (Sinsky et al.,
2016). In addition, this results in inconsistent
and widely variable clinical documentation, which
present challenges to machine learning models.

Most existing work on information extraction
from clinical conversations does not differentiate
between entities that are relevant to the patient
(such as experienced symptoms and current med-
ications), and entities that are not relevant (such
as medications that the patient says were taken by
someone else).

In this work, we extract clinically relevant infor-
mation from the transcript of a conversation be-
tween a physician and patient (and sometimes a
caregiver), and use that information to automati-
cally generate a clinical note, which can then be
edited by the physician. This automated note-
taking will save clinicians valuable time and al-
low them to focus on interacting with their patients

rather than the EMR interface. We focus on lin-
guistic context and time information to determine
which parts of the conversation are medically rel-
evant, in order to increase the accuracy of the gen-
erated patient note. In addition, the automatically
generated notes can provide cleaner and more con-
sistent data for downstream machine learning ap-
plications, such as automated coding and clinical
decision support.

Figure 1 shows a synthetic example of the kind
of medical conversation where context and time
information are important.

DR: Are you currently taking [Adderall]Med.?
PT: No, but I took it [a few years ago]TIMEX3.
DR: And when was that?
PT: Um, around [2015 to 2016]TIMEX3.
DR: And did you ever take [Ritalin]Med.?
PT: I dont think so.

Typical output: Adderall, Ritalin.
Expected output:

Medications: Adderall (2015-2016), no Ritalin

Figure 1: Synthetic conversation example.

2 Related Work

Previous studies have shown that current EMR
data are difficult to use in automated systems
because of variable data quality (Weiskopf and
Weng, 2013; Thiru et al., 2003; Roth et al., 2003).
Weiskopf and Weng (2013) showed that EMR data
is frequently incomplete, and is often not evalu-
ated for quality. In addition, the variance in doc-
umentation style, abbreviations, acryonyms, etc.
make it difficult for algorithms to interpret the text.

Some recent work on machine learning meth-
ods for EMR data includes predicting mortality
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and discharge diagnoses (Rajkomar et al., 2018),
predicting unplanned hospital readmissions for 5k
patients by encoding EMR data with a convolu-
tional neural network (Nguyen et al., 2018), and
predicting diagnosis codes along with text expla-
nations (Mullenbach et al., 2018).

Although there is some existing work on gener-
ating text from structured data (Dou et al., 2018;
Lebret et al., 2016), very little work has been done
in the clinical domain. Liu (2018) generated pa-
tient note templates with a language model, which
was able to approximate the organization of the
note, but no new information from the patient en-
counter was used.

Du et al. (2019) introduced a system for ex-
tracting symptoms and their status (experienced or
not) from clinical conversations using a multi-task
learning model trained on 3,000 annotated conver-
sations. However, their model was trained on a
limited set of 186 symptoms and did not address
other medically relevant entities.

A latent Dirichlet allocation (LDA) model (Blei
et al., 2003) is a topic modeling technique and has
been applied to clinical text to extract underlying
useful information. For example, Bhattacharya
et al. (2017) applied LDA on structured EMR data
such as age, gender, and lab results, showing that
the relevance of topics obtained for each medical
diagnosis aligns with the co-occurring conditions.
Chan et al. (2013) applied topic modeling on EMR
data including clinical notes and provided an em-
pirical analysis of data for correlating disease top-
ics with genetic mutations.

3 Dataset

Primary diagnosis Dyads

ADHD 100
Depression 100
COPD 101
Influenza 100
Osteoporosis 87
Type II diabetes 86
Other 226

Table 1: Data distribution (ADHD: Attention Deficit
Hyperactivity Disorder; COPD: Chronic Obstructive
Pulmonary Disorder)

For training and testing our models, we use a
dataset of 800 patient-clinician dialogues (dyads)

purchased from Verilogue Inc.1, which includes
demographic information about the patient as well
as the primary diagnosis. The data consist of audio
files and human-generated transcripts with speaker
labels. Table 1 shows the distribution of diagnoses
in the dataset.

Since these data are proprietary, we also use a
few transcripts of staged clinical interviews from
YouTube as examples. 2

4 Annotation

First, the conversation transcripts are automati-
cally annotated for time phrases using Heidel-
Time, a freely available rule-based time phrase
tagger (Strötgen and Gertz, 2010), as well as a lim-
ited set of common medical terms.

Two physicians then conduct manual annota-
tion by correcting the automatic annotations and
making any necessary additions, using a custom-
developed annotation interface. The following
types of entities are annotated: anatomical loca-
tions, diagnoses, symptoms, medications, reasons
for visit, referrals, investigations/therapies, and
time phrases. A total of 476 conversations are an-
notated by a unique physician, and inter-annotator
agreement is calculated using DKPro Statistics3

on 30 conversations which were annotated by both
physicians. The agreement across all entity types
is 0.53 Krippendorffs alpha (Krippendorff, 2004)
and 0.80 F1 (partial match).

We developed a custom annotation interface for
labeling entities and their attributes in the tran-
scripts, shown in Figure 3. The software includes
the ability to add new annotation types and at-
tributes, edit and delete previous annotations, and
view the entire conversation for context.

1http://www.verilogue.com
2YouTube videos of simulated patient encounters were

sourced by searching for the following terms: “medical
history”, “patient interview”, and “clinical assessment”. Our
clinician team member watched potential videos in the search
list and selected only the ones that met the following criteria:
1) clinician asking a patient questions in simulated clinical
scenarios; 2) a subjective perception of adequate fidelity to
real clinical encounters. The audio for these dialogues were
transcribed by a professional transcriptionist. Examples used
in this paper:
1: https://www.youtube.com/watch?v=
O2qYU8n4VsA, 2: https://www.youtube.
com/watch?v=CUSxC-XHT2A, 3: https:
//www.youtube.com/watch?v=5_jIcAk1XeA

3https://dkpro.github.io/
dkpro-statistics
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Figure 2: Example dialogue: (Left) Human annotation, (Right) automatic annotation. In both tables, highlight
indicates the annotated entities; darker highlights indicate overlap between human and automatic annotations.
Subscripts indicate the entity type.

5 Methods and experiments

The automated pipeline currently includes the fol-
lowing components: preprocessing, utterance type
classification (questions, answers, statements,
etc.), entity extraction (medications, symptoms,
diagnoses, etc.), attribute classification (modality
and pertinence), primary diagnosis classification,
SOAP classification, and note generation. In this
section we discuss each component in detail, in-
cluding methods and results. See Figure 4 for a
diagram of the system components.

5.1 Preprocessing and data splitting

Before passing the data to our models, the text of
the transcripts is lowercased, and punctuation is
separated from words using WordPunctTokenizer
from NLTK (Steven Bird and Loper, 2009). For
the utterance type and attribute classification tasks,
each word in an utterance is represented as a
word embedding. In this work, we use publicly
available ELMo embeddings (Peters et al., 2018)
trained on PubMed abstracts, as well as word2vec
embeddings trained on PubMed4.

Of the 476 annotated conversations, we ran-
domly select 50 to use as a test set for entity ex-
traction and attribute classification.

5.2 Utterance type classification

In order to understand the conversational context,
it may be useful to know whether an utterance is

4http://evexdb.org/pmresources/
vec-space-models/

a question or answer. To this end, we classify
each utterance as one of the following types: ques-
tion, statement, positive answer, negative answer,
backchannel (such as ‘uh-huh’ or ‘yeah’) or ex-
cluded (incomplete or vague utterance).

The utterance type classification model is a
two-layer bidirectional gated recurrent unit (GRU)
neural network (Cho et al., 2014), implemented in
PyTorch, with the architecture shown in Figure 5.
We augment the training data with two external,
publicly available datasets: the Switchboard cor-
pus (Calhoun et al., 2010), and the AMI corpus5.
We map the utterance labels from the AMI and
Switchboard corpora to our set of labels, and add
these data to our training set.

We evaluate the utterance type classifier on a set
of 20 conversations, annotated independently by 2
annotators with inter-annotator agreement of 0.77
(Cohen’s kappa).

Table 2 shows the classification results by utter-
ance type. As the most frequent type, statements
are the easiest for the model to identify. The low
performance of infrequent classes indicates that
we could potentially improve performance by us-
ing an oversampling or regularization method.

5.3 Entity extraction
5.3.1 Time phrase extraction
In order to determine clinical relevance, it is im-
portant to know the time and duration of events in
the patient history. We use HeidelTime to identify

5http://groups.inf.ed.ac.uk/ami/
corpus/
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Figure 3: Annotation interface

ASR data

Data pre-processor

Utterance
type classifier

Entity identifier (Time
expression identifier,

Medical entity identifier)

Attribute classifier

Primary diag-
nosis classifier

SOAP classifier

Note generator

Topic
modeling

Relevant utter-
ance extractor

Figure 4: System components and data flow

time phrases in the transcripts, including times,
dates, durations, frequencies, and quantities.

5.3.2 Clinical entity extraction

In addition to time phrases, we identify the follow-
ing clinical concept types: anatomical locations,
signs and symptoms, diagnoses, medications, re-
ferrals, investigations and therapies, and reasons

Figure 5: Utterance type classification model

for visit. To identify these entities, we search the
transcript text for entities from a variety of med-
ical lexicons, including the BioPortal Symptom
lexicon 6, SNOMED-CT 7, the Consumer Health
Vocabulary (CHV) 8, and RxNorm (a database of

6https://bioportal.bioontology.org/
ontologies

7http://www.snomed.org/
8https://www.nlm.nih.gov/research/

umls/sourcereleasedocs/current/CHV/
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Type Instances P R F1

Question 539 0.72 0.49 0.59
Statement 2,347 0.82 0.83 0.82
AnswerPositive 195 0.36 0.41 0.38
AnswerNegative 82 0.74 0.34 0.47
Backchannel 494 0.56 0.76 0.64
Excluded 131 0.20 0.16 0.18

Average 3,788 0.72 0.72 0.71

Table 2: Utterance type classification results

normalized medication names) 9.
Entity identification is currently limited to the

terms present in our reference lists, which are large
but cannot cover all possible expressions of rel-
evant entities. There may be many valid varia-
tions of these entities that we hope to be able to
identify in the future, potentially using a more so-
phisticated tagging method such as named entity
recognition (NER).

Type Instances P R F1

Anatomical
locations

328 0.79 0.45 0.57

Diagnosis 346 0.88 0.62 0.72
Investigation
or therapy

239 0.42 0.24 0.31

Medication 579 0.55 0.79 0.65
Referral 61 0.11 0.11 0.11
Sign/symptom 650 0.82 0.38 0.52
Time expres-
sion

1286 0.98 0.64 0.77

Average 3489 0.80 0.56 0.64

Table 3: Entity extraction results

5.3.3 Attribute classification
After extracting relevant entities, we classify them
according to several attributes, including modality
(i.e., whether the events were actually experienced
or not) and pertinence (i.e., to which disease the
entities are relevant, if any). For example, a patient
might mention a medication that they have not ac-
tually taken, so we would not want to record that
medication as part of the patient’s history. In these

index.html
9https://www.nlm.nih.gov/research/

umls/rxnorm/

Type Instances P R F1

Actual 504 0.87 0.80 0.83
Negative 144 0.63 0.64 0.64
Possible 5 0.09 0.40 0.14
None 91 0.59 0.71 0.65

Average 744 0.78 0.76 0.77

Table 4: Modality classification results

Type Instances P R F1

ADHD 126 0.54 0.41 0.28
COPD 22 0.20 0.45 0.28
Depression 32 0.27 0.81 0.41
Influenza 246 0.72 0.83 0.77
Other 312 0.79 0.51 0.62
None 6 0.32 1.00 0.48

Average 744 0.68 0.61 0.62

Table 5: Pertinence classification results

cases, the context of the conversation, as well as
time information, is crucial to recording the pa-
tient’s information accurately.

The attribute classifier is a support vector ma-
chine (SVM) trained with stochastic gradient de-
scent using scikit-learn (Pedregosa et al., 2011).
Each entity is represented as the average word em-
bedding, concatenated with the word embeddings
for the previous and next 5 words. We also include
the speaker code of the utterance in which the en-
tity appears. We train the model on 252 conver-
sations and test on 50 for which we have human-
assigned modality and pertinence labels.

We classify entities into the following modality
categories: actual, negative, possible, or none. Ta-
ble 4 shows the results of modality classification
on the test set of 50 conversations. Since the ma-
jority of entities have a modality of ‘actual’, the
model performs the best on this class. Entities
are also classified as pertinent to one of the dis-
ease categories, or none. Table 5 shows the re-
sults of pertinence classification. Again we see
that the classifier performs the best on the classes
with more examples.

Modality classification performs fairly well
with a context window of 5, likely because the rel-
evant information can be found nearby in the text.
However, pertinence classification is not as accu-
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rate, perhaps because it requires more global infor-
mation about what conditions the patient has. In
some cases, pertinence may be purely determined
by a clinicians medical knowledge, not the infor-
mation present in the text.

In the future we hope to have more annotated
data on which to train, which should improve
the overall performance, especially for the smaller
classes.

5.4 Clinical note generation

In the note generation phase, we convert the struc-
tured data from the previous steps (i.e., entities and
their attributes) into a free text clinical note that
resembles what a physician would have written.
This involves organizing the entities according to
a structured note organization and, finally, gener-
ating the text of the note.

5.4.1 SOAP entity classification

After extracting clinical entities, we classify them
according to the traditional four sections of a clini-
cal note: subjective (S), objective (O), assessment
(A), plan (P) (Bickley and Szilagyi, 2013). We
also add a ‘none’ category, which means that the
given entity should not be included in the note.

The SOAP classifier is a neural network trained
on each word of the entity, the previous and next
five words, the speaker code of the corresponding
utterance, and the type of entity. The text and con-
text are represented as word embeddings using the
PubMed word2vec model. Since the note genera-
tion requires special annotations, we currenly only
have 58 conversations for training, and 20 for test.

Table 6 shows the results of SOAP classifica-
tion. The model is the most accurate at determin-
ing which information to exclude from the note.

Type Instances P R F1

S 299 0.52 0.56 0.54
O 51 0.44 0.43 0.44
A 55 0.35 0.16 0.22
P 66 0.22 0.15 0.18
None 708 0.69 0.72 0.70

Average 1189 0.59 0.61 0.60

Table 6: SOAP classification results

Class P R F1

ADHD 0.84 0.84 0.83± 0.05
Depression 0.80 0.64 0.71 ± 0.08
Osteoporosis 0.81 0.78 0.78 ± 0.04
Influenza 0.91 0.95 0.93 ± 0.04
COPD 0.75 0.65 0.68 ± 0.14
Type II Diabetes 0.81 0.75 0.76± 0.05
Other 0.71 0.82 0.76± 0.05

Average 0.79 0.78 0.78± 0.04

Table 7: Primary diagnosis classification results. 800
dyads using 5-fold cross-validation (Train: 80%, Test:
20%). F1 score is the mean ± variance.

5.4.2 SOAP note generation
Our current note generation step organizes the en-
tities into the SOAP sections, and lists them along
with their attributes. Actually generating full sen-
tences that more closely resemble a physician-
generated note is the next step for our future work.

5.5 Primary diagnosis classification

We classify the primary diagnosis for each con-
versation. The purpose of this task is to automati-
cally identify the main diagnosis for billing codes.
We train and test the models on a 5-fold cross
validation of the 800 dyads. We apply tf-idf on
the cleaned text of each dyad and then use logis-
tic regression, SVMs with various parameter set-
tings, and random forest models for classification.
The F1 score is calculated based on the human-
assigned labels available in the transcription.

The primary diagnosis classifier performs rea-
sonably well even without labeled entity features.
The results for influenza achieve almost 0.90 F1
score, while the results for COPD and depression
obtain an F1 score of approximately 0.70. By in-
specting the conversations, we find that visits with
a primary diagnosis of depression mostly con-
sist of general discussions related to daily routine,
family life, and mood changes, which often result
in misclassification probably because no medical
terms are mentioned. By contrast, in patient vis-
its where the primary diagnosis is influenza, the
discussion is more focused on the disease.

The top words used by the classifier were H1N1,
ache, temperature, sore, sick, symptom, swine,
body, and strep, which possibly makes it easier to
classify. On the other hand, COPD is misclassi-
fied mostly as the category ‘other’, which includes
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diseases such as asthma, CHF (Congestive heart
failure), hypercholesterolemia, atopic dermatitis,
HIV/AIDS, prenatal visit, hypercholesterolemia.
That is, the COPD dyads may be misclassified be-
cause of the presence of other respiratory diseases
in the ‘other’ category. We plan to extend the di-
agnosis classifier to multi-label classification.

5.6 Topic modeling
Topic modeling is an unsupervised machine learn-
ing technique used to form k topics (i.e., clusters
of words) occurring together, where k is usually
chosen empirically. We perform topic modeling
with LDA using the open-source gensim package
(Řehůřek and Sojka, 2010) with varying numbers
of topics k =(5, 10, 12, 15, 20, 25, 30, and 40).

Due to their colloquial nature, patient-clinician
conversations contain many informal words and
non-medical terms. We remove common words,
including stop words from NLTK (Steven Bird and
Loper, 2009), backchannel words (like ‘uh-huh’),
and words with frequencies above 0.05% of the to-
tal number words in all the documents (to reduce
the influence of more generic words).

The topic modeling results are shown in Table
8; we choose k=12 topics because they provided
the best topic distribution and coherence score.
The words in each topic are reported in decreas-
ing order of importance.

A manual analysis shows that topic 0 captures
words related to ADHD and depression, while
topic 1 is related to asthma and flu, and topic 3 is
related to women’s health, and so on. This qualita-
tive evaluation of topics shows that topic modeling
can be helpful in extracting important information
and identifying the dominant topic of a conversa-
tion. In our future work, we also plan to do a quan-
titative evaluation of topic modeling results using
state-of-the-art methods such as the methodology
proposed by Wallach et al. (2009).

We see the potential use of topic modeling to
keep track of the focus of each visit, the distribu-
tion of word usage, categorization, and to group
patients together using similarity measures. We
also use it for relevant text extraction in the next
section.

5.7 Relevant utterance extraction
Identifying the key parts of the doctor-patient con-
versation can be helpful in finding the relevant in-
formation. In the previous section, we observe that
topic modeling can be helpful in identifying the

Topic# Topic words
0 focus, sleeping, depressed, asleep,

attention, mind, cymbalta, appetite,
psychiatrist, energy

1 ache, h1n1, treat, asthma, temper-
ature, diarrhea, anybody, mucinex,
chill, allergic

2 period, knee, birth, heavy, ultrasound,
iron, metoprolol, pregnancy, preg-
nant, history,

3 meal, diabetic, lose, unit, mail, deal,
crazy, card, swelling, pound

4 cymbalta, lantus, cool, cancer, crazy,
allergy, sister, attack, nurse, wow

5 referral, trazodone, asked, shingle,
woman, medicare, med, friend, clinic,
form

6 breo, cream, puff, rash, smoking, al-
buterol, skin, allergy, proair, allergic

7 fosamax, allergy, tramadol, covered,
plan, calcium, bladder, kept, alcohol,
ache

8 metformin, x-ray, nerve, knee, lasix,
bottle, lantus, hurting, referral, switch

9 lantus, looked, injection, botox,
changed, flare, happening, cream,
salt, sweating

10 generic, triumeq, cost, farxiga, phys-
ical, therapy, gosh, fracture, increase,
invokana

11 unit, list, appreciate, therapy, differ-
ence, counter, report, lasix, lantus, en-
docrinologist

Table 8: Topic Modeling: Top 10 words for 12 topics.

underlying topics of the dyads. We also use topic
modeling to extract the utterances relevant to the
primary disease diagnosis.

We apply the following steps adapted from a
publicly available text summarization method10:

1. Fit the LDA model to all dyads.
2. Pass the dyads for each class to the LDA

model to determine the class-wise topic dis-
tribution.

3. Select the dominant topics for each class us-
ing the topic weight matrix.

4. For each dyad within this subset:
10https://github.com/g-deoliveira/

TextSummarization
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Figure 6: (Left) Presenting problem: Cough and rib pain. (Right) Presenting problem: Women’s health and
contraception. Extracted utterances are highlighted.

Figure 7: Presenting problem: Anxiety. Extracted ut-
terances are highlighted.

(a) Split the conversation into sentences, us-
ing the NLTK (Steven Bird and Loper,
2009) sentence tokenizer.

(b) Determine the topic distribution of each
sentence using LDA.

(c) Filter out the sentences whose dominant
topic is not equal to the dominant topic
of that dyad. What is left is a subset of
sentences that reflect the given topic.

We conduct experiments on all 800 dyads and
the 11 dyads from YouTube. Topic modeling is
performed exactly as described in the previous
section, with 12 topics. The results are shown in
Table 6 and 7. The three dyads shown are from
open-source YouTube data focusing on (a) cough
and rib pain, (b) women’s health and contracep-
tion, and (c) anxiety, respectively.
The results indicate a reasonable quality of rel-
evant text extraction despite the limited amount
of data. We can see that many of the utterances
discussing the presenting problem are extracted.
Since we do not have labels for the true relevance
of the sentences to the disease, we are unable to
provide any quantitative metrics, which is the sub-
ject of future work.

6 Conclusion & future work

The cumulative output of these models consti-
tutes the initial automated system. Although for
these experiments we used manual transcriptions,
in practice the input would be from automatic
speech recognition (ASR). Future research will in-
clude using ASR to record transcripts in real time,
as well as expanding the types of entities we ex-
tract, identifying quantity, quality, and severity.

Diagnosis classification currently handles 6
classes only, and does not account for conditions
other than the primary diagnosis that may be dis-
cussed in the conversation. We will also expand
diagnosis classification to handle more classes,
and to predict multiple diagnoses.
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We have presented a system for extracting clin-
ically relevant entities from physician-patient dia-
logues using linguistic context. The results show
that clinical note-taking can be at least partially
automated, saving clinicians valuable time. This
system can result in a streamlined data entry pro-
cess and a cleaner EMR note that can be used for
analytics and automated decision making.
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Abstract
Relation classification is crucial for inferring
semantic relatedness between entities in a
piece of text. These systems can be trained
given labelled data. However, relation classi-
fication is very domain-specific and it takes a
lot of effort to label data for a new domain.
In this paper, we explore domain adaptation
techniques for this task. While past works
have focused on single source domain adap-
tation for bio-medical relation classification,
we classify relations in an unlabeled target do-
main by transferring useful knowledge from
one or more related source domains. Our ex-
periments with the model have shown to im-
prove state-of-the-art F1 score on 3 benchmark
biomedical corpora for single domain and on
2 out of 3 for multi-domain scenarios. When
used with contextualized embeddings, there
is further boost in performance outperforming
neural-network based domain adaptation base-
lines for both the cases.

1 Introduction

In the biomedical domain, a relation can exist
between various entity types like protein-protein,
drug-drug, chemical-protein etc. Detecting re-
lationships is a fundamental sub-task for auto-
matic Information Extraction to overcome ef-
forts of manual inspection, especially for growing
biomedical articles. However, existing supervised
systems are highly data-driven. This poses a chal-
lenge since manual labelling is a costly and time-
consuming process and there is a dearth of labelled
data in the biomedical domain covering all tasks
and for new datasets. A system trained on a spe-
cific dataset1 may perform poorly on another, for
the same task (Mou et al., 2016), due to dataset
variance which can arise owing to sample selec-
tion bias (Rios et al., 2018).

1Note: We use the terms dataset and domain interchange-
ably.

Domain Adaptation aims at adapting a model
trained on a source domain to another target do-
main that may differ in their underlying data dis-
tributions. Past work on domain adaptation for
bio-medical relation classification has focused on
single-source adaptation (Rios et al., 2018). How-
ever, multiple sources from related domains can
prove to be beneficial for classification in a low-
resource scenario.

In this paper, we perform domain adaptation
for biomedical binary relation classification at the
sentence-level. For single-source single target
(SSST) we transfer between different datasets of
protein-protein interaction, along with drug-drug
interaction. We also explore multi-source sin-
gle target (MSST) adaptation to incorporate more
richness in the knowledge transferred by using ad-
ditional smaller corpora for protein-protein rela-
tion and multiple labels for chemical-protein rela-
tion respectively. Given an unlabeled target do-
main, we transfer common useful features from
related labelled source domains using adversar-
ial training (Goodfellow et al., 2014). It helps
to overcome the sampling bias and learn com-
mon indistinguishable features, promoting gener-
alization, using min-max optimization. We adopt
the Multinomial Adversarial Network integrated
with the Shared-Private model (Chen and Cardie,
2018) which was originally proposed for the task
of Multi-Domain Text Classification. It can handle
multiple source domains at a time which is in con-
trast to traditional binomial adversarial networks.
The Shared-Private model (Bousmalis et al., 2016)
consists of a split representation where the private
space learns specific features related to a particular
domain while a shared space learns features com-
mon to all the domains. Such representation pro-
motes non-contamination of the two spaces pre-
serving their uniqueness. The contributions of our
approach are as follows:
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1) We show that using a shared-private model
along with adversarial training improves SSST
adaptation compared to neural network baselines.
When multiple source corpora from similar do-
mains are used it leads to further performance
enhancement. Moreover, use of contextualized
sentential embeddings leads to better performance
than exisitng baseline methods for both MSST and
SSST.

2) We explore the generalizability of our frame-
work using two prominent neural architectures:
CNN (Nguyen and Grishman, 2015) and Bi-
LSTM (Kavuluru et al., 2017), where we find the
former to be more robust across our experiments.

2 Methodology

For every labeled sources and a single unlabeled
target we have set of NER tagged sentences, each
of which is represented as: X = {e1, e2, w1...wn}
where e1 and e2 are two tagged entities and wj is
the jth word in the sentence . A labelled source in-
stance is accompanied by the relation label (True
or False). In this section we discuss the input rep-
resentation followed by model description.

2.1 Input Representation

We form word and position embeddings for ev-
ery word in an NER tagged sentence. We use the
PubMed-and-PMC-w2v2 to generate word em-
beddings. The size being (|V | · dw), where dw is
the word embedding dimension which is 200 and
|V | is the vocabulary size. The position embed-
ding vector for jth word in a sentence relative to
two tagged entities e1 and e2 is represented as a tu-
ple: (pe1(j), pe2(j)) where, pe1(j) and pe2(j) ε Re.

2.2 Model

Fig 1 shows the adaptation of MAN framework
whose various components are discussed below.

Shared & Domain feature extractor (Fs, Fdi)
The input representation is fed to both Fdi and
Fs for labeled source domains whereas for un-
labeled target instances it is fed only to Fs. For
SSST the model is trained on a single labeled
source domain and tested on a unlabeled target do-
main. For MSST we do not combine the sources
as a single corpus since that leads to a number of
false negatives. We make two different assump-
tions to consider multiple sources: 1) Following
Nguyen et al., (2014) we consider multiple labels

2http://evexdb.org/pmresources/vec-space-models/

Figure 1: MAN for Domain Adaptation of Binary Rela-
tion Classification. The figure shows the training flow
given a sentence from a labeled source domain. D is
trained separately than rest of the network

from single corpus as different sources, 2) We use
additional smaller corpora from a similar domain
as multi-source. The Shared Feature space
(Fs) learns domain agnostic representations and
Private Feature space (Fdi) learns domain spe-
cific features for every ith labeled domain. We
apply two different architectures for both Fs and
Fdi to analyze the changes in performance of the
approach for the task : Convolutional neural net-
work (Nguyen and Grishman, 2015) (MAN CNN)
and Bi-LSTM (Kavuluru et al., 2017) (MAN Bi-
LSTM). We have performed detailed experiments
on each of these in Section 5.

Domain discriminator, D is a fully-
connected layer with softmax that pre-
dicts multiple domain probabilities using
Multinomial Adversarial Network. The
output from Fs is fed to D which is adversarially
trained separately from the entire network using
L2 loss described as follows:

LD(d̂, d) =
N∑

i=1

(d̂i − 1{d=i})
2

where, d is the index assigned for a domain and d̂
is the prediction. It is generalized as

∑N
i=1 d̂i = 1

and ∀i : d̂i ≥ 0. Fs tries to fool D so that it
can not correctly guess the domain from where a
sample instance is coming from. Thus Fs learns
indistinguishable features in the process.

Relation Classifier C is a fully-connected layer
with a softmax, used to predict the class prob-
abilities. We use Bio-BERT (Lee et al., 2019)
embeddings for every sentence as features (Geet-
icka Chauhan, 2019) BERT[CLS] that have shown
to improve performance in many downstream
tasks. This is concatenated with the fixed size sen-
tence representation from Fs and Fdi , together
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Datasets
Entity
Pair

# of
Sent

# of
Positive

# of
Negative

AiMed 1995 1000 4834
BioInfer 1100 2534 7132
LLL PPI 77 164 166
HPRD50 145 163 270
IEPA 486 355 482

Table 1: Protein Protein Interaction Dataset statistics.

Datasets
Entity
Pair

# of
Train

# of
Valid

# of
Test

DDI Drug-Drug 27779 - 5713
CPR: 3 768 550 665
CPR: 4 2254 1094 1661
CPR: 5 Chem-Prot 173 116 195
CPR: 6 235 199 293
CPR: 9 727 457 644

Table 2: Drug-Drug Interaction and Chemical-Protein
Dataset statistics.

they serve as input to C. For unlabeled target, dur-
ing test no domain specific features are generated
from Fdi and that part is set to zero vector. For
binary classification we adopt Negative Log Like-
lihood Loss for C described below:

Lc(ŷ, y) = −logP (ŷ = y)

where, y is the true relation label and ŷ is the soft-
max label. The objective of Fdi is same as that of
C and it relies only on labeled data. On the other
hand the objective of the Shared Feature Extractor
Fs is represented as follows:

Loss of Fs = Classifier loss+λDomain loss

It consists of two loss components: improve per-
formance of C and enhance learning of invariant
features across all domains. A hyper parameter λ
is used to balance both of them.

3 Datasets

The dataset statistics is summarized in Table 1
and Table 2. A 10-fold cross validation was per-
formed for the Protein-Protein Interaction dataset.
For given set of entities E in a sentence, it is split

into
(
E
2

)
instances. All positive instances of

datasets with more than two relation types are
merged and assigned True labels while negative
instances are assigned False labels. Unlabeled
data is formed by removing labels from develop-
ment and test datasets.

4 Experiments

Pre-processing: We anonymize the named enti-
ties in the sentence by replacing them with prede-
fined tags like @PROT1$, @DRUG$ (Bhasuran
and Natarajan, 2018).

4.1 Single source single target (SSST)

A thorough experiment is conducted using all
possible combinations of the three benchmark
data-sets AiMed (Bunescu et al., 2005), BioInfer
(Pyysalo et al., 2006), DDI (Herrero-Zazo et al.,
2013) whose results are discussed in Table 3

4.2 Multi-source single target (MSST)

The experiments with two different assumptions to
consider multiple sources are as follows:

Multiple smaller corpora from similar do-
main: For Protein Protein Interaction there
are three smaller standard corpora in literature,
namely, LLL (Nedellec, 2005), IEPA (Ding et al.,
2001), HPRD50 (Fundel et al., 2007). All three
were considered as additional sources to transfer
knowledge. AiMed (AM) and BioInfer (BI) were
alternately selected as the unlabeled target in 2 dif-
ferent experiments while the remaining 4 denoted
as 4P are considered as source corpus.

Multiple labels from single corpora: For
ChemProt corpora we consider various labels as
different sources following Nguyen et al., (2014)
The five positive labels of ChemProt are: CPR:
3, CPR: 4, CPR: 5, CPR: 6, CPR: 9 which stand
for upregulator, downregulator, agonist, antago-
nist and substrate, respectively. We predict the
classification performance for unlabeled targets
CPR:6 and CPR:9 taking multi-source labeled in-
put denoted as 3C from three sources- CPR: 3,
CPR: 4, CPR: 5 as positive instances and remain-
ing as negative.

4.3 Baselines

We compare our approach with different baselines
which are mentioned as follows:

- BioBERT (Rios et al., 2018): For SSST we
train it on one dataset and test on another. For
MSST we combine the multiple sources as a single
source and test on labeled target.

- CNN+DANN (Lisheng Fu, 2017) : A variant
of adversarial training which is gradient reversal
(RevGrad) is used with CNN (Nguyen and Grish-
man, 2015).
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Method
BioInfer→
AiMed

AiMed→
BioInfer

BioInfer→
DDI

DDI→
BioInfer

AiMed→
DDI

DDI→
AiMed

CNN 45.22 36.72 39.75 22.13 15.83 27.93
Bi-LSTM 46.88 29.59 40.87 17.21 18.58 25.80
BioBERT* 76.48 69.23 67.89 57.84 51.22 54.83
CNN + DANN* 45.98 42.01 41.58 34.37 28.66 28.90
Bi-LSTM + RevGrad 46.41 40.11 39.41 37.20 27.72 35.29
Adv-CNN 48.79 54.13 44.19 48.53 45.96 44.71
Adv - Bi-LSTM 48.51 56.54 44.47 44.90 46.21 43.44
MAN CNN ** 50.23 55.04 47.63 49.51 46.97 42.36
MAN Bi-LSTM ** 49.19 58.69 46.77 46.28 47.84 41.53
MAN CNN + BERT[CLS] ** 53.08 57.89 49.33 50.79 47.01 46.38
MAN Bi-LSTM + BERT[CLS] ** 52.74 61.01 48.03 45.12 50.19 44.01

Table 3: F1 scores for SSST experiment on test set of target (RHS of→) . **: Our model. *: Our implementation.
Bold text: Best domain adaptation model for a dataset.

- Adv Bi-LSTM + Adv CNN (Rios et al.,
2018): Conducts two-step training: pre-training
with source followed by adversarial training with
target. For MSST experiment we compare our
method with Adv CNN and Adv Bi-LSTM by
combining multiple sources.

5 Results and Discussions
In Table 3 we see that BioInfer generalizes well
to AiMed and DDI corpora using vanilla LSTM
or CNN architecture. However, with MAN and
contextual embeddings, we do not see prominent
gains as much as the other datasets. This can be
due to the class imbalance in data (positive to neg-
ative instance ratio 1:5.9) (Hsu et al., 2015; Rios
et al., 2018). For AiMed and BioInfer, we find that
the knowledge transfer among themselves gives
the best performance thus strengthening the fact
that datasets from the same domain can contribute
to performance enhancement justifying the perfor-
mance gains in MSST experiments. Our model
outperforms other baselines just with the use of
adversarial training which might be attributed to
joint learning better representation from shared
and private feature extractors. The use of contex-
tual BERT[CLS] tokens leads to increase in per-
formance scores since they encode important re-
lations between words in a sentence (Vig, 2019;
Hewitt and Manning, 2019).

In Table 4, BioBERT is seen to perform well
for ChemProt. We hypothesize that this may be
due to the same underlying dataset being used dur-
ing train and test. Though we use different la-
bels as multi-source, that may not contribute to
generating enough variance in sources since they

Method
3C→

CPR:9

3C→
CPR:6

4P→
AM

4P→
BI

BioBERT* 69.27 73.50 43.01 52.98
Adv-CNN* 58.23 56.69 45.30 51.79
Adv-
BiLSTM* 56.30 57.13 42.01 52.67

MAN
CNN**

59.69 58.30 52.33 57.21

MAN
Bi-LSTM** 57.01 59.71 53.64 59.37

MAN CNN
+
BERT
-[CLS]**

64.23 65.41 56.75 64.83

MAN
Bi-LSTM
+
BERT
-[CLS]**

62.07 64.09 57.09 63.92

Table 4: F1 scores for MSST experiment on test set of
target (RHS of→). **: Our model. *: Our implemen-
tation trained with unified labeled multi-source. Bold
text: Best model for a dataset..

were from the same dataset. For AiMed and
BioInfer, however, three different smaller corpora
were used, where the proposed method outper-
forms BioBERT. When compared across all the
six SSST experiments, the Bi-LSTM based model
lacks in performance may be due to absence of any
attention mechanism which would have helped in
selecting more relevant context (Chen and Cardie,
2018). We observe that adversarial training along
with contextualized BERT sentence embeddings
leads to performance gains across all datasets.
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6 Conclusions
Our proposed model significantly outperformed
the existing neural network based domain adapta-
tion baselines for SSST. Among the two MSST ex-
periments, we showed that the system gains when
multiple source corpora are used. We also experi-
ment with two architectures out of which CNN is
seen to perform marginally better compared to Bi-
LSTM. Our analysis on Section 5 further explains
the effect of sources, adversarial training and use
of contextualized BERT sentential embeddings.
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Abstract

Predicting which patients are more likely to be
readmitted to a hospital within 30 days after
discharge is a valuable piece of information
in clinical decision-making. Building a suc-
cessful readmission risk classifier based on the
content of Electronic Health Records (EHRs)
has proved, however, to be a challenging task.
Previously explored features include mainly
structured information, such as sociodemo-
graphic data, comorbidity codes and physio-
logical variables. In this paper we assess in-
corporating additional clinically interpretable
NLP-based features such as topic extraction
and clinical sentiment analysis to predict early
readmission risk in psychiatry patients.

1 Introduction and Related Work

Psychotic disorders affect approximately 2.5-4%
of the population (Perälä et al., 2007) (Bogren
et al., 2009). They are one of the leading causes
of disability worldwide (Vos et al., 2015) and are
a frequent cause of inpatient readmission after dis-
charge (Wiersma et al., 1998). Readmissions are
disruptive for patients and families, and are a key
driver of rising healthcare costs (Mangalore and
Knapp, 2007) (Wu et al., 2005). Assessing read-
mission risk is therefore critically needed, as it
can help inform the selection of treatment inter-
ventions and implement preventive measures.

Predicting hospital readmission risk is, how-
ever, a complex endeavour across all medical
fields. Prior work in readmission risk prediction
has used structured data (such as medical comor-
bidity, prior hospitalizations, sociodemographic
factors, functional status, physiological variables,
etc) extracted from patients’ charts (Kansagara
et al., 2011). NLP-based prediction models that
extract unstructured data from EHR have also been

developed with some success in other medical
fields (Murff et al., 2011). In Psychiatry, due to
the unique characteristics of medical record con-
tent (highly varied and context-sensitive vocab-
ulary, abundance of multiword expressions, etc),
NLP-based approaches have seldom been applied
(Vigod et al., 2015; Tulloch et al., 2016; Green-
wald et al., 2017) and strategies to study read-
mission risk factors primarily rely on clinical ob-
servation and manual review (Olfson et al., 1999)
(Lorine et al., 2015), which is effort-intensive, and
does not scale well.

In this paper we aim to assess the suitability
of using NLP-based features like clinical senti-
ment analysis and topic extraction to predict 30-
day readmission risk in psychiatry patients. We
begin by describing the EHR corpus that was cre-
ated using in-house data to train and evaluate our
models. We then present the NLP pipeline for fea-
ture extraction that was used to parse the EHRs in
our corpus. Finally, we compare the performances
of our model when using only structured clinical
variables and when incorporating features derived
from free-text narratives.

2 Data

The corpus consists of a collection of 2,346
clinical notes (admission notes, progress notes,
and discharge summaries), which amounts to
2,372,323 tokens in total (an average of 1,011 to-
kens per note). All the notes were written in En-
glish and extracted from the EHRs of 183 psy-
chosis patients from McLean Psychiatric Hospital
in Belmont, MA, all of whom had in their history
at least one instance of 30-day readmission.

The age of the patients ranged from 20 to 67
(mean = 26.65, standard deviation = 8.73). 51%
of the patients were male. The number of admis-
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sions per patient ranged from 2 to 21 (mean = 4,
standard deviation = 2.85). Each admission con-
tained on average 4.25 notes and 4,298 tokens. In
total, the corpus contains 552 admissions, and 280
of those (50%) resulted in early readmissions.

3 Feature Extraction

The readmission risk prediction task was per-
formed at the admission level. An admission con-
sists of a collection of all the clinical notes for
a given patient written by medical personnel be-
tween inpatient admission and discharge. Every
admission was labeled as either ‘readmitted’ (i.e.
the patient was readmitted within the next 30 days
of discharge) or ‘not readmitted’. Therefore, the
classification task consists of creating a single fea-
ture representation of all the clinical notes belong-
ing to one admission, plus the past medical his-
tory and demographic information of the patient,
and establishing whether that admission will be
followed by a 30-day readmission or not.

45 clinically interpretable features per admis-
sion were extracted as inputs to the readmission
risk classifier. These features can be grouped into
three categories (See Table 1 for complete list of
features):

- Sociodemographics: gender, age, marital sta-
tus, etc.

- Past medical history: number of previous
admissions, history of suicidality, average
length of stay (up until that admission), etc.

- Information from the current admission:
length of stay (LOS), suicidal risk, number
and length of notes, time of discharge, evalu-
ation scores, etc.

The Current Admission feature group has the
most number of features, with 29 features included
in this group alone. These features can be further
stratified into two groups: ‘structured’ clinical fea-
tures and ‘unstructured’ clinical features.

3.1 Structured Features

Structure features are features that were identified
on the EHR using regular expression matching and
include rating scores that have been reported in the
psychiatric literature as correlated with increased
readmission risk, such as Global Assessment of
Functioning, Insight and Compliance:

Sociodemographics
Age
Gender
Race
Marital status
Veteran
Past medical history
History of Suicidality
Number of past admissions
Average length of stay (previous)
Average # days between admissions
Previous 30-day readmission (Y/N)
Number of past readmissions
Readmission ratio
Average GAF at admission
Average GAF at discharge
Mode of past insight values
Mode of past medication compliance
Current admission
Structured features
Number of notes
Number of tokens
Number of tokens in discharge summary
Average note length
GAF at admission
GAF at discharge
GAF admission/discharge difference
Mean GAF (all notes for visit)
Insight (good, fair, poor)
Medication Compliance
Estimated length of stay
Actual length of stay
Difference b/w Estimated & Actual LOS
Is first admission (Y/N)
Unstructured features
Number of sentences (Appearance)
Number of sentences (Mood)
Number of sentences (Thought Content)
Number of sentences (Thought Process)
Number of sentences (Substance Use)
Number of sentences (Interpersonal)
Number of sentences (Occupation)
Clinical sentiment (Appearance)
Clinical sentiment (Mood)
Clinical sentiment (Thought Content)
Clinical sentiment (Thought Process)
Clinical sentiment (Substance Use)
Clinical sentiment (Interpersonal)
Clinical sentiment (Occupation)

Table 1: Extracted features by category.

Global Assessment of Functioning (GAF):
The psychosocial functioning of the patient rang-
ing from 100 (extremely high functioning) to 1
(severely impaired) (AAS, 2011).

Insight: The degree to which the patient recog-
nizes and accepts his/her illness (either Good, Fair
or Poor).

Compliance: The ability of the patient to com-
ply with medication and to follow medical advice
(either Yes, Partial, or None).

These features are widely-used in clinical prac-
tice and evaluate the general state and prognosis of
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Figure 1: NLP pipeline for feature extraction.

the patient during the patient’s evaluation.

3.2 Unstructured Features

Unstructured features aim to capture the state of
the patient in relation to seven risk factor domains
(Appearance, Thought Process, Thought Content,
Interpersonal, Substance Use, Occupation, and
Mood) from the free-text narratives on the EHR.
These seven domains have been identified as asso-
ciated with readmission risk in prior work (Hold-
erness et al., 2018).

These unstructured features include: 1) the rel-
ative number of sentences in the admission notes
that involve each risk factor domain (out of total
number of sentences within the admission) and 2)
clinical sentiment scores for each of these risk fac-
tor domains, i.e. sentiment scores that evaluate the
patients psychosocial functioning level (positive,
negative, or neutral) with respect to each of these
risk factor domain.

These sentiment scores were automatically ob-
tained through the topic extraction and sentiment
analysis pipeline introduced in our prior work
(Holderness et al., 2019) and pretrained on in-
house psychiatric EHR text. In our paper we also
showed that this automatic pipeline achieves rea-
sonably strong F-scores, with an overall perfor-
mance of 0.828 F1 for the topic extraction com-
ponent and 0.5 F1 on the clinical sentiment com-
ponent.

The clinical sentiment scores are computed for
every note in the admission. Figure 1 details the
data analysis pipeline that is employed for the fea-
ture extraction.

First, a multilayer perceptron (MLP) classifier
is trained on EHR sentences (8,000,000 sentences
consisting of 340,000,000 tokens) that are ex-
tracted from the Research Patient Data Registry
(RPDR), a centralized regional data repository of
clinical data from all institutions in the Partners
HealthCare network. These sentences are auto-
matically identified and labeled for their respec-

Figure 2: Model architecture for USE embedding gen-
eration and unstructured feature extraction. Dotted ar-
rows indicate operations that are performed only on
sentences marked for 1+ risk factor domain(s). USE
top-layer weights are fine-tuned during training.

tive risk factor domain(s) by using a lexicon of
clinician identified domain-related keywords and
multiword expressions, and thus require no man-
ual annotation. The sentences are vectorized using
the Universal Sentence Encoder (USE), a trans-
former attention network pretrained on a large vol-
ume of general-domain web data and optimized
for greater-than-word length sequences.

Sentences that are marked for one or more of the
seven risk factor domains are then passed to a suite
of seven clinical sentiment MLP classifiers (one
for each risk factor domain) that are trained on a
corpus of 3,500 EHR sentences (63,127 tokens)
labeled by a team of three clinicians involved in
this project. To prevent overfitting to this small
amount of training data, the models are designed
to be more generalizable through the use of two
hidden layers and a dropout rate (Srivastava et al.,
2014) of 0.75.

The outputs of each clinical sentiment model
are then averaged across notes to create a single
value for each risk factor domain that corresponds
to the patient’s level of functioning on a -1 to 1
scale (see Figure 2).
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4 Experiments and Results

We tested six different classification models:
Stochastic Gradient Descent, Logistic Regression,
C-Support Vector, Decision Tree, Random For-
est, and MLP. All of them were implemented and
fine-tuned using the scikit-learn machine learning
toolkit (Pedregosa et al., 2011). Because an accu-
rate readmission risk prediction model is designed
to be used to inform treatment decisions, it is im-
portant in adopting a model architecture that is
clinically interpretable and allows for an analysis
of the specific contribution of each feature in the
input. As such, we include a Random Forest clas-
sifier, which we also found to have the best perfor-
mance out of the six models.

To systematically evaluate the importance of
the clinical sentiment values extracted from the
free text in EHRs, we first build a baseline model
using the structured features, which are similar
to prior studies on readmission risk prediction
(Kansagara et al., 2011). We then compare two
models incorporating the unstructured features.
In the ”Baseline+Domain Sentences” model, we
consider whether adding the counts of sentences
per EHR that involve each of the seven risk fac-
tor domains as identified by our topic extraction
model improved the model performance. In the
”Baseline+Clinical Sentiment” model, we evalu-
ate whether adding clinical sentiment scores for
each risk factor domain improved the model per-
formance. We also experimented with combining
both sets of features and found no additional im-
provement.

Each model configuration was trained and eval-
uated 100 times and the features with the high-
est importance for each iteration were recorded.
To further fine-tune our models, we also perform
three-fold cross-validated recursive feature elimi-
nation 30 times on each of the three configurations
and report the performances of the models with the
best performing feature sets. These can be found
in Table 2.

Our baseline results show that the model trained
using only the structured features produce equiva-
lent performances as reported by prior models for
readmission risk prediction across all healthcare
fields (Artetxe et al., 2018). The two models that
were trained using unstructured features produced
better results and both outperform the baseline re-
sults. The ”Baseline+Clinical Sentiment” model
produced the best results, resulting in an F1 of

Model Acc AUC F1
Baseline 0.63 0.63 0.63
Baseline+Domain Sentences 0.69 0.70 0.69
Baseline+Clinical Sentiment 0.72 0.72 0.72

Table 2: Results (in ascending order)

0.72, an improvement of 14.3% over the baseline.
In order to establish what features were not rel-

evant in the classification task, we performed re-
cursive feature elimination. We identified 13 fea-
ture values as being not predictive of readmission
(they were eliminated from at least two of the
three feature sets without producing a drop in per-
formance) including: all values for marital status
(Single, Married, Other, and Unknown), missing
values for GAF at admission, GAF score differ-
ence between admission & discharge, GAF at dis-
charge, Veteran status, Race, and Insight & Mode
of Past Insight values reflecting a clinically posi-
tive change (Good and Improving). Poor Insight
values, however, are predictive of readmission.

5 Conclusions

We have introduced and assessed the efficacy
of adding NLP-based features like topic extrac-
tion and clinical sentiment features to traditional
structured-feature based classification models for
early readmission prediction in psychiatry pa-
tients. The approach we have introduced is a
hybrid machine learning approach that combines
deep learning techniques with linear methods to
ensure clinical interpretability of the prediction
model.

Results show not only that both the number of
sentences per risk domain and the clinical senti-
ment analysis scores outperform the structured-
feature baseline and contribute significantly to bet-
ter classification results, but also that the clinical
sentiment features produce the highest results in
all evaluation metrics (F1 = 0.72).

These results suggest that clinical sentiment
features for each of seven risk domains extracted
from free-text narratives further enhance early
readmission prediction. In addition, combining
state-of-art MLP methods has a potential utility in
generating clinical meaningful features that can be
be used in downstream linear models with inter-
pretable and transparent results. In future work,
we intend to increase the size of the EHR corpus,
increase the demographic spread of patients, and
extract new features based on clinical expertise to
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increase our model performances. Additionally,
we intend to continue our clinical sentiment an-
notation project from (Holderness et al., 2019) to
increase the accuracy of that portion of our NLP
pipeline.
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Abstract

In this work we investigate the signal con-
tained in the language of food on social me-
dia. We experiment with a dataset of 24 mil-
lion food-related tweets, and make several ob-
servations. First, the language of food has pre-
dictive power. We are able to predict if states
in the United States (US) are above the me-
dian rates for type 2 diabetes mellitus (T2DM),
income, poverty, and education – outperform-
ing previous work by 4–18%. Second, we in-
vestigate the effect of socioeconomic factors
(income, poverty, and education) on predict-
ing state-level T2DM rates. Socioeconomic
factors do improve T2DM prediction, with the
greatest improvement coming from poverty in-
formation (6%), but, importantly, the language
of food adds distinct information that is not
captured by socioeconomics. Third, we an-
alyze how the language of food has changed
over a five-year period (2013 – 2017), which
is indicative of the shift in eating habits in the
US during that period. We find several food
trends, and that the language of food is used
differently by different groups such as differ-
ent genders. Last, we provide an online visual-
ization tool for real-time queries and semantic
analysis.

1 Introduction
With an average of 6,000 new tweets posted ev-

ery second, Twitter1 has become a digital foot-
print of everyday life for a representative sam-
ple of the United States (US) population (Mis-
love et al., 2011). Previously, Fried et al. (2014)
demonstrated that the language of food on Twitter
can be used to predict health risks, political ori-
entation, and geographic location. Here, we use
predictive models to extend this analysis – explor-
ing the ways in which the language of food can
shed insight on health and the changing trends in

∗Equal contribution.
1https://twitter.com/

both food culture and language use in different
communities over time. We apply this methodol-
ogy to the particular use case of predicting com-
munities which are risk for type 2 diabetes mel-
litus (T2DM), a serious medical condition which
affects over 30 million Americans and whose di-
agnosis alone costs $327 billion each year2. We
refer to T2DM as diabetes in the rest of the pa-
per. We show that by combining knowledge from
tweets with other social characteristics (e.g., aver-
age income, level of education) we can better pre-
dict risk of T2DM. The contributions of this work
are four-fold:
1. We use the same methods proposed by Fried
et al. (2014) with a much larger (7 times) tweet
corpus gathered from 2013 – 2017 to predict
the risk of T2DM. We collected over 24 million
tweets with meal-related hashtags (e.g., #break-
fast, #lunch) and localized 5 million of them to
states within the US. We show that more data
helps, and that by training on this larger dataset the
state-level T2DM risk prediction accuracy is im-
proved by 4–18%, compared to the results in Fried
et al. (2014). We also apply the same models to
predict additional state-level indicators: income,
poverty, and education levels in order to further
investigate the predictive power of the language of
food. On these prediction tasks, our model out-
performs the majority baseline by 12–34%. We
believe that this work may drive immediate pol-
icy decisions for the communities deemed at risk
without awaiting for similar results from major
health organizations, which take months or years
to be generated and disseminated.3 Equally as
important, we believe that this state-level T2DM
risk prediction task may improve predicting risks

2http://www.diabetes.org/advocacy/
news-events/cost-of-diabetes.html

3https://www.cdc.gov/nchs/nhis/about_
nhis.htm

87

https://doi.org/10.18653/v1/D19-62


for individuals from their social media activity, a
task which often suffers from sparsity (Bell et al.,
2018).
2. Unlike (Fried et al., 2014), we also investigate
the effect of socioeconomic factors on the diabetes
prediction task itself. We observe that aggregated
US social demographic information from average
income4, poverty5, and education6 is complemen-
tary to the information gained from tweet language
used for predicting diabetes risk. We add the cor-
relation between each of these socioeconomic fac-
tors and the diabetes7 rate in US states as addi-
tional features in the models in (1). We demon-
strate that the T2DM prediction model strongly
benefits from the additional information, as pre-
diction accuracy further increases by 2–6%. How-
ever, importantly, the model that relies solely on
these indicators performs considerably worse than
the model that includes features from the language
of food, which demonstrates that the language of
food provides distinct signal from these indicators.
3. Furthermore, with a dataset that spans nearly
five years, we also analyze language trends over
time. Specifically, using pointwise mutual in-
formation (PMI) and a custom-built collection of
healthy/unhealthy food words, we investigate the
strength of healthy/unhealthy food references on
Twitter, and observe a downward trend for healthy
food references and an upward trend for unhealthy
food words in the US.
4. Lastly, we provide a visualization tool to
help understand and visualize semantic relations
between words and various categories such as
how different genders refer to vegetarian vs. low-
carb diets.8 Our tool is based on semantic axes
plots (Heimerl and Gleicher, 2018).
2 Related Work

Many previous efforts have shown that social
media can serve as a source of data to detect possi-
ble health risks. For example, Akbari et al. (2016)
proposed a supervised learning approach that au-
tomatically extracts public wellness events from
microblogs. The proposed method addresses sev-
eral problems associated with social media such as

4https://www.census.gov/topics/
income-poverty/income.html

5https://www.census.gov/topics/
income-poverty/poverty.html

6https://talkpoverty.org/indicator/
listing/higher_ed/2017

7https://www.kff.org/other/
state-indicator/adults-with-diabetes

8http://t4f.cs.arizona.edu/

insufficient data, noisiness and variance, and inter-
relations among social events. A second contribu-
tion of Akbari et al. (2016) is an automatically-
constructed large-scale diabetes dataset that is ex-
tended with manually handcrafted ground-truth la-
bels (positive, negative) for wellness events such
as diet, exercise and health.

Bell et al. (2016) proposed a strategy that uses
a game-like quiz with data and questions acquired
semi-automatically from Twitter to acquire rele-
vant training data necessary to detect individual
T2DM risk. In following work, Bell et al. (2018)
predicted individual T2DM risk using a neural ap-
proach, which incorporates tweet texts with gen-
der information and information about the recency
of posts.

Sadeque et al. (2018) discussed several ap-
proaches for predicting depression status from a
user’s social media posts. They proposed a new
latency-based F1 metric to measure the quality and
speed of the model. Further, they re-implemented
some of the common approaches for this task, and
analyzed their results using their proposed metric.
Lastly, they introduced a window-based technique
that trades off between latency and precision in
predicting depression status.

Our work is closest to (Fried et al., 2014). Sim-
ilar to us, Fried et al. (2014) predicted latent pop-
ulation characteristics from Twitter data such as
overweight rate or T2DM risk in US states. Our
work extends (Fried et al., 2014) in several ways.
First, in addition of tweets, we incorporate state-
level indicators such as poverty, education, and in-
come in our risk classifier, and demonstrate that
language provides distinct signal from these in-
dicators. Second, we use the much larger tweet
dataset to infer language-of-food trends over a
five-year span. Third, we provide a visualization
tool to explore food trends over time, as well as
semantic relations between words and categories
in this context.

3 Data
We collected tweets along with their meta data

with Twitter’s public streaming API9. Tweets have
been filtered by a set of seven hashtags to make the
dataset more relevant to food (see distribution in
Table 1). We stored the tweets and their metadata

9https://developer.twitter.com/en/
docs/tweets/filter-realtime/guides/
connecting.html
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Term # of tweets # of tweets localized in US

#dinner 5,455,890 1,367,745
#breakfast 5,125,014 1,183,462

#lunch 4,969,679 1,094,681
#brunch 1,910,950 681,978
#snack 797,676 220,697
#meal 495,073 101,976

#supper 124,979 22,154

Total 24,493,223 4,362,940

Table 1: Seven meal-related hashtags and their corre-
sponding number of tweets filtered from Twitter. The
right-most column indicates the number of tweets we
could localize to a US state or Washington D.C.

into a Lucene-backed Solr instance.10 This Solr
instance is used to localize the tweets in the US
and annotate them with topic models afterwards.

All in all, we collected over 24 million tweets
from the period between October 2, 2013 to Au-
gust 28, 2018, a dataset that is seven times larger
than that of Fried et al. (2014). Both datasets
contain tweets filtered using the same 7 meal-
related hashtags. In order to localize the tweets
in the US, we use self-reported location, time-
zone, and geotagging information (latitude and
longitude). The geolocalization is performed in
two steps. First, we use regular expressions to
match a user’s reported location data with the
names or postal abbreviations of the 50 US states
(e.g., Arizona or AZ) and Washington D.C., and
also with city names or known abbreviations (e.g.,
New York City or NYC). Second, if we cannot
find a match, then we use the latitude and lon-
gitude information (if provided in the metadata)
to localize a tweet. This allowed us to success-
fully localize approximately 5 million out of the
24 million tweets. For the remaining tweets, lati-
tude/longitude data is converted into city, state, or
country using Geopy11, successfully localizing an
additional hundred thousand tweets12. Each tweet
is preprocessed and filtered to remove punctuation
marks, usernames, URLs, and non-alphanumeric
characters (but not hashtags).
4 Approach

This work aims for four main goals: predict-
ing state-level characteristics, evaluating the ef-
fect of socioeconomic factors in these prediction

10https://lucene.apache.org/. Solr is the open
source NoSQL search platform from the Apache Lucene
project.

11https://pypi.org/project/geopy/
12As our work is centered around state-level analysis, we

do not use the remaining unlocalized tweets in this paper.

tasks, analyzing food trends, and using visualiza-
tion tools to capture trends in the usage of the lan-
guage of food by different population groups.
4.1 State-level prediction tasks

We investigate the predictive power of the lan-
guage of food through four distinct prediction
tasks: T2DM rate, income, poverty, and education
level. We use the tweets from the above dataset as
the only input for our prediction models.

T2DM rate prediction: We use the diabetes rate
from the Kaiser Commission on Medicaid and
Uninsured (KCMU)’s analysis of the Center for
Disease Control’s Behavioral Risk Factor Surveil-
lance System (BRFSS) 2017 Survey (its most re-
cent year)7. The state-level diabetes rate is defined
as the percentage of adults in each state who have
been told by a doctor that they have diabetes. The
median diabetes rate for the US is 10.8%. For
each state, we convert the diabetes rate into a bi-
nary variable with a value of 1 if the state diabetes
rate is greater than or equal to the national median
rate, and a value of 0 if it is below. For exam-
ple, the state with highest diabetes rate, West Vir-
ginia (15.2%), is assigned a binary variable of 1
(high T2DM rates). On the other hand, states with
below-national-median rate, like Arizona (10.4%),
are assigned a label of 0 (low T2DM rates).

Income rate prediction: We collect income data
from the United States Census Bureau (USCB)’s
analysis of the American Community Survey
(ACS)’s Income and Poverty in the United States:
20174. The data shows that national median
household income is $60,336. Similarly to above,
we convert the household median income of the
state into a binary variable with a value of 0 (low
income) if its median household income is lower
than national median, and a value of 1 (high in-
come) if its median household income is equal or
greater. For example, Alabama ($48,193) is la-
beled as low-income and Alaska ($74,058) is la-
beled as high-income.

Poverty rate prediction: To predict poverty rates,
we also collect poverty data from the USCB’s
analysis of the ACS’s Income and Poverty in the
United States: 20175, which shows that national
median poverty rate is 13.4%. Again, we assign
each state a binary variable indicating whether its
rate is above or below this national median.

Education rate prediction: For predicting edu-
cation rate, we use the higher education attain-
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ment rate (HEAR) data from the Center of Ameri-
can Progress (CAP)6. The data shows that national
median HEAR is 43.2%. Once again, the state-
level HEAR is converted to a binary variable in
the same manner as above.

Because each of these binary variables is at the
state level, we group the tweets by state before
feature extraction. We use leave-one-out cross-
validation (LOOCV) as proposed by Fried et al.
(2014). This approach is necessary because even
though we have a large tweet corpus, we only have
51 aggregate data points (one for each state plus
Washington, D.C.). For classification, we use Sup-
port Vector Machines (SVM) (Vapnik, 2013) for
feature-based classification. To avoid overfitting,
we tuned the classifier’s hyper-parameters during
training using the tweets from 2013 to 2016. We
tested the tuned prediction models for each task
using solely tweets from 2017.

We use two sets of features: lexical (words from
tweets) and topical (sets of words appearing in
similar contexts). For lexical features, we com-
pare open (all unique tweet words or hashtags) and
closed (800 food words) vocabularies, using the
token counts as the tweet features. These exper-
iments help us to determine the predictive power
of the specific language of food versus the broader
context in the full tweets (or socially compact
hashtag). For topic model features, we use Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), to
learn a set of topics from food tweets. Because
tweets are very short in nature (up to 140 char-
acters), this approach allows us to analyze cor-
relations that could go beyond individual words.
We chose 200 as the number of topics for LDA
to learn. After LDA is trained using MALLET13,
we use it to create the set of topics for each tweet,
and the topic with highest probability is then as-
signed to each tweet as an additional feature. Top-
ics are counted across all tweets in a state in the
same manner as the lexical features.

We also experimented with Deep Averaging
Network (DAN) (Iyyer et al., 2015), a simple but
robust bag-of-words model based on averaging
word embeddings that has been shown to perform
well in sentiment analysis and factoid question
answering with little training data. In our case,
we implemented DAN with embeddings generated
using Word2Vec (Mikolov et al., 2013) trained
over all 24 million tweets (including the ones that

13http://mallet.cs.umass.edu/

w1 w2 wn
…

ഥ𝑤

tanh

tanh

softmax

Figure 1: Deep Averaging Network for prediction
tasks. The embeddings are averaged and passed to two
non-linear layers (tanh).

were not localized). We compute the embedding
for each token in our dataset, and pass them to the
network; see Figure 1. Again using LOOCV, in
each pass we leave out one state, train the network
on tweets from the 50 other states and predict the
T2DM rate for the left out state.
4.2 Impact of socioeconomic factors

Previous work has shown that the T2DM rate
can be predicted by socioeconomic factors such
as poverty (Chih-Cheng et al., 2012), income (Ye-
lena et al., 2015), and education (Ayyagari et al.,
2011). Therefore, we incorporate these factors
into our prediction models (Section 4.1) to assess
their contribution. We represent each socioeco-
nomic factor and its correlation with the T2DM
rate in the corresponding state as a feature, and in-
clude these new features alongside the lexical and
topic-based ones. Even though in general, the cor-
relations are relatively low (see Table 2), we will
show that the model strongly benefits from the ad-
ditional information leading to accuracy increases
of 2–6% (see Section 5). This indicates that the
language of food captures different signal and re-
flects distinct information from these indicators.
However, because these indicators are represented
as single features, as opposed to the other features
(e.g., there are tens of thousands of food word fea-
tures, each of which is represented as an integer
count), they tended to be ignored by the classi-
fier. To account for this, we empirically explored
a series of multipliers to increase the weights of
the values of these indicator features14. For this
task, we use the same SVM classifier from Sec-
tion 4.1, as well as a Random Forest (RF) classi-
fier (Breiman, 2001)15.

14For these correlation multipliers, we experimented with
powers of 10, from 101 to 106.

15To avoid overfitting, we do not fine-tune the RF classi-
fier’s hyperparameters.
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Socioeconomic factor Correlation with T2DM

Education -0.37
Income -0.14
Poverty 0.18

Table 2: Correlation between socioeconomic factors
(education, income, poverty) and type 2 diabetes mel-
litus (T2DM) in 2017. Each correlation is calcu-
lated from the binary data described in Section 4.1.
For the correlation values we used Pearson correla-
tion (Boslaugh, 2012).

4.3 Exploring food trends
We use pointwise mutual information (PMI) be-

tween food words/hashtags and years to analyze
food trends over time. We divide our corpus of
tweets into four parts, each containing a complete
year’s set of tweets (from 2014 to 2017) and then
calculate PMI for pairs (food term t, year y) using
the formula:

PMI(t, y) =
C(t, y)

C(t) ∗ C(y)
, (1)

where, C(t, y) is the number of occurrences of
term t in year y, C(t) is the total number of oc-
currences of the term, and C(y) is the number of
tweets in year y. Intuitively, the higher the PMI
value of a term in a given year, PMI(t, y), the
more that term is associated with tweets from that
year in particular.
4.4 Semantic axes analysis

Word vector embeddings are a standard tool
used to analyze text, as they capture similarity re-
lationships between the different words. However,
interpreting such embeddings and understanding
the encoded grammatical and semantic relations
between words can be difficult due to the high
dimensionality of the embedding space (typically
50-300 dimensions).

Semantic axes visualizations allow us to view
specific low dimensional projections where the
new dimensions can be used to explore differ-
ent semantic concepts (Heimerl and Gleicher,
2018). For our task, we generate several word
embeddings from our dataset using the CBOW
Word2Vec model of (Mikolov et al., 2013). Dif-
ferent than other visualization tools (e.g., t-SNE,
PCA), when using semantic axes we need to de-
fine two semantic axes by two opposite concepts
(e.g., man vs. woman and breakfast vs. dinner)
and project a collection of vectors (words in em-
bedding) based on the specific 2D space. The re-

sult is a 2D scatter plot with respect to two differ-
ent concepts.

We first create a word embedding for all the
tweets in our dataset. This allows us to explore
the correlations between different concepts.

We further augment the semantic axes tool16

provided by Heimerl and Gleicher (2018), to al-
low a concept axis to be defined by two sets of
words (rather than exactly two words). For ex-
ample, instead of having one axis defined by the
pair (vegetables, meat) we can now use two sets of
words (vegetables, fruit, vegetarian, vegan, etc.,
and meat, fish, chicken, beef, etc.). This allows us
to capture more complex concepts such as “meat-
eaters” that are not captured by individual words.
5 Results

We present the results for all prediction tasks
of state level characteristics, as well as the eval-
uation of the contribution of socioeconomic fac-
tors alongside food language in predicting T2DM
rate. We also investigate the shifts in eating habits
over time (i.e., food trends), as well as the trends
in different groups through our semantic axes ex-
periments.
5.1 State-level characteristics prediction

In Table 3, we show the results for predict-
ing state-level socioeconomic characteristics using
various sets of features. We compare the results
from our dataset with the results of Fried et al.
(2014) for predicting T2DM rates. However, since
Fried et al. (2014) do not experiment with pre-
dicting poverty, income, and education level, for
these we compare against a majority baseline. As
there are 51 states (including Washington D.C.),
and each binary socioeconomic factor is based on
the national median, this means that for each fac-
tor there will be 26 states either above or below
(resulting in a majority baseline of 50.98%).

Comparing the effects of each type of lexical
features and their combination with LDA topic
features on these prediction tasks, we make sev-
eral observations.

Performance comparison by feature set: First
and foremost, the results demonstrate that the lan-
guage of food can be used to predict health and so-
cial characteristics such as diabetes risk, income,
poverty, and education level. The highest overall
performance is achieved by using all tweet words
(both with and without LDA). This suggests that

16http://embvis.flovis.net/
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Diabetes Poverty Income Education Average

# Majority baseline 50.98 50.98 50.98 50.98 50.98

All Words
1 Fried et al. (2014) 64.71 – – – –
2 Our dataset 74.51 64.71 80.39 74.51 73.53

All Words + LDA
3 Fried et al. (2014) 64.71 – – – –
4 Our dataset 70.59 66.67 82.35 74.51 73.53

Hashtags
5 Fried et al. (2014) 68.63 – – – –
6 Our dataset 74.51 64.71 80.39 66.67 71.57

Hashtags + LDA
7 Fried et al. (2014) 68.63 – – – –
8 Our dataset 72.55 62.75 84.31 68.63 72.06

Food
9 Fried et al. (2014) 60.78 – – – –

10 Our dataset 72.55 62.75 64.71 62.75 65.69

Food + LDA
11 Fried et al. (2014) 60.78 – – – –
12 Our dataset 78.43 62.75 62.75 62.75 66.67

Food+Hashtags
13 Fried et al. (2014) 62.75 – – – –
14 Our dataset 72.55 64.71 78.43 66.67 70.59

Food+Hashtags+LDA
15 Fried et al. (2014) 62.75 – – – –
16 Our dataset 74.51 64.71 84.31 68.63 73.05

Table 3: Results from using various feature sets to pre-
dict state-level characteristics: whether a given state
is above or below the national median for diabetes,
poverty, income, and education. We also show the av-
erage performance across all characteristics. We com-
pare against Fried et al. (2014) as well as the majority
baseline. Note that Fried et al. do not predict poverty,
income, or education level. The low number of data
points (51 states) is responsible for the same accuracy
value in multiple experiments.

we can capture significant predictive signal from
tweets when capturing food words in context.

The highest prediction performance is seen
when predicting the state-level income rate,
demonstrating a high correlation between food-
related words and income. When predicting state-
level diabetes rate, we also see strong predictive
power from the language of food – all models per-
form above 70%, up to 78.43%. This confirms
our hypothesis that there is a strong correlation
between food-related words (and presumably food
behaviors) and diabetes rate, one indicator of pub-
lic health.

Amount and recency of data: For diabetes pre-
diction, with our larger dataset, we improve upon
the results of Fried et al. (2014) (ranging from 4 to
18%). In particular, when we use the food-word
features combined with LDA topics, we increase
prediction accuracy by almost 18%. These results
suggest that more data matters in this type of anal-
ysis, as evidenced by the learning curves shown in
Figure 2, where we compare performance against
amount of training data (by year).

Figure 2: The learning curves for each lexical fea-
ture set in terms of predicting diabetes rate in 2017.
The horizontal axis corresponds to the cumulative date
range used, i.e., 13 only uses tweets from 2013, and
13-14 uses tweets from 2013 through 2014, etc. The
y-axis is the state-level prediction accuracy.

We also created learning curves for prediction
of T2DM, but from the opposite direction, i.e.,
starting from tweets from 2017 only, and then
adding tweets from earlier years one year at a time.
We observe that the more recent the data, the more
useful it is for prediction. We hypothesize that in
terms of the utility of increased data, the perfor-
mance of food-word features is improved only as
the amount of relevant data increases. For the first
part of the curve (only from 17, combined 17–16,
combined 17–15), the classifier’s performance is
improved with additional tweets. However, after
this peak, additional older tweets decrease perfor-
mance, suggesting that people change their eating
behavior over a period spanning multiple years.
The importance of recency of tweet data is also
discussed in (Bell et al., 2016).

Comparison to previous work: The best per-
forming model of Fried et al. (2014) relies on
hash-tags (see Table 3, lines 5 and 7) and the worst
performing model use food words (lines 9 and 11).
However, with more data we find that we get the
best performance with food words (line 12). We
hypothesize that with smaller data, the concise se-
mantics of hashtags are more informative, but with
more data the model is able to learn the relative
semantics of the food words themselves. Further,
while LDA topics do not benefit any model of
Fried et al. in terms of predicting diabetes, here
we find that with additional data, LDA topics ben-
efit the food words model (compare lines 10 and
12), and in fact contribute to our best performing
model (line 12), perhaps because additional data
leads to more representative LDA topics.
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Figure 3: The learning curve using food word features,
on the diabetes rate prediction task for 2017. In this
figure, the data portion used for each point is in reverse
order compared to Figure 2, that is, starting from most
recent tweets and going back in time. The horizon-
tal axis is labeled based on the year(s) from which the
tweets used for prediction were used.

The Deep Averaging Network from Figure 1
consistently underperformed the results reported
in Table 3. This approach obtained an accuracy
of 60.78% for the T2DM rate prediction task, con-
siderably lower than the 78% obtained by the best
SVM configuration in Table 3. We hypothesize
that the reason behind this low performance is the
small number of data points (51), which is insuffi-
cient to train a neural network.
5.2 Impact of socioeconomic factors

In Table 5, we show the SVM results for pre-
dicting T2DM rate from extending the feature ma-
trix from 5.1 with one additional feature based on
the correlation between each socioeconomic fac-
tor (education, income, and poverty) and T2DM.
For each factor, we compare several multipliers
(see Section 4.2) to amplify the impact of the so-
cioeconomic correlations. Consistently, we find
that models with more features benefit from larger
multipliers. For example, the extended food word
models that have several hundred features perform
best with a multiplier of 102, while the other ex-
tended models, which all have tens of thousands
of features, perform best with a multiplier of 103.
The best multiplier for each model, according to
SVM performance, is used in our Random Forest
models (Table 4).

From these extended models we see that using
poverty information as an additional feature im-
proves our SVM performance by a range of 2–
8% and our RF performance by up to 6%. The
other socioeconomic factors, i.e., income and ed-
ucation, do not help when using an SVM classi-

# Features Results from best performing multiplier

All Words+LDA with RF 62.75
Fried et al. (2014) 64.71

1 + Education 64.71
2 + Income 64.71
3 + Poverty 64.71

Food+LDA with RF 70.59
Fried et al. (2014) 60.78

4 + Education 74.51
5 + Income 72.55
6 + Poverty 76.47

Hashtags+LDA with RF 68.63
Fried et al. (2014) 68.63

7 + Education 64.71
8 + Income 64.71
9 + Poverty 68.63

Food+Hashtags+LDA with RF 66.67
Fried et al. (2014) 62.75

10 + Education 72.55
11 + Income 72.55
12 + Poverty 70.59

Table 4: Results for predicting T2DM rate using a ran-
dom forest classifier with our additional socioeconomic
correlation features. For each feature set, we use the
best performing multiplier, as determined in the previ-
ous experiment that used a SVM classifier (Table 5).
That is, the best performing multiplier for food word
features is 102, while other features’ multipliers are
103.

fier (Table 5), but when using a RF classifier we
see up to 6% improvement (Table 4). Overall,
our highest T2DM prediction performance is ob-
tained with SVM using Food + LDA + poverty.
This performance surpasses 80% accuracy and is
the highest value reported for this task. Further,
to the best of our knowledge, the effect of using
poverty information to improve T2DM rate pre-
diction is novel and suggests a potential avenue
for improving classifiers with socioeconomic cor-
relation information.

Importantly, predicting the T2DM below/above
median labels from the poverty indicator alone has
an accuracy of 58.82%. This value is consid-
erably lower than that of the classifier that uses
poverty coupled with the extended word features
from tweets, which obtained 80% accuracy. This
demonstrates that the language of food provides
signal that is distinct from this indicator, which
suggests that there is value in social media min-
ing for the monitoring of health risks.
5.3 Food trends

Given our dataset that spans nearly five years,
we are also able to investigate whether changes in
food habits over time can be detected in social me-
dia language. To this end, we explored a list of 800
food words and their change in PMI values in the
different years. To understand which food words
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# 101 102 103 104 105 106

All Words + LDA 70.59 – – – – –
1 + Education 70.59 70.59 70.59 70.59 70.59 66.67
2 + Income 70.59 70.59 70.59 66.67 66.67 66.67
3 + Poverty 66.67 72.55 78.43 74.51 70.59 70.59

Food + LDA 78.43 – – – – –
4 + Education 70.59 74.51 68.63 70.59 68.63 68.63
5 + Income 70.59 74.51 68.63 70.59 66.67 62.75
6 + Poverty 78.43 80.39 76.47 68.63 70.59 70.59

Hashtags+LDA 72.55 – – – – –
7 + Education 70.59 70.59 74.51 70.59 66.67 68.63
8 + Income 66.67 68.63 70.59 66.67 62.75 66.67
9 + Poverty 72.55 74.51 76.47 64.71 68.63 68.63

Food+Hashtags+LDA 74.51 – – – – –
10 + Education 70.59 70.59 72.55 68.63 68.63 66.67
11 + Income 66.67 72.55 74.51 68.63 68.63 66.67
12 + Poverty 72.55 74.51 78.43 72.55 68.63 68.63

Table 5: Results for predicting T2DM rate using our
SVM classifier, which is similar to that of Fried et al.
(2014), but with additional socioeconomic correlation
features. Columns show results under different mul-
tipliers used to boost the importance of the indicator
features (see Section 4.2).

indicate healthy vs. unhealthy diets, we manually
classified the 800 food words into three categories
– healthy, unhealthy and neutral – using reliable
online resources17. The annotations were indepen-
dently performed by three annotators. The inter-
annotator Kappa agreement scores18 shown in Ta-
ble 6 indicate fair to good agreement between the
three annotators.

We computed PMI values for each of these 800
words and each year in our US dataset. We also
computed the PMI values for the three categories
and each year (here all words from each category
are treated as one). The category trends in our
US dataset indicate a slight increase of mentions
of unhealthy food words and a slight decrease in
mentions of healthy food words in US tweets; see
Figure 4. These results suggest a continued de-
cline in dietary patterns in the US, despite seem-
ingly increased interest in health benefits from
food19.
5.4 Semantic axes visualization

As discussed in Section 4.4, visualizations can
help discover correlations between different con-
cepts, as well as look at trends over time. In Fig-
ure 5, we consider the two axes defined by man

17http://www.diabetes.org/ and https:
//www.healthline.com/health/diabetes/

18We use the scikit learn library to calculate the score.
https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.cohen_kappa_
score.html

19https://foodinsight.org/wp-content/
uploads/2018/05/2018-FHS-Report-FINAL.
pdf

1st annotator 2nd annotator Score

annotator 1 annotator 2 0.72
annotator 1 annotator 3 0.39
annotator 2 annotator 3 0.58

Table 6: The Cohen’s kappa inter-annotator agreement
scores among the three annotators.

0

10

20

30

40

14 15 16 17

Healthy Unhealthy Neutral

Figure 4: PMI values for each category foods annotated
by the 1st annotator. The y-axis shows PMI values 106.
The trends based on the other annotators are similar.

vs. woman, and breakfast vs. dinner. Exploring
the four corners we can identify particular types of
foods representative of those coordinates. In the
top-left we see words associated with women and
breakfast (yogurt, cupcake, pastry), whereas in the
bottom-left we see words associated with men and
breakfast (sausage, bacon, ham). Similarly, in
the top-right we see words associated with women
and dinner (mussels, halibut, eggplant) whereas
the bottom right we see words associated with
men and dinner (lasagna, lamb, teriyaki). This
data confirms common stereotypes, e.g., (1) men
tend to eat more meat, whereas women often pre-
fer fish, and (2) women are more health-conscious
compared to men.

We also consider topics (defined by a collection
of words) as axes, as illustrated in Table 7. The
two axes now are man vs. woman, and vegetarian
words vs. low-carb diets. To represent the vegetar-
ian topic we use the words vegan, vegetarian, tofu,
and to represent the low-carb topic we use keto,
paleo, and atkins. We then average the word em-
bedding vectors for all words in the topic to create
the 2D projection.

We list the 4 corners in the projection as 4 rows
in Table 7, where the left column corresponds to
the concepts and the right column contains the
words. Several patterns emerge: vegetarian words
associated with women tend to be soups, salads,
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Figure 5: Semantic axes 2D plot using man vs. woman and breakfast vs. dinner as the two axes. We highlight the
four corners where interesting patterns can be seen (e.g., the top-left corner is associated with with women and
breakfast). Note that this image is a composite of four images, each highlighting one corner.

and gourmet types of foods (saffron, fennel). In
contrast, the vegetarian words associated with men
tend to be vegetables (spinach, kale, carrot). In
the low-carb and women corner we find break-
fast words and deserts (cupcake, pastry, caramel,
wheat) whereas in the low-carb and men corner
we see more hearty foods (spaghetti, hamburgers,
buns).

man vs. woman, and vegetarian vs. low-carb diets
woman, vegetarian diet mint, saffron, fennel, squash,

soup, tomato, eggplant
man, vegetarian diet beet, onion, coconut, spinach,

kale, carrot
woman, low-carb diet hazelnut, nut, cupcake, pastry,

grain, caramel, wheat
man, low-carb diet cereal, spaghetti, buns, ham-

burger, pepperoni, crunch

Table 7: The 4 corners in the man vs. woman and veg-
etarian words vs. low-carb diets plot. Each row repre-
sents one corner, The left column contains the pair of
concepts; the right column contains the foods associ-
ated with those concepts.

6 Conclusion
We showed that the language of food has pre-

dictive power for non-trivial state-level health
tasks such as predicting if a state has higher/lower
diabetes risk than the median. When augmented
with socio-economic data such as poverty in-
dicators, performance improves further, but we
demonstrate that the language of food captures dif-
ferent signal and reflect distinct information from
these socio-economic data. We also provide vi-
sualization tools to analyze the underlying data

and visualize patterns and trends. This work may
have immediate use in public health, e.g., by driv-
ing rapid policy decisions for the communities
deemed at health risk. Further, we hope that this
work complements predicting health risk for in-
dividuals, a task that is plagued by sparsity, and
which could potentially benefit from additional
community-level information.
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Abstract

Stress is a nigh-universal human experience,
particularly in the online world. While stress
can be a motivator, too much stress is asso-
ciated with many negative health outcomes,
making its identification useful across a range
of domains. However, existing computational
research typically only studies stress in do-
mains such as speech, or in short genres such
as Twitter. We present Dreaddit, a new text
corpus of lengthy multi-domain social media
data for the identification of stress. Our dataset
consists of 190K posts from five different cate-
gories of Reddit communities; we additionally
label 3.5K total segments taken from 3K posts
using Amazon Mechanical Turk. We present
preliminary supervised learning methods for
identifying stress, both neural and traditional,
and analyze the complexity and diversity of the
data and characteristics of each category.

1 Introduction

In our online world, social media users tweet, post,
and message an incredible number of times each
day, and the interconnected, information-heavy
nature of our lives makes stress more prominent
and easily observable than ever before. With many
platforms such as Twitter, Reddit, and Facebook,
the scientific community has access to a massive
amount of data to study the daily worries and
stresses of people across the world.1

Stress is a nearly universal phenomenon, and
we have some evidence of its prevalence and re-
cent increase. For example, the American Psy-
chological Association (APA) has performed an-
nual studies assessing stress in the United States
since 20072 which demonstrate widespread expe-
riences of chronic stress. Stress is a subjective
experience whose effects and even definition can

1https://www.gse.harvard.edu/news/uk/
17/12/social-media-and-teen-anxiety

2https://www.apa.org/news/press/
releases/stress/index?tab=2

vary from person to person; as a baseline, the
APA defines stress as a reaction to extant and fu-
ture demands and pressures,3 which can be pos-
itive in moderation. Health and psychology re-
searchers have extensively studied the connection
between too much stress and physical and mental
health (Lupien et al., 2009; Calcia et al., 2016).

In this work, we present a corpus of social me-
dia text for detecting the presence of stress. We
hope this corpus will facilitate the development of
models for this problem, which has diverse appli-
cations in areas such as diagnosing physical and
mental illness, gauging public mood and worries
in politics and economics, and tracking the effects
of disasters. Our contributions are as follows:
• Dreaddit, a dataset of lengthy social media

posts in five categories, each including stress-
ful and non-stressful text and different ways
of expressing stress, with a subset of the data
annotated by human annotators;4

• Supervised models, both discrete and neural,
for predicting stress, providing benchmarks
to stimulate further work in the area; and
• Analysis of the content of our dataset and the

performance of our models, which provides
insight into the problem of stress detection.

In the remainder of this paper, we will review
relevant work, describe our dataset and its annota-
tion, provide some analysis of the data and stress
detection problem, present and discuss results of
some supervised models on our dataset, and finally
conclude with our summary and future work.

2 Related Work

Because of the subjective nature of stress, rel-
evant research tends to focus on physical sig-

3https://www.apa.org/helpcenter/
stress-kinds

4Our dataset will be made available at http:
//www.cs.columbia.edu/˜eturcan/data/
dreaddit.zip.
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nals, such as cortisol levels in saliva (Allen et al.,
2014), electroencephalogram (EEG) readings (Al-
Shargie et al., 2016), or speech data (Zuo et al.,
2012). This work captures important aspects of
the human reaction to stress, but has the disad-
vantage that hardware or physical presence is re-
quired. However, because of the aforementioned
proliferation of stress on social media, we believe
that stress can be observed and studied purely from
text.

Other threads of research have also made this
observation and generally use microblog data
(e.g., Twitter). The most similar work to ours in-
cludes Winata et al. (2018), who use Long Short-
Term Memory Networks (LSTMs) to detect stress
in speech and Twitter data; Guntuku et al. (2018),
who examine the Facebook and Twitter posts of
users who score highly on a diagnostic stress ques-
tionnaire; and Lin et al. (2017), who detect stress
on microblogging websites using a Convolutional
Neural Network (CNN) and factor graph model
with a suite of discrete features. Our work is
unique in that it uses data from Reddit, which
is both typically longer and not typically as con-
ducive to distant labeling as microblogs (which are
labeled in the above work with hashtags or pattern
matching, such as “I feel stressed”). The length
of our posts will ultimately enable research into
the causes of stress and will allow us to identify
more implicit indicators. We also limit ourselves
to text data and metadata (e.g., posting time, num-
ber of replies), whereas Winata et al. (2018) also
train on speech data and Lin et al. (2017) include
information from photos, neither of which is al-
ways available. Finally, we label individual parts
of longer posts for acute stress using human an-
notators, while Guntuku et al. (2018) label users
themselves for chronic stress with the users’ vol-
untary answers to a psychological questionnaire.

Researchers have used Reddit data to examine a
variety of mental health conditions such as depres-
sion (Choudhury et al., 2013) and other clinical
diagnoses such as general anxiety (Cohan et al.,
2018), but to our knowledge, our corpus is the first
to focus on stress as a general experience, not only
a clinical concept.

3 Dataset

3.1 Reddit Data

Reddit is a social media website where users post
in topic-specific communities called subreddits,

I have this feeling of dread about school right
before I go to bed and I wake up with an upset
stomach which lasts all day and nakes me feel
like I’ll throw up. This causes me to lose ap-
petite and not wanting to drink water for fear
of throwing up. I’m not sure where else to go
with this, but I need help. If any of you have
this, can you tell me how you deal with it?
I’m tired of having this every day and feeling
like I’ll throw up.

Figure 1: An example of stress being expressed in so-
cial media from our dataset, from a post in r/anxiety
(reproduced exactly as found). Some possible expres-
sions of stress are highlighted.

and other users comment and vote on these posts.
The lengthy nature of these posts makes Reddit
an ideal source of data for studying the nuances
of phenomena like stress. To collect expressions
of stress, we select categories of subreddits where
members are likely to discuss stressful topics:
• Interpersonal conflict: abuse and social do-

mains. Posters in the abuse subreddits are
largely survivors of an abusive relationship
or situation sharing stories and support, while
posters in the social subreddit post about any
difficulty in a relationship (often but not ex-
clusively romantic) and seek advice for how
to handle the situation.
• Mental illness: anxiety and Post-Traumatic

Stress Disorder (PTSD) domains. Posters
in these subreddits seek advice about coping
with mental illness and its symptoms, share
support and successes, seek diagnoses, and
so on.
• Financial need: financial domain. Posters in

the financial subreddits generally seek finan-
cial or material help from other posters.

We include ten subreddits in the five domains of
abuse, social, anxiety, PTSD, and financial, as de-
tailed in Table 1, and our analysis focuses on the
domain level. Using the PRAW API,5 we scrape all
available posts on these subreddits between Jan-
uary 1, 2017 and November 19, 2018; in total,
187,444 posts. As we will describe in subsec-
tion 3.2, we assign binary stress labels to 3,553
segments of these posts to form a supervised and
semi-supervised training set. An example segment
is shown in Figure 1. Highlighted phrases are in-

5https://github.com/praw-dev/praw
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Domain Subreddit Name Total Posts Avg Tokens/Post Labeled Segments

abuse
r/domesticviolence 1,529 365 388
r/survivorsofabuse 1,372 444 315
Total 2,901 402 703

anxiety
r/anxiety 58,130 193 650
r/stress 1,078 107 78
Total 59,208 191 728

financial

r/almosthomeless 547 261 99
r/assistance 9,243 209 355
r/food pantry 343 187 43
r/homeless 2,384 143 220
Total 12,517 198 717

PTSD r/ptsd 4,910 265 711
social r/relationships 107,908 578 694

All 187,444 420 3,553

Table 1: Data Statistics. We include ten total subreddits from five domains in our dataset. Because some subreddits
are more or less popular, the amount of data in each domain varies. We endeavor to label a comparable amount of
data from each domain for training and testing.

dicators that the writer is stressed: the writer men-
tions common physical symptoms (nausea), ex-
plicitly names fear and dread, and uses language
indicating helplessness and help-seeking behavior.

The average length of a post in our dataset is
420 tokens, much longer than most microblog data
(e.g., Twitter’s character limit as of this writing is
280 characters). While we label segments that are
about 100 tokens long, we still have much addi-
tional data from the author on which to draw. We
feel this is important because, while our goal in
this paper is to predict stress, having longer posts
will ultimately allow more detailed study of the
causes and effects of stress.

In Table 2, we provide examples of labeled seg-
ments from the various domains in our dataset.
The samples are fairly typical; the dataset contains
mostly first-person narrative accounts of personal
experiences and requests for assistance or advice.
Our data displays a range of topics, language, and
agreement levels among annotators, and we pro-
vide only a few examples. Lengthier examples are
available in the appendix.

3.2 Data Annotation

We annotate a subset of the data using Amazon
Mechanical Turk in order to begin exploring the
characteristics of stress. We partition the posts
into contiguous five-sentence chunks for labeling;
we wish to annotate segments of the posts because
we are ultimately interested in what parts of the

post depict stress, but we find through manual in-
spection that some amount of context is important.
Our posts, however, are quite long, and it would be
difficult for annotators to read and annotate entire
posts. This type of data will allow us in the future
not only to classify the presence of stress, but also
to locate its expressions in the text, even if they are
diffused throughout the post.

We set up an annotation task in which English-
speaking Mechanical Turk Workers are asked to
label five randomly selected text segments (of
five sentences each) after taking a qualification
test; Workers are allowed to select “Stress”, “Not
Stress”, or “Can’t Tell” for each segment. In our
instructions, we define stress as follows: “The Ox-
ford English Dictionary defines stress as ‘a state
of mental or emotional strain or tension resulting
from adverse or demanding circumstances’. This
means that stress results from someone being un-
certain that they can handle some threatening situ-
ation. We are interested in cases where that some-
one also feels negatively about it (sometimes we
can find an event stressful, but also find it excit-
ing and positive, like a first date or an interview).”.
We specifically ask Workers to decide whether the
author is expressing both stress and a negative atti-
tude about it, not whether the situation itself seems
stressful. Our full instructions are available in the
appendix.

We submit 4,000 segments, sampled equally
from each domain and uniformly within domains,
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Text Domain Label Ann. Agreed
I only get it when I have a flashback or strong reaction to a
trigger. I notice it sticks around even when I feel emotionally
calm and can stick around for a long time after the trigger, like
days or weeks. Its a new symptom I think. Also been having
lots of nightmares again recently. Not sure what to do as Im
not currently in therapy, but I am waiting to be seen at a mental
health clinic.

PTSD stress 6/7 (86%)

Regardless, that didn’t last long, maybe half a year. I released
that apartment, and most of my belongings (I kept a few boxes
of my things from the military, personal effects, but little else).
Looking back, there were some signs of emotional manipula-
tion here, but it was subtle... and you know how it is, love is
blind. We got engaged. It was quite the affair.

abuse not stress 5/5 (100%)

Our dog Jett has been diagnosed with diabetes and is now in
the hospital to stabilize his blood sugar. Luckily, he seems to
be doing well and he will be home with us soon. Unfortu-
nately, his bill is large enough that we just can’t cover it on
our own (especially with our poor financial situation). We’re
being evicted from our home soon and trying to find a place
with this bill is just too much for us by ourselves. To help us
pay the bill we’ve set up a GoFundMe.

financial stress 3/5 (60%)

Table 2: Data Examples. Examples from our dataset with their domains, assigned labels, and number of annotators
who agreed on the majority label (reproduced exactly as found, except that a link to the GoFundMe has been
removed in the last example). Annotators labeled these five-sentence segments of larger posts.

to Mechanical Turk to be annotated by at least five
Workers each and include in each batch one of
50 “check questions” which have been previously
verified by two in-house annotators. After remov-
ing annotations which failed the check questions,
and data points for which at least half of the anno-
tators selected “Can’t Tell”, we are left with 3,553
labeled data points from 2,929 different posts. We
take the annotators’ majority vote as the label for
each segment and record the percentage of anno-
tators who agreed. The resulting dataset is nearly
balanced, with 52.3% of the data (1,857 instances)
labeled stressful.

Our agreement on all labeled data is κ =
0.47, using Fleiss’s Kappa (Fleiss, 1971), consid-
ered “moderate agreement” by Landis and Koch
(1977). We observe that annotators achieved per-
fect agreement on 39% of the data, and for another
32% the majority was 3/5 or less.6 This suggests
that our data displays significant variation in how
stress is expressed, which we explore in the next
section.

6It is possible for the majority to be less than 3/5 when
more than 5 annotations were solicited.

4 Data Analysis

While all our data has the same genre and personal
narrative style, we find distinctions among do-
mains with which classification systems must con-
tend in order to perform well, and distinctions be-
tween stressful and non-stressful data which may
be useful when developing such systems. Posters
in each subreddit express stress, but we expect that
their different functions and stressors lead to dif-
ferences in how they do so in each subreddit, do-
main, and broad category.

By domain. We examine the vocabulary pat-
terns of each domain on our training data only, not
including unlabeled data so that we may extend
our analysis to the label level. First, we use the
word categories from the Linguistic Inquiry and
Word Count (LIWC) (Pennebaker et al., 2015), a
lexicon-based tool that gives scores for psycholog-
ically relevant categories such as sadness or cog-
nitive processes, as a proxy for topic prevalence
and expression variety. We calculate both the per-
centage of tokens per domain which are included
in a specific LIWC word list, and the percentage
of words in a specific LIWC word list that appear
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Domain “Negemo” % “Negemo” Coverage “Social” % “Anxiety” Coverage
Abuse 2.96% 39% 12.03% 58%
Anxiety 3.42% 37% 6.76% 62%
Financial 1.54% 31% 8.06% 42%
PTSD 3.29% 42% 7.95% 61%
Social 2.36% 38% 13.21% 59%
All 2.71% 62% 9.62% 81%

Table 3: LIWC Analysis by Domain. Results from our analysis using LIWC word lists. Each term in quotations
refers to a specific word list curated by LIWC; percentage refers to the percent of words in the domain that are
included in that word list, and coverage refers to the percent of words in that word list which appear in the domain.

Figure 2: Lexical Diversity by Domain. Yule’s I measure (on the y-axes) is plotted against domain size (on the
x-axes) and each domain is plotted as a point on two graphics. a) measures the lexical diversity of all words in the
vocabulary, while b) deletes all words that were not included in LIWC’s negative emotion word list.

in each domain (“coverage” of the domain).

Results of the analysis are highlighted in Ta-
ble 3. We first note that variety of expression de-
pends on domain and topic; for example, the vari-
ety in the expression of negative emotions is par-
ticularly low in the financial domain (with 1.54%
of words being negative emotion (“negemo”)
words and only 31% of “negemo” words used).
We also see clear topic shifts among domains: the
interpersonal domains contain roughly 1.5 times
as many social words, proportionally, as the oth-
ers; and domains are stratified by their coverage
of the anxiety word list (with the most in the men-
tal illness domains and the least in the financial
domain).

We also examine the overall lexical diversity
of each domain by calculating Yule’s I measure
(Yule, 1944). Figure 2 shows the lexical diver-
sity of our data, both for all words in the vocab-
ulary and for only words in LIWC’s “negemo”
word list. Yule’s I measure reflects the repetitive-

ness of the data (as opposed to the broader cover-
age measured by our LIWC analysis). We notice
exceptionally low lexical diversity for the mental
illness domains, which we believe is due to the
structured, clinical language surrounding mental
illnesses. For example, posters in these domains
discuss topics such as symptoms, medical care,
and diagnoses (Figure 1, Table 2). When we re-
strict our analysis to negative emotion words, this
pattern persists only for anxiety; the PTSD domain
has comparatively little lexical variety, but what it
does have contributes to its variety of expression
for negative emotions.

By label. We perform similar analyses on
data labeled stressful or non-stressful by a ma-
jority of annotators. We confirm some common
results in the mental health literature, including
that stressful data uses more first-person pronouns
(perhaps reflecting increased self-focus) and that
non-stressful data uses more social words (perhaps
reflecting a better social support network).
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Label 1st-Person % “Posemo” % “Negemo” % “Anxiety” Cover. “Social” %
Stress 9.81% 1.77% 3.54% 78% 8.35%
Non-Stress 6.53% 2.78% 1.75% 67% 11.15%

Table 4: LIWC Analysis by Label. Results from our analysis using LIWC word lists, with the same definitions
as in Table 3. First-person pronouns (“1st-Person”) use the LIWC “I” word list.

Measure Stress Non-Stress
% Conjunctions 0.88% 0.74%
Tokens/Segment 100.80 93.39
Clauses/Sentence 4.86 4.33

F-K Grade 5.31 5.60
ARI 4.39 5.01

Table 5: Complexity by Label. Measures of syntactic
complexity for stressful and non-stressful data.

Figure 3: Lexical Diversity by Agreement. Yule’s I
measure (on the y-axis) is plotted against domain size
(on the x-axis) for each level of annotator agreement.
Perfect means all annotators agreed; High, 4/5 or more;
Medium, 3/5 or more; and Low, everything else.

Additionally, we calculate measures of syntac-
tic complexity, including the percentage of words
that are conjunctions, average number of tokens
per labeled segment, average number of clauses
per sentence, Flesch-Kincaid Grade Level (Kin-
caid et al., 1975), and Automated Readability In-
dex (Senter and Smith, 1967). These scores are
comparable for all splits of our data; however, as
shown in Table 5, we do see non-significant but
persistent differences between stressful and non-
stressful data, with stressful data being generally
longer and more complex but also rated simpler
by readability indices. These findings are intrigu-
ing and can be explored in future work.

By agreement. Finally, we examine the differ-
ences among annotator agreement levels. We find

an inverse relationship between the lexical vari-
ety and the proportion of annotators who agree, as
shown in Figure 3. While the amount of data and
lexical variety seem to be related, Yule’s I measure
controls for length, so we believe that this trend re-
flects a difference in the type of data that encour-
ages high or low agreement.

5 Methods

In order to train supervised models, we group the
labeled segments by post and randomly select 10%
of the posts (≈ 10% of the labeled segments) to
form a test set. This ensures that while there is
a reasonable distribution of labels and domains
in the train and test set, the two do not explic-
itly share any of the same content. This results
in a total of 2,838 train data points (51.6% labeled
stressful) and 715 test data points (52.4% labeled
stressful). Because our data is relatively small, we
train our traditional supervised models with 10-
fold cross-validation; for our neural models, we
break off a further random 10% of the training
data for validation and average the predictions of
10 randomly-initialized trained models.

In addition to the words of the posts (both
as bag-of-n-grams and distributed word embed-
dings), we include features in three categories:

Lexical features. Average, maximum, and
minimum scores for pleasantness, activation, and
imagery from the Dictionary of Affect in Lan-
guage (DAL) (Whissel, 2009); the full suite of
93 LIWC features; and sentiment calculated us-
ing the Pattern sentiment library (Smedt and
Daelemans, 2012).

Syntactic features. Part-of-speech unigrams
and bigrams, the Flesch-Kincaid Grade Level, and
the Automated Readability Index.

Social media features. The UTC timestamp
of the post; the ratio of upvotes to downvotes on
the post, where an upvote roughly corresponds to
a reaction of “like” and a downvote to “dislike”
(upvote ratio); the net score of the post (karma)
(calculated by Reddit, nupvotes − ndownvotes)7; and

7https://www.reddit.com/wiki/faq
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the total number of comments in the entire thread
under the post.

5.1 Supervised Models
We first experiment with a suite of non-neural
models, including Support Vector Machines
(SVMs), logistic regression, Naı̈ve Bayes, Percep-
tron, and decision trees. We tune the parameters
for these models using grid search and 10-fold
cross-validation, and obtain results for different
combinations of input and features.

For input representation, we experiment with
bag-of-n-grams (for n ∈ {1..3}), Google
News pre-trained Word2Vec embeddings (300-
dimensional) (Mikolov et al., 2013), Word2Vec
embeddings trained on our large unlabeled cor-
pus (300-dimensional, to match), and BERT em-
beddings trained on our unlabeled corpus (768-
dimensional, the top-level [CLS] embedding) (De-
vlin et al., 2019). We experiment with subsets of
the above features, including separating the fea-
tures by category (lexical, syntactic, social) and by
magnitude of the Pearson correlation coefficient
(r) with the training labels. Finally, we stratify
the training data by annotator agreement, includ-
ing separate experiments on only data for which
all annotators agreed, data for which at least 4/5
annotators agreed, and so on.

We finally experiment with neural models, al-
though our dataset is relatively small. We train
both a two-layer bidirectional Gated Recurrent
Neural Network (GRNN) (Cho et al., 2014) and
Convolutional Neural Network (CNN) (as de-
signed in Kim (2014)) with parallel filters of size 2
and 3, as these have been shown to be effective in
the literature on emotion detection in text (e.g., Xu
et al. (2018); Abdul-Mageed and Ungar (2017)).
Because neural models require large amounts of
data, we do not cull the data by annotator agree-
ment for these experiments and use all the labeled
data we have. We experiment with training em-
beddings with random initialization as well as ini-
tializing with our domain-specific Word2Vec em-
beddings, and we also concatenate the best fea-
ture set from our non-neural experiments onto the
representations after the recurrent and convolu-
tional/pooling layers respectively.

Finally, we apply BERT directly to our task,
fine-tuning the pretrained BERT-base8 on our clas-

8Using the implementation available at
https://github.com/huggingface/
pytorch-transformers

sification task for three epochs (as performed in
Devlin et al. (2019) when applying BERT to any
task). Our parameter settings for our various mod-
els are available in the appendix.

6 Results and Discussion

We present our results in Table 6. Our best model
is a logistic regression classifier with Word2Vec
embeddings trained on our unlabeled corpus,
high-correlation features (≥ 0.4 absolute Pear-
son’s r), and high-agreement data (at least 4/5 an-
notators agreed); this model achieves an F-score
of 79.8 on our test set, a significant improvement
over the majority baseline, the n-gram baseline,
and the pre-trained embedding model, (all by the
approximate randomization test, p < 0.01). The
high-correlation features used by this model are
LIWC’s clout, tone, and “I” pronoun features, and
we investigate the use of these features in the
other model types. Particularly, we apply differ-
ent architectures (GRNN and CNN) and differ-
ent input representations (pretrained Word2Vec,
domain-specific BERT).

We find that our logistic regression classifier de-
scribed above achieves comparable performance
to BERT-base (approximate randomization test,
p > 0.5) with the added benefits of increased in-
terpretability and less intensive training. Addition-
ally, domain-specific word embeddings trained on
our unlabeled corpus (Word2Vec, BERT) signif-
icantly outperform n-grams or pretrained embed-
dings, as expected, signaling the importance of do-
main knowledge in this problem.

We note that our basic deep learning models do
not perform as well as our traditional supervised
models or BERT, although they consistently, sig-
nificantly outperform the majority baseline. We
believe this is due to a serious lack of data; our la-
beled dataset is orders of magnitude smaller than
neural models typically require to perform well.
We expect that neural models can make good use
of our large unlabeled dataset, which we plan to
explore in future work. We believe that the su-
perior performance of the pretrained BERT-base
model (which uses no additional features) on our
dataset supports this hypothesis as well.

In Table 7, we examine the impact of differ-
ent feature sets and levels of annotator agree-
ment on our logistic regressor with domain-
specific Word2Vec embeddings and find consis-
tent patterns supporting this model. First, we

103



Model P R F
Majority baseline 0.5161 1.0000 0.6808
CNN + features* 0.6023 0.8455 0.7035
CNN* 0.5840 0.9322 0.7182
GRNN w/ attention + features* 0.6792 0.7859 0.7286
GRNN w/ attention* 0.7020 0.7724 0.7355
n-gram baseline* 0.7249 0.7642 0.7441
n-grams + features* 0.7474 0.7940 0.7700
LogReg w/ pretrained Word2Vec + features 0.7346 0.8103 0.7706
LogReg w/ fine-tuned BERT LM + features* 0.7704 0.8184 0.7937
LogReg w/ domain Word2Vec + features* 0.7433 0.8320 0.7980
BERT-base* 0.7518 0.8699 0.8065

Table 6: Supervised Results. Precision (P), recall (R), and F1-score (F) for our supervised models. Our best
model achieves 79.80 F1-score on our test set, comparable to the state-of-the-art pretrained BERT-base model. In
this table, “features” always refers to our best-performing feature set (≥ 0.4 absolute Pearson’s r). Models marked
with a * show a significant improvement over the majority baseline (approximate randomization test, p < 0.01).

Agreement Threshold for Data
Any Majority 60% (3/5) 80% (4/5) 100% (5/5)

Features

None 75.40 76.31 78.48 77.69
All 76.90 77.12 77.10 78.28
LIWC 77.91 78.91 78.16 77.66
DAL 75.58 77.06 78.05 77.06
Lexical 76.42 77.92 77.54 77.88
Syntactic 74.63 75.49 76.66 76.19
Social 76.67 76.45 78.38 78.06
|r| ≥ 0.4 77.44 78.76 79.80 78.52
|r| ≥ 0.3 77.01 78.28 79.38 78.31
|r| ≥ 0.2 77.53 78.61 79.02 78.28
|r| ≥ 0.1 76.61 77.07 76.32 77.48

Table 7: Feature Sets and Data Sets. The results of our best classifier trained on different subsets of features and
data. Features are grouped by type and by magnitude of their Pearson correlation with the train labels (no features
had an absolute correlation greater than 0.5); data is separated by the proportion of annotators who agreed. Our
best score (corresponding to our best non-neural model) is shown in bold.

see a tradeoff between data size and data quality,
where lower-agreement data (which can be seen
as lower-quality) results in worse performance, but
the larger 80% agreement data consistently outper-
forms the smaller perfect agreement data. Addi-
tionally, LIWC features consistently perform well
while syntactic features consistently do not, and
we see a trend towards the quality of features over
their quantity; those with the highest Pearson cor-
relation with the train set (which all happen to be
LIWC features) outperform sets with lower cor-
relations, which in turn outperform the set of all
features. This suggests that stress detection is
a highly lexical problem, and in particular, re-
sources developed with psychological applications

in mind, like LIWC, are very helpful.

Finally, we perform an error analysis of the two
best-performing models. Although the dataset is
nearly balanced, both BERT-base and our best lo-
gistic regression model greatly overclassify stress,
as shown in Table 8, and they broadly overlap but
do differ in their predictions (disagreeing with one
another on approximately 100 instances).

We note that the examples misclassified by both
models are often, though not always, ones with
low annotator agreement (with the average per-
cent agreement for misclassified examples being
0.55 for BERT and 0.61 for logistic regression).
Both models seem to have trouble with less ex-
plicit expressions of stress, framing negative ex-
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Gold
0 1

LogReg 0 241 105
1 49 320

Gold
0 1

BERT 0 240 106
1 48 321

BERT
0 1

LogReg 0 237 51
1 53 374

Table 8: Confusion Matrices. Confusion matrices of our best models and the gold labels. 0 represents data labeled
not stressed while 1 represents data labeled stressed.

Text Gold
Label Agreement Subreddit

Name
Models
Failed

Hello everyone, A very close friend of mine was
in an accident a few years ago and deals with
PTSD. He has horrific nightmares that wake him
up and keep him in a state of fright. We live
in separate provinces, so when he does have his
dreams it is difficult to comfort him. Each time
he calls, and I struggle with what to say on the
phone.

Not Stress 60% ptsd Both

I asked the other day if they’ve set a date. He
laughed in my face and said ’no’ as if it were the
most ridiculous thing he’s ever heard. He comes
home late, and showers immediately. Then, he
showers every morning before he leaves. He
doesn’t talk to my mum and I, at all, and he’s
cagey and secretive about everything, to the point
of hostility towards my sister.

Stress 60% domesticviolence BERT

If he’s the textbook abuser, she is the textbook
victim. She keeps giving him chances and ac-
cepting his apologies and living in this cycle of
abuse. She thinks she’s the one doing something
wrong. I keep telling her that the only thing she
is doing wrong is staying with this guy and think-
ing he will change. I tell her she does not deserve
this treatment.

Not Stress 100% domesticviolence LogReg

Table 9: Error Analysis Examples. Examples of test samples our models failed to classify correctly.“BERT”
refers to the state-of-the-art BERT-base model, while “LogReg” is our best logistic regressor described in section 6.

periences in a positive or retrospective way, and
stories where another person aside from the poster
is the focus; these types of errors are difficult to
capture with the features we used (primarily lex-
ical), and further work should be aware of them.
We include some examples of these errors in Ta-
ble 9, and further illustrative examples are avail-
able in the appendix.

7 Conclusion and Future Work

In this paper, we present a new dataset, Dread-
dit, for stress classification in social media, and
find the current baseline at 80% F-score on the
binary stress classification problem. We believe
this dataset has the potential to spur development
of sophisticated, interpretable models of psycho-
logical stress. Analysis of our data and our mod-
els shows that stress detection is a highly lexical
problem benefitting from domain knowledge, but

we note there is still room for improvement, espe-
cially in incorporating the framing and intentions
of the writer. We intend for our future work to
use this dataset to contextualize stress and offer
explanations using the content features of the text.
Additional interesting problems applicable to this
dataset include the development of effective dis-
tant labeling schemes, which is a significant first
step to developing a quantitative model of stress.
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Abstract

Randomized controlled trials (RCTs) rep-
resent the paramount evidence of clinical
medicine. Using machines to interpret the
massive amount of RCTs has the poten-
tial of aiding clinical decision-making. We
propose a RCT conclusion generation task
from the PubMed 200k RCT sentence clas-
sification dataset to examine the effective-
ness of sequence-to-sequence models on un-
derstanding RCTs. We first build a pointer-
generator baseline model for conclusion gen-
eration. Then we fine-tune the state-of-the-art
GPT-2 language model, which is pre-trained
with general domain data, for this new medi-
cal domain task. Both automatic and human
evaluation show that our GPT-2 fine-tuned
models achieve improved quality and correct-
ness in the generated conclusions compared
to the baseline pointer-generator model. Fur-
ther inspection points out the limitations of
this current approach and future directions to
explore∗.

1 Introduction

Randomized controlled trials (RCTs) are the most
rigorous method to assess the effectiveness of
treatments, such as surgical procedures and drugs,
in clinical medicine (Sibbald and Roland, 1998).
A typical RCT often constitutes of two random-
ized groups of patients receiving either the “in-
tervention” (new treatment) or “control” (conven-
tional treatment). Then, a statistical analysis is
done after the experiments to determine whether
the intervention has a significant effect (i.e. actu-
ally making patients better or worse). The results
from various RCTs contribute to the medical deci-
sions made by physicians every day. However, an-
alyzing these large amounts of data could be over-

∗These authors contribute this paper equally.
∗The code is available at: https://github.com/

MiuLab/RCT-Gen

whelming for clinicians (Davidoff and Miglus,
2011). With the help of machine readers, we can
alleviate the burden for providing correct informa-
tion that contributes to critical clinical decisions.

In this work, we aim to evaluate the capabilities
of deep learning models on understanding RCTs
by generating the conclusions of RCT abstracts.
We achieve this by transforming the PubMed 200k
RCT abstract sentence classification dataset (Der-
noncourt and Lee, 2017) into a RCT conclusion
generation task. Generating a correct and coher-
ent conclusion requires the model to 1) identify
the objectives of the trial, 2) understand the result
and 3) generate succinct yet comprehensible texts.
Therefore, this task can be a preliminary goal to-
ward a more thorough understanding of clinical
medicine literature.

To tackle this task, we first build a pointer-
generator model (See et al., 2017) as the baseline.
This model is widely used in abstractive summa-
rization, which is similar to our conclusion gener-
ation task. We then leverage the high quality text
generation capability of the Open AI GPT-2 (Rad-
ford et al., 2019) language model by fine-tuning
the general domain GPT-2 model into a medical
domain conclusion generator.

Because the correctness of RCT understanding
is essential for supporting clinical decisions and
neural summarization models could inaccurately
present facts from the source document, we incor-
porate human evaluation on the correctness and
quality of the generated in addition to standard
ROUGE score (Lin, 2004) for automated summa-
rization scoring. Evaluation results show the fine-
tuned GPT-2 models score higher for both correct-
ness and quality. However, there is still quite a
large room for improvement both on the diversity
and accuracy of the generated conclusions, provid-
ing a guidance for future research directions.
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2 Related Work

The paper focuses on generating RCT conclu-
sions, which is related to natural language gen-
eration. We describe the related work below and
emphasize the difference between the prior work
and our work. In our proposed method, we ex-
ploit the state-of-the-art language model represen-
tations for understanding the complex medical lit-
erature, and related work is then briefly described
below.

2.1 Medical Natural Language Generation

Several medical domain natural language genera-
tion tasks have been studied using machine learn-
ing models, including generating radiology reports
from images (Jing et al., 2018; Vaswani et al.,
2017) and summarizing clinical reports (Zhang
et al., 2018; Pivovarov and Elhadad, 2015) or re-
search literature (Cohan et al., 2018). Recently,
Gulden et al. (2019) studied extractive summariza-
tion on RCT descriptions.

Abstractive summarization, in which the model
directly generates summaries from the source doc-
ument, is closely related to our conclusion gen-
eration task. Most neural approaches for ab-
stractive summarization were based on sequence-
to-sequence recurrent neural networks (RNNs)
with attention mechanisms (Devlin et al., 2019).
The pointer-generator network (See et al., 2017)
combined a copy mechanism that directly copies
words from the source document and a cover-
age mechanism to avoid repetition caused by the
RNN-based decoder, achieving good performance
by handling unseen information. Devlin et al.
(2019) further combined intra-encoder and intra-
decoder attention with policy learning by using
ROUGE-L score as the reward and improved
the performance in terms of the evaluation met-
ric. Hsu et al. (2018) combined an extractive
model that provided attention on the sentence level
and the pointer-generator architecture, and Co-
han et al. (2018) also worked on abstractive sum-
marization of long documents, including medical
papers from the PubMed database, based on the
pointer-generator network.

However, our goal to generate conclusions is
different from abstractive summarization in that
summarization is to shorten the source document
while preserving most of the important informa-
tion, whereas our conclusion generation model
gives one or two sentences describing the main

outcome of the given trial. Given the superior per-
formance of pointer-generation networks from the
above related summarization work, this paper uses
the pointer-generation model as baseline and fo-
cuses on RCT conclusion generation instead of ab-
stractive summarization.

2.2 Contextualized Representations

Recent advances of contextualized representation
models, such as ELMo (Peters et al., 2018), Open
AI GPT (Radford et al., 2018) and BERT (Devlin
et al., 2019) achieved remarkable results across
different natural language understanding tasks,
such as question answering, entailment classifica-
tion and named entity recognition. At the core of
these models was language modeling, with either
forward prediction used in GPT, bidirectional pre-
diction used in ELMo, or masked prediction used
by BERT. Variants of BERT also improved the
performance of bio-medical natural language un-
derstanding tasks (Xu et al., 2019; Pugaliya et al.,
2019). Peng et al. (2019) further proposed a new
benchmark to evaluate the performance of contex-
tualized models in the bio-medical domain.

Particularly, the Open AI GPT-2 model (Rad-
ford et al., 2019) has demonstrated rudimentary
zero-shot summarization capabilities with only
language modeling training. Its forward predic-
tion architecture made it suitable for autoregres-
sive generation in a sequence-to-sequence task.
Most benchmarks on contextualized representa-
tion were based on sequence classification tasks
such as natural language inference and multiple
choice question answering (Wang et al., 2018;
Peng et al., 2019). Our work, on the other hand,
focuses on exploring GPT-2’s capability of gen-
erating goal-directed sentences in the medical do-
main. Note that to our knowledge, this paper is
the first attempt that investigates GPT-2 towards
the medical document understanding and interpre-
tation.

3 Task Formulation

The PubMed 200k RCT dataset was originally
constructed for sequential short text classification,
with each sentence labeled as “background”, “ob-
jective”, “methods”, “results” and “conclusions”.
We concatenated the “background”, “objective”
and “results” sections of each RCT paper abstract
as the model input and the goal of the model is
to generate the “conclusions”. Table 1 illustrates
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Source:
(BACKGROUND) Varenicline is believed to work , in part , by reducing craving responses to smoking cues and by
reducing general levels of craving ; however , these hypotheses have never been evaluated with craving assessed in the
natural environments of treatment-seeking smokers .
(OBJECTIVE) Ecological momentary assessment procedures were used to assess the impact of varenicline on cue-
specific and general craving in treatment-seeking smokers prior to quitting .
(RESULTS) During all phases , smoking cues elicited greater craving than neutral cues ; the magnitude of this effect
declined after the first week . General craving declined across each phase of the study . Relative to the placebo condition
, varenicline was associated with a greater decline in general craving over the drug manipulation phase . Varenicline did
not significantly attenuate cue-specific craving during any phase of the study .

Target (True Negative):
Smoking cues delivered in the natural environment elicited strong craving responses in treatment-seeking smokers , but
cue-specific craving was not affected by varenicline administered prior to the quit attempt . These findings suggest
that the clinical efficacy of varenicline is not mediated by changes in cue-specific craving during the pre-quit period of
treatment-seeking smokers .

Pointer-generator baseline model with n = 1 hint word (N/A):
smoking cues are associated with a greater craving in general , and may be associated with a greater decline in general
craving and

Fine-tuned GPT-2 with n = 0 hint word (False Negative):
Varenicline did not reduce general craving in treatment-seeking smokers prior to quitting.

Fine-tuned GPT-2 with n = 1 hint word (True Negative):
Smoking cues are associated with greater general craving than neutral cues, and varenicline does not attenuate cue-
specific craving.

Table 1: An example of the GPT-2 n = 0 model generating a false negative conclusion (Varenicline did reduce
general craving), while the GPT-2 n = 1 model generated a better true negative one. The “(BACKGROUND)”,
“(OBJECTIVE)” and “(RESULTS)” tags denote the sentence classifications according to the original PubMed
RCT dataset and are not included in the actual input of our conclusion generation task.

the formulated task, where the generated conclu-
sion needs to contain correct information based on
the experiments and should be concise. After pre-
processing, the number of abstracts in the train-
ing set is 189,035 and there are 2,479 conclusions
used for validation. The average source paragraph
length is 170.1 words (6.0 sentences), and the av-
erage target conclusion length is 41.4 words (1.8
sentences) long.

4 Models

Language model pre-training has achieved a great
success among language understanding tasks with
different model architectures. Because training
language models requires a large amount of text
data, and it is relatively difficult to acquire a lot
of RCT documents, this work focuses on first pre-
training language models with the transformer ar-
chitecture (Vaswani et al., 2017) and then adapts
the model to support the medical domain by fine-
tuning. The language model pre-training from
general texts is described below.

4.1 Transformer Encoder in GPT-2
We first introduce the transformer encoder
(Vaswani et al., 2017) used as the backbone of the

X!

Multi-Head
Self-Attention

Feed Forward

X!"#

Layer Normalization

Layer Normalization

+

+

Figure 1: A modified transformer encoder block in the
GPT-2 language model.

GPT-2 model. The transformer encoder is a stack
of N transformer encoder blocks, where the l-th
block takes a sequence of hidden representations
X l = {X l

1, · · · , X l
n} as the input and outputs an

encoded sequence X l+1 = {X l+1
1 , · · · , X l+1

n }.
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A transformer encoder block consists of a multi-
head self-attention layer and a position-wise fully
connected feed-forward layer. A residual connec-
tion (He et al., 2016) is employed around each of
the two layers followed by layer normalization (Ba
et al., 2016). In GPT-2, however, the layer normal-
ization step is moved to the front of the multi-head
self-attention layers and the feed-forward layers.
An illustration of a GPT-2 transformer encoder
block is presented in Figure 1. Each component
is briefly described as follows.

Byte-Pair Encoding GPT-2 uses a special byte
pair encoding (BPE) for input and output repre-
sentations. It can cover essentially all Unicode
strings, which is useful in processing the medi-
cal texts due to the significant out-of-vocabulary
problems such as distinct nomenclature and jar-
gon. This special BPE prevents merging charac-
ters from different categories and preserves word-
level segmentation properties with a space excep-
tion.

Positional Encoding Because the transformer
model relies on a self-attention mechanism with
no recurrence, the model is unaware of the sequen-
tial order of inputs. To provide the model with po-
sitional information, positional encodings are ap-
plied to the input token embeddings

X1
i = embedtoken[wi] + embedpos[i],

where wi denotes the i-th input token, embedtoken
and embedpos denote a learned token embedding
matrix and a learned positional embedding matrix
respectively.

Multi-Head Self-attention An attention func-
tion can be described as mapping a query to an
output with a set of key-value pairs. The output is
a weighted sum of values. We denote queries, keys
and values asQ,K and V , respectively. Following
the original implementation (Vaswani et al., 2017),
a scaled dot-product attention is employed as the
attention function. Hence, the output can be cal-
culated as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,

where dk denotes the dimension of key vectors.
The idea of multi-head attention is to compute

multiple independent attention heads in parallel,
and then concatenate the results and project again.

The multi-head self-attention in the l-th block can
be calculated as

MultiHead(X l) = Concat(head1, · · · , headh)WO,

headi = Attention(X lWQ
i , X

lWK
i , X

lW V
i ),

where X l denotes the input sequence of the l-th
block, h denotes the number of heads, WQ

i , WK
i ,

W V
i and WO are parameter matrices.

Position-Wise Feed-Forward Layer The sec-
ond sublayer in a block is a position-wise feed-
forward layer, which is applied to each position
separately and independently. The output of this
layer can be calculated as

FFN(x) = max(0, x ·W1 + b1)W2 + b2,

where W1 and W2 are parameter matrices, b1 and
b2 are parameter biases.

Residual Connection and Layer Normalization
As shown in Figure 1, layer normalization is first
applied on the input to the multi-head attention
and feed-forward sublayers. The residual connec-
tion is then added around the two sublayers. The
output of the l-th block can be calculated as

H l = MultiHead(LayerNorm(X l)) +X l,

X l+1 = FFN(LayerNorm(H l)) +H l.

4.2 GPT-2 Pre-Training

The generative pre-training (GPT) via a language
model objective is shown to be effective for learn-
ing representations that capture syntactic and se-
mantic information without supervision (Peters
et al., 2018; Radford et al., 2018; Devlin et al.,
2019). The GPT model proposed by Radford et al.
(2018) employs the transformer encoder with 12
encoder blocks. It is pre-trained on a large generic
corpus that covers a wide range of topics. The
training objective is to minimize the negative log-
likelihood:

L =
T∑

t=1

− logP (wt | w<t, θ),

where wt denotes the t-th word in the sentence,
w<t denotes all words prior to wt, and θ are pa-
rameters of the transformer model.

To avoid seeing the future contexts, a masked
self-attention is applied to the encoding process.
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(b) The fine-tuning stage.

Figure 2: Illustration of the two-stage method in the
GPT model. The tag <hint> denotes where hint word
tokens are introduced during fine-tuning.

In the masked self-attention, the attention function
is modified into

Attention(Q,K, V ) = softmax(
QKT

√
dk

+M)V,

where M is a matrix representing masks. Mij =
−∞ indicates that the j-th token has no contribu-
tion to the output of the i-th token, so it is essen-
tially “masked out” when encoding the i-th token.
Therefore, by setting Mij = −∞ for all j > i,
we can calculate all outputs simultaneously with-
out looking at future contexts. It was pre-trained
on the WebText dataset consisting of 40 GB high
quality text crawled from internet sources. We use
the small version (12 layers and 117 M parame-
ters) of the released GPT-2 models.

4.3 GPT-2 Fine-Tuning

After the model is pre-trained with a language
model objective, it can be fine-tuned on down-
stream tasks with supervised data. In our task,
we adapt the GPT-2 to the target domain by fine-
tuning using RCT data. Figure 2 illustrates the
learning procedure. By fine-tuning on the target
data, the GPT-2 model may have the potential of
understanding and generating medical texts.

In the fine-tuning stage, we modify the atten-
tion masking of the GPT-2 model so that source
byte pairs are fully aware of the entire context of
the source sentence, while the target byte pairs are

𝑐" 𝑐# 𝑐$%" 𝑐$<hint>𝑠" 𝑠#
Source Conclusion

𝑐"

𝑐#

𝑐$%"

𝑐$

<hint>

𝑠"

𝑠#

Source
Conclusion

Queries

Keys

…
…

… …

Figure 3: The attention mask used during fine-tuning.
White cells denote −∞ elements and grey cells denote
0 in the mask matrix.

aware of the entire source sentence plus the gen-
erated byte pairs that precede itself. That is, for
context token pairs (ci, cj) ∈ c1, · · · , cm, we set
Mij = −∞ for all j > i, while for context and
source token pairs (ci, sj), where ci ∈ c1, · · · , cm
and sj ∈ s1, · · · , sn, we set Mij = 0. For all
source token pairs (si, sj) ∈ s1, · · · , sn, we also
set Mij = 0. This setting is illustrated in Figure 3.

5 Experiments

Here we describe experimental details of the base-
line pointer-generator model and the GPT-2 fine-
tuned models.

5.1 Experimental Setup

The baseline model is a pointer-generator net-
work (See et al., 2017) with both copy and cov-
erage mechanisms, and is trained with a cover-
age loss. We adopt the implementation of Zhang
et al. (2018). The vocabulary size is about 50,000,
with uncased word embeddings pretrained from
the PubMed RCT 200k training set and the ab-
stracts from the PubMed dataset of long docu-
ments (Cohan et al., 2018). We concatenate n ∈
{0, 1} hint words following the source sentences,
where the hint words are first n words of the tar-
get conclusion. Our pointer-generator model uses
beam search with beam size 5 to decode the final
output conclusion.

In our GPT-2 models, we conduct conclusion
generation using n ∈ {0, 1, 3, 5} hint words. For
n = 0, we append “In conclusion , ” to the in-
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System ROUGE-1 ROUGE-2 ROUGE-L

PGNet n = 0 27.11 7.61 21.87
PGNet n = 1 26.88 8.19 22.63

GPT-2 n = 0 30.33 11.34 25.14
GPT-2 n = 1 31.61 11.88 26.71
GPT-2 n = 3 29.94 11.55 25.85
GPT-2 n = 5 29.79 11.29 25.94
GPT-2 res 24.24 6.79 20.71

Table 2: ROUGE scores of the PGNet baseline models
and the GPT-2 fine-tuned models on the development
set. The GPT-2 res were trained with the “results” sec-
tion only. Addition of n > 1 hint words did not show
further gains in ROUGE scores.

put. Also, we perform data ablation study using
only the “results” section as the model input. To
address the memory constraint on our machines,
we only train examples that are less than 500 byte
pairs after encoding. Because GPT-2 model uses
BPE for input and output, the generated conclu-
sions are capitalized. Previous work showed that
beam search did not help the generation quality of
GPT-2 models (Holtzman et al., 2019), so we sim-
ply use greedy decoding to generate the conclu-
sions . Our GPT-2 model is fine-tuned with teacher
forcing, using the SGD optimizer with learning
rate of 0.001, momentum of 0.9 and the decay fac-
tor of 0.0005. Our model is based on a PyTorch
implementation of GPT-2 †.

5.2 Automatic Evaluation

Table 2 shows the best validation ROUGE scores
of baselines and our models. Note that the
hint words are not considered in score calcula-
tion and the output of all models are lower-cased.
The GPT-2 fine-tuned model significantly outper-
forms the pointer-generator (PGNet) baseline on
all ROUGE scores, where the best performing
model is GPT-2 with hint word n = 1, demonstrat-
ing the effectiveness of generating good conclu-
sion in our model. However, more hint words do
not bring additional gain in ROUGE scores, prob-
ably because more constraints hinder the GPT-
2 model to explore potentially good conclusions.
Moreover, the ablation result shows the significant
drop in all ROUGE scores, indicating the impor-
tance of including the “background” and “objec-

†https://github.com/huggingface/
pytorch-transformers

System TP TN FP FN N/A Acc.

PGnet n = 1 15 3 5 3 24 36%

GPT-2 n = 0 24 3 4 5 14 54%
GPT-2 n = 1 26 6 5 3 10 64%

Target 32 11 0 0 7 86%

Table 3: Human evaluation results for text understand-
ing on the annotation questions of 50 randomly selected
source documents. Note that some source documents
which don’t fit into the binary paradigm of positive or
negative results are classified as N/A. TP: True Posi-
tive; TN: True Negative; FP: False Positive; FN: False
Negative; N/A: Not Applicable.

tive” sections in the input for better content under-
standing.

5.3 Human Evaluation

We recruited 10 medical students with prior train-
ing in bio-statistics and epidemiology to annotate
and rate the generated conclusions. Our question-
naire contains two types of questions: the annota-
tion question and the rating question.

• Annotation: A annotation question contains
a source document and four conclusions,
namely the target conclusion written by hu-
man, the GPT-2 n = 0, the GPT-2 n = 1
and the PGnet generated conclusions. The
raters are asked to classify each generated
conclusions as either true positive, true neg-
ative, false positive, false negative or not ap-
plicable. We define true / false as whether
the generated conclusion corresponds to the
given document, and positive / negative as
whether the intervention studied has a statis-
tically significant effect, regardless of the ef-
fect being favourable or detrimental to the pa-
tients. This is to explicitly examine whether
the generated conclusion is precise in terms
of RCT content understanding.

• Rating: Rating questions use the same set-up
except the question is a 5 point Likert scale
for correctness, quality and overall impres-
sion. Each rater is given 5 annotation ques-
tions and 5 rating questions, with each source
document randomly chosen from the valida-
tion set. This is to judge the generated con-
clusions both regarding to and regardless of
the source document.
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System Correctness Quality Overall

PGnet n = 1 3.02 2.86 2.86

GPT-2 n = 0 3.42 3.66 3.52
GPT-2 n = 1 3.30 3.94 3.50

Target 3.92 4.08 3.98

Table 4: Human evaluation results for generation qual-
ity on the rating questions.

To mitigate bias, we do not inform which con-
clusion was generated or written by human, and
the conclusions are lower-cased and randomly or-
dered in each question for fair comparison.

Table 3 presents the results from the annota-
tion question, where the number of true posi-
tive and true negative generations from the GPT-2
fine-tuned models increase when compared to the
PGNet baseline. It is clear that the proposed GPT-
2 achieves better performance in terms of accuracy
(the ratio of true samples). We also include the
performance of human-written conclusions in the
last row, which serves as the upper bound of this
task. However, there is still a gap between human-
written conclusions and the generated ones.

In the rating questions depicted in Table 4, the
human written conclusions obtain a score nearly
4 out of 5 on all three dimensions. The GPT-2
models have comparable scores in overall impres-
sion, both scoring around 3.5 out of 5. The most
significant improvement of the GPT-2 generated
conclusions is the text quality, with the correct-
ness improvement to a lesser extent. The correct-
ness of GPT-2 n = 1 is slightly better than that
of GPT-2 n = 0 in the annotation question, yet
in the rating question, GPT-2 n = 0 has a higher
averaged score. In sum, the human evaluation
results demonstrate that our models significantly
outperform the baseline pointer generator and tell
that the proposed RCT conclusion generation task
is not the same as typical summarization task, so
deep text understanding is required for better per-
formance.

6 Discussion

From the human evaluation results and our empir-
ical inspection, we discover two major problems
concerning the quality of the generated conclu-
sions from GPT-2 models. First, there is some rep-
etition in the generated conclusions, which impair
the quality of generated text, though not as com-

mon in that of RNN-based models. We suggest
additional weighted decoding or coverage mecha-
nisms to avoid such problems. Second, the GPT-
2 generated conclusions are significantly shorter
than the targets. The average length generated by
GPT-2 n = 0 and GPT-2 n = 1 are 19.4 and 21.0,
while that of human written conclusions is 41.4.
This could be caused by the limitation of greedy
decoding, but the examples generated by PGnet,
which applies beam search, only gives an average
length of 22.6. This suggests investigation of ad-
ditional measures to enrich and lengthen the gen-
erated conclusions in future work.

Another important issue is the correctness of the
generation model. The GPT-2 models are able to
identify simple patterns and generate conclusions
with the correct relationship. However, errors oc-
cur when the study design becomes more compli-
cated or the outcomes are complex. Therefore, fu-
ture work should aim at enhancing the language
understanding capabilities of generation models.
Methods such as pre-training the GPT-2 models
with medical domain literature or using external
background knowledge might fill the missing gap
in the correctness performance. This is very cru-
cial regarding to our RCT understanding task and
other tasks that require precise and reliable lan-
guage generation.

Here we select 3 examples to better illustrate
our evaluation methods and the discussed limita-
tions of the current models. The example in Ta-
ble 5 show two successful generations from the
GPT-2 models. Table 6 shows a false positive
example by the GPT-2 n = 1 model. On the
other hand, a false negative example generated
by the GPT-2 n = 0 can be seen in Table 7.
The generated conclusions in Table 7 is also much
shorter than the target conclusion written by hu-
man. Other factors that could cause this issue
may include that the human authors mention in-
formation not included in the preceding source
document, additional comments on the results and
background knowledge and they paraphrase the
same concept in different ways.

Given the above results, this paper opens a new
research direction by formulating the RCT conclu-
sion generation task and investigates the potential
of language generation models towards better un-
derstanding of medical documents.
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Source: Proton pump inhibitor ( PPI ) therapy is considered as the first choice for treatment of non-erosive reflux disease
( NERD ) . However , NERD is less sensitive to PPIs than erosive gastroesophageal reflux disease ( GERD ) and the
differences between PPIs and H2 receptor antagonists are less evident in NERD than in erosive GERD . Since gastric
acid secretion is lower in the Japanese population than in Western populations , we aimed to investigate whether PPI
therapy is really necessary for NERD patients in Japan . Both roxatidine and omeprazole significantly improved the
heartburn score at 4 and 8 weeks . The clinical response rates did not differ between roxatidine and omeprazole . Both
roxatidine and omeprazole significantly relieved not only reflux but also abdominal pain and indigestion . The degrees
of improvement did not differ between the two groups .

Target (True Positive): Roxatidine relieved the symptoms of NERD patients with similar effectiveness to omeprazole .
Therefore , roxatidine may be a good choice for NERD treatment .

GPT-2 n = 0 (True Positive): Both roxatidine and omeprazole significantly improved the heartburn score at 4 and 8
weeks.

GPT-2 n = 1 (True Positive): Roxatidine and omeprazole are effective in relieving symptoms of NERD in Japanese
patients.

Table 5: An example of GPT-2 models generating true positive conclusions.

Source: To evaluate the efficacy of oxcarbazepine ( OXC ) in the treatment of agitation and aggression in patients with
Alzheimer ’s disease , vascular dementia or both . In total , 103 institutionalized patients at 35 sites were randomized to
the trial . After 8 weeks , no statistically significant differences were found between the 2 groups for all outcomes . A
trend was observed in favor of the OXC group in the reduction in the scores on the BARS ( p = 0.07 ) .

Target (True Negative): This study found no significant effect of OXC in treatment of agitation and aggression in
patients with dementia .

GPT-2 n = 0 (True Negative): OXC was not effective in the treatment of agitation and aggression in patients with
Alzheimer’s disease, vascular dementia or both.

GPT-2 n = 1 (False Positive): This study suggests that OXC is effective in the treatment of agitation and aggression in
patients with Alzheimer’s disease.

Table 6: An example of GPT-2 n = 0 model generating a true negative conclusion, while the GPT-2 n = 1 model
generated a false positive one.

Source: Atrial fibrillation ( AF ) is the most common complication following coronary artery bypass graft ( CABG ) .
The mechanism of AF after CABG is not well defined ; however , it is suggested that endogenous adenosine , released
in response to tissue hypoxia , may play a mechanistic role in these arrhythmias . The purpose of this study was to
examine whether intravenous theophylline , via adenosine A1 receptor antagonism , would correct or modify new-onset
early ( <48 h post CABG ) atrial fibrillation in patients post CABG , and thereby implicate endogenous adenosine as an
inciting agent . Thirty patients comprised the study group . In Group A , 8 of the 15 patients ( 53 % ) converted from
AF to sinus rhythm within 15 min of theophylline administration . One patient who converted to sinus rhythm 20 min
after theophylline administration was accepted as showing a negative response . In the placebo-treated group , no patient
converted to sinus rhythm within 15 min ( p <0.007 compared with Group A ) .

Target (True Positive): The mechanism of AF after CABG is not well defined and is probably multifactorial . However
, this study demonstrated that antagonism of the adenosine A1 receptor can promptly convert many of these patients back
to sinus rhythm , and thereby implicates endogenously released adenosine in a mechanistic role for inciting early ( <48
h ) post-CABG AF .

GPT-2 n = 0 (False Negative): Intravenous theophylline, via adenosine A1 receptor antagonism, did not improve early
AF in patients post CABG.

GPT-2 n = 1 (True Positive): The results of this study suggest that intravenous theophylline, via adenosine A1 receptor
antagonism, may correct or modify early AF in patients post CABG.

Table 7: An example of GPT-2 n = 0 model generating a false negative conclusion, while the GPT-2 n = 1 model
generated a true positive one.

7 Conclusion and Future Work

This work introduces the RCT paper conclusion
generation task as a stepping stone to the auto-
matic understanding of clinical research literature.

Our results show the general domain pre-trained
GPT-2 language model can be fine-tuned to gen-
erate medical domain conclusions. The evaluation
results show improvements regarding to both qual-
ity and correctness in conclusions generated by the
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fine-tuned GPT-2 model compared to the pointer-
generator summarization model. Further study is
needed to enhance the generation quality by re-
ducing repetition errors and increasing the genera-
tion length, and to improve the correctness through
better language understanding for practical clini-
cal scenarios.

Beyond generating conclusions for RCT papers,
generative language models in the medical domain
with improved correctness and quality can open up
new opportunities to tasks that require profound
domain knowledge. For example, automatic gen-
eration of systemic review and meta-analysis arti-
cles.
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Abstract
This article presents experiments with
pseudonymised Swedish clinical text used as
training data to de-identify real clinical text
with the future aim to transfer non-sensitive
training data to other hospitals.

Conditional Random Fields (CFR) and Long
Short-Term Memory (LSTM) machine learn-
ing algorithms were used to train de-
identification models. The two models were
trained on pseudonymised data and evaluated
on real data. For benchmarking, models were
also trained on real data, and evaluated on real
data as well as trained on pseudonymised data
and evaluated on pseudonymised data.

CRF showed better performance for some PHI
information like Date Part, First Name and
Last Name; consistent with some reports in
the literature. In contrast, poor performances
on Location and Health Care Unit information
were noted, partially due to the constrained vo-
cabulary in the pseudonymised training data.

It is concluded that it is possible to train
transferable models based on pseudonymised
Swedish clinical data, but even small narrative
and distributional variation could negatively
impact performance.

1 Introduction

Electronic health records (EHR) are produced in a
steady stream, with the potential of advancing fu-
ture medical care. Research on EHR data holds
the potential to improve our understanding of pa-
tient care, care processes, and disease characteris-
tics and progression. However, much of the data

⇤Hercules Dalianis is also guest professor at the Norwe-
gian Centre for E-health Research

is sensitive, containing Protected Health Infor-
mation (PHI) such as personal names, addresses,
phone numbers, that can identify particular indi-
viduals and thus cannot be available to the pub-
lic for general scientific inquiry. Although good
progress has been made in the general sub-field
of de-identifying clinical text, the problem is still
not fully resolved (Meystre et al., 2010; Yogarajan
et al., 2018).

This study examines the use of pseudonymised
health records as training data for de-identification
tasks. Several ethical and scientific issues arise re-
garding the balance between maintaining patient
confidentiality and the need for wider application
of trained models. How will a de-identification
system be constructed and used in a cross hospi-
tal setting without risking the privacy of patients?
Is it possible to obscuring the training data by
pseudonymising it and then use it for the training
of a machine learning system?

De-identification and pseudonymisation are two
related concepts. In this paper de-identification
is used as a more general term to describe the
process of finding personal health information to
be able to conceal identifying information. A
pseudonymised text is a text where the personal
health information has been identified either man-
ually or automatically and then replaced with real-
istic surrogates.

The research question in this study is whether it
is possible to use de-identified and pseudonymised
clinical text in Swedish as training data for de-
identifying real clinical text, and hence make it
possible to transfer the system cross hospital.

We highlight whether learning from the exist-
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ing, non-sensitive, pseudonymised Swedish clini-
cal text can be useful in a new and different con-
text; considering the normal variations in the dis-
tribution and nature of PHI information, and po-
tential effects of scrubbing (Berman, 2003), that
is, removing and modifying PHIs that was carried
out to patient records during the de-identification
process.

2 Previous research

The identification of PHI is a type of named en-
tity recognition task where sensitive named enti-
ties specifically are identified. The first study with
CRF-based de-identification for Swedish was on
the gold standard Stockholm EPR PHI Corpus.
The distribution of PHIs is shown in Table 1. In
this instance, manual annotation with expert con-
sensus was used to create the gold standard (Dalia-
nis and Velupillai, 2010).

De-identification tasks based on the CRF ma-
chine learning algorithm has been carried out on
this data set previously with precision scores rang-
ing between 85% and 95%, recalls ranging be-
tween 71% and 87% and F1-scores between 0.76
and 0.91 (Dalianis and Velupillai, 2010; Berg and
Dalianis, 2019).

One approach previously used for concealing
the training set’s sensitive data was carried out by
(Dalianis and Boström, 2012), using the Stock-
holm EPR PHI Corpus. In the study, the textual
part of the data were used to create 14 different
features and part of speech tags. The textual part
was then removed, and only the features and part
of speech tags were used for training a Random
Forest model. Fairly high precision of 89.1 % was
obtained, but with a recall of 54.3 % and F1-score
of 64.8.

In contrast to using only the sensitive EHR data
for training, McMurry et al. (2013) integrated both
publicly available scientific, medical publications
and private sensitive clinical notes to develop a
de-identification system. While considering the
term frequencies and part of speech tags between
the two data sources, they used both rule lists
and decision trees for their system. This was an
interesting approach since it raised the prospect
of using non-sensitive data in building useful de-
identification models. However, it is not clear
whether medical journals have significant advan-
tages over any other public text, like news cor-
pora, for detecting PHI. A study similar to Mc-

Murry et al. (2013), by Berg and Dalianis (2019),
showed few benefits of combining non-medical
public text and sensitive clinical notes to build a
de-identification system for medical records.

More recently, deep learning approaches using
recurrent neural networks seem to yield significant
improvements over traditional rules-based meth-
ods or statistical machine learning (Dernoncourt
et al., 2017). Still, recent studies indicate that
combining several approaches will yield the best
results. For instance, the best system in a recent
de-identification shared task was a combination of
bidirectional LSTM, CRF and a rule-based sub-
system (Liu et al., 2017).

Significant domain variation, such as a differ-
ent language, is an important factor that was not
considered in the discussed shared task. Do-
main differences were cited as the reason for poor
performance on psychiatric notes de-identification
(Stubbs et al., 2017), compared with the previous
de-identification task on general clinical narratives
(Stubbs et al., 2015).

Within the same language and similar clinical
settings, the change of domain is likely not sub-
stantial. While in future research it may be worth
considering domain adaption techniques to work
towards a system meant to be used between hospi-
tals, they were not considered in this study, beyond
the use of non-sensitive dictionaries for names and
location.

3 Data and methods

In this study, machine learning approaches are
used since the best de-identification systems ap-
pear to be machine learning-based (Kushida et al.,
2012). While rule-based methods such as using
dictionaries and pattern-matching were previously
more prevalent than machine learning methods
for solving text-based de-identification problems
(Meystre et al., 2010), today it is more typical to
have both approaches used, since rule-based meth-
ods still yield better results for some PHI informa-
tion (Neamatullah et al., 2008b). Dictionaries and
patterns were therefore used as features within one
of the models.

3.1 Data

Two different data sets for de-identification were
used: Stockholm EPR PHI Psuedo Corpus
(Pseudo) as well as the Stockholm EPR PHI Cor-
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Table 1: Results from (Dalianis and Velupillai, 2010) using the Stanford CRF.

pus (Real)1.
The Stockholm EPR PHI Pseudo Corpus was

produced from the Stockholm EPR PHI Corpus by
automatically pseudonymising all PHIs. This pro-
cess is described by Dalianis (2019). The Stock-
holm EPR PHI Corpus is described by Dalianis
and Velupillai (2010). An example is shown in
Figure 1 from the Stockholm EPR PHI Pseudo
Corpus.

The Stockholm EPR PHI Corpus and the Stock-
holm EPR PHI Pseudo Corpus are both parts of
Swedish Health Record Research Bank (HEALTH
BANK). HEALTH BANK encompasses struc-
tured and unstructured data from 512 clinical
units from Karolinska University Hospital col-
lected from 2006 to 2014 (Dalianis et al., 2015).

The number of entities and types of entities in
both the Stockholm EPR PHI Psuedo Corpus and
the Stockholm EPR PHI Corpus is shown in Ta-
ble 2. From Table 2, it can be observed that the
distribution of PHI instances between the two data
sets is somewhat similar, but there is a significant
difference when it comes to unique instances be-
tween the two data sets. In total, the Real data
set contains proportionally more unique instances
than the Pseudo data set. The entities in the Real
data set also tend to have more tokens.

3.2 Methods
Using the de-identified and pseudonymised data
set, two models were trained based on two ma-
chine learning algorithms; CRF and the deep
learning algorithm LSTM. The two algorithms
were chosen since both have been shown to pro-
duce state of the art performance, and applying the
two on Swedish clinical data sets makes for an in-
formative comparison.

1This research has been approved by the Regional Ethical
Review Board in Stockholm (2014/1607-32).

PHI classes Pseudo Unique Real Unique
First Name 885 24% 938 79%
Last Name 911 15% 957 86%
Age 51 80% 64 97%
Phone Number 310 78% 327 92%
Location 159 94% 229 84%
Full Date 726 25% 770 89%
Date Part 1897 6% 2079 72%
Health Care Unit 1278 13% 2277 73%
Total PHI instances 6217 20% 7647 78%

Table 2: The distribution of PHI instances between the
the Stockholm EPR PHI Psuedo Corpus, ’Pseudo’, and
the Stockholm EPR PHI Corpus, ’Real’ based on the
number of tokens. A PHI entity can cover from one
token (one-word expression) to several tokens (multi-
word-expression), for example "Karolinska" and "R54,
Karolinska, Solna" respectively. The proportion of
unique instances, ’Unique’, is shown as a percentage.

The two models were evaluated on both the
real data set that is annotated for PHI, but not
pseudonymised, ’Pseudo-Real’, as well as on the
pseudonymised data set, ’Pseudo-Pseudo’. For
additional comparison basis models trained on the
real data set were evaluated on test sets from the
same data set, ’Real-Real’.

3.2.1 CRF
In this study, the CRF algorithm implemented
in CRFSuite (Okazaki, 2007) is used with the
sklearn-crfsuite wrapper2 and the LSTM architec-
ture described by Lample et al. (2016), based on
an open-source implementation with Tensorflow3

is used.
The linear-chain Conditional Random Fields

model, implemented with sklearn-CRFSuite4,

2sklearn-crfsuite, https://sklearn-crfsuite.
readthedocs.io

3Sequence tagging, https://github.com/
guillaumegenthial/sequence_tagging

4Linear-chain CRF, https://
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Figure 1: Example of a pseudonymised record. The original Swedish pseudonymised record is to the right and the
translated version is to the left. The underlined words are the surrogates, where real data has been replaced with
pseudonyms.

uses lexical, orthographic, syntactic and dictio-
nary features. The CRF is based on trial-and-error
experiments with feature sets described by Berg
and Dalianis (2019), and uses the same features
except for section features.

3.2.2 LSTM
The long short-term memory (LSTM) needs
word embeddings as features for the training.
Word2vec5 was used to produce word embeddings
using shallow neural networks, based on two cor-
pora; a clinical corpus and medical journals. For
the training using real clinical data, word embed-
dings were produced using a clinical corpus of 200
million tokens that produced 300,824 vectors with
a dimension of 300.

For the training with pseudo clinical data, word
embeddings were produced using Läkartidningen
corpus (The Swedish scientific medical journals
from 1996 to 2005) containing 21 million tokens
that produced 118,662 vectors with a dimension
of 300. The reason for using Läkartidningen is
that the corpus does not contain sensitive data and
hence is also more easily usable for transferable
cross hospital training.

4 Results

The results of the experimental work are sum-
marised in Figure 2. As can be observed in the
figure, the CRF algorithm seems to generally out-
perform the LSTM algorithm on all metrics; pre-
cision, recall and F1 measure.

This result is not consistent with repeated re-
ports in the literature, where deep learning ap-

sklearn-crfsuite.readthedocs.io/en/
latest/

5word2vec, https://github.com/tmikolov/
word2vec

proaches such as LSTM have been shown to
out-perform most other methods, including CRF.
Since deep learning approaches normally require
very large amounts of data, one explanation for
this result could be that the word embeddings used
in this study did not contain sufficient context vari-
ations required for more robust performance or an
insufficient training set of annotated data.

The ability to identify date part and age entities
are similar when training on pseudonymised data
and real data for the CRF. In contrast, Location,
Health Care Unit and Full Date were negatively
affected when using pseudonymised training data
regardless of using a CRF or LSTM model.

4.1 CRF - Results

Experimental results of the CRF algorithm are
shown in Table 3. Not presented in the table is
the combination of training on real data and evalu-
ation of pseudo data (Real-Pseudo), but the results
of this combination gave a precision of 86.37 and
recall of 77.80% and an F1-score of 81.86.

4.2 LSTM - Results

The experimental results of the LSTM algorithm
are shown in Table 4 and again, not presented in
the table is the combination of training on real data
and evaluation of pseudo data (Real-Pseudo). The
result of this combination is a precision of 65.83%
and recall of 74.79% and F1-score of 70.03.

5 Analysis

The training set used in this study has a sub-
stantially constrained vocabulary compared to the
evaluation set, which may partially explain the
overall performance achieved when evaluating on
real data (Pseudo-Real). The pseudo (training)
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CRF Real-Real Pseudo-Pseudo Pseudo-Real
P % R % F1-score P % R % F1-score P % R % F1-score

First Name 95.94 92.42 94.15 98.52 98.08 98.30 97.14 72.39 82.96
Last Name 97.91 93.22 95.51 98.54 97.55 98.04 96.80 38.90 55.50
Age 97.06 68.75 80.49 100.00 68.09 81.01 97.50 81.25 88.64
Phone Number 94.69 82.95 88.43 92.37 80.15 85.83 83.48 74.42 78.69
Location 80.85 58.46 67.86 93.27 74.05 82.55 57.38 53.85 55.56
Full Date 95.68 95.48 95.58 91.02 86.32 88.61 47.56 21.97 30.06
Date Part 96.27 94.94 95.60 98.29 96.05 97.16 87.04 94.79 90.75
Health Care Unit 85.40 64.00 73.17 93.75 87.50 90.52 45.29 16.30 23.97
Overall 94.03 85.30 89.45 96.31 92.22 94.22 80.44 49.83 61.54

Table 3: Entity-based evaluation for CRF with ten fold cross-validation. A comparison is made for the different
combinations of training on real data and evaluation on real (Real-Real) as well as pseudo data and on training on
pseudo data and evaluation on pseudo (Pseudo-Pseudo) as well as real data (Pseudo-Real).

LSTM Real-Real Pseudo-Pseudo Pseudo-Real
P % R % F1-score P % R % F1-score P % R % F1-score

First Name 91.61 86.49 88.98 81.41 78.27 79.81 73.42 72.99 73.20
Last Name 96.40 87.02 91.47 89.29 91.88 90.57 84.70 75.00 79.55
Age 87.50 58.33 70.00 80.95 36.17 50.00 83.33 31.25 45.45
Phone Number 33.53 82.22 47.64 64.83 71.21 67.87 30.87 71.32 43.09
Location 20.47 46.02 28.34 60.71 17.35 26.98 27.40 10.77 15.47
Full Date 77.67 74.06 75.82 67.76 72.20 69.91 52.58 23.00 32.00
Date Part 90.31 90.60 90.45 91.48 95.08 93.25 59.08 94.79 72.79
Health Care Unit 68.37 61.82 64.93 81.24 81.63 81.44 27.18 14.00 18.48
Overall 76.76 78.62 77.68 82.49 81.79 82.14 60.56 55.10 57.70

Table 4: Entity-based evaluation for LSTM with three fold cross-validation where 66% of the data were used for
training and 33% for evaluation. 10% of the data was previously held out as a development set. A comparison is
made for the different combinations of training on real data and evaluation on real as well as pseudo data and on
training on pseudo data and evaluation on pseudo as well as real data.

version of the data has less PHI tokens and the en-
tities are more often single tokens.

The Full Date structure yyyyddmm - yyyyddmm
is commonly occurring in the pseudo data, and
the dash between the dates, "-", is often incor-
rectly identified. For example, using the CRF al-
gorithm on real-data training and pseudo-data test-
ing (Real-Pseudo), of the 159 instances not iden-
tified as full dates tokens, sixty contain ’-’. The
pseudo data uses the structure yyyyddmm while
the real data uses yyddmm, which leads to errors.
For these kinds of errors on standard data formats
such as dates, it is easy to see how rule-based ap-
proaches using regular expressions could signifi-
cantly improve the overall performance of the sys-
tem.

The weakest performance area was for location
information. There is a large variety of locations
in the pseudo-data. These are also fairly specific
and unlikely to occur in the real data, for exam-
ple, locations with very few inhabitants. These
uncommon rural places have names similar to resi-
dential homes (äldreboenden). There are multiple
instances of the suffix ’gården’ (yard) in the lo-
cation pseudo-PHI, whereas, in the real data, the

same suffix is common for care units.
In the pseudo-data, the care units are more gen-

eral than in the real data, often too general to be
annotated in the real data set. Infirmaries are fairly
common in the real data but non-existent in the
pseudo data. This lack of variation in the pseudo is
partially responsible for the drop in performance.

There are at least two ways to think about
mitigating this poor performance. First, loca-
tion and care unit could be combined as one en-
tity type since they are conceptually very sim-
ilar, and sometimes have interchangeable entity
names. Secondly, using more detailed municipal-
ity street and location mapping databases as dic-
tionaries could be considered.

6 Discussion

There is one similar study to ours but for En-
glish by Yeniterzi et al. (2010), where the au-
thors train their de-identification system with all
combinations of pseudonymised textual data (or
what they call resynthesized records) and real data
and their results are in line with ours. However,
there are some studies on cross-domain adapta-
tion. In cross-domain adaption there is, however,
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Figure 2: Line graphs visualising the results of both
CRF and LSTM, and the outcomes of the evaluations.
The x-axis have the PHI entities; Age, Date Part (Dp),
First Name (Fn), Full Date (Fd), Health Care Unit
(Hcu), Last Name (Ln), Location (L) and the average
result (Avg).

a substantial domain change between the training
and testing data, unlike in this study. Martinez
et al. (2014) used models trained in one hospital
on pathology reports in another hospital. Their
system only required minor feature normalisation,
and the reported results were comparable across
the hospitals. Although this demonstrates feasibil-
ity, it is important to note that the pathology re-
ports were from the same medical sub-speciality
with only some narrative differences.

In this study, in addition to narrative differences
between the training data and the target evalua-
tion data, the number of care units and locations
involved, as well as personal names, are widely
varied. With large amounts of out of vocabulary
variation, training on limited data will likely yield
poor results. In practice, these data types exist in
other non-sensitive sources such as city and rural
location and street mapping data.

Except for location and care unit, evaluation
on pseudo-data (Pseudo-Pseudo) produced better
outcomes compared to performance on real-data
(Pseudo-Real), which can be expected. What was
a bit unexpected was the lower performance of the
LSTM algorithm. The algorithm’s results would
potentially have been improved by larger vector
data or more labelled data (Dernoncourt et al.,
2017). While clinical notes have unique linguis-
tic structures and grammatical peculiarities, non-
clinical data sources could still provide impor-
tant contextual information for constructing a use-
ful vector space. Additional sources using non-
sensitive data, such as public corpora in the gen-
eral domain, hold a potential to improve perfor-
mance on the de-identification task, therefore this
line of inquiry will be followed up on in future
work. In the same vein, factoring in part of speech
tags from other sources of clinical data could be
useful in this case. For instance, there are de-
identification databases of clinical text, such as
MIMIC (Neamatullah et al., 2008a; Goldberger
et al., 2000), which could be used as additional in-
formation for training purposes, and using only the
part of speech tags reduces security risks (Boström
and Dalianis, 2012).

Current results are calculated as exact matches,
and the partial match is not factored in, which may
affect the result. As mentioned in the analysis the
CRF algorithm rarely classifies the ’-’ in between
dates as a part of the dates, and these are therefore
not counted as matches despite the most identify-
ing parts of the entity being identified.

To improve the general performance, a com-
bination of both the LSTM and CRF algorithms
could be performed instead of testing them in-
dependently. Combining high-performance algo-
rithms and the use of ensemble methods seem to
produce the best results as reported in the litera-
ture (Dernoncourt et al., 2017; Liu et al., 2017),
and these techniques will be investigated in future
work on the data sets.
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7 Conclusions and future directions

The results of this study suggest that although it
is possible to train models on pseudonymised data
for use in different contexts, there is severe deteri-
oration in performance for some PHI information.
Even small narrative and distributional variation
could negatively impact performance.

Transferring a system from one set of clinical
text to a different set could result in the perfor-
mance of the system deteriorating; in this study
the Pseudo-Real case. This problem, what we
call The cross pseudo-real text adaptation prob-
lem, is an issue that could happen due to the
pseudonymisation/de-identification processes on
the training data due to the narrative and distribu-
tional variation as well as other differences in the
nature of the PHI between the training data and the
target.

In the future, we will try to improve the
pseudonymisation module described in Dalianis
(2019) to produce a larger variation in the vocabu-
lary as the lack of variation may affect the current
result negatively.

We will also apply the learned models to other
Nordic languages such as Norwegian clinical text
and use the system as a pre-annotation system to
assist the manual annotators in their work to create
a Norwegian gold standard.
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Abstract
Clinical notes provide important documenta-
tion critical to medical care, as well as billing
and legal needs. Too little information de-
grades quality of care; too much information
impedes care. Training for clinical note doc-
umentation is highly variable, depending on
institutions and programs. In this work, we
introduce the problem of automatic evaluation
of note creation through rubric-based content
grading, which has the potential for accelerat-
ing and regularizing clinical note documenta-
tion training. To this end, we describe our cor-
pus creation methods as well as provide sim-
ple feature-based and neural network baseline
systems. We further provide tagset and scal-
ing experiments to inform readers of plausible
expected performances. Our baselines show
promising results with content point accuracy
and kappa values at 0.86 and 0.71 on the test
set.

1 Introduction

Clinical notes, essential aspects of clinical care,
document the principal findings of the visit, hos-
pital stay or treatment episode, including com-
plaints, symptoms, relevant medical history, tests
performed, assessments and plans. During an en-
counter or soon after, notes are created based on
subjective history, objective observations, as well
as clinician assessment and care plans. Although
this is a regular aspect of clinical care in all in-
stitutions, there is a large variability in the details
taken. Clinical documentation training is often
informal and institution-dependent, as systematic
training of clinical documentation can be time-
consuming and expensive. Training involves con-
tinued monitoring of note quality and complete-
ness.

In this work, we present the problem of clini-
cal note grading and provide several baseline sys-
tems for automatic content grading of a clinical

note given a predefined rubric. To solve the prob-
lem, we built a simple feature-based system and a
simple BERT-based system. We additionally pro-
vide training size experiments and tagset experi-
ments for our baseline systems, as well as experi-
ment with the relevance of using Unified Medical
Language System (UMLS) and similarity features.

2 Background

Clinical notes serve as critical documentation
for several purposes: medical, billing, and legal
requirements. At the same time, a clinical note is
written, updated, and consumed for the purpose
of communication between clinicians for clinical
care over a period of time. Too much irrelevant
information can become an impediment to clinical
care. Therefore, the identification of a base level
of information is required to assess a note.

At our institution, clinical note documentation
(or medical scribe) trainees are assessed via
quizzes and exams in which trainees produce
clinical notes based on mock patients visits
(written to mimic outpatient encounters). Clinical
note responses are graded against a grading rubric
by training specialists, who have medical scribing
experience as well as specialized training in
determining note quality. The goal is to train
scribes to produce a clinical note based on listen-
ing to the patient-clinician conversation during a
clinical visit. Thus, the scribe expected to actively
producing content, not just merely transcribe
dictations from a clinician.

The purpose of a note rubric is to encapsulate
the base requirements of a clinical note. Rubrics
contain 40-60 rubrics items which reflect the
information that needs to be captured during a
medical encounter. A rubric item is typically writ-
ten as a phrase and includes medically relevant
attributes. For example, a rubric item discussing a
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symptom will typically require information about
duration and severity. A rubric item discussing
medication will often include dosage information.
Each rubric is associated with a section of the
note where it needs to be placed. For training
purposes, standard note sections include: History
of Present Illness (HPI), a detailed subjective
record of the patient’s current complaints; Review
of Systems (ROS), the patient’s subjective com-
plaints grouped by organ system; Physical Exam
(PE), the clinician’s objective findings grouped
by organ system; and Assessment and Plan (AP),
the clinician’s diagnosis and the next steps in
treatment for each diagnosis. Figure 1 gives an
example of a clinical note with these sections.

If the note contains text that satisfies a rubric
item, then a content point for that rubric item
is awarded. If the note contains an incorrect
statement (e.g. the wrong medication dosage),
then that rubric point is not awarded, regardless
of a correct statement appearing elsewhere. If the
note lacks the inclusion of a rubric point, then that
rubric point is not awarded. At most, one content
point can be awarded per rubric item. Examples of
several rubric items with corresponding portions
of a clinical note are shown in below.

Rubric item examples

• frequent bm 3-4 times per day (HPI section),
documents relevant symptom history – ”The pa-
tient complains of frequent bowel movements, 3-
4 times daily.”
• pe skin intact no clubbing cyanosis (PE sec-

tion), documents physical exam performed dur-
ing visit – ”Skin: Skin intact. No clubbing or
cyanosis. Warm and dry.”
• plan advise brat diet (AP section), documents

that the provider recommended the BRAT diet
to the patient – ”Recommended that the patient
follow the BRAT diet for the next few days. ”

3 Related Work

Most community efforts in automatic grading have
been in the context of automatic essay grad-
ing (AEG) and automatic short answer grading
(ASAG), both of which harbor significant differ-
ences than our rubric-based content grading task.

AEG involves rating the quality of an essay in
terms of coherence, diction, and grammar varia-
tions. Typically, an essay is given a score, e.g.

CHIEF COMPLAINT: Frequent urination

HISTORY OF PRESENT ILLNESS:
The patient is a 33 year old female who presents today complaining
of frequent urination and bowel movements...
...
REVIEW OF SYSTEMS:
Constitutional: Negative for fevers, chills, sweats.
...
PHYSICAL EXAM:
General: Temperature normal. Well appearing and no acute distress
...
ASSESSMENT & PLAN:
1. Ordered urinalysis to rule out urinary tract infection
2. Put her on brat diet, counseled patient that BRAT diet is...
...

Figure 1: Abbreviated example of a clinical note. Clin-
ical notes are typically organized by sections. The ex-
act section types and ordering in real practice my vary
by specialty and organization.

from 1-6. Applications include essay grading for
standardized tests such as for the GMAT (Gradu-
ate Management Admission Test) or TOEFL (Test
of English as Foreign Language) (Valenti et al.,
2003). Key architects for these systems are often
commercial organizations. Examples of commer-
cial computer-assisted scoring (CAS) systems in-
clude E-rater and Intelligent Essay Assessor. Sys-
tems such as E-rater use a variety of lingustic
features, including grammar, diction, and as well
as including discourse level features (Attali and
Burstein, 2006; Zesch et al., 2015). In another
approach, the Intelligent Essay Assessor uses la-
tent semantic analysis to abstract text to lower-
rank dimension-cutting representations of docu-
ments. Scores are assigned based on similarity of
new text to be graded to a corpus of previously
graded text (Foltz et al., 1999). The release of the
Kaggle dataset has made this type of data more
available to the public (kaggle.com/c/asap aes). A
key difference of AEG task from our grading task
is that our efforts focus on specific content item
grading and feedback, over a single holistic docu-
ment level rating.

In ASAG, free text answers to a prompt are
graded categorically or numerically. It is very
closely related to paraphrasing, semantic similar-
ity, and textual entailment. System reporting for
this task has often been on isolated datasets with a
wide range of topics and setups. Often, these sys-
tems require extensive feature engineering (Bur-
rows et al., 2015). One example system is C-
rater, produced by ETS, which grades based on
the presence or absence of required content (Lea-
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cock and Chodorow, 2003; Sukkarieh and Black-
more, 2009). Each required piece of content, sim-
ilar to our rubric, in the text is marked as absent,
present, negated, with a default of not scored.
Text goes through several processing steps, in-
cluding spelling correction, concept recognition,
pronoun resolution, and parsing. These features
are then sent through a maximum entropy model
for classification. Semantic similarity approaches
apply a mixture of deep processing features, e.g.
shortest path between concepts or concept sim-
ilarities (Mohler and Mihalcea, 2009). In the
SemEval 2013 Task 7 Challenge, the task in-
volved classification of student answers to ques-
tions, given a reference answer, and student an-
swers. Student answers are judged to be correct,
partially correct incomplete, contradictory, irrel-
evant, or non domain (Dzikovska et al., 2013).
Although it has much in common to our rubric-
based content grading setup, short answer grading
has less document level issues to contend with.
Moreover, specifically for our case, document-
level scoring has some non-linearity with the in-
dividual classification of sub-document level text,
e.g. finding one contradictory piece of evidence
negates a finding of a positive piece of evidence.

The work of (Nehm et al., 2012), which at-
tempts to award content points for specific items
for college biology evolution essays, most closely
resembles our task. In the task, students are
awarded points based on whether they articu-
late key natural selection concepts, e.g. familiar
plant/trait gain (mutation causing snail to produce
poisonous toxin would increase fitness). The au-
thors experimented with configuring two text an-
alytic platforms for this task: SPSS Text Analy-
sis 3.0 (SPSSTA) and Summarization Integrated
Development Environment (SIDE). SPSSTA re-
quires building hand-crafted vocabulary and at-
tached rules. SIDE uses a bag-of-words represen-
tation run through a support vector machine algo-
rithm for text classification. Key differences from
our task are that rubric items are more numerous
and specific; furthermore, our medium is a clinical
note, which has documented linguistic and docu-
ment style differences than normal essays; finally,
our goal is not only to grade but to give automated
in-text feedback.

In this work, we present our system for grading
a clinical note given a grading rubric, which also
gives subdocument level feedback. To our knowl-

edge, there has been no previous attempt at clinical
note automatic content grading.

4 Corpus Creation

We created a corpus by grading training notes by
multiple different trainees quizzed on the same
mock patient visit quiz, which included 40 rubric
items. Annotation was carried out using using
the ehost annotation tool (South et al., 2012).
Annotators were asked to highlight sentences for
if they were relevant to a rubric item. Further-
more, they were to mark whether a highlight had
one of four attributes: correct, incorrect contrary,
incorrect missingitem, and incorrect section.

frequent bm 3-4 times per day attribute examples

• correct –”The patient reports having 3-4 bowel
movements a day.” (Located in the HPI)
• incorrect contrary –”The patient has been hav-

ing bowel movements every 30 minutes.” (Lo-
cated in the HPI) Explanation: The frequency is
much higher than what would be expected for 3-
4 times per day. Thus the information content is
considered to be inaccurate or contrary to what
is given by the rubric.
• incorrect missingitem – ”The patient reports

having many bowel movements each day.” (Lo-
cated in the HPI) Explanation: This statement
does not give any inaccurate information but is
missing a crucial element that is required to earn
this rubric point, which is the frequency value is
3-4 times per day.
• incorrect section – ”The patient reports having

3-4 bowel movements a day.” (Located in the
AP) Explanation: This statement is correct, but
is located in the wrong section of the note.

Parts of the note were marked for exclusion,
such as short hand text (excluded because they are
just notes taken by the scribe in training of the con-
versation) and the review of systems (ROS) part of
the note (this was excluded because grading of that
section was not enforced at its time of creation).
Entire notes were marked for exclusion in cases
where the note was intended for a different exam
or in cases when the note contained all short hand
and templated sections (e.g. only notes and section
headers such as ”Chief Complaint”). Discontinu-
ous rubric item note contexts were linked together
with a relation. The final corpus after included 338
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A1 A2 A3 A4 A5
A1 - 0.84/0.68 0.84/0.69 0.86/0.72 0.85/0.69
A2 - - 0.86/0.72 0.87/0.73 0.87/0.73
A3 - - - 0.87/0.73 0.85/0.69
A4 - - - - 0.88/0.76

Table 1: Content-point inter-annotator agreement (per-
cent identity/kappa).

A1 A2 A3 A4 A5
A1 - 0.84/0.68 0.84/0.69 0.86/0.72 0.85/0.69
A2 - - 0.86/0.72 0.87/0.73 0.87/0.73
A3 - - - 0.87/0.74 0.85/0.69
A4 - - - - 0.88/0.76

Table 2: Offset-level inter-annotator agreement
(label/label-attribute).

notes, with a total of 10406 highlights1. A total of
244 rubric items required connecting discontinous
highlights. The full corpus statistics are shown in
Table 3.

Inter-annotator agreement was measured among
5 annotators for 9 files. We measured agree-
ment at several levels. At a note level, we mea-
sured pairwise percent identity and Cohen’s kappa
(McHugh, 2012) by content points. At the text
offset level, we measured precision, recall, and
f1 (Hripcsak and Rothschild, 2005) for inexact
overlap of highlights both at the label level (e.g.
cc frequent urination) and at a label attribute level
(e.g. cc frequent urination:correct). Since incor-
rect section is not counted in content-based grad-
ing, for both inter-annotator agreement and for
subsequent analysis, incorrect section highlights
were counted as correct unless overlapping with
a incorrect missingitem highlight, which would
make it count as incorrect missingitem. The
agreement scores are shown in Table 1 and 2.
Fleiss kappa (Fleiss, 1971) at the content point
level was at 0.714. The rest of the corpus was di-
vided among 5 annotators.

5 Methods

We performed classification for two types of
systems: a feature-based and a simple BERT
based neural network system for text classifi-
cation. Since discontinuous text highlights ac-
counted for less than 10% of items, we choose not
to model this nuance. Both systems used the same
pre-processing pipeline configurations shown in
Figure 2.

1Includes highlights for excluding the note, as well as ex-
cluding short hand text and ROS sections

Figure 2: General pipeline

We split 338 files into 270 training, 68 test set.
Tuning was performed on the training set in 5-fold
cross validation.

5.1 Pipeline configurations

The text was preprocessed, where short-hand text
and blank lines were removed. Sentences and
words were tokenized using spaCy (spacy.io).

Instances were created by extracting
minichunks (sentences or subsections in the
case of the PE section) from the clinical note iden-
tified using regular expressions. We experimented
with three tag-set configurations (tag gran) with
values (2lab, 3lab, 4lab), which represents {1
vs 0 points}, {correct, incorrect contrary, vs
missing} and {correct, incorrect contrary, in-
correct missingitem, missing} per rubric item.
Missing is the default value if no relevant high-
light annotates the sentence.

For the minichunk level, we set a configura-
tion negative sampling ratio (neg samp) which
specifies the factor of default class instances to
non-default class instances. A similarity feature
flag (simfeat on) turns on similarity features in
the feature-based system or switch the BERT-
based system to one which includes matching
features. For our feature based modeling, we
used scikit-learn (Pedregosa et al., 2011), for our
neural network pipelines we incorporated allennlp
(Gardner et al.).

5.2 Feature based system

The feature based system includes an n-gram fea-
ture extraction, which then passed through a chi-
squared statistical feature selection, before using
a support vector machine implemented by scikit
learn svc.

If the umls configuration is turned on, then Uni-
fied Medical Language System (UMLS) concept
with its negation value, extracted using MetaMap,
concept-grams are also added (Aronson and Lang,
2010). If turned on, similarity features for n-grams
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rubric item total correct incorrect missingitem incorrect contrary incorrect section
cc frequent urination 579 535 9 35 0
checks blood sugar regularly 110s before meals 152 39 86 26 1
bp fluctuates 150100 365 239 91 34 1
denies abdominal pain vomiting constipation 270 98 169 3 0
denies hematochezia 211 202 1 8 0
denies recent travel 257 245 5 4 3
duration of 1 week 256 221 5 30 0
feels loopy 125 110 8 6 1
feral cat in the house occasionally 175 56 95 22 2
frequent bm 3-4 times per day 343 249 50 44 0
frequent urination every 30 minutes 347 276 31 39 1
has not had ua 190 177 7 6 0
healthy diet 178 157 21 0 0
husband was sick with uti symptoms 331 257 56 18 0
hx of htn 298 254 40 4 0
initially thought she had respiratory infection 204 78 33 93 0
loose stools with mucous 324 205 111 8 0
losartan hctz every night with dinner 325 148 154 23 0
mild dysuria 266 185 57 24 0
no recent antibiotics 279 263 10 5 1
pe abdomen hyperactive bowel sounds at llq no pain with palp 334 97 180 51 6
pe cv normal 315 300 10 4 1
pe extremities no edema 297 282 7 2 6
pe heent normal no thyromegaly masses carotid bruit 430 173 251 4 2
pe resp normal 331 324 6 1 0
pe skin intact no clubbing cyanosis 276 84 173 6 13
plan advise brat diet 312 249 42 15 6
plan bp goal 13080 155 123 11 18 3
plan may notice leg swelling notify if unbearable 216 93 114 5 4
plan prescribed amlodipine 5mg 268 205 40 18 5
plan recommend 30 mins physical activity 4-5 times per week 296 128 131 34 3
plan reduce stress levels 119 100 13 1 5
plan rtn in 1 month with continued bp log 280 172 85 16 7
plan ua today to rule out infx 302 202 91 3 6
side effects of difficulty breathing with metoprolol 164 104 38 21 1
stress work related 223 215 7 1 0
takes blood pressure every morning 222 145 66 11 0
tried yogurt and turmeric no improvement 176 66 106 4 0
was seen by dr reynolds yesterday 154 44 96 13 1
weight normal 61 52 5 3 1

Table 3: Label frequencies for full corpus

and umls concept grams (if the umls flag is on) are
also added. We used jaccard similarity between 1-
, 2-, and 3- grams. The full configurations include
the following :

• top n : top number of significant features to
keep according to chi-squared statistic fea-
ture selection (integer)
• sec feat : setting to determine how section

information is encoded. If “embed” is set,
then each feature with be concatenated with
its section, e.g. “sect[hpi]=patient”. If “sep”
is turned on, “sect=hpi” is added as a feature.
• umls : whether or not to use umls features

(binary)
• simfeat on : whether or not to turn on simi-

larity features (binary)
• text off : whether or not to turn off the fea-

tures not related to similarity
• umls text off : whether or not to turn off the

umls features not related to similarity
• sent win : window for which surrounding

sentence features should be added, e.g. sent[-
1]=the would be added as a feature from
previous sentence unigram feature “the” if

sent win=1. (integer)

5.3 BERT based system
The neural network system made use of the pre-
vious instance creation pipeline; however in place
of feature extraction, instances were transformed
into BERT word vector representations. We used
the output for CLS position of the embeddings to
represent the whole sequence similar to that of the
original paper (Devlin et al., 2018).

To mimic the feature-based system’s case of
simfeats on, we include a switch to an architec-
ture that also feeds in the CLS position output
from a paired BERT classification setup. When
simfeats on is turned off, the architecture be-
comes that of a simple BERT sentence classifi-
cation (bert). When text off is turned on, then
the architecture becomes that of a simple BERT
sentence pair classification (bertpair). When sim-
feats on is turned on and text off is turned off, we
have a system with both types off representations
(bert+bertpair). A figure of the BERT classifier
setup is show in Figure 3.

Because certain medical vocabulary may not
be available with the general English trained cor-

130



Figure 3: BERT with additional sentence pair classifier

pora, we used pre-trained BERT embedding and
vocabulary from bio-bert, which is fine-tuned on
pubmed data (Lee et al., 2019).

5.4 Simple baseline

For a further comparison, we have included a
feature-based document-based baseline. This
baseline largely follows the previously mentioned
feature-based baseline though performed at the
document level. Because it is performed at a doc-
ument level, some attribution to a sub-document
level unit becomes necessary. (Recall, we wish to
be able to identify which part of the document is
relevant to a rubric item as well as if we believe it
is correct or otherwise.) To identify a correspond-
ing offset labeling for this setting, we attributed a
document level classification to a sentence which
contained the maximum amount of important fea-
tures. We defined features to be important ac-
cording to their learned feature weight magnitude
crossing a configurable threshold value. Thus, for
a document classification, based on this logic we
are able to assign a sentence related to that classi-
fication, for which we can use all our previously
mentioned metrics for evaluation. We found a
threshold of 10 to work well in our experiments.

5.5 Evaluation

Similar to inter-annotator agreement, we mea-
sured performance using several metrics. At the
note level, we measured distance to target full doc-
ument score by mean absolute error (MAE). We
also measured content point accuracy and kappa
to get a sense of the performance in point assign-
ment.

At the offset level, we measured precision, re-
call, and f1 for rubric item label-attribute value.

For minichunk classification, offsets were trans-
lated according to the start and end of the
minichunk in the document.

6 Results

Evaluations in cross-validation are reported as the
average of all 5 folds. Consistent with this, graph-
ical error bars in the learning curve figures repre-
sent the standard deviation across folds.

6.1 Experimental configurations

Feature-based parameter tuning. We started with
tag gran at 4lab, simfeats on true, and top n set
at 1000, sent win=0, and neg samp=2. We then
greedily searched for an optimal solution varying
one parameter at a time to optimize precision,
recall and f1 measure. Our final configura-
tions were set to neg samp=10, sect feat set to
”sep”, top n=4000, sent win=0. We kept the same
configurations for the other feature-based systems.

Neural network hyperparmeter tuning.
For the neural network models, we mainly ex-
perimented with negative sampling size, dropout,
and context length. We found a neg samp=100,
dropout=0.5, epochs=2 and context len=300 to
work well.

6.2 Cross-validation and test results

Table 4 shows performances for the feature-based
system using different tagsets in cross-validation.
Unsurprisingly the most detailed label (4lab) at the
more granualar level (minichunk) showed the best
performance. Tables 4 and 5 shows the compar-
ison of different system configurations in evalu-
ated in cross validation. Table 6 shows results
for the test set for different systems. In general,
the feature-based system with the full feature-set
out performed for the cross-validation and test ex-
periments. Among the BERT systems, the simple
BERT system did better than the other two config-
urations.

6.3 Scaling and tagset experiments

Figure 4 shows the effect of increasing training
size for several metrics, under several select sys-
tems. Interestingly, 2lab and 3lab settings show
similar behaviors across different metrics. For
the document level baseline, tagset does not make
any large difference across all three metrics. Dif-
ferent from other systems, 2lab and 3lab setting,
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Figure 4: Learning curve experiments. 2lab, 3lab, 4lab demarks the tagset configuration. doc-* identifies the simple
document classification baseline. The left column shows the performance of different n-gram configurations for
3 performance metrics. The right column shows BERT system performances for the 3 metrics along with two
feature-based systems for comparison.
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tagset mae acc kappa p r f
4lab 2.0 0.85 0.70 0.71 0.75 0.73
3lab 4.5 0.82 0.63 0.69 0.64 0.66
2lab 5.4 0.80 0.60 0.69 0.63 0.66

doc-4lab 3.1 0.80 0.59 0.58 0.53 0.55
doc-3lab 2.5 0.80 0.58 0.65 0.43 0.52
doc-2lab 2.9 0.78 0.55 0.67 0.42 0.52

Table 4: Feature-based system results for 5-fold cross-
validation, varying tagsets.

system mae acc kappa p r f
ngram+simfeats+umls 2.0 0.85 0.70 0.71 0.75 0.73

ngram+umls 2.2 0.85 0.70 0.71 0.75 0.73
ngram+simfeats 2.1 0.84 0.69 0.70 0.74 0.72
simfeats+umls 3.7 0.75 0.50 0.63 0.53 0.57
bert+bert pair 2.6 0.76 0.51 0.59 0.62 0.60

bert 2.8 0.76 0.51 0.60 0.61 0.60
bert pair 2.9 0.74 0.48 0.57 0.56 0.56

Table 5: Results for 5-fold cross-validation,
tag gran=4lab.

when trained to maximize both precision and re-
call equally for label attributes, MAE will rise in-
stead of lower such as for the other system setups.
This makes sense, as both tagset settings miss cru-
cial examples that exhibit confusing features. For
example, on the 2lab setting, only positive exam-
ples are shown not those that have incorrect infor-
mation or those that have missing information (i.e.
partially correct information). Likewise, the 3lab
setting does not have evidence for partially correct
items. We found experimentally, when tuning for
higher precision and lower recall, that MAE also
tends to lower– suggesting that these two settings
can be better maximized by tuning for MAE in-
stead.

Like the document-based baseline, the BERT
systems’ performances showed that tagset did not
make as big of a difference across all three metrics
at different training size levels. This is possibly
because there were not enough examples to even
properly fine-tune for these two systems which
require more training data. At higher levels of
training sizes, tagsets may again come into ef-
fect. Though the BERT systems at lower train-
ing sizes start at lower performances, it quickly
catches up to the document classification baseline
for the MAE and f1 metrics, though never gets
close to the 4lab feature-based baseline.

system mae acc kappa p r f
ngram+simfeats+umls 2.5 0.85 0.70 0.68 0.78 0.72

ngram+umls 2.5 0.85 0.70 0.68 0.78 0.72
ngram+simfeats 2.3 0.86 0.71 0.68 0.79 0.73
simfeats+umls 3.8 0.77 0.54 0.63 0.55 0.59
bert+bert pair 3.2 0.77 0.53 0.57 0.60 0.58

bert 2.8 0.79 0.57 0.59 0.63 0.61
bert pair 3.1 0.76 0.51 0.58 0.60 0.59

Table 6: Detailed results for the test set, tag gran=4lab.

6.4 UMLS and similarity features

The addition of similarity features did not pro-
vide a significant boost for the ngram feature-
based system. Similarity features alone for the
feature-based system underperformed at all train-
ing size levels compared to the ngram models. On
the other hand, the addition of UMLS features in-
creased performance across three metrics for all
training size levels.

The BERT based system using only the sim-
ple BERT representation (without paired features),
outperformed the other two settings across the
three metrics at most training size levels in cross-
validation. However, near higher levels of training
data, BERT with BERT pair becomes comparable.
The BERT pair system underperforms across all
three metrics and at all training sizes.

6.5 Error Analysis

One challenging aspect of the classification
task was the imbalanced categories across notes
for different rubric items. Some labels were
inherently less frequent, e.g. weight normal had a
total of 61 compared to cc frequent urination with
579 highlights. Indeed the performance amongst
all rubric item scores was highly variable, with
13% f1 standard variation for the label-attribute
measure. Moreover, the distribution of classes per
label was also highly variable, as shown in Figure
3. For example, when no recent antibiotics or
stress work related appears, in labeled data they
are often correct. As a consequence, accurately
predicting less populated classes becomes more
difficult. For the best performing system, for
example, there were instances where “Patients
weight is not normal” was considered correct
despite the rubric specifying the opposite. Sim-
ilarly, “Patient denies feeling loopy” would be
marked correct when the rubric says otherwise.
When measuring at the label level for highlights
instead, the performance on the test was higher
by more than 10% f1, as shown in Table 7. This
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eval tp fp fn p r f
label-att 1470 700 424 0.68 0.78 0.72
label 1708 413 186 0.81 0.90 0.85

Table 7: Results for the test set, ngram+simfeats+umls
tag gran=4lab.

indicates that many errors are due to confusion
between classification categories. Contradictions,
labeled incorrect contrary, for this reason was a
large problem.

Manually studying errors in the test set
for the best performing system, we found
that rubric items frequently identified in the
training, were broadly correctly classified. How-
ever, there were some rubric items that had
more inconsistencies in how they were being
tagged or graded. Some errors were partly
due to human grading error. For example,
checks blood sugar regularly 110s before meals
was a rubric item that scribes frequently missed
when creating notes. Due to this, some sentences
with just “checks” were sometimes labeled for
checks blood sugar regularly 110s before meals
despite the fact that the sentences were about
checking blood pressure. This leads to cases
where synonymous phrases to “blood sugar”,
“blood glucose”, did not get labeled as instances
with “blood glucose” by the human graders.

7 Conclusions

In this paper we present the problem of clinical
note grading and provide several baseline system
evaluations at different levels of training data. We
show experimentally that the choice of labeling
has large effects upon the system performance.
Furthermore, though neural network systems may
relieve a lot of feature-engineering, this may not
be plausible for smaller corpora.

Further improvements can be made by rubric-
item specific pipeline specialization, as well as
further augmentation of specific feature extrac-
tion modules, e.g. better negation handling.
Deeper processing methods and features, includ-
ing use of lemma-ization and dependency struc-
tures, would make features more generalizable.
On the other hand, to maximize performance,
feature-extraction can also be made more rubric-
item specific, for example by hand-crafting fea-
tures. For this work, we used a linear support

vector machine for our classifier, but further ex-
perimentation with different classifiers for each
rubric item would lead to higher performances.
The BERT systems can be improved by increasing
training size and adding more feed-forward layers.

Our proposed system can be used to expedite
and formalize clinical note creation in a training
setting. For example, instead of having a human
grader view all training notes, a simple pass of the
automated grading system can eliminate those that
will fail with some confidence. For others, a hu-
man grader can correct the output of the system,
which would speed the grading process then if the
grader had to mark highlights alone. In this work,
we focus on cases for which we have many exam-
ples of clinical notes generated for the same en-
counter with a fixed rubric. Future work will in-
vestigate grading for arbitrary notes and rubrics.
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Abstract

In this paper we present a dilated LSTM with
attention mechanism for document-level clas-
sification of suicide notes, last statements and
depressed notes. We achieve an accuracy of
87.34% compared to competitive baselines of
80.35% (Logistic Model Tree) and 82.27%
(Bi-directional LSTM with Attention). Fur-
thermore, we provide an analysis of both the
grammatical and thematic content of suicide
notes, last statements and depressed notes. We
find that the use of personal pronouns, cogni-
tive processes and references to loved ones are
most important. Finally, we show through vi-
sualisations of attention weights that the Di-
lated LSTM with attention is able to identify
the same distinguishing features across docu-
ments as the linguistic analysis.

1 Introduction

Over recent years the use of social media plat-
forms, such as blogging websites has become part
of everyday life and there is increasing evidence
emerging that social media can influence both
suicide-related behaviour (Luxton et al., 2012)
and other mental health conditions (Lin et al.,
2016). Whilst there are efforts to tackle sui-
cide and other mental health conditions online by
social media platforms such as Facebook (Face-
book, 2019), there are still concerns that there is
not enough support and protection, especially for
younger users (BBC, 2019). This has led to a
notable increase in research of suicidal and de-
pressed language usage (Coppersmith et al., 2015;
Pestian et al., 2012) and subsequently triggered
the development of new healthcare applications
and methodologies that aid detection of concern-
ing posts on social media platforms (Calvo et al.,
2017). More recently, there has also been an in-
creased use of deep learning techniques for such
tasks (Schoene and Dethlefs, 2018), however there

is little evidence which features are most rele-
vant for the accurate classification. Therefore we
firstly analyse the most important linguistic fea-
tures in suicide notes, depressed notes and last
statements. Last Statements have been of inter-
est to researchers in both the legal and mental
health community, because an inmates last state-
ment is written, similarly to a suicide note, closely
before their death (Texas Department of Crimi-
nal Justices, 2019). However, the main differ-
ence remains that unlike in cases of suicide, in-
mates on death row have no choice left in regards
to when, how and where they will die. Further-
more there has been extensive analysis conducted
on the mental health of death row inmates where
depression was one of the most common mental
illnesses. Work in suicide note identification has
also compared the different states of mind of de-
pressed and suicidal people, because depression is
often related to suicide (Mind, 2013). Secondly,
we introduce a recurrent neural network architec-
ture that enables us to (1) model long sequences
at document level and (2) visualise the most im-
portant words to accurate classification. Finally,
we evaluate the results of the linguistic analy-
sis against the results of the neural network vi-
sualisations and demonstrate how these features
align. We believe that by exploring and comparing
suicide notes with last statements and depressed
notes, both qualitatively and quantitatively it could
help us to find further differentiating factors and
aid in identifying suicidal ideation.

2 Related Work

The analysis and classification of suicide notes,
depression notes and last statements has tradition-
ally been conducted separately. Work on suicide
notes has often focused on identifying suicidal
ideation online (O’dea et al., 2017) or distinguish-
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ing genuine from forged suicide notes (Coulthard
et al., 2016), whilst the main purpose of analysing
last statements has been to identify psychological
factors or key themes (Schuck and Ward, 2008).

Suicide Notes Recent years have seen an in-
crease in the analysis of suicidal ideation on social
media platforms, such as Twitter. Shahreen et al.
(2018) searched the Twitter API for specific key-
words and analysed the data using both traditional
machine learning techniques as well as neural net-
works, achieving an accuracy of 97.6% using neu-
ral networks. Research conducted by Burnap et al.
(2017) have developed a classifier to distinguish
suicide-related themes such as the reports of sui-
cides and casual references to suicide. Work by
Just et al. (2017) used a dataset annotated for sui-
cide risks by experts and a linguistic analysis tool
(LIWC) to determine linguistic profiles of suicide-
related twitter posts. Other work by Pestian et al.
(2010) has looked into the analysis and automatic
classification of sentiment in notes, where tra-
ditional machine learning algorithms were used.
Another important area of suicide note research is
the identification of forged suicide notes from gen-
uine ones. Jones and Bennell (2007) have used su-
pervised classification model and a set of linguistic
features to distinguish genuine from forged suicide
notes, achieving an accuracy of 82%.

Depression notes Work on identifying depres-
sion and other mental health conditions has be-
come more prevelant over recent years, where
a shared task was dedicated to distinguish de-
pression and PTSD (Post Traumatic Stress Disor-
der) on Twitter using machine learning (Copper-
smith et al., 2015). Morales et al. (2017) have
argued that changes in cognition of people with
depression can lead to different language usage,
which manifests itself in the use of specific lin-
guistic features. Research conducted byResnik
et al. (2015) also used linguistic signals to detect
depression with different topic modelling tech-
niques. Work by Rude et al. (2004) used LIWC to
analyse written documents by students who have
experienced depression, currently depressed stu-
dents as well as student who never have experi-
enced depression, where it was found that individ-
uals who have experienced depression used more
first-person singular pronouns and negative emo-
tion words. Nguyen et al. (2014) used LIWC to
detect differences in language in online depres-

sion communities, where it was found that neg-
ative emotion words are good predictors of de-
pressed text compared to control groups using a
Lasso Model (Tibshirani, 1996). Research con-
ducted by Morales and Levitan (2016) showed that
using LIWC to identify sadness and fatigue helped
to accurately classify depression.

Last statements Most work in the analysis of
last statements of death row inmates has been con-
ducted using data from The Texas Department of
Criminal Justice, made available on their website
(Texas Department of Criminal Justices, 2019).
Recent work conducted by Foley and Kelly (2018)
has primarily focused on the analysis of psycho-
logical factors, where it was found that specifically
themes of ’love’ and ’spirituality’ were constant
whilst requests for forgiveness declined over time.
Kelly and Foley (2017) have identified that men-
tal health conditions occur often in death row in-
mates with one of the most common conditions
being depression. Research conducted by Heflick
(2005) studied Texas last statements using qualita-
tive methods and have found that often afterlife be-
lief and claims on innocence are common themes
in these notes. Eaton and Theuer (2009) studied
qualitatively the level of apology and remorse in
last statements, whilst also using logistic regres-
sion to predict the presence of apologies achieving
an accuracy of 92.7%. Lester and Gunn III (2013)
used the LIWC program to analyse last statements,
where they have found nine main themes, includ-
ing the affective and emotional processes. Also,
Foley and Kelly (2018) found in a qualitative anal-
ysis that the most common themes in last state-
ments were love (78%), spirituality (58%), regret
(35%) and apology (35%).

3 Data

For our analysis and experiments we use three dif-
ferent datasets, which have been collected from
different sources. For the experiments we use
standard data preprocessing techniques and re-
move all identifying personal information.1

Last Statements Death Row This dataset has
been made available by the Texas Department of
Criminal Justices (2019) and contains 545 records
of prisoners who have received the death penalty
between 1982 and 2017 in Texas, U.S.A. A total
of 431 prisoners wrote notes prior to their death.

1The authors are happy to share the datasets upon request
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Due to the information available on this data we
have done a basic analysis on the data available,
hereafter referred to as LS.

Suicide Note The data for this corpus has
mainly been taken from Schoene and Dethlefs
(2016), but has been further extended by using
notes introduced by The Kernel (2013) and Tum-
bler (2013). There are total of 161 suicide notes in
this corpus, hereafter referred to as GSN.

Depression Notes We used the data collected by
Schoene and Dethlefs (2016) of 142 notes written
by people identifying themselves as depressed and
lonely, hereafter referred to as DL.

4 Linguistic Analysis

To gain more insight into the content of the
datasets, we performed a linguistic analysis to
show differences in structure and contents of
notes. For the purpose of this study we used
the Linguistic Inquiry and Word Count software
(LIWC) (Tausczik and Pennebaker, 2010), which
has been developed to analyse textual data for psy-
chological meaning in words. We report the aver-
age of all results across each dataset.

Dimension Analysis Firstly, we looked at the
word count and different dimensions of each
dataset (see Table 1). It has previously been ar-
gued by Tausczik and Pennebaker (2010) that the
words people use can give insight into the emo-
tions, thoughts and motivations of a person, where
LIWC dimensions correlate with emotions as well
as social relationships. The number of words per
sentences are highest in DL writers and lowest in
last statement writers. Research by Osgood and
Walker (1959) has suggested that people in stress-
ful situations break their communication down
into shorter units. This may indicate alleviated
stress levels in individuals writing notes prior to
receiving the death sentence. Clout stands for the
social status or confidence expressed in a person’s
use of language (Pennebaker et al., 2014). This
dimension is highest for people writing their last
statements, whereas depressed people rank lowest
on this. Cohan et al. (2018) have noted that this
might be due to the fact that depressed individu-
als often have a lower socio-economic status. The
Tone of a note refers to the emotional tone, includ-
ing both positive and negative emotions, where
numbers below 50 indicate a more negative emo-
tional tone (Cohn et al., 2004). The tone for LS is

highest overall and the lowest in DL, indicating a
more overall negative tone in DL and positive tone
in LS.

Type GSN LS DL
Tokens per note 110.65 109.72 98.58
Word per Sent 14.87 11.42 16.88
Clout 47.73 67.68 19.94
Tone 54.83 75.43 25.51

Table 1: LIWC Dimension Analysis

Function Words and Content Words Next, we
looked at selected function words and grammat-
ical differences, which can be split into two cat-
egories called Function Words (see Table 2), re-
flecting how humans communicate and Content
words (see Table 2), demonstrating what humans
say (Tausczik and Pennebaker, 2010). Previous
studies have found that whilst there is an overall
lower amount of function words in a person’s vo-
cabulary, a person uses them more than 50% when
communicating. Furthermore it was found that
there is a difference in how human brains process
function and content words (Miller, 1991). Previ-
ous research has found that function words have
been connected with indicators of people’s so-
cial and psychological worlds (Tausczik and Pen-
nebaker, 2010), where it has been argued that the
use of function words require basic skills. The
highest amount of function words were used in
DL notes, whilst both GSN and LS have a similar
amount of function words. Rude et al. (2004) has
found that high usage, specifically of first-person
singular pronouns (”I”) could indicate higher emo-
tional and/or physical pain as the focus of their at-
tention is towards themselves. Overall Just et al.
(2017) has also identified a larger amount of per-
sonal pronouns in suicide-related social media
content. Previous work by Hancock et al. (2007)
has found that people use a higher amount of nega-
tions when also expressing negative emotions and
used fewer words overall, compared to more pos-
itive emotions. This seem to be also true for
the number of negations used in this case where
amount of Negations were also highest in the DL
corpus and lowest in the LS corpus, whilst the
overall words count was lowest for DL and neg-
ative emotions highest. Furthermore, it was found
that Verbs, Adverb and Adjectives are often used
to communicate content, however previous stud-
ies have found (Jones and Bennell, 2007; Gregory,
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1999) that individuals that commit suicide are un-
der a higher drive and therefore would reference
a higher amount of objects (through nouns) rather
than using descriptive language such as adjectives
and adverbs.

Type GSN LS DL
Function 56.35 56.33 60.20
Personal pronouns 16.23 20.44 15.19
I 11.04 12.65 12.8
Negations 2.71 1.71 4.06
Verb 19.29 19.58 21.65
Adjective 4.45 2.58 4.98
Adverb 4.43 3.14 7.69

Table 2: LIWC Function and Content Words

Affect Analysis The analysis of emotions in sui-
cide notes and last statements has often been ad-
dressed in research (Schoene and Dethlefs, 2018;
Lester and Gunn III, 2013) The number of Affect
words is highest in LS notes, whilst they are low-
est in DL notes, this could be related to the emo-
tional Tone of a note (see Table 1). This also ap-
plies to the amount of Negative emotions as they
are highest in DL notes and Positive emotions as
these are highest in LS notes. Previous research
has analysed the amount of Anger and Sadness in
GSN and DL notes and has shown that it is more
prevalent in DL note writers as these are typical
feelings expressed when people suffer from de-
pression (Schoene and Dethlefs, 2016).

Type GSN LS DL
Affect 9.1 11.58 8.44
Positive emotion 5.86 8.99 3.15
Negative emotion 3.15 2.58 5.21
Anger 0.61 0.65 1.03
Sadness 1.09 1.08 2.53

Table 3: LIWC Affect Analysis

Social and Psychological Processes Social
Processes highlights the social relationships of
note writers, where it can be seen in Table 4 that
the highest amount of social processes can be
found in LS and the lowest in DL. Furthermore
LS notes tend to speak most about family rela-
tions and least about friends, this was also found
by Kelly and Foley (2017) who found a low fre-
quency in interpersonal relationships.

Type GSN LS DL
Social processes 12.21 18.19 8.33
Family 1.17 2.17 0.47
Friends 0.77 0.38 0.73

Table 4: LIWC Social Processes

The term Cognitive processes encompasses a
number of different aspects, where we have found
that the highest amount of cognitive processes was
in DL notes and the lowest in LS notes. Boals
and Klein (2005) have found that people who use
more cognitive mechanisms to cope with trau-
matic events such as break ups by using more
causal words to organise and explain events and
thoughts for themselves. Arguably this explains
why there is a lower amount in LS notes as LS
writers often have a long time to organise their
thoughts, events and feelings whilst waiting for
their sentence (Death Penalty Information Centre,
2019). Insight encompasses words such as think
or consider, whilst Cause encompasses words that
express reasoning or causation of events, e.g.: be-
cause or hence. These terms have previously been
coined as cognitive process words by (Gregory,
1999), who argued that these words are less used
in GSN notes as the writer has already finished the
decision making process whilst other types of dis-
course would still try to justify and reason over
events and choices. This can also be found in the
analysis of our own data, where both GSN and LS
notes show similar, but lower frequency of terms
in those to categories compared to DL writers.
Tentativeness refers to the language use that indi-
cates a person is uncertain about a topic and uses
a number of filler words. A person who use more
tentative words, may have not expressed an event
to another person and therefore has not processed
an event yet and it has not been formed into a story
(Tausczik and Pennebaker, 2010). The amount of
tentative words used in DL notes is highest, whilst
it is lowest in LS words. This might be due to the
fact that LS writers already had to reiterate over
certain events multiple times as they go through
the process of prosecution.

Personal Concerns Personal Concerns refers to
the topics most commonly brought up in the dif-
ferent notes, where we note that both Money and
Work are most often referred to in GSN notes and
lowest in LS notes. This might be due to the the
fact that (Mind, 2013) lists these two topics as
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Type GSN LS DL
Cognitive Processes 12.19 10.85 16.77
Insight 2.37 2.3 4.07
Cause 0.95 0.8 1.94
Tentativeness 2.57 1.5 3.23

Table 5: LIWC Psychological Processes

some of the most common reasons for a person to
commit suicide. Religion is most commonly refer-
enced in LS notes, which confirms previous anal-
ysis of such notes (Foley and Kelly, 2018; Kelly
and Foley, 2017) and lowest in DL notes. (Just
et al., 2017) has found that the topic of Death is
commonly referenced in suicide-related commu-
nication on Twitter. This was also found in this
dataset, where GSN notes most commonly refer-
enced death, whilst DL notes were least likely to
reference this topic.

Type GSN LS DL
Work 1.24 0.41 0.99
Money 0.68 0.18 0.31
Religion 0.82 2.7 0.09
Death 0.76 0.68 0.64

Table 6: LIWC Personal Concerns

Time Orientation and Relativity Looking at
the Time Orientation of a note can give interest-
ing insight into the temporal focus of attention and
differences in verb tenses can show psychological
distance or to which extend disclosed events have
been processed (Tausczik and Pennebaker, 2010).
Table 7 shows that the focus of LS letters is pri-
marily in the past whilst GSN and DL letters fo-
cus on the present. The high focus on the past in
DL notes as well as GSN notes could be, because
these notes might draw on their past experiences
to express the issues of their current situation or
problems.The most frequent use of future tense is
in LS letters which could be due to a LS notes writ-
ers common focus on afterlife (Heflick, 2005).

Type GSN LS DL
Focus past 3.24 2.86 3.32
Focus present 14.39 1.43 16.11
Focus future 2.1 2.27 1.51

Table 7: LIWC Time orientation

Overall it was noted that for most analysis GSN

falls between the two extremes of LS and DL.

5 Learning Model

The primary model is the Long-short-term mem-
ory (LSTM) given its suitability for language
and time-series data (Hochreiter and Schmidhu-
ber, 1997). We feed into the LSTM an input se-
quence x = (x1, . . . , xN ) of words in a document
alongside a label y ∈ Y denoting the class from
any of the three datasets. The LSTM learns to map
inputs x to outputs y via a hidden representation ht

which can be found recursively from an activation
function.

f(ht−1, xt), (1)

where t denotes a time-step. During training, we
minimise a loss function, in our case categorical
cross-entropy as:

L(x, y) = − 1

N

∑

n∈N
xn log yn. (2)

LSTMs manage their weight updates through a
number of gates that determine the amount of in-
formation that should be retained and forgotten at
each time step. In particular, we distinguish an
‘input gate’ i that decides how much new infor-
mation to add at each time-step, a ‘forget gate’
f that decides what information not to retain and
an ‘output gate’ o determining the output. More
formally, and following the definition by Graves
(2013), this leads us to update our hidden state h
as follows (where σ refers to the logistic sigmoid
function and c is the ‘cell state’):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = σ(Wxfxt+Whfht−1+Wcfct−1+ bf) (4)

ct = ftct−1+it tanh(Wxcxt+Whcht−1+bc) (5)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (6)

ht = ottanh(ct) (7)

A standard LSTM definition solves some of the
problems of vanilla RNNs have (Hochreiter and
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Schmidhuber, 1997), but it still has some short-
comings when learning long dependencies. One
of them is due to the cell state of an LSTM; the
cell state is changed by adding some function of
the inputs. When we backpropagate and take the
derivative of ct with respect to ct − 1, the added
term would disappear and less information would
travel through the layers of a learning model.

For our implementation of a Dilated LSTM, we
follow the implementation of recurrent skip con-
nections with exponentially increasing dilations in
a multi-layered learning model by Chang et al.
(2017). This allows LSTMs to better learn in-
put sequences and their dependencies and there-
fore temporal and complex data dependencies are
learned on different layers. Whilst dilated LSTM
alleviates the problem of learning long sequences,
it does not contribute to identifying words in a se-
quence that are more important than others. There-
fore we extend this network by (1) an embedding
layer and (2) an attention mechanism to further
improve the network’s ability. A graph illustration
of our learning model can be seen in Figure 2.

Dilated LSTM with Attention Each document
D contains i sentences Si, where wi represents
the words in each sentence. Firstly, we embed
the words to vectors through an embedding matrix
We, which is then used as input into the dilated
LSTM.

The most important part of the dilated LSTM is
the dilated recurrent skip connection, where c(l)t is
the cell in layer l at time t:

c
(l)
t = f(x

(l)
t , c

(l)

t−sl−1)· (8)

s(l) is the skip length; or dilation of layer l;x(l)t
as the input to layer l at time t; and f(·) denotes a
LSTM cell; M and L denote dilations at different
layers:

s(l) =M (l−1), l = 1, . . . L. (9)

The dilated LSTM alleviates the problem of learn-
ing long sequences, however not every word in a
sequence has the same meaning or importance.

Attention layer The attention mechanism was
first introduced by Bahdanau et al. (2015), but has
since been used in a number of different tasks in-
cluding machine translation (Luong et al., 2015),
sentence pairs detection (Yin et al., 2016) , neu-
ral image captioning (Xu et al., 2015) and action
recognition (Sharma et al., 2015).

Our implemenetation of the attention mecha-
nism is inspired by Yang et al. (2016), using atten-
tion to find words that are most important to the
meaning of a sentence at document level. We use
the output of the dilated LSTM as direct input into
the attention layer, where O denotes the output of
final layer L of the Dilated LSTM at time t+1.

The attention for each word w in a sentence s is
computed as follows, where uit is the hidden rep-
resentation of the dilated LSTM output, αit repre-
sents normalised alpha weights measuring the im-
portance of each word and Si is the sentence vec-
tor:

uit = tanh(O + bw) (10)

αit =
exp (uTituw)∑
t exp (u

T
ituw)

(11)

si =
∑

t

αito· (12)

Figure 1: A 2-layer dilated LSTM with Attention.

6 Experiments and Results

For our experiments we use all three datasets, Ta-
ble 8 shows the results for the experiments series.
We establish three performance baselines on the
datasets by using three different algorithms pre-
viously used on similar datasets. Firstly, we use
the ZeroR and LMT (Logistic Model Tree) pre-
viously used by (Schoene and Dethlefs, 2016).
Additionally we chose to benchmark our algo-
rithm also against the originally proposed Bidi-
rectional LSTM with attention proposed by Yang
et al. (2016), which was also used on similar exist-
ing datasets before (Schoene and Dethlefs, 2018).
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Furthermore we benchmark the Dilated Attention
LSTM against two other types of recurrent neu-
ral networks. We use 200-dimensional word em-
beddings as input into each network and all neural
networks share the same hyper-parameters, where
learning rate = 0.001, batch size = 128, dropout
= 0.5, hidden size = 150 units and the Adam op-
timizer is used. For our proposed model - the
Dilated LSTM with Attention - we establish the
number of dilations empirically. There are 2 di-
lated layers with exponentially increasing dila-
tions starting at 1. Due to the size of the dataset
we have split the data into 70% training, 15% val-
idation and 15% test data. We report results based
on the test accuracy of the prediction results. It can
be seen in Table 8 that the dilated LSTM with an
attention layer outperforms the BiLSTM with At-
tention by 5.07%. Furthermore it was found that
both the LMT and a vanilla bi-directional LSTM
outperform a standard LSTM on this task. Pre-
vious results on similar tasks have yielded an ac-
curacy of 69.41% using BiLSTM with Attention
(Schoene and Dethlefs, 2018) and 86 % using a
LMT (Schoene and Dethlefs, 2016).

7 Evaluation

In order to evaluate the DLSTM with attention we
look in more detail at the predicted labels and visu-
alise examples of each note to show which features
are assigned the highest attention weights.

7.1 Label Evaluation

In Figure 2 we show the confusion matrix over the
DLSTM with attention. It can be seen that LS
notes are most often correctly predicted and DL
notes are least likely to be accurately predicted.

The same applies to results of the main compet-
ing model (Bi-directional LSTM with Attention),
Figure 3 shows that this model still misclassifies
LS notes with DL notes.

7.2 Visualisation of attention weights

In order to see which features are most important
to accurate classification we visualise examples
from the test set of each dataset, where Figures 4,
5 and 6 show the visualisation of attention weights
in the GSN, LS and DL datasets respectively. Fur-
thermore, we also show three examples of the test
data with typical errors the learning model makes
in Figures 7 , 8 and 9. Words highlighted in darker
shades have a higher attention weight.

Figure 2: Confusion Matrix of test set labels - DLSTM
Attention.

Figure 3: Confusion Matrix of test set labels - BiLSTM
Attention.

The most important words highlighted in a last
statement note (see Figure 4) are personal pro-
nouns as well as an apology and expression of love
towards friends and family members. This corre-
sponds with the higher amount of personal pro-
nouns, positive emotions and references to Family
in LS notes compared to GSN and DL notes. Fur-
thermore it can be seen that there is a low amount
of cognitive process words and more action verbs
such as killing or hurt, which could confirm that
inmates have had more time to process events and
thoughts and don’t need cognitive words as a cop-
ing mechanism anymore (Boals and Klein, 2005).

Figure 5 shows a GSN note, where the most
important words are also pronouns, references to
family, requests for forgiveness and endearments.
Previous research has shown that forgiveness is an
important feature as well as the giving instructions
such as help or phrases like do not follow are key
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Model Test Accuracy Aver. Precision Aver. Recall Aver. F1-score
ZeroR 42.85 0.43 0.41 0.42
LMT 80.35 0.81 0.79 0.80
LSTM 62.16 0.63 0.61 0.62
BiLSTM 65.82 0.66 0.64 0.65
BiLSTM with Attention 82.27 0.85 0.83 0.84
DLSTMAttention 87.34 0.88 0.87 0.87

Table 8: Test accuracy and F1-score of different learning models in %

Figure 4: Example of LS note correctly classified.

to accurately classify suicide notes (Pestian et al.,
2010). Terms of endearment for loved ones at the
start or towards the end of a note (Gregory, 1999).

Figure 5: Example of GSN note correctly classified.

The DL note in Figure 6 shows that there is a
greater amount of cognitive process verbs present,
such as feeling or know as well as negations, which
confirms previous analysis using LIWC.

Figure 6: Example of DL note correctly classified.

Figure 7 shows a visualisation of a LS note. In
this instances the word God was replaced with up,
when looking into the usage of the word up in
other LS notes, it was found that it was commonly
used in reference to religious topics such as God,
heaven or up there.

Figure 7: LS note error analysis

In Figure 8 a visualised GSN note is shown.
Whilst there is still consistency in highlighting
personal pronouns (e.g.: you), it can be seen that
the end of the note is missing and more action

verbs such as hurt or take are more important.

Figure 8: GSN note error analysis

The visualisation in Figure 9 demonstrates how
the personal pronoun I has been removed from
several DL notes, where DL notes are least likely
to be predicted accurately as shown in Figure 2.

Figure 9: DL note error analysis

8 Conclusion

In this paper we have presented a new learning
model for classifying long sequences. We have
shown that the model outperforms the baseline by
6.99 % and by 5.07 % a competitor model. Fur-
thermore we have provided an analysis of the lin-
guistic features on three datasets, which we have
later compared in a qualitative evaluation by visu-
alising the attention weights on examples of each
dataset. We have shown that the neural network
pays attention to similar linguistic features as pro-
vided by LIWC and found in human evaluated re-
lated research.
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Abstract

Natural language processing techniques are
being applied to increasingly diverse types of
electronic health records, and can benefit from
in-depth understanding of the distinguishing
characteristics of medical document types. We
present a method for characterizing the usage
patterns of clinical concepts among different
document types, in order to capture semantic
differences beyond the lexical level. By train-
ing concept embeddings on clinical documents
of different types and measuring the differ-
ences in their nearest neighborhood structures,
we are able to measure divergences in concept
usage while correcting for noise in embedding
learning. Experiments on the MIMIC-III cor-
pus demonstrate that our approach captures
clinically-relevant differences in concept us-
age and provides an intuitive way to explore
semantic characteristics of clinical document
collections.

1 Introduction

Sublanguage analysis has played a pivotal role
in natural language processing of health data,
from highlighting the clear linguistic differences
between biomedical literature and clinical text
(Friedman et al., 2002) to supporting adaptation
to multiple languages (Laippala et al., 2009). Re-
cent studies of clinical sublanguage have extended
sublanguage study to the document type level, in
order to improve our understanding of the syn-
tactic and lexical differences between highly dis-
tinct document types used in modern EHR systems
(Feldman et al., 2016; Grön et al., 2019).

However, one key axis of sublanguage char-
acterization that has not yet been explored is
how domain-specific clinical concepts differ in
their usage patterns among different document
types. Established biomedical concepts may have
multiple, often non-compositional surface forms

(e.g., “ALS” and “Lou Gehrig’s disease”), making
them difficult to analyze using lexical occurrence
alone. Understanding how these concepts differ
between document types can not only augment re-
cent methods for sublanguage-based text catego-
rization (Feldman et al., 2016), but also inform the
perennial challenge of medical concept normaliza-
tion (Luo et al., 2019): “depression” is much eas-
ier to disambiguate if its occurrence is known to
be in a social work note or an abdominal exam.

Inspired by recent technological advances in
modeling diachronic language change (Hamilton
et al., 2016; Vashisth et al., 2019), we characterize
concept usage differences within clinical sublan-
guages using nearest neighborhood structures of
clinical concept embeddings. We show that over-
lap in nearest neighborhoods can reliably distin-
guish between document types while controlling
for noise in the embedding process. Qualitative
analysis of these nearest neighborhoods demon-
strates that these distinctions are semantically rele-
vant, highlighting sublanguage-sensitive relation-
ships between specific concepts and between con-
cepts and related surface forms. Our findings
suggest that the structure of concept embedding
spaces not only captures domain-specific semantic
relationships, but can also identify a “fingerprint”
of concept usage patterns within a clinical docu-
ment type to inform language understanding.

2 Related Work

Sublanguage analysis historically focused on de-
scribing the characteristic grammatical structures
of a particular domain (Friedman, 1986; Grish-
man, 2001; Friedman et al., 2002). As methods for
automated analysis of large-scale data sets have
improved, more studies have investigated lexical
and semantic characteristics, such as usage pat-
terns of different verbs and semantic categories
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Type Docs Lines Tokens Matches Concepts High Confidence
Concepts Consistency (%)

Case Management 967 20,106 165,608 45,306 557 111 75
Consult 98 15,514 96,515 26,109 812 0 –

Discharge Summary 59,652 14,480,154 104,027,364 30,840,589 6,381 1,599 67
ECG 209,051 1,022,023 7,307,381 2,163,682 540 14 56
Echo 45,794 2,892,069 19,752,879 6,070,772 1,233 157 65

General 8,301 307,330 2,191,618 552,789 2,559 0 –
Nursing 223,586 9,839,274 73,426,426 18,903,892 4,912 2 58

Nursing/Other 822,497 10,839,123 140,164,545 31,135,584 5,049 83 60
Nutrition 9,418 868,102 3,843,963 1,147,918 1,911 198 73

Pharmacy 103 4,887 39,163 8,935 376 0 –
Physician 141,624 26,659,749 148,306,543 39,239,425 5,538 122 57

Radiology 522,279 17,811,429 211,901,548 34,433,338 4,126 599 63
Rehab Services 5,431 585,779 2,936,022 869,485 2,239 9 62

Respiratory 31,739 1,323,495 6,358,924 2,255,725 1,039 5 63
Social Work 2,670 100,124 930,674 195,417 1,282 0 –

Table 1: Document type subcorpora in MIMIC-III. Tokenization was performed with SpaCy; Matches and Con-
cepts refer to number of terminology string match instances and number of unique concepts embedded, re-
spectively, using SNOMED-CT and LOINC vocabularies from UMLS 2017AB release. The number of high-
confidence concepts identified for each document type is given with their mean consistency.

(Denecke, 2014), as well as more structural infor-
mation such as document section patterns and syn-
tactic features (Zeng et al., 2011; Temnikova et al.,
2014). The use of terminologies to assess con-
ceptual features of a sublanguage corpus was pro-
posed by Walker and Amsler (1986), and Drouin
(2004); Grön et al. (2019) used sublanguage fea-
tures to expand existing terminologies, but large-
scale characterization of concept usage in sublan-
guage has remained a challenging question.

Word embedding techniques have been uti-
lized to describe diachronic language change in a
number of recent studies, from evaluating broad
changes over decades (Hamilton et al., 2016;
Vashisth et al., 2019) to detecting fine-grained
shifts in conceptualizations of psychological con-
cepts (Vylomova et al., 2019). Embedding tech-
niques have also been used as a mirror to analyze
social biases in language data (Garg et al., 2018).
Similar to our work, Ye and Fabbri (2018) inves-
tigate document type-specific embeddings from
clinical data as a tool for medical language anal-
ysis. However, our approach has two signifi-
cant differences: Ye and Fabbri (2018) used word
embeddings only, while we utilize concept em-
beddings to capture concepts across multiple sur-
face forms; more importantly, their work investi-
gated multiple document types as a way to control
for specific usage patterns within sublanguages
in order to capture more general term similarity
patterns, while our study aims to capture these
sublanguage-specific usage patterns in order to an-
alyze the representative differences in language

use between different expert communities.

3 Data and preprocessing

We use free text notes from the MIMIC-III crit-
ical care database (Johnson et al., 2016) for our
analysis. This includes approximately 2 million
text records from hospital admissions of almost 50
thousand patients to the critical care units of Beth
Israel Deaconess Medical Center over a 12-year
period. Each document belongs to one of 15 doc-
ument types, listed in Table 1.

As sentence segmentation of clinical text is of-
ten optimized for specific document types (Griffis
et al., 2016), we segmented our documents at
linebreaks and tokenized using SpaCy (version
2.1.6; Honnibal and Montani 2017). All tokens
were lowercased, but punctuation and deidentifier
strings were retained, and no stopwords were re-
moved.

4 Experiments

Methods for learning clinical concept representa-
tions have proliferated in recent years (Choi et al.,
2016; Mencia et al., 2016; Phan et al., 2019), but
often require annotations in forms such as billing
codes or disambiguated concept mentions. These
annotations may be supplied by human experts
such as medical coders, or by adapting medical
NLP tools such as MetaMap (Aronson and Lang,
2010) or cTAKES (Savova et al., 2010) to perform
concept recognition (De Vine et al., 2014).

For investigating potentially divergent usage
patterns of clinical concepts, these strategies face
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(a) Self consistency by document type; line at 50% threshold

(b) Self consistency compared to corpus size
(log scale), with document types sorted by
decreasing corpus size.

Figure 1: Distribution of self-consistency rates (i.e., overlap in nearest neighbors between replicate embeddings of
the same concept) among MIMIC document types.

serious limitations: the full diversity of MIMIC
data has not been annotated for concept identifiers,
and the statistical biases of trained NLP tools may
suppress underlying differences in automatically-
recognized concepts. We therefore take a distant
supervision approach, using JET (Newman-Griffis
et al., 2018). JET uses a sliding context window
to jointly train embedding models for words, sur-
face forms, and concepts, using a log-bilinear ob-
jective with negative sampling and shared embed-
dings for context words. It leverages known sur-
face forms from a terminology as a source of dis-
tant supervision: each occurrence of any string in
the terminology is treated as a weighted training
instance for each of the concepts that string can
represent. As terminologies are typically many-to-
many maps between surface forms and concepts,
this generally leads to a unique set of contexts
being used to train the embedding of each con-
cept, though any individual context window may
be used as a sample for training multiple con-
cepts. We constrain the scope of our analysis to
only concepts and strings from SNOMED-CT and
LOINC,1 two popular high-coverage clinical vo-
cabularies.

4.1 Identifying concepts for comparison
For each document type, we concatenate all of its
documents (maintaining linebreaks), identify all
occurrences of SNOMED-CT and LOINC strings
in each line, and use these occurrences to train
word, term, and concept embeddings with JET.
Due to the size of our subcorpora, we used a win-
dow size of 5, minimum frequency of 5, embed-
ding dimensionality of 100, initial learning rate of

1 We used the versions distributed in the 2017AB release
of the UMLS (Bodenreider, 2004).

0.05, and 10 iterations over each corpus.
Prior research has noted instability of near-

est neighborhoods in multiple embedding meth-
ods (Wendlandt et al., 2018). We therefore train
10 sets of embeddings from each of our subcor-
pora, each using the same hyperparameter settings
but a different random seed. We then use all 10
replicates from each subcorpus in our analyses,
in order to control for variation in nearest neigh-
borhoods introduced by random initialization and
negative sampling. To evaluate the baseline relia-
bility of concept embedding neighborhoods from
each subcorpus, we calculated per-concept consis-
tency by measuring, over all pairs of embedding
sets within the 10 replicates, the average set mem-
bership overlap between the top 5 nearest neigh-
bors by cosine similarity for each concept embed-
ding.2 As shown in Figure 1a, these consistency
scores vary widely both within and between doc-
ument types, with some document types produc-
ing no concept embeddings with consistency over
40%. Interestingly, as illustrated in Figure 1b,
there is no linear relationship between log corpus
size and mean concept consistency (R2 ≈ 0.011),
suggesting that low consistency is not solely due
to limited training data.

To mitigate concerns about the reliability of em-
beddings for comparison, a set of high-confidence
concepts is identified for each document type by

2 We chose five nearest neighbors for our analyses based
on qualitative review of neighborhoods for concepts within
different document types. We found nearest neighborhoods
for concept embeddings to vary more than for word embed-
dings, often introducing noise beyond the top five nearest
neighbors; we therefore set a conservative baseline for reli-
ability by focusing on the closest and most stable neighbors.
However, using 10 neighbors, as Wendlandt et al. (2018) did,
or more could yield different qualitative patterns in document
type comparisons and bears exploration.
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(a) Number of concepts analyzed (b) Reference set self-consistency (c) Comparison set self-consistency

(d) Cross-type consistency (e) Consistency deltas

Figure 2: Comparison of concept neighborhood consistency statistics across document types, using high-
confidence concepts from the reference type. Figure 2a provides the number of concepts shared between the
high-confidence reference set and the comparison set. All values are the mean of the consistency distribution
calculated over all concepts analyzed for the document type pair.

retaining only those with a self-consistency of
at least 50%; Table 1 includes the number of
high-confidence concepts identified and the mean
consistency among this subset.3 These embed-
dings capture reliable concept usage information
for each document type, and form the basis of our
comparative analysis.

4.2 Cross-corpus analysis

Our key question is what concept embeddings re-
veal about clinical concept usage between docu-
ment types. To maintain a sufficient sample size,
we restrict our comparison to the 7 document
types with at least 50 high confidence concepts:
Case Management, Discharge Summary, Echo,
Nursing/Other, Nutrition, Physician, and Radi-
ology. Physician, ECG, and Nursing were also
used by Feldman et al. (2016) for their lexicosyn-

3 We found in our analysis that most concept consistency
numbers clustered roughly bimodally, between 0-30% or 60-
90%; this is reflected at a coarse level in the overall distri-
butions in Figure 1a. Varying the threshold outside of these
ranges did not have a significant impact on the number of
concepts retained; the 50% threshold was chosen for simplic-
ity. With larger corpora, yielding higher concept coverage, a
higher threshold could be chosen for a stricter analysis.

tactic analysis, although they combined Nursing
documents (longer narratives) and Nursing/Other
(which tend to be much shorter) into a single set,
while we retain the distinction. Interestingly, the
fourth type they analyzed, ECG, produced only
14 high-confidence concepts in our analysis, sug-
gesting high semantic variability despite the large
number of documents.

As learned concept sets differ between docu-
ment types, the first step for comparing a docu-
ment type pair is to identify the set of concepts
embedded for both. For reference type A and com-
parison type B, we identify high-confidence con-
cepts from A that are also present in B, and calcu-
late four distributions using this shared set:

Reference consistency: self-consistency
across each of the shared concepts, using only
other shared concepts to identify nearest neigh-
borhoods in embeddings for the reference set.

Comparison consistency: self-consistency of
each shared concept in embeddings for the com-
parison document type, again using only shared
concepts for neighbors. As the shared set is based
on high-confidence concepts from the reference
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(a) Number of concepts analyzed (b) Self-consistency

(c) Cross-type consistency (d) Consistency deltas

Figure 3: Concept neighborhood consistency statistics, restricted to concepts that are high-confidence in both
reference and comparison sets. In this case, reference self-consistency and target self-consistency are symmetric,
so only reference self-consistency is presented in Figure 3b.

set, this is not symmetric with reference consis-
tency (as the high-confidence sets may differ).

Cross-type consistency: average consistency
for each shared concept calculated over all pairs
of replicates (i.e., comparing the nearest neighbors
of all 10 reference embedding sets to the nearest
neighbors in all 10 comparison embedding sets).

Consistency deltas: the difference, for each
shared concept, between its reference self-
consistency and its cross-type consistency. This
provides a direct evaluation of how distinct the
concept usage is between two document types,
where a high delta indicates highly distinct usage.

Mean values for these distributions are provided
for each pair of our 7 document types in Figure 2.
Comparing Figures 2b and 2c, it is clear that high-
confidence concepts for one document type are
typically not high-confidence for another. Most
document type pairs show fairly strong diver-

gence, with deltas ranging from 30-60%. Physi-
cian notes have comparatively high cross-set con-
sistency of around 20% for their high-confidence
concepts, likely reflecting the all-purpose nature
of these documents, which include patient his-
tory, medications, vitals, and detailed examination
notes. Interestingly, Case Management and Nu-
trition are starkly divergent from other document
types, with near-zero cross-set consistency and
comparatively high self-consistency of over 70%
in the compared concept sets, despite a relatively
high overlap between their high-confidence sets
and concepts learned for other document types.

In order to control for the low overlap between
high-confidence sets in different document types,
we also re-ran our consistency analysis restricted
to only concepts that are high-confidence in both
the reference and comparison sets. As shown in
Figure 3, this yields considerably smaller concept
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Query Discharge Summary Nursing/Other Radiology

Diabetes Mellitus
(C0011849)

Diabetes (C0011847) Gestational Diabetes
(C0085207)

Poorly controlled
(C3853134)

Type 2 (C0441730) A2 immunologic symbol
(C1443036)

Insulin (C0021641)

Type 1 (C0441729) Diabetes Mellitus, Insulin-
Dependent (C0011854)

Diabetes Mellitus, Insulin-
Dependent (C0011854)

Gestational Diabetes
(C0085207)

Factor V (C0015498) Diabetes Mellitus,
Non-Insulin-Dependent
(C0011860)

Diabetes Mellitus, Insulin-
Dependent (C0011854)

A1 immunologic symbol
(C1443035)

Stage level 5 (C0441777)

Discharge Summary Echo Radiology

Mental state
(C0278060)†

Coherent (C4068804) Donor:Type:Point in
time:ˆPatient:Nominal
(C3263710)

Mental status changes
(C0856054)

Confusion (C0009676) Donor person (C0013018) Abnormal mental state
(C0278061)

Respiratory status:-
:Point in time:ˆPatient:-
(C2598168)

Respiratory arrest
(C0162297)

Level of consciousness
(C0234425)

Respiratory status
(C1998827)

Organ donor:Type:Point
in time:ˆDonor:Nominal
(C1716004)

Level of conscious-
ness:Find:Pt:ˆPatient:Ord
(C4050479)

Abnormal mental state
(C0278061)

Swallowing G-code
(C4281783)

Mississippi (state)
(C0026221)

Table 2: 5 nearest neighbor concepts to Diabetes Mellitus and Mental state from 3 high-confidence document
types, averaging cosine similarities across all replicate embedding sets within each document type. †The two
nearest neighbors to Mental state for all three document types were two LOINC codes using the same “mental
status” string; they are omitted here for brevity.

sets for comparison, with single-digit overlap for
18/42 non-self pairings. Cross-set consistency in-
creases somewhat, most significantly for pairings
involving Physician or Radiology; however, no
consistency delta falls below 20% for any non-
self pair, indicating that concept neighborhoods
remain distinct even within high-confidence sets.

4.3 Qualitative neighborhood analysis

Analysis of neighborhood consistency enables
measuring divergence in the contextual usage pat-
terns of clinical concepts; however, this diver-
gence could be due to spurious or semantically
uninformative correlations instead of clinically-
relevant distinctions in concept similarities. To
confirm that our methodology captures informa-
tive distinctions in concept usage, we qualitatively
review example neighborhoods. To mitigate vari-
ability of nearest neighborhoods in embedding
spaces, we identify a concept’s qualitative nearest
neighbors for a given document type by calculat-
ing its pairwise cosine distance vectors for all 10
replicates in that document type and taking the k
neighbors with lowest average distance.

As with our consistency analyses, we focus on

the neighborhoods of high-confidence concepts,
although we do not filter the neighborhoods them-
selves. Of all high-confidence concepts identified
in our embeddings, only two were high-confidence
in 5 different document types, and these were
highly generic concepts: Interventional proce-
dure (C0184661) and a corresponding LOINC
code (C0945766). Seven concepts were high-
confidence for 4 document types; of these, two
were generic procedure concepts, two were con-
cepts for the broad gastrointestinal category, and
three were versions of body weight. For a di-
versity of concepts, we therefore turned to the 75
concepts that were high-confidence within 3 doc-
ument types. We reviewed each of these concepts,
and describe our findings for three of the most
broadly clinically-relevant below.

Diabetes Mellitus (C0011849) Diabetes Melli-
tus (search strings: “diabetes mellitus” and “dia-
betes mellitus dm”) was high-confidence in Dis-
charge Summary, Nursing/Other, and Radiology
document types; Table 2 gives the top 5 neighbors
from each type. These neighbors are semantically
consistent across document types: more specific
diabetes-related concepts, related biological fac-
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tors; continuing down the nearest neighbors list
yields related symptoms and comorbidities such as
Irritable Bowel Syndrome (C0022104) and Gas-
troesophageal reflux disease (C0017168).

Memory loss (C0751295) Memory loss (search
string: “memory loss”) was also high-confidence
in Discharge Summary, Nursing/Other, and Ra-
diology documents. For brevity, its nearest
neighbors are omitted from Table 2, as there
is little variation among the top 5. How-
ever, the next neighbors (at only slightly greater
cosine distance) vary considerably across doc-
ument types, while remaining highly consis-
tent within each individual type. In Discharge
Summary, more high-level concepts related to
overall function emerge, such as Functional
status (C0598463), Relationships (C0439849),
and Rambling (C4068735). Radiology yields
more symptomatically-related neighbors: Apha-
gia (C0221470) is present in both, but Radiology
includes Disorientation (C0233407), Delusions
(C0011253), and Gait, Unsteady (C0231686). Fi-
nally, Nursing/Other finds concepts more related
to daily life, such as Cigars (C0678446) and Mul-
tifocals (C3843228), though at a greater cosine
distance than the other document types (Figure 4).

Mental state (C0278060) Mental state (search
strings: “mental status”, “mental state”) was high-
confidence in Discharge Summary, Echo, and Ra-
diology, and highlighted an unexpected conse-
quence of relying on the Distributional Hypoth-
esis (Harris, 1954) for semantic characterization
in sublanguage-specific corpora. The top 5 near-
est neighbors (excluding two trivial LOINC codes
for the same concept, also using the “mental sta-
tus” search string) are given in Table 2. In Dis-
charge Summary documents, “mental status” is
typically referred to in detailed patient narratives,
medication lists, and the like, and this yields
semantically-reasonable nearest neighbors such as
Confusion (C0009676) and Coherent (C4068804).

In Echo documents, however, “mental status”
occurs most frequently within an “Indication”
field of the “PATIENT/TEST INFORMATION”
section. Two common patterns emerge in “Indica-
tion” texts: references to altered or reduced men-
tal status, or patients who are vegetative and be-
ing evaluated for organ donor eligibility. Though
“mental status” and “organ donor” do not co-
occur, their consistent occurrence in the same con-
textual structures leads to extremely similar em-

Figure 4: Cosine distance distribution of three concepts
to their 10 nearest neighbors, averaged across docu-
ment type replicate embeddings.

beddings (see Figure 4). A similar issue occurs
in Radiology notes, where the “MEDICAL CON-
DITION” section includes several instances of el-
derly patients presenting with either hypothermia
or altered mental status; as a result, two hypother-
mia concepts (C1963170 and C0020672) are in the
10 nearest neighbors to Mental state.

Results from Radiology also highlight one lim-
itation of distant supervision for learning concept
embeddings: as the word “state” is polysemous,
including a geopolitical entity, geographical con-
cepts such as Mississippi (C0026221) end up with
similar embeddings to Mental state. A similar is-
sue occurs in the neighbors for Memory loss; due
to string polysemy, the concept CIGAR string - se-
quence alignment (C4255278) ends up with a sim-
ilar embedding to Cigars (C0678446).

4.4 Nearest surface form embeddings
As JET learns embeddings of concepts and their
surface forms jointly in a single vector space, we
also analyzed the surface forms embeddings near-
est to different concepts. This enabled us both to
evaluate the semantic congruence of surface form
and concept embeddings, and to further delve into
corpus-specific contextual patterns that emerge in
the vector space. As with our concept neighbor-
hood analysis, for each of our 10 replicate embed-
dings in each document type, we calculated the
cosine distance vector from each high-confidence
concept to all of the term embeddings in the same
replicate, and then averaged these distance vectors
to identify neighbors robust to embedding noise.
Table 3 presents surface form neighbors identified
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Query Discharge Summary Nutrition Case Management

Community (C0009462)

Community Dilute Substance
Health center Social work Monitoring
Acquired Surgical site Somewhat
Residence In situ Hearing
Nursing facility Nephritis Speech

Discharge Summary Echo ECG

ECG (C0013798)

ECG ECG ECG
EKG Exercise Physician
Sinus tachycardia Stress Last
Sinus bradycardia Fair No change
Right bundle branch block Specific Abnormal

Discharge Summary Echo Radiology

Blood pressure (C0005823)

Blood pressure Blood pressure Blood pressure
Heart rate Heart rate Heart rate
Pressure Rate Rate
Systolic blood pressure Exercise Method
Rate Stress Exercise

Table 3: 5 nearest neighbor surface forms to three frequent clinical concepts, across document types for which they
are high-confidence.

for three high-confidence clinical concepts chosen
for clinical relevance and wide usage; these con-
cepts are discussed in the following paragraphs.

Blood pressure (C0005823) Blood pressure
is high-confidence in Discharge Summary, Echo,
and Radiology documents. It is a key concept
that is measured frequently in various settings; in-
tuitively, it is a sufficiently core concept that it
should exhibit little variance. Its neighbor surface
forms indeed indicate fairly consistent use across
the three document types, referencing both related
measurements (“heart rate”) and related concepts
(“exercise” and “stress”).

Echocardiogram (C0013798) Echocardio-
gram is high-confidence in Discharge Summary,
Echo (detailed summaries and interpretation
written after the ECG), and ECG (technical notes
taken during the procedure) documents. ECGs are
common, and are performed for various purposes
and discussed in varying detail. Interestingly,
neighbor surface forms in Discharge Summary
embeddings reflect specific pathologies, poten-
tially capturing details determined post diagnosis
and treatment. In Echo embeddings, the neighbors
are more general surface forms evaluating the
findings (“fair”) and relevant history/symptoms
that led to the ECG (“exercise”, “stress”). ECG
embeddings reflect their more technical nature,
with surface forms such as “no change” and
“abnormal” yielding high similarity.

Community (C0009462) Community is a very
broad concept and a common word, and is dis-
cussed primarily in documents concerned with
whole-person health; it is high confidence in Dis-

charge Summary, Nutrition, and Case Manage-
ment documents. Each of these document types
reflects different usage patterns. The nearest sur-
face forms in Discharge Summary embeddings
reflect a focus on living conditions, referring to
“health center”, “residence”, and “nursing facil-
ity”. In Nutrition documents, Community is dis-
cussed primarily in terms of “community-acquired
pneumonia”, likely leading to more treatment-
oriented neighbor surface forms. Finally, in Case
Management embeddings, nearby surface forms
reflect discussion of specific risk factors or re-
sources (“substance”, “monitoring”) to consider in
maintaining the patient’s health and responding to
their specific needs (e.g., “hearing”, “speech”).

5 Discussion

We have shown that concept embeddings learned
from different clinical document type corpora re-
veal characteristics of how clinical concepts are
used in different settings. This suggests that
sublanguage-specific embeddings can help profile
distinctive usage patterns for text categorization,
offering greater specificity than latent topic dis-
tributions while not relying on potentially brittle
lexical features. In addition, such profiles could
also assist with concept normalization by provid-
ing more-informed prior probability distributions
for medical vocabulary senses that are conditioned
on the document or section type that they occur in.

A few limitations of our study are important
to note. The embedding method we chose of-
fers flexibility to work with arbitrary corpora and
vocabularies, but its use of distant supervision
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introduces some undesirable noise. The exam-
ple given in Section 4.3 of the similar embed-
dings learned for the concept cigars and the con-
cept of the CIGAR string in genomic sequence
editing illustrates the downside of not leverag-
ing disambiguation techniques to filter out noisy
matches. On the other hand, our restriction to
strings from SNOMED-CT and LOINC provided
a high-quality set of strings intended for clini-
cal use, but also removed many potentially help-
ful strings from consideration. For example, the
UMLS also includes the non-SNOMED/LOINC
strings “diabetes” and “diabete mellitus” [sic] for
Diabetes Mellitus (C0011849), both of which oc-
cur frequently in MIMIC data. Misspellings are
also common in clinical data; leveraging well-
developed technologies for clinical spelling cor-
rection would likely increase the coverage and
confidence of sublanguage concept embeddings.

At the same time, the low volume of data ana-
lyzed in many document types introduces its own
challenges for the learning process. First, though
JET can in principle learn embeddings for every
concept in a given terminology, this is predicated
on the relevant surface forms appearing with suf-
ficient frequency. For a small document sample,
many such surface forms that would otherwise be
present in a larger sample will either be missing
entirely or insufficiently frequent, leading to effec-
tively “missed” concepts. While we are not aware
of another concept embedding method compati-
ble with arbitrary unannotated corpora that could
help avoid these issues, some strategies could be
used to reduce the potential impact of both train-
ing noise and low sample sizes. One approach,
which might also help improve concept consis-
tency in the document types that yielded few or
no high-confidence concepts, would be pretrain-
ing a shared base embedding on a large cor-
pus such as PubMed abstracts, which could then
be tuned on each document type-specific subcor-
pus. While this could introduce its own noise in
terms of the differences between biomedical lit-
erature language and clinical language (Friedman
et al., 2002), it could help control for some de-
gree of sampling error and provide a linguistically-
motivated initialization for the concept embedding
models.

Finally, as we observed with Mental state
(C0278060), relying on similarity in contex-
tual patterns can lead to capturing more corpus-

specific features with embeddigns, as opposed to
(sub)language-specific features, as target corpora
become smaller and more homogeneous. If a par-
ticular concept or set of concepts are always used
within the same section of a document, or in the
same set phrasing, the “similarity” captured by or-
ganization of an embedding space will be more in-
formed by this writing habit endemic to the spe-
cific corpus than by clinically-informed semantic
patterns that can generalize to other corpora.

6 Conclusion

Analyzing nearest neighborhoods in embedding
spaces has become a powerful tool in study-
ing diachronic language change. We have de-
scribed how the same principles can be applied
to sublanguage analysis, and demonstrated that
the structure of concept embedding spaces cap-
tures distinctive and relevant semantic characteris-
tics of different clinical document types. This of-
fers a valuable tool for sublanguage characteriza-
tion, and a promising avenue for developing doc-
ument type “fingerprints” for text categorization
and knowledge-based concept normalization.
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Abstract

Entity recognition is a critical first step to
a number of clinical NLP applications, such
as entity linking and relation extraction. We
present the first attempt to apply state-of-the-
art entity recognition approaches on a newly
released dataset, MedMentions. This dataset
contains over 4000 biomedical abstracts, an-
notated for UMLS semantic types. In compar-
ison to existing datasets, MedMentions con-
tains a far greater number of entity types, and
thus represents a more challenging but realistic
scenario in a real-world setting. We explore a
number of relevant dimensions, including the
use of contextual versus non-contextual word
embeddings, general versus domain-specific
unsupervised pre-training, and different deep
learning architectures. We contrast our re-
sults against the well-known i2b2 2010 entity
recognition dataset, and propose a new method
to combine general and domain-specific infor-
mation. While producing a state-of-the-art re-
sult for the i2b2 2010 task (F1 = 0.90), our re-
sults on MedMentions are significantly lower
(F1 = 0.63), suggesting there is still plenty of
opportunity for improvement on this new data.

1 Introduction

Entity recognition is a widely-studied task in clin-
ical NLP, and has been the focus of a number of
shared tasks, including the i2b2 2010 Shared Task
(Uzuner et al., 2011), SemEval 2014 Task 7 (Prad-
han et al., 2014), and SemEval 2015 Task 14 (El-
hadad et al., 2015). Most previous work has fo-
cused on identifying only a few broad types of en-
tities, such as ‘problems’, ‘tests’, and ‘treatments’
in the i2b2 task, and ‘diseases’ in the SemEval
tasks. Even when corpora have been annotated
for more entity types, as in the GENIA corpus of
biological annotations (Ohta et al., 2002), entity

∗These authors contributed equally.

recognition tasks typically focus on only a small
subset of those (Kim et al., 2004).

However, in some downstream applications it
would be useful to identify all terms in a docu-
ment which exist as concepts in the Unified Med-
ical Language System (UMLS) Metathesaurus
(Bodenreider, 2004). This resource comprises a
much wider range of biomedical entity types than
has previously been considered in clinical entity
recognition. Additionally, the UMLS Metathe-
saurus defines important relationships between en-
tity types (and the lower-level concepts associ-
ated with them) via its Semantic Network. There-
fore, extracting and labelling entities with respect
to their UMLS semantic type, rather than more
generic types such as ‘problem’ or ‘test’, can be
an important first step in many practical clinical
NLP applications.

In this work, we present the first attempt to ap-
ply existing clinical entity recognition approaches
to a new dataset called MedMentions, which is
annotated for all UMLS semantic types (Mohan
and Li, 2019). We compare the effectiveness of
these approaches with reference to a well-known
baseline dataset (i2b2 2010) and analyze the errors
that occur when applying such techniques to new
problems. On the basis of this error analysis, we
propose an adaptation to the BERT architecture to
better combine the general and clinical knowledge
learned in the pre-training phase, and show that
this improves over the more basic approaches.

2 Background

Early successes in clinical/biomedical entity ex-
traction employed approaches such as conditional
random fields (Jonnalagadda et al., 2012; Fu and
Ananiadou, 2014; Boag et al., 2015) and semi-
Markov models (De Bruijn et al., 2011), requir-
ing numerous engineered features. In recent years,
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such approaches have been surpassed in perfor-
mance by deep learning models (Habibi et al.,
2017). However, there is a wide range of variation
possible within this set of techniques. We briefly
discuss some of the parameters of interest in the
following sections.

2.1 General vs. Domain-Specific Word
Embeddings

Since words may have one dominant meaning in
common use, and a different meaning in the medi-
cal domain, some work has explored whether word
embeddings trained on medical text (e.g. clinical
notes, medical journal articles) are more effective
in medical entity recognition than those trained on
general text sources (e.g. news, Wikipedia).

Roberts (2016) examined the effect of train-
ing word embeddings on different corpora for the
task of entity extraction on the i2b2 2010 dataset.
He compared six corpora: the i2b2 dataset it-
self, the clinical notes available in the MIMIC
database (Johnson et al., 2016), MEDLINE arti-
cle abstracts, WebMD forum posts, and generic
text corpora from Wikipedia and Gigaword. It was
found that the best F1 score was obtained by train-
ing on the MIMIC corpus, and that combining cor-
pora also led to strong results. Si et al. (2019) also
compared training embeddings on MIMIC data
versus general domain data, and similarly found
that pre-training on the MIMIC data led to better
performance on both the i2b2 2010 and SemEval
tasks. Alsentzer et al. (2019) trained embeddings
only on the discharge summaries from MIMIC,
and reported a marginal improvement on the i2b2
2010 task over using the entire MIMIC corpus.
Peng et al. (2019) found that pre-training a BERT
model on PubMed abstracts led to better perfor-
mance for biomedical entity extraction, while pre-
training on a combination of PubMed abstracts
and MIMIC notes led to better performance when
extracting entities from patient records.

2.2 Contextual vs. Non-Contextual Word
Embeddings

For many years, word embeddings were non-
contextual; that is, a word would have the same
embedding regardless of the context in which
it occurred. Popular word embeddings of this
type include GloVe (Pennington et al., 2014),
word2vec (Mikolov et al., 2013), and FastText
(Bojanowski et al., 2017). Peters et al. (2018)
popularized the idea of contextualized word em-

beddings, which allowed the same word to have
a different representation, depending on the con-
text. The character-based ELMo word embed-
dings introduced by Peters et al. (2018) can be
used just as the non-contextual word embeddings
were. Sheikhshabbafghi et al. (2018) trained
ELMo word embeddings on a dataset of biomed-
ical papers and achieved a new state of the art
in gene mention detection on the BioCreative II
gene mention shared task. This work showed that
domain-specific contextual embeddings improve
various types of biomedical named entities recog-
nition. Later in 2018, BERT embeddings were
also introduced (Devlin et al., 2019). The BERT
architecture improved over ELMo by using a dif-
ferent training objective to better take into account
both left and right contexts of a word, and made it
possible to make use of the entire pre-trained net-
work in the downstream task, rather than simply
extracting the embedding vectors.

Si et al. (2019) compared word2vec, GloVe,
FastText, ELMo, and BERT embeddings on the
i2b2 2010 dataset. When using the pre-trained
vectors (trained on general-domain corpora),
BERT-large performed the best and word2vec per-
formed the worst, but there was no clear advantage
to the contextualized embeddings (e.g. GloVe per-
formed better than ELMo). When the embeddings
were pre-trained on MIMIC data, the contextual-
ized embeddings did perform appreciably better
than the non-contextualized embeddings.

2.3 Classifier Architecture

Much of the recent work on medical entity extrac-
tion has made use of the Long Short-Term Mem-
ory (LSTM) architecture (Hochreiter and Schmid-
huber, 1997), with some variations and modifica-
tions: (1) most work uses a bi-directional LSTM
(bi-LSTM), so the prediction for any word in the
sequence can take into account information from
both the left and right contexts, (2) some work ad-
ditionally feeds the output of the bi-LSTM layer
into a CRF classifier (Huang et al., 2015a; Cha-
lapathy et al., 2016a; Lample et al., 2016; Habibi
et al., 2017; Tourille et al., 2018), to predict the
most likely sequence of labels, rather than just the
most likely label for each word independently, and
(3) some models incorporate additional informa-
tion (e.g. character embeddings, or traditionally
engineered features) at various points in the model
(Unanue et al., 2017).
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In contrast, the BERT model makes use
of the Transformer architecture, an attention-
based method for sequence-to-sequence mod-
elling (Vaswani et al., 2017). Once the model has
been pre-trained, in the entity extraction stage it
is only necessary to add a simple classification
layer on the output. However, others have also ex-
perimented with feeding the output of the BERT
model to a bi-LSTM (Si et al., 2019).

3 Methods

3.1 Data
We consider three datasets in this study: the i2b2
2010 dataset, the ‘full’ MedMentions dataset, and
the ‘st21pv’ MedMentions dataset. Details are
shown in Table 1.

The i2b2 2010 corpus1 consists of de-identified
clinical notes (discharge summaries), annotated
for three entity types: problems, tests, and treat-
ments (Uzuner et al., 2011). The original shared
task also included subtasks on assertion classifica-
tion and relation extraction, but we focus here on
entity extraction. In the original data release for
the shared task, the training set contained 394 doc-
uments; however, the current release of the dataset
contains only 170 training documents. Therefore,
it is unfortunately not possible to directly com-
pare results across the two versions of the dataset.
However, a majority of the recent works are using
the current release of the dataset (Zhu et al., 2018;
Bhatia et al., 2019; Chalapathy et al., 2016b).

The MedMentions corpus was released ear-
lier this year2, and contains 4,392 abstracts from
PubMed, annotated for concepts and semantic
types from UMLS (2017AA release). UMLS
concepts are fine-grained biomedical terms, with
approximately 3.2 million unique concepts con-
tained in the metathesaurus (Mohan and Li, 2019).
Each concept is linked to a higher-level seman-
tic type, such as ‘Disease or syndrome’, ‘Cell
component’, or ‘Clinical attribute’. In this work
we focus on identifying the semantic type for
each extracted text span, leaving the concept link-
ing/normalization for future work. The creators of
the dataset have defined an official 60%-20%-20%
partitioning of the corpus into training, develop-
ment, and test sets.

There are 127 semantic types in UMLS. Of
these, there is only one (‘Carbohydrate sequence’)

1www.i2b2.org/NLP/DataSets
2github.com/chanzuckerberg/MedMentions

which never appears in the full MedMentions
dataset. Approximately 8% of the concepts in
UMLS can be linked to more than one seman-
tic type (Mohan and Li, 2019); in such cases
the dataset contains a comma-separated list of all
these type IDs corresponding to alphabetical order
of semantic types. Where a text span has been la-
belled with more than one label, we select only the
first one. As a result of this, there is one other type
(‘Enzyme’) which appears in MedMentions, but
only doubly-labelled with ‘Amino acid, peptide,
or protein’, and thus does not occur in our singly-
labelled training or test data. Finally, there is an
extra class (‘UnknownType’), for a total of 126 se-
mantic types or classes in the ‘full’ training data.
Of these, there are three (‘Amphibian’, ‘Drug de-
livery device’, and ‘Vitamin’) which never occur
in the test data.

The full MedMentions dataset suffers from high
class imbalance (e.g. there are 31,485 mentions for
the semantic type ‘Qualitative concept’ and only
two mentions for ‘Fully formed anatomical struc-
ture’). Furthermore, many of the semantic types
are not particularly useful in downstream clinical
NLP tasks, either due to being too broad or too
specialized. As a result, the creators of the Med-
Mentions dataset also released an alternate ver-
sion called ‘st21pv’, which stands for ‘21 seman-
tic types from preferred vocabularies’. The details
of how this subset was constructed are given by
Mohan and Li (2019), but essentially it contains
only 21 semantic types, from specific vocabular-
ies most relevant to biomedical researchers. The
raw abstracts, and partitions into training, devel-
opment, and test sets are the same as in the full
dataset – only the set of annotations differs.

The i2b2 and MedMentions datasets differ
across a number of important dimensions: the dis-
charge summaries in the i2b2 dataset tend to be
hastily written or dictated, with short, incomplete
sentences and numerous acronyms and abbrevia-
tions, compared to the academic writing style of
the MedMentions abstracts. The discharge sum-
maries also tend to be longer, averaging approx-
imately 980 tokens per document, compared to
267 tokens per document in MedMentions. The
semantic content of the documents is also differ-
ent, with the discharge summaries focused exclu-
sively on a single patient and their history, dis-
ease progression, treatment, and outcomes, while
the MedMentions abstracts typically summarize
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i2b2 2010 MedMentions (full) MedMentions (st21pv)
Train Test Train Test Train Test

# entity types 3 3 126 123 21 21
# documents 170 256 3513 879 3513 879
# tokens 149,743 267,837 936,247 234,910 936,247 234,910
# entities 16,520 31,161 281,719 70,305 162,908 40,101

Table 1: Properties of the datasets. For MedMentions, we combine the training and validation sets into ‘Train’.

the results of a scientific study, covering a wide
range of biomedical topics. Finally, there are
clearly far more entity types in MedMentions than
in i2b2, and greater imbalance between the differ-
ent classes. Therefore, there is no guarantee that
methods which perform well on the i2b2 data will
also be effective on the MedMentions dataset.

3.2 Entity Recognition

Based on our review of the literature (Section 2)
we experimented with two basic architectures: bi-
LSTM+CRF (with pre-trained contextual and non-
contextual word embeddings as input), and BERT
(with a simple linear classification layer and a bi-
LSTM classification layer). The details of these
classifiers and their training are described below.

3.2.1 Text pre-processing
For the bi-LSTM+CRF models, input text retained
casing information, but all numerical tokens were
normalized to a single NUM token.

BERT uses WordPiece tokenization (Wu et al.,
2016), which breaks longer words into frequently
occurring sub-word units to improve handling of
rare words and morphological variation. This re-
quires additional pre- and post-processing for the
entity recognition task, since the data is labelled
at the word level. Following the recommendation
of Devlin et al. (2019), we first re-tokenize the text
using the WordPiece tokenizer, assign the given la-
bel to the first piece of each word, and assign any
subsequent pieces a padding label.

In all cases, we convert the text and labels to
CoNLL IOB format for input to the classifiers.

3.2.2 bi-LSTM+CRF
We use a standard bi-LSTM+CRF architecture
(e.g., see (Huang et al., 2015b)), implemented
in PyTorch. The bi-LSTM component has 2 bi-
directional layers with hidden size of 1536 nodes.
The 100-dimensional character embeddings are
learned through the training process and concate-
nated with pre-trained GloVe embeddings (Pen-
nington et al., 2014) as proposed by Chalapathy

et al. (2016a). We compare the performance of
general GloVe embeddings, trained on Wikipedia
and Gigaword, and clinical GloVe embeddings,
trained on the MIMIC-III corpus (Johnson et al.,
2016). In both cases the GloVe embeddings have
300 dimensions. For pre-training on MIMIC, we
used a minimum frequency cut-off of 5, and a win-
dow size of 15.

We also experimented with contextual ELMo
embeddings (Peters et al., 2018) and the bi-
LSTM+CRF architecture, comparing general
ELMo embeddings3 with clinical ELMo embed-
dings.4 The clinical ELMo embeddings were
released by Zhu et al. (2018) and trained on
Wikipedia pages whose titles are medical con-
cepts in the SNOMED-CT vocabulary, as well as
MIMIC-III.

The bi-LSTM+CRF models were trained using
the Adam optimizer with a learning rate of 0.001
and a batch size of 32 for 10 epochs.

3.2.3 BERT
The BERT (Bidirectional Encoder Representa-
tions from Transformers) model is described by
Devlin et al. (2019) and proposes to address some
of the limitations observed in LSTM models. In
our experiments, we use the BERT-base architec-
ture, which has 12-layers, hidden size 768, and 12
self-attention heads. To perform the entity recog-
nition, we added a linear layer and a softmax layer
on top of the last BERT layer to determine the
most probable label for each token. While this
is the approach taken by Alsentzer et al. (2019),
others suggest using a more complex classification
model in conjunction with BERT (Si et al., 2019),
and so we also experiment with a bi-LSTM layer
with input and output size of 4× 768 on top of the
concatenation of the last four layers of BERT.

We consider four pre-trained BERT models:

• BERT-base5 General domain BERT model
3github.com/allenai/allennlp/blob/master/tutorials/how to/elmo.md
4github.com/noc-lab/clinical concept extraction
5github.com/google-research/bert
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released by Google, pre-trained on Wikipedia
and BookCorpus (Devlin et al., 2019).
• bioBERT (v1.1)6 The bioBERT model is

initialized with BERT-base, and then fur-
ther pre-trained on biomedical abstracts from
PubMed (Lee et al., 2019).
• clinicalBERT7 The clinicalBERT model is

initialized with bioBERT, and then further
pre-trained on clinical notes from the MIMIC
corpus (Alsentzer et al., 2019).
• NCBI BERT8 The NCBI BERT model is

initialized with BERT-base, and then further
pre-trained on PubMed abstracts and MIMIC
notes (Peng et al., 2019).

In the fine-tuning stage, we generally follow
the recommendations in Devlin et al. (2019), and
use an Adam optimizer with β1 = 0.9, β2 =
0.999, L2 weight decay of 0.01, and a dropout
probability of 0.1 on all layers. We use a learn-
ing rate warmup over the first 10% of steps,
and linear decay of the learning rate thereafter.
Before training the final models, we conducted
a series of hyper-parameter optimization experi-
ments using 10-fold cross-validation on the train-
ing set. In this optimization stage we considered
combinations of batch sizes in {16, 32}, learning
rates in {0.00002, 0.00003, 0.00005, 0.0001}, and
number of training epochs in {1...10}. We also
determined that the uncased BERT-base model led
to marginally better results, and so we use that in
our final evaluation (bioBERT and clinicalBERT
are cased, while NCBI BERT is uncased). For
the BERT+bi-LSTM model, we also experimented
with training only the bi-LSTM component and
not fine-tuning the pre-trained layers, but found
that fine-tuning led to better results in develop-
ment.

3.3 Evaluation

To evaluate the systems, we use micro-averaged
strict precision, recall, and F-score. This means
that for any given recognized entity, it is only
counted as a true positive if both the span and the
label match exactly with the gold standard anno-
tation. Note also that these metrics are computed
on the entity-level, not the token level. For exam-
ple, given the following gold and predicted label
sequences:

6github.com/dmis-lab/biobert
7github.com/EmilyAlsentzer/clinicalBERT
8github.com/ncbi-nlp/NCBI BERT

GOLD: O O B-prob I-prob I-prob
PRED: O O B-prob I-prob O

A token-level evaluation would identify two true
positives, but a strict entity-level evaluation iden-
tifies zero true positives.

4 Results

Table 2 shows the results of the entity recognition
experiments for each model and dataset.

4.1 Effect of Contextual vs. Non-Contextual
Word Embeddings

If we first consider the bi-LSTM+CRF results
for the i2b2 dataset, we observe that the con-
textual ELMo embeddings lead to better results
than the non-contextual GloVe embeddings, and
in both cases, better results are obtained by pre-
training the embeddings on domain-specific text.
For MedMentions, however, for both versions of
the dataset we observe that the general-domain
GloVe embeddings outperform the clinical GloVe
embeddings, but the clinical ELMo embeddings
outperform the general ELMo embeddings. Si
et al. (2019) also observed a greater benefit to us-
ing contextual embeddings when pre-training on
domain-specific corpora. Here, this may be due in
part to differences between the training corpora;
for example, clinical GloVe was trained only on
MIMIC notes, while clinical ELMo was trained on
a combination of MIMIC notes and Wikipedia ar-
ticles about medical concepts, which may be more
similar to the biomedical abstracts contained in
MedMentions.

The BERT models offer a substantial improve-
ment in F1 over the models based on Glove or
ELMo embeddings for each of the three datasets.
For the i2b2 dataset, the best results are obtained
using clinicalBERT (F1 = 0.88) and NCBI BERT
(F1 = 0.89), each of which involved pre-training
on clinical notes from MIMIC. This demon-
strates the importance of pre-training on docu-
ments which are similar in nature to those seen
in the labelled dataset. Consistent with this, the
bioBERT model (pre-trained on biomedical ab-
stracts) leads to the best result on both MedMen-
tions datasets.

4.2 Effect of Classifier Structure

Finally, comparing the effectiveness of a simple
linear model versus a bi-LSTM model as the top
BERT layer, we observe that this change makes
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i2b2 2010 MedMentions MedMentions
(full) (st21pv)

Model Domain P R F1 P R F1 P R F1
Glove + bi-LSTM+CRF general 0.81 0.76 0.79 0.54 0.51 0.52 0.60 0.50 0.54
Glove + bi-LSTM+CRF clinical 0.83 0.77 0.80 0.45 0.37 0.41 0.59 0.46 0.52
ELMo + bi-LSTM+CRF general 0.80 0.80 0.80 0.43 0.45 0.44 0.54 0.50 0.52
ELMo + bi-LSTM+CRF clinical 0.86 0.86 0.86 0.47 0.47 0.47 0.58 0.53 0.56
BERT-base + linear general 0.85 0.87 0.86 0.51 0.55 0.53 0.58 0.61 0.59
bioBERT + linear biomed 0.86 0.88 0.87 0.53 0.57 0.55 0.61 0.64 0.62
clinicalBERT + linear biomed + clinical 0.87 0.88 0.88 0.51 0.56 0.53 0.59 0.62 0.61
NCBI BERT + linear biomed + clinical 0.88 0.90 0.89 0.51 0.56 0.53 0.59 0.61 0.60
bioBERT + bi-LSTM biomed 0.86 0.88 0.87 0.53 0.58 0.56 0.61 0.66 0.63
NCBI BERT + bi-LSTM biomed + clinical 0.88 0.90 0.89 0.52 0.57 0.54 0.59 0.62 0.60

Table 2: Results of entity recognition for each dataset and model.

no difference on the i2b2 dataset, but leads to the
best result for both versions of MedMentions. It
may be that the much larger training set in Med-
Mentions is better able to effectively train the
more complex classifier, and respectively that the
greater complexity is necessary to properly model
the large number of classes in MedMentions.

4.3 MedMentions vs i2b2 dataset

Comparing across datasets, it is clear that perfor-
mance is worse on the MedMentions data than
the i2b2 data. One obvious reason for this is that
the MedMentions datasets have many more entity
types, or classes, than the i2b2 dataset. This means
that the number of examples per class seen in the
training data is much lower (in some cases, only a
handful), and also that the classes tend to be more
easily confused. The ambiguity between classes
arises at the level of the training data where, de-
pending on context, the same text span will be as-
sociated with different labels (e.g. neurocognitive
function is sometimes labelled as a ‘biologic func-
tion’ and sometimes as a ‘mental process’; PSA
levels is labelled as both a ‘laboratory procedure’
and a ‘laboratory or test result’; and an even more
highly-ambiguous term such as probe is variously
labelled as a ‘medical device’, ‘indicator reagent
or diagnostic aid’, ‘nucleic acid nucleoside or nu-
cleotide’, ‘functional concept’, ‘diagnostic proce-
dure’, ‘research activity’, and ‘chemical viewed
functionally’). Thus in MedMentions, the context
becomes extremely important, and fine-grained
distinctions between entity types must be learned.

5 Error Analysis

In the following section, we examine the errors
made by the entity recognition systems from two
different perspectives: first, we compare generally

the types of errors made on the two datasets; then,
we consider the role of general versus domain-
specific pre-training and examine some of the spe-
cific errors that occur in each case.

5.1 Types of Errors by Dataset
Depending on the downstream application of en-
tity recognition, different types of errors may be
associated with different costs. For example, if
a company is using this model in practice, the
cost associated with having human annotators ad-
just label boundaries may be different from the
cost associated with having them search for enti-
ties which have been missed altogether. Our eval-
uation metrics, however, do not reflect the differ-
ences among various types of errors. To further
investigate the nature of the errors being made by
the system, we investigated three specific types of
‘partial errors’. These cases are counted as false in
calculating the evaluation metrics, but the model
actually gets at least part of the information cor-
rect:

• Right span, wrong label: the text span as-
sociated with an entity is correctly identified,
but assigned the wrong label.
• Right label, overlapping span: the entity is

correctly labelled, but the text span associ-
ated with the entity is not exactly the same
as that indicated in the gold transcripts.
• Wrong label, overlapping span: the entity

overlaps with one of the gold entities, but is
assigned the wrong label.

In addition to these categories, errors can be
complete false positives (model extracts an entity
which does not overlap at all with any gold en-
tities), or complete false negatives (model com-
pletely misses an entity from the gold transcripts).
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(a) i2b2 2010 (NCBI BERT + linear) (b) MedMentions-st21pv (bioBERT + linear)

Figure 1: Types of errors made on the i2b2 and MedMentions-st21pv datasets.

In the i2b2 dataset, over half of the errors belong
to one of the ‘partial’ error types (Figure 1a), with
the biggest error category overall being right la-
bel, overlapping span. In many cases, the model
identifies the main noun phrase associated with the
entity, but not adjectives or prepositional phrases
that further describe the entity: e.g., patient feeling
weaker than usual, where the model labels weaker
as the problem but the gold entity is weaker than
usual, or her glucose remained somewhat low,
where the model labels low as the problem, but the
gold entity is somewhat low. One of the reasons
that might lead to this kind of error is the incon-
sistency that exists in the human annotations. The
task of identifying the span of entities can be very
subjective and there is always some level of dis-
agreement among human annotators. Also, some-
times annotation guidelines are interpreted differ-
ently by various annotators. As a result of this in-
consistency, in the training stage, the model sees
examples that the spans of the same entities has
been labeled differently. This type of error may
occur more frequently in the i2b2 dataset, due to
the difficulty in annotating hurriedly written notes
compared to academically written abstracts.

For MedMentions-st21pv, we again observe
that roughly half the errors are ‘partial’ errors, but
with a sizable increase in errors that involve the
wrong label, with either a correct or overlapping
span (Figure 1b). As discussed previously, the in-
crease in right span, wrong label is likely due to
the higher ambiguity between entity types in this

dataset. In many cases, errors of the type wrong
label, overlapping span appear to be due to the
inability of the annotation scheme to handle over-
lapping entities. For example, in co-expression
analysis, where the model labels co-expression as
a ‘biologic function’, rather than extracting the en-
tire phrase as a ‘research activity’, or in this region
of the brain, where the model simply labels brain
as an ‘anatomical structure’ rather than region of
the brain as a ‘spatial concept’.

5.2 General vs Domain Knowledge
We then performed an exploratory error analysis
to identify and compare the type of errors made
by models using general and domain-specific em-
beddings. For this analysis, we considered BERT-
base and NCBI BERT. BERT-base is pre-trained
on Wikipedia and the Google Books database,
so it transfers the general knowledge of language
to the model. NCBI BERT starts its training
from BERT-base, and then continues training on
PubMed (biomedical abstracts) and MIMIC (clin-
ical notes). Generally, embeddings like NCBI
BERT are assumed to be more effective since they
transfer both general and domain-specific knowl-
edge. We analyze the errors of the two models to
test this assumption. For simplicity, we concen-
trate our analysis on the i2b2 dataset, although we
observe similar patterns in MedMentions.

NCBI BERT results in a higher overall F1-score
than BERT-base on the i2b2 dataset, and there
are 2027 entities that are correctly recognized by
NCBI BERT and incorrectly recognized by BERT-
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base. However, there are also 1209 entities that
are correctly recognized by BERT-base but incor-
rectly recognized by NCBI BERT. Therefore, it is
not the case that NCBI BERT encodes the same
knowledge as BERT-base, plus more that it has
learned from PubMed and MIMIC; rather, the two
systems have different strengths and weaknesses.

Qualitatively, we observed that some entities
correctly recognized by NCBI BERT and missed
by BERT-base involve common words that have a
specialized meaning in medicine, for example in
the sentence: Suck , root , gag , grasp , and mor-
row were normal . The BERT-base model does not
extract any entities, while the NCBI BERT model
recognizes suck, root, gag, and grasp as standard
tests of infant reflexes. NCBI BERT also appears
to be better at recognizing specialized acronyms
and abbreviations, particularly when there is very
little context, as in Brother died 64 / MI, where
only NCBI BERT recognizes MI as a problem
(myocardial infarction) in this brief family history,
or No CPR / No defib, where NCBI BERT cor-
rectly labels CPR and defib as treatments, while
BERT-base mis-labels them as problems.

In cases where BERT-base does better than
NCBI BERT, it may be partially due to a better
knowledge of well-formed text. We observed sev-
eral examples where BERT-base appeared to be
better at identifying the appropriate qualifiers to
attach to a given entity: e.g., in no interval devel-
opment of effusion, BERT-base correctly extracts
the entire phrase internal development of effusion,
while NCBI BERT only extracts effusion. Simi-
larly, in Right ventricular chamber size and free
wall motion are normal, BERT-base extracts Right
ventricular chamber size as a single entity of the
type ‘test’, while NCBI BERT splits it into Right
ventricular and size.

Of course, these observations are purely anec-
dotal at this point, and will require future work and
annotation to fully quantify the nature of the dif-
ferences between the models. However, given the
fact that the two models make different errors, it is
at least reasonable to assume that predictions from
the two models can be combined in a complemen-
tary fashion to improve the overall performance.
We explore one possible architecture for doing so
in the following section.

6 Concatenated Model

As a result of our error analysis, we propose a
concatenated BERT model, to better combine the
general knowledge from BERT-base and the clin-
ical knowledge from the more specialized BERT
models. To build such a model we concatenate
the last encoding layer of a domain-specific BERT
model with the last encoding layer of the gen-
eral BERT model and feed this concatenation to
a linear or bi-LSTM classification layer. During
training we jointly fine-tune both BERT models
and the classification layer. We implemented this
model with both NCBI BERT and bioBERT mod-
els, since they previously led to the optimal results
for i2b2 and MedMentions, respectively. NCBI
BERT is concatenated with the uncased BERT-
base model and bioBERT is concatenated with the
cased BERT-base model.

Results for the concatenated models are given
in Table 3. For all three datasets, we observe a
small improvement over the best performing mod-
els in Table 2. The best result for i2b2 is achieved
by concatenating the NCBI BERT and BERT-base
models, with either a linear or bi-LSTM classi-
fier on top. The resulting F1 score of 0.90 beats
the previously reported state-of-the-art of 0.89 on
the current release of the dataset with 170 training
documents (Zhu et al., 2018). For MedMentions,
concatenating bioBERT and BERT-base leads to
the best results, with MedMentions-full attain-
ing the best result using a linear classifier and
MedMentions-st21pv attaining the best result with
the bi-LSTM. To our knowledge, there are no prior
results reported on entity (i.e. semantic type) ex-
traction on this dataset.

Regarding the classifier layer, we observe that
replacing a linear classifier layer with a bi-LSTM
does not improve the results on i2b2 dataset.
This is consistent with the results shown in Ta-
ble 2 and indicates that a simple linear classi-
fier is enough to learn the entity recognition task
for i2b2 dataset. In the case of the MedMen-
tions dataset, a bi-LSTM classifier improves the
F1 score on MedMentions-st21pv but worsens it
on MedMentions-full. These results show that
there is room for more rigorous investigation about
the classifier layer for extracting entities in Med-
Mentions dataset. More complex neural structures
with optimized hyperparameters may be needed to
improve these results.

Although the improvements that we see by con-
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i2b2 2010 MedMentions MedMentions
(full) (st21pv)

Model P R F1 P R F1 P R F1
NCBI BERT concat BERT-base +linear 0.89* 0.90 0.90* 0.52 0.57 0.54 0.59 0.62 0.61
bioBERT concat BERT-base +linear 0.85 0.88 0.86 0.54* 0.59* 0.56* 0.60 0.65 0.62
NCBI BERT concat BERT-base +bi-LSTM 0.89* 0.90 0.90* 0.50 0.55 0.53 0.59 0.62 0.61
bioBERT concat BERT-base +bi-LSTM 0.86 0.87 0.87 0.53 0.58 0.55 0.63* 0.65 0.64*

Table 3: Results of entity recognition using concatenated BERT models. An asterisk indicates an improvement
over the best result from Table 2.

catenating the models are relatively small, they
are consistent across the three datasets. This sug-
gests that explicitly inputting both general and
domain-specific information to the entity recog-
nizer, rather than sequentially pre-training on dif-
ferent domains and hoping that the model ‘re-
members’ information from each domain, can be
a promising direction for future research.

7 Conclusion

We have presented the results of a set of medical
entity recognition experiments on a new dataset,
MedMentions. We contrasted these results with
those obtained on the well-studied i2b2 2010
dataset. We explored a number of relevant di-
mensions, including the use of various embed-
ding models (contextual versus non-contextual,
general versus domain-specific, and LSTM versus
attention-based) as well as linear versus bi-LSTM
classifier layers. We also proposed a new modi-
fication to the previous BERT-based named entity
recognition architectures, which allows the classi-
fier to incorporate information from both general
and domain-specific BERT embeddings. Our re-
sults on i2b2 are state-of-the-art, and our results
on MedMentions set a benchmark for future work
on this new dataset.

As popular public datasets become more and
more studied over time, there is a chance that
even if individual researchers follow good train-
validate-test protocols, we eventually overfit to the
datasets as a community, since there is so much
published information available about what works
well to improve performance on the test set. One
goal of this work was to explore the gap in per-
formance between a well-known clinical entity
recognition dataset and a new, unstudied dataset.
The same models and training procedures lead to
significantly lower performance on the MedMen-
tions dataset, for a variety of reasons: greater num-
ber of entity types, more class ambiguity, higher
class imbalance, etc. Ultimately, we find that the

model which performs best on i2b2 2010 is not the
model that performs best on MedMentions, and
that results on MedMentions can be improved by
pre-training on more similar documents (biomed-
ical abstracts), and by using more complex mod-
els (BERT + bi-LSTM rather than BERT + linear).
We hope that other researchers will continue to ad-
vance the state-of-the-art on this new dataset.

Acknowledgement

We would like to thank Dr. Khaled Emam for his
support and insightful feedback. We also thank Ms
Lynn Wei for her technical support and her assis-
tance in data collection, cleaning and preparation.

References
Emily Alsentzer, John R Murphy, Willie Boag, Wei-

Hung Weng, Di Jin, Tristan Naumann, and Matthew
McDermott. 2019. Publicly available clinical BERT
embeddings. arXiv preprint arXiv:1904.03323.

Parminder Bhatia, Busra Celikkaya, and Mohammed
Khalilia. 2019. Joint entity extraction and asser-
tion detection for clinical text. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 954–959.

William Boag, Kevin Wacome, Tristan Naumann, and
Anna Rumshisky. 2015. CliNER: a lightweight tool
for clinical named entity recognition. AMIA Joint
Summits on Clinical Research Informatics (poster).

Olivier Bodenreider. 2004. The Unified Med-
ical Language System (UMLS): Integrating
biomedical terminology. Nucleic acids research,
32(suppl 1):D267–D270.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Raghavendra Chalapathy, Ehsan Zare Borzeshi, and
Massimo Piccardi. 2016a. Bidirectional LSTM-
CRF for clinical concept extraction. arXiv preprint
arXiv:1611.08373.

165



Raghavendra Chalapathy, Ehsan Zare Borzeshi, and
Massimo Piccardi. 2016b. Bidirectional lstm-crf
for clinical concept extraction. In Proceedings of
the Clinical Natural Language Processing Work-
shop (ClinicalNLP), pages 7–12.

Berry De Bruijn, Colin Cherry, Svetlana Kiritchenko,
Joel Martin, and Xiaodan Zhu. 2011. Machine-
learned solutions for three stages of clinical infor-
mation extraction: the state of the art at i2b2 2010.
Journal of the American Medical Informatics Asso-
ciation, 18(5):557–562.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

Noémie Elhadad, Sameer Pradhan, Sharon Gorman,
Suresh Manandhar, Wendy Chapman, and Guergana
Savova. 2015. SemEval-2015 task 14: Analysis of
clinical text. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 303–310.

Xiao Fu and Sophia Ananiadou. 2014. Improving the
extraction of clinical concepts from clinical records.
Proceedings of BioTxtM14, pages 47–53.

Maryam Habibi, Leon Weber, Mariana Neves,
David Luis Wiegandt, and Ulf Leser. 2017. Deep
learning with word embeddings improves biomed-
ical named entity recognition. Bioinformatics,
33(14):i37–i48.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015a. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015b. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,
Leo Anthony Celi, and Roger G Mark. 2016.
MIMIC-III, a freely accessible critical care database.
Scientific Data, 3:160035.

Siddhartha Jonnalagadda, Trevor Cohen, Stephen Wu,
and Graciela Gonzalez. 2012. Enhancing clini-
cal concept extraction with distributional semantics.
Journal of biomedical informatics, 45(1):129–140.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduction
to the bio-entity recognition task at JNLPBA. In
Proceedings of the International Joint Workshop on
Natural Language Processing in Biomedicine and
its Applications (NLPBA/BioNLP), pages 70–75.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2019. BioBERT: pre-trained biomed-
ical language representation model for biomedical
text mining. arXiv preprint arXiv:1901.08746.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Sunil Mohan and Donghui Li. 2019. MedMentions: A
large biomedical corpus annotated with UMLS con-
cepts. arXiv preprint arXiv:1902.09476.

Tomoko Ohta, Yuka Tateisi, and Jin-Dong Kim. 2002.
The GENIA corpus: An annotated research abstract
corpus in molecular biology domain. In Proceed-
ings of the second international conference on Hu-
man Language Technology Research, pages 82–86.
Morgan Kaufmann Publishers Inc.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019.
Transfer learning in biomedical natural language
processing: An evaluation of BERT and ELMo
on ten benchmarking datasets. arXiv preprint
arXiv:1906.05474.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Sameer Pradhan, Noémie Elhadad, Wendy Chapman,
Suresh Manandhar, and Guergana Savova. 2014.
SemEval-2014 task 7: Analysis of clinical text. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 54–62.

Kirk Roberts. 2016. Assessing the corpus size vs.
similarity trade-off for word embeddings in clinical
NLP. In Proceedings of the Clinical Natural Lan-
guage Processing Workshop (ClinicalNLP), pages
54–63.

Golnar Sheikhshabbafghi, Inanc Birol, and Anoop
Sarkar. 2018. In-domain context-aware token em-
beddings improve biomedical named entity recog-
nition. In Proceedings of the Ninth International
Workshop on Health Text Mining and Information
Analysis, pages 160–164.

166



Yuqi Si, Jingqi Wang, Hua Xu, and Kirk Roberts. 2019.
Enhancing clinical concept extraction with contex-
tual embedding. arXiv preprint arXiv:1902.08691.

Julien Tourille, Matthieu Doutreligne, Olivier Ferret,
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Abstract
We present a semantically interpretable system
for automated ICD coding of clinical text doc-
uments. Our contribution is an ontological at-
tention mechanism which matches the struc-
ture of the ICD ontology, in which shared at-
tention vectors are learned at each level of the
hierarchy, and combined into label-dependent
ensembles. Analysis of the attention heads
shows that shared concepts are learned by the
lowest common denominator node. This al-
lows child nodes to focus on the differentiat-
ing concepts, leading to efficient learning and
memory usage. Visualisation of the multi-
level attention on the original text allows ex-
planation of the code predictions according to
the semantics of the ICD ontology. On the
MIMIC-III dataset we achieve a 2.7% abso-
lute (11% relative) improvement from 0.218 to
0.245 macro-F1 score compared to the previ-
ous state of the art across 3,912 codes. Finally,
we analyse the labelling inconsistencies aris-
ing from different coding practices which limit
performance on this task.

1 Introduction

Classification of clinical free-text documents
poses some difficult technical challenges. One
task of active research is the assignment of diag-
nostic and procedural International Classification
of Diseases (ICD) codes. These codes are assigned
retrospectively to hospital admissions based on the
medical record, for population disease statistics
and for reimbursements for hospitals in countries
such as the United States. As manual coding is
both time-consuming and error-prone, automation
of the coding process is desirable. Coding errors
may result in unpaid claims and loss of revenue
(Adams et al., 2002).

Automated matching of unstructured text to
medical codes is difficult because of the large

∗equal contribution

number of possible codes, the high class imbal-
ance in the data, and the ambiguous language and
frequent lack of exposition in clinical text. How-
ever, the release of large datasets such as MIMIC-
III (Johnson et al., 2016) has paved the way for
progress, enabling rule-based systems (Farkas and
Szarvas, 2008) and classical machine learning
methods such as support vector machines (Suomi-
nen et al., 2008), to be superseded by neural
network-based approaches (Baumel et al., 2017;
Karimi et al., 2017; Shi et al., 2018; Duarte et al.,
2018; Rios and Kavuluru, 2018). The most suc-
cessful reported model on the ICD coding task
is a shallow convolutional neural network (CNN)
model with label-dependent attention introduced
by Mullenbach et al. (2018) and extended by
Sadoughi et al. (2018) with multi-view convolu-
tion and a modified label regularisation module.

One of the common features of the aforemen-
tioned neural network models is the use of atten-
tion mechanisms (Vaswani et al., 2017). This mir-
rors advances in general representation learning.
In the text domain, use of multi-headed attention
has been core to the development of Transformer-
based language models (Devlin et al., 2018; Rad-
ford et al., 2019). In the imaging domain, authors
have had success with combining attention vectors
learned at the global and local levels with Dou-
ble Attention networks (Chen et al., 2018). In the
domain of structured (coded) medical data, Choi
et al. (2017) leveraged the ontological structure
of the ICD and SNOMED CT coding systems in
their GRAM model, to combine the attention vec-
tors of a code and its ancestors in order to predict
the codes for the next patient visit based on the
codes assigned in the previous visit.

Our contributions are:
1. A structured ontological attention ensemble

mechanism which provides improved accu-
racy, efficiency, and interpretability.
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Dataset # Documents # Unique patients # ICD-9 Codes # Unique ICD-9 codes
Training 47,719 36,997 758,212 8,692
Development 1,631 1,374 28,896 3,012
Test 3,372 2,755 61,578 4,085
Total 52,722 41,126 848,686 8,929

Table 1: Distribution of documents and codes in the MIMIC-III dataset.

2. An analysis of the multi-level attention
weights with respect to the text input, which
allows us to interpret the code predictions ac-
cording to the semantics of the ICD ontology.

3. An analysis of the limitations of the MIMIC-
III dataset, in particular the labelling incon-
sistencies arising from variable coding prac-
tices between coders and between timepoints.

2 Dataset

We used the MIMIC-III dataset (Johnson et al.,
2016) (“Medical Information Mart for Intensive
Care”) which comes from the intensive care unit
of the Beth Israel Deaconess Medical Center in
Boston. We concatenated the hospital discharge
summaries associated with each admission to form
a single document and combined the correspond-
ing ICD-9 codes. The data was split into training,
development, and test patient sets according to the
split of Mullenbach et al. (2018) (see Table 1).

3 Methods

We formulate the problem as a multi-label binary
classification task, for which each hospital dis-
charge summary is labelled with the presence or
absence of the complete set of ICD-9 codes for the
associated admission. Our model is a CNN simi-
lar to those of (Mullenbach et al., 2018; Sadoughi
et al., 2018). Inspired by the graph-based atten-
tion model of (Choi et al., 2017), we propose a
hierarchical attention mechanism (mirroring the
ICD ontology) which yields a multi-level, label-
dependent ensemble of attention vectors for pre-
dicting each code. Our architecture is shown in
Figure 1 and described below.

3.1 Embedding
Documents were pre-processed by lower-casing
the text and removing punctuation, followed by
tokenisation during which purely numeric tokens
were discarded. We used a maximum input
length of 4500 tokens and truncated any docu-
ments longer than this (260 training, 16 devel-

opment, and 22 test). Tokens were then embed-
ded with a 100-dimensional word2vec model. For
each document, token embeddings were concate-
nated to give a 100×N document embedding ma-
trix D, where N is the document length.

We pre-trained the word2vec model on the
training set using continuous bag-of-words
(CBOW) (Mikolov et al., 2013). The vocabulary
comprises tokens which occur in at least 3 doc-
uments (51,847 tokens). The embedding model
was fine-tuned (not frozen) during subsequent
supervised training of the complete model.

3.2 Convolutional module

The first part of the network proper consists
of a multi-view convolutional module, as intro-
duced by Sadoughi et al. (2018). Multiple one-
dimensional convolutional kernels of varying size
with stride = 1 and weights W are applied in par-
allel to the document embedding matrix D along
the N dimension. The outputs of these kernels are
padded at each end to match the input length N .
This yields outputs of size C ×M × N where C
is the number of kernel sizes (“views”), M is the
number of filter maps per view, andN is the length
of the document. The outputs are max-pooled in
the C dimension i.e., across each set of views, to
yield a matrix E of dimensions M ×N :

E = tanh( max
C=[0,3]

WC ∗D) (1)

Optimal values were C = 4 filters of lengths
{6, 8, 10, 12} with M = 256 filter maps each.

3.3 Prediction via label-dependent attention

Label-specific attention vectors are employed to
collapse the variable-lengthE document represen-
tations down to fixed-length representations. For
each label l, given the matrix E as input, a token-
wise linear layer ul is trained to generate a vector
of length N . This is normalised with a softmax
operation, resulting in an attention vector al:

al = softmax(ETul) (2)
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Figure 1: Network architecture. The output of the convolutional module is fed into the ensemble of ancestral
attention heads for multi-task learning. Circles with dots represent matrix product operations. Ancestors are
mapped to descendants by multiplication with a mapping connectivity matrix based on the ontology structure.

The attention vector is then multiplied with the
matrix E which yields a vector vl of length M , a
document representation specific to a label:

vl = alE (3)

If multiple linear layers ul,0, ul,1, . . . are trained
for each label at this stage, multiple attention vec-
tors (or “heads”) will be generated. Thus, multiple
document representations vl could be made avail-
able, each of length M , and concatenated together
to form a longer label-specific representation for
the document. We experimented with multiple at-
tention vectors and found two vectors per label to
be optimal. To make a prediction of the probabil-
ity of each label, P (l), there is a final dense binary
classification layer with sigmoid activation. This
is shown for two attention vectors:

P (l) = σ(Wl[vl,0; vl,1] + βl) (4)

3.4 Prediction via label-dependent
ontological attention ensembles

The ICD-9 codes are defined as an ontology, from
more general categories down to more specific
descriptions of diagnosis and procedure. Rather
than simply training two attention heads per code
as shown in Section 3.3, we propose to exploit
the ontological structure to train shared attention
heads between codes on the same branch of the

tree, thus pooling information across labels which
share ancestry. In this work, we use two levels
of ancestry, where the first level corresponds to
the pre-floating-point portion of the code. For in-
stance, for the code 425.11 Hypertrophic obstruc-
tive cardiomyopathy, the first-degree ancestor is
425 Cardiomyopathy and the second-degree an-
cestor is 420-429 Other forms of heart disease (the
chapter in which the parent occurs). This is illus-
trated in Figure 2.

Child code 1 Child code 2 Child code 3

Parent code

Grandparent code

Figure 2: Illustration of inheritance of the linear layers
ul. This yields label-specific ontological attention en-
sembles of the attention heads al and subsequently the
document representations vl.

For the entire set of 8929 labels, we identi-
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fied 1167 first-degree ancestors and 179 second-
degree ancestors. Compared to two attention vec-
tors per code, this reduces the parameter space and
memory requirements from 17,858 attention heads
(8929 x 2) to 10,275 attention heads (8929 + 1167
+ 179) as well as increasing the number of training
samples for each attention head.

The label prediction for each code is now de-
rived from the concatenated child (c), parent (p)
and grandparent (gp) document representations:

P (lchild) = σ(Wlc [vl,c; vl,p; vl,gp] + βlc) (5)

In order to facilitate learning of multiple atten-
tion heads, we employ deep supervision using the
ancestral labels, adding auxiliary outputs for pre-
dicting the parent and grandparent nodes:

P (lparent) = σ(Wlp [vl,p; vl,gp] + βlp) (6)

P (lgrandparent) = σ(Wlgp [vl,gp] + βlgp) (7)

3.5 Training process

We trained our model with weighted binary cross
entropy loss using the Adam optimiser (Kingma
and Ba, 2014) with learning rate 0.0005.

Stratified shuffling: The network accepts in-
put of any length but all instances within a single
batch need to be padded to the same length. To
minimise the amount of padding, we used length-
stratified shuffling between epochs. For this, doc-
uments were grouped by length and shuffled only
within these groups; groups were themselves then
shuffled before batch selection started.

Dampened class weighting: We employed the
standard practice of loss weighting to prevent the
imbalanced dataset from affecting performance on
rare classes. We used a softer alternative to em-
pirical class re-weighting, by taking the inverse
frequencies of positive (label= 1) and negative
(label= 0) examples for each code c, and adding
a damping factor α. In the equations below,
nlabelc=1 stands for the number of positive exam-
ples for the ICD code c, and n stands for the total
number of documents in the dataset.

ω(c,1) =

(
n

nlabelc=1

)α

ω(c,0) =

(
n

nlabelc=0

)α (8)

Upweighting for codes with 5 examples or
fewer, where we do not expect to perform well in
any case, was removed altogether as follows:

ω(c,1) =

{(
n

nlabelc=1

)α
, nlabelc=1 > 5

1 , otherwise
(9)

Deep supervision: The loss function was
weighted in favour of child codes, with progres-
sively less weight given to the codes at higher lev-
els in the ICD ontology. A weighting of 1 was used
for the child code loss, a weighting wh for the par-
ent code auxiliary loss, andw2

h for the grandparent
code auxiliary loss, i.e.,

Loss = Lc + whLp + w2
hLgp (10)

Optimal values were α = 0.25 and wh = 0.1.

3.6 Implementation and hyperparameters

The word2vec embedding was implemented with
Gensim (Řehůřek and Sojka, 2010) and the ICD
coding model was implemented with PyTorch
(Paszke et al., 2017). Experiments were run on
Nvidia V100 16GB GPUs. Hyperparameter val-
ues were selected by maximising the development
set macro-F1 score for codes with more than 5
training examples.

4 Experiments

4.1 Results

In our evaluation, we focus on performance across
all codes and hence we prioritise macro-averaged
metrics, in particular macro-averaged precision,
recall, and F1 score. Micro-averaged F1 score and
Precision at k (P@K) are also reported in order
to directly benchmark performance against previ-
ously reported metrics. All reported numbers are
the average of 5 runs, starting from different ran-
dom network initialisations.

We compare our model to two previous state-
of-the-art models: Mullenbach et al. (2018), and
Sadoughi et al. (2018) (published only on arXiv).
We trained these models with the hyperparameter
values quoted in the respective publications, and
used the same early stopping criteria as for our
model. Both Mullenbach et al. and Sadoughi et al.
use label regularisation modules, at the output and
at the attention layer respectively. In line with their
published results, we found that only the method
of Sadoughi et al. gave an improvement and thus it
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Method Rmacro Pmacro F1macro F1micro P@8

Mullenbach et al. (2018) 0.218 0.195 0.206 0.499 0.651
Sadoughi et al. (2018) 0.261 0.186 0.218 0.498 0.662
Ontological Attention 0.341 0.192 0.245 0.497 0.681

Table 2: Benchmark results for the models trained with F1macro stopping criterion.

Method Rmicro Pmicro F1macro F1micro P@8

Mullenbach et al. (2018) 0.469 0.593 0.172 0.523 0.685
Sadoughi et al. (2018) 0.516 0.560 0.173 0.537 0.695
Ontological Attention 0.514 0.617 0.206 0.560 0.727

Table 3: Benchmark results for the models trained with F1micro stopping criterion.

Method F1macro Relative F1macro
change (%)

Ontological Attention 0.245 0
Efficacy of ontological attention ensemble
1. No deep supervision 0.243 -0.82
2. No ontology: One attention head for each label 0.234 -4.5
3. No ontology: Two attention heads for each label 0.242 -1.2
4. Partial ontology: Randomised ontological connections 0.231 -5.7
Efficacy of additional modifications
5. No class weighting 0.232 -5.3
6. Reduced convolutional filters (70, as in Sadoughi et al. (2018)) 0.236 -3.7

Table 4: Ablation study of individual components of the final method. All models are trained with the F1macro

stopping criterion. Experiments 2 and 3 do not use the ontological attention mechanism, and instead have one
or two attention heads respectively per code-level label. For experiment 4, child-parent and parent-grandparent
connections were randomised, removing shared semantics between codes across the full 3 levels.

is included in the model reported here. However,
this regularisation is not used in our own model
where we observed no benefit.

Overall results are shown in Table 2. Our
method significantly outperforms the benchmarks
on macro-F1 and P@8.

Previous models have optimised for F1 micro-
average. Different target metrics require different
design choices: after removal of the class weight-
ing in the loss function and when using F1micro
as our stopping criterion, we are also able to sur-
pass previous state-of-the-art results on micro-F1.
The results are presented in Table 3; our method
achieves the highest F1micro score, as well as the
highest P@8 score. We note that P@8 score is
consistently higher for models stopped using the
F1micro criterion.

In Table 4 we present an ablation study. It can
be seen that the improvement in performance of
the ontological attention model is not simply due
to increased capacity of the network, since even

with 73% greater capacity (17,858 compared to
10,275 attention vectors), the two-vector multi-
headed model has a 1.2% drop in performance.
Experiments with deep supervision and randomi-
sation of the ontology graph connections show the
benefit of each component of the ontological ar-
chitecture. We also measure the effect of addi-
tional changes made during optimisation of the ar-
chitecture and training.

Levels of the ontology: Three levels of the on-
tology (including the code itself) were found to be
optimal for the Ontological Attention model (see
Figure 3). Adding parent and grandparent levels
provide incremental gains in accuracy. Adding a
level beyond the grandparent node (i.e., the great-
grandparent level) does not provide further im-
provement. Since we identified only 22 ances-
tral nodes at the level directly above the grandpar-
ent, we hypothesise that the grouping becomes too
coarse to be beneficial. In fact, all procedure codes
share the same ancestor at this level; the remaining
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21 nodes are split between diagnostic codes.

Figure 3: F1macro for models using attention ensem-
bles across different levels of the ontological tree. Error
bars represent the standard deviation across 5 different
random weight initialisations. The model with 1 level
has only the code-level attention head, the model with
2 levels also includes the shared parent attention heads;
the model with 3 levels adds the shared grandparent
attention heads (this is our reported Ontological Atten-
tion model), and finally, the model with 4 levels adds
shared great-grandparent attention heads.

4.2 Analysis of the attention weights
In Figure 4 we show how the weights of code-
level ul vectors (which give rise to the attention
heads) change when the ontological attention en-
semble mechanism is introduced. As expected,
we observe that in the case of a single attention
head, the weights for different codes largely clus-
ter together based on their position in the ontology
graph. Once the parent and grandparent attention
heads are trained, the ontological similarity struc-
ture on the code level mostly disappears. This sug-
gests that the common features of all codes within
a parent group are already extracted by the parent
attention. thus, the capacity of the code-level at-
tention is spent on the representation of the differ-
ences between the descendants of a single parent.

4.3 Interpretability of the attention heads
In Section 4.2, we showed the links between the
ontology and the attention heads within the space
of the ul vector weights. We can widen this anal-
ysis to links between the predictions and the in-
put, by examining which words in the input docu-
ments are attended by the three levels of attention
heads for a given label. A qualitative visual ex-
ample is shown in Figure 5. We performed quan-
titative frequency analysis of high-attention terms

(keywords) in the training set. A term was consid-
ered a keyword if its attention weight in a docu-
ment surpassed the threshold tkw:

tkw(N, γkw) = γkw
1

N
, (11)

where N is the length of a document and γkw is
a scalar parameter controlling the strictness of the
threshold. With γkw = 1, a term is considered a
keyword if its attention weight surpasses the uni-
formly distributed attention. In our analysis we
chose γkw = 17 for all documents.

We aggregated these keywords across all pre-
dicted labels in the training set, counting how
many times a term is considered a keyword for a
label. The results of this analysis are in line with
our qualitative analysis of attention maps. The
most frequent keywords for the labels presented
in the example in Figure 5 include “cancer”, “ca”,
“tumor”, at the grandparent level (focusing on the
concept of cancer); “metastatic”, “metastases” and
“metastasis” at the parent level (focusing on the
concept of metastasis); and “brain”, “craniotomy”,
“frontal” at the code-level (focusing on terms re-
lating to specific anatomy). A sibling code (198.5
Secondary malignant neoplasm of bone and bone
marrow) displays similar behaviour in focusing on
anatomy, with “bone”, “spine”, and “back” being
among the most frequent keywords.

Not all codes display such structured behaviour.
For instance, the grandparent 401-405 Hyperten-
sive disease attended to the term “hypertension”
most frequently. The parent code 401 Essential
hypertension, does not attend to “hypertension”,
but neither does it attend to any useful keywords
— this may be due to the code being simple com-
pared to its sibling codes, which are more spe-
cific (e.g., 402 Hypertensive heart disease). In-
terestingly, the children of 401 Essential hyper-
tension attend to the word “hypertension” again,
while also focusing on terms that set them apart
from each other — e.g., 401.0 Malignant essen-
tial hypertension focuses on terms implying ma-
lignancy, such as “urgency”, “emergency”, and
“hemorrhage”.

5 Limitations due to labelling variability

Since performance on this task appears to be much
lower than might be acceptable for real-world use,
we investigated further. Figure 6 shows the per-
label F1 scores; it can be seen that there is high
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038 Septicemia

041 Bacterial infection in conditions classified
elsewhere and of unspecified site

250 Diabetes mellitus

276 Disorders of fluid, electrolyte, and acid-base balance

34 Operations on chest wall, pleura,
mediastinum, and diaphragm

36 Operations on vessels of heart

37 Other operations on heart and pericardium

38 Incision, excision, and occlusion of vessels

39 Other operations on vessels

410 Acute myocardial infarction

427 Cardiac dysrhythmias

428 Heart failure

45 Incision, excision, and anastomosis of intestine

707 Chronic ulcer of skin

765 Disorders relating to short gestation
and unspecified low birthweight

V10 Personal history of malignant neoplasm

031-040 Other
Bacterial Diseases

425-429 Other Forms
of Heart Disease

35-39 Operations on the
Cardiovascular System

Procedures & Diagnoses
related to the
Cardiovascular System*
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Figure 4: Two-dimensional t-SNE (Maaten and Hinton, 2008) representation of the ul vectors (which give rise to
the attention heads) for a subset of 182 codes with at least 100 occurrences each, in the data belonging to 16 differ-
ent parent nodes. (a) Legend for the annotation of data points according to their parent node. (b) ul vectors from
the model with only a single attention head for each code (i.e., no ontology). It can be seen that codes naturally
cluster by their parent node. Selected higher-level alignments are indicated by additional contours — for grandpar-
ent nodes (3 nodes) and for diagnoses/procedure alignment (in the case of cardiovascular disease). (c) ul vectors
in the ontological attention ensemble model for the same set of codes (and the same t-SNE hyperparameters). In
most cases the clustering disappears, indicating that the attention weights for the ancestral codes have extracted
the similarities from descendants’ clusters.

Method Rmacro Pmacro F1macro F1micro P@8

Mullenbach et al. (2018) 0.226 0.200 0.212 0.500 0.651
Sadoughi et al. (2018) 0.272 0.187 0.222 0.497 0.662
Ontological Attention 0.347 0.199 0.252 0.507 0.686

Table 5: Benchmark results for the models trained with F1macro stopping criterion.

variability in accuracy, that is only partially corre-
lated with the number of training examples.

Inspection of examples for some of the poorly
performing codes revealed some variability in

coding policy, described further below.

5.1 Misreporting of codes
The phenomenon of human coding errors is re-
ported in the literature; for instance, Kokotailo
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Figure 5: Discharge summary snippet with highlights
generated from attention heads for (a) the grandparent
code (190-199 Malignant neoplasm of other and un-
specified sites), (b) the parent code (198 Secondary ma-
lignant neoplasm of other specified sites), and (c) the
specific code (198.3 Secondary malignant neoplasm of
brain and spinal cord). Different words and phrases
are attended at each level.

Figure 6: Per-code frequency of training examples v.s.
F1macro score from the ontological attention model

and Hill estimated sensitivity and specificity to be
80% and 100% respectively for ICD codes relating
to stroke and its risk factors (Kokotailo and Hill,
2005). In the MIMIC-III dataset, we inspected
the assignment of smoking codes (current smoker
305.1, past smoker V15.82, or never smoked i.e.,
no code at all), using regular expression matching
to identify examples of possible miscoding, fol-
lowed by manual inspection of 60 examples (10
relating to each possible miscoding category) to
verify our estimates. We estimated that 10% of pa-
tients had been wrongly assigned codes, and 30%
of patients who had a mention of smoking in their
record had not been coded at all. We also observed
that often the “correct” code is not clear-cut. For
instance, many patients had smoked in the distant
past or only smoke occasionally, or had only re-

cently quit; in these cases, where the narrator reli-
ability may be questionable, the decision of how to
code is a matter of subjective clinical judgement.

5.2 Revisions to the coding standards

Another limitation of working with the MIMIC-
III dataset is that during the deidentification pro-
cess, information about absolute dates was dis-
carded. This is problematic when we consider
that the MIMIC-III dataset contains data that was
collected between 2001 and 2012, and the ICD-9
coding standard was reviewed and updated annu-
ally between 2006 and 2013 (Centers for Medicare
& Medicaid Services) i.e., each year some codes
were added, removed or updated in their meaning.

To investigate this issue, we took the 2008 stan-
dard and mapped codes created post-2008 back to
this year. In total, we identified 380 codes that are
present in the dataset but were not defined in the
2008 standard. An example can be seen in Fig-
ure 7. We report our results on the 2008 codeset
in Table 5. It can be seen that there is an im-
provement to the metrics on this dataset, which
we expect would increase further if all codes were
mapped back to the earliest date of 2001. With-
out time data, it is an unfair task to predict codes
which are fundamentally time-dependent. This is
an interesting example of conflicting interests be-
tween (de)identifiability and task authenticity.

During real-world deployment, codes should be
assigned according to current standards. In order
to use older data, codes should be mapped for-
wards rather than backwards. The backwards op-
eration was possible by automated re-mapping of
the codes, however the forwards operation is more
arduous. Newly introduced codes may require an-
notation of fresh labels or one-to-many conversion
— both operations requiring manual inspection of
the original text. A pragmatic approach would be
to mask out codes for older documents where they
cannot be automatically assigned.

6 Conclusions

We have presented a neural architecture for au-
tomated clinical coding which is driven by the
ontological graph of relationships between codes.
This model establishes a new state-of-the-art re-
sult for the task of automated clinical coding with
MIMIC-III dataset. Compared to simply doubling
the number of attention heads, our ontological at-
tention ensemble mechanism provides improve-
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Figure 7: Example code added to the ICD-9 standard.

ments in accuracy, in memory efficiency, and in
interpretability. Our method is not specific to an
ontology, and in fact could be used for a graph of
any formation. If we were to exploit further con-
nections within the ICD ontology e.g., between re-
lated diagnoses and procedures, and between child
codes which share modifier digits, we would ex-
pect to obtain a further performance boost.

We have illustrated that labels may not be reli-
ably present or correct. Thus, even where plenty of
training examples are available, the performance
may (appear to) be low. In practice, the most suc-
cessful approach may be to leverage a combination
of automated techniques and manual input. An
active learning setup would facilitate adoption of
new codes by the model as well as allowing en-
dorsement of suggested codes which might other-
wise have been missed by manual assignment, and
we propose this route for future research.
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Abstract

Since the introduction of context-aware token
representation techniques such as Embeddings
from Language Models (ELMo) and Bidirec-
tional Encoder Representations from Trans-
formers (BERT), there have been numerous re-
ports on improved performance on a variety
of natural language tasks. Nevertheless, the
degree to which the resulting context-aware
representations can encode information about
morpho-syntactic properties of the tokens in a
sentence remains unclear.

In this paper, we investigate the appli-
cation and impact of state-of-the-art neu-
ral token representations for automatic cue-
conditional speculation and negation scope de-
tection coupled with the independently com-
puted morpho-syntactic information. Through
this work, We establish a new state-of-the-art
for the BioScope and NegPar corpora.

Furthermore, we provide a thorough analy-
sis of neural representations and additional
features interactions, cue-representation for
conditioning, discussing model behavior on
different datasets and, finally, address the
annotation-induced biases in the learned rep-
resentations.

1 Introduction

In 2018, a set of new state-of-the-art results were
established for a variety of Natural Language Pro-
cessing tasks, the majority of which can be at-
tributed to the introduction of context aware to-
ken representations, learned from large amounts of
data with Language-modeling like tasks as a train-
ing goal (Devlin et al., 2018; Peters et al., 2018).
It is, however, unclear to what degree the com-
puted representations capture and encode high-
level morphological/syntactic knowledge about
the usage of a given token in a sentence. One way
of exploring the potential of the learned represen-

tation would be through investigating the perfor-
mance on a task that would require the representa-
tion to acquire some notion of syntactic units such
as phrases and clauses, as well as the relationship
between the syntactic units and other tokens in the
model. An example of such a task is Speculation
or Negation Scope Detection.

The main contributions of this work can be sum-
marized as follows:

• We achieve and report a new state-of-the-art
for the negation and speculation scope detec-
tion on several biomedical and general do-
main datasets, which were created using dif-
ferent definitions of what constitutes a scope
of a given negation/speculation.1

• We investigate different ways of incorporat-
ing additional automatically-generated syn-
tactic features into the model and explore the
potential improvements resulting from the
addition of such features.

• Following Fancellu et al. (2017), we pro-
vide a thorough comparison of our proposed
model with other state-of-the-art models and
analyze their behaviour in the absence of po-
tential “linear clues”, the presence of which
might result in highly accurate predictions
even for syntax-unaware token representa-
tions.

2 The Task

In general, speculation or negation scope detection
can be constructed as the following conditional to-
ken classification task: given a negation or spec-
ulation cue (i.e., a word or phrase that expresses
negation or speculation such as ‘No’ and ‘May’),

1An implementation of our model together with the pre-
trained models for scope detection will be available later.
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identify which tokens are affected by the negation
or represent an event that is speculative in nature
(referred to as the scope of the negation or spec-
ulation). Consider the following example:

(1) These findings that (may be from
an acute pneumonia) include minimal
bronchiectasis as well.

In this case, the speculation cue is “may” and
the string of tokens that contains the speculative
information is “may be from an acute pneumo-
nia”.

Each data point, as such, is a string of tokens
paired with the corresponding negation or specu-
lation cue. Note that nested negations in the same
sentence would be distinguished only by the asso-
ciated cue.

From the syntactic structure point of view, it is
clear that in most cases, the boundaries of a given
scope strongly correlate with the clausal structure
of the sentence (Morante and Sporleder, 2012)
There is also a strong connection between the fine-
grained part-of-speech (POS) of the cue and the
scope boundaries.

Consider the following examples where the type
of possible adjectives (either attributive or predica-
tive) results in different scope boundaries (scope
highlighted as italic):

(2) This is a patient who had possible
pyelonephritis with elevated fever.

(3) Atelectasis in the right mid zone is,
however, possible.

Such a property of the task requires a well-
performing model to be able to determine cue-
types and the corresponding syntactic scope struc-
ture from a learned representation of cue-sentence
pairs. As such, it can be used as an (albeit imper-
fect) proxy for assessing the knowledge about the
structure of the syntax that a sentence aware token
representation potentially learns during training.

2.1 Datasets

There are no universal guidelines on what consti-
tutes a scope of a given negation or speculation;
different definitions might affect a given model’s
performance. To take this ambiguity into account,
we report our results on two different datasets:
BioScope (Vincze et al., 2008) and NegPar (Liu
et al., 2018).

• The BioScope corpus (Vincze et al., 2008)
consists of three different types of text: Bio-
logical publication abstracts from Genia Cor-
pus (1,273 abstracts), Radiology reports from
Cincinnati Children’s Hospital Medical Cen-
ter (1,954 reports), and full scientific articles
in the bioinformatics domain (nine articles in
total). In this work, we focus on two of the
sub-corpora: Abstracts and Clinical reports.
One should note that BioScope corpus does
not allow discontinuous scopes.

• NegPar (Liu et al., 2018) is a corpus of Conan
Doyle stories annotated with negation cues
and the corresponding scopes. The corpus
is available both in English and Chinese. In
this work, we only use the English part of
the corpus. Unlike BioScope, NegPar pro-
vides a canonical split as training (981 nega-
tion instances), development (174 instances)
and test sets (263 negation instances). Neg-
Par annotation guidelines allows for discon-
tinuous scopes.

3 Previous Work

Negation scope detection algorithms can be classi-
fied into two categories: (1) rule-based approaches
that rely on pre-defined rules and grammar; and
(2) statistical machine learning approaches that
utilize surface level features of the input strings to
detect the scope of the negation.

Rule-based approaches Due to the somewhat
restricted nature of clinical texts syntax, a pre-
defined rule-based key-word triggered negation
scope detection system achieves competitive per-
formance on a variety of clinical-notes derived
data-sets (Chapman et al., 2001; Harkema et al.,
2009; Elkin et al., 2005).

Machine learning approaches While rule-
based approaches might achieve high performance
on medical institution specific datasets, they do
not generalize well for other dataset types and they
may require customization of the rules to adapt to
the new corpus and/or domain. By contrast, ma-
chine learning-based systems do not require ac-
tive human expert participation to adapt to a new
dataset/domain. Earlier works utilizing the statis-
tical approaches for negation scope detection in-
clude Support Vector Machines (SVM), Condi-
tional Random Fields based models (CRF) (Agar-
wal and Yu, 2010; Councill et al., 2010) as well
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as hybrid CRF-SVM ensemble models (Zhu et al.,
2010) (Morante and Daelemans, 2009)

Recently, Neural Network-based approaches
have been proposed for such tasks, including Con-
volutional Neural Network (CNN)-based (Qian
et al., 2016) and Long Short Term Memory
(LSTM)-based (Fancellu et al., 2017; Sergeeva
et al., 2019) models.

The work on specifically speculation scope de-
tection is less varied and mainly confined to
CONLL-2010 Shared-Task2 submissions (Farkas
et al., 2010). It is, however, important to note
that due to the similarity in the formulation of the
task, the majority of the negation-specific machine
learning approaches can be directly applied to the
speculation scope detection problem provided the
speculation annotated data is available for training.

We also draw inspiration from a large body of
work (Linzen et al., 2016; Gulordava et al., 2018;
Marvin and Linzen, 2018) examining the nature
of modern context aware representations from a
linguistic perspective.

4 Model Training and Evaluation

4.1 Neural Token Representation
The use of pre-trained continuous word represen-
tations has been ubiquitous in modern statistical
natural language processing. The importance of an
appropriate word-level representation is especially
noticeable in per-token prediction tasks: in such a
set-up the model goal is to fine-tune or modify the
existing input token representation in such a way
that it contains the necessary information to make
a correct classification decision at prediction time.

In this work, we consider the following ap-
proaches for generating the input token represen-
tation:

• Global Vectors (GloVe) (Pennington et al.,
2014): A pre-trained token representation
that relies on the direct matching of tokens
and the corresponding ratios of token co-
occurrences with their neighbours. Note that
the definition of the neighbour in this setup
is static (that is, the ultimate representation
would incorporate an averaged notion of con-
text) and relies on the bag-of-words represen-
tation of the context.

• Embeddings from Language Models
(ELMo) (Peters et al., 2018): A bi-
directional LSTM model-based token

representation, pre-trained on the language
modeling task. Instead of modeling the
bag-of-words neighborhood co-occurrence
probabilities directly, this model approxi-
mates the conditional probability of a token
given the ordered linear context of the token
usage.

• Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al.,
2018): A transformer-based token repre-
sentation trained on the modified language
modeling task together with a broader
context next sentence prediction task. In this
model, the context of a token is continuously
incorporated into the representation of the
token itself as a weighted sum of the neigh-
boring token representations through the
use of the multi-head-attention mechanism.
The linear order of the token information
is provided at input time as an additional
positional embedding, since the unmodified
transformer architecture does not encode any
notion of the linear order.

Despite the performance gains achieved by the
widespread use of contextual word embeddings
like ELMo and BERT, the questions about the na-
ture of the learned representation remain unan-
swered. Both ELMo and BERT were introduced
to incorporate the wider structure of the given in-
put into individual token representation at the time
of training; however, both models only have ac-
cess to the linear order of the context.

The question then arises: To what degree does
the word embedding trained on a language model-
ing like task and computed using the whole linear
context of a sentence encode the broader syntax-
related characteristics of a token used within a
context?

In order to gain insight into the nature of the
learned representations and their potential use for
negation and speculation scope detection, we in-
troduce the following syntax-informed features to
be used together with the token embedding:

POS : Part-Of-Speech of a given token as defined
by the Penn Treebank tagging scheme (Mar-
cus et al., 1993).

DEP : Type of dependency between the token and
its parent, representing limited dependency
tree information of a given token.
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PATH : A string of Google Universal POS tags
(Petrov et al., 2012) of the three direct ances-
tors of the token in the dependency tree; this
feature captures local constituent-like infor-
mation of a given token.

LPATH : Depth of the token in the syntactic de-
pendency tree.

CP : The distance between a given token and the
negation cue in the constituency parse tree
generated using (Kitaev and Klein, 2018). If
a negation cue has multiple tokens, the mini-
mum of the distances is used.

Note that all features were automatically gen-
erated, and as a result, represent a “noisy” source
of information about the syntactic characteristic of
a token. If adding syntactic features as additional
inputs would not affect or would significantly de-
grade the model’s performance, it is reasonable to
assume that the information represented by such
features is already present in the token representa-
tion in some way.

4.2 Modes of Evaluation

To provide a fair comparison of different types of
embeddings, we introduce two different modes of
evaluation. The first mode (referred to as Feature-
based embeddings later in the paper) is designed
to test the embeddings in the same setup as previ-
ously used to get the state-of-the-art performance
on the dataset. The second mode (referred to as
BERT fine-tuning later in the paper) is designed
to test BERT embeddings in their native direct
fine-tuning setting.

Just it , nothing more .

0 0 0 1 0 0

dense layer

cue

additional
features

0 0 0 1 1 0

(contextual)
word embedding

prediction

two-layer bidirectional LSTM

Figure 1: A diagram of the proposed bi-directional
LSTM model for negation and speculation detection
with additional features.

Feature-based Embeddings using Bi-
directional LSTM: Figure 1 demonstrates
the proposed framework for the desired task.
One should note that the factor that differentiates
the two experiments from one another is the
embeddings. The task specific layers (two-layer
Bi-directional LSTM) remains the same across
all experiments. To properly condition each
scope on a given cue, we concatenate a specific
cue embedding to the input embedding, before
computing the final representation for each token.
Additional syntactic information is also provided
by concatenating the input embedding with all of
the syntactic feature embeddings.

BERT Fine-tuning: The original setup for the
use of BERT embedding does not require an elab-
orate task-specific layer; the task specific model
is a copy of the original transformer-based BERT
architecture with the corresponding pre-trained
model-parameters, and the top prediction layer
swapped for a new task specific layer that predicts
the probability of a given label for a token rep-
resentation. Crucially, the token representation is
allowed to change during the fine-tuning. For this
particular setup, it is unclear how to account for
the conditional nature of the scope prediction task.
In other words, a sentence can potentially contain
more than one negation/piece of speculative infor-
mation.

We consider two different testing scenarios to
evaluate the different ways of providing the cue
information to the model:

1. Providing the embedded cue at the top layer
of the model by concatenating it to the
learned token embedding.

2. Providing the embedded cue at the bottom as
a part of the input to the transformer layer be-
fore the fine-tuning by adding the cue embed-
dings (initialized randomly at the fine-tuning
stage) to the initial token representation.

To test if the additional syntactic information
provides any additional benefit to our framework,
we also add the mean of all of the syntactic fea-
ture embeddings to the initial pre-transformer rep-
resentation of the input.

4.3 Hyperparameter Settings
Feature-based Embeddings For the aforemen-
tioned set of experiments, the following architec-
ture parameters have been considered:
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Table 1: Performance of the negation scope detection task on BioScope and NegPar corpora using different ap-
proaches. Results are reported as the percentage of number of predicted scopes that exactly match the golden scope
(PCS)

.

Model BioS Abstracts BioS Clinical NegPar NegPar(CV)

Fancellu et al. (2017) 81.38% 94.21% 68.93 % a N/A
Fancellu et al. (2018) N/A N/A 61.98% b N/A

Bi-LSTMGloVe 63.24%(1.80%) 90.46%(3.64%) 51.48%(4.45%) 49.18%(4.97%)
Bi-LSTMELMo 81.62%(1.87%) 93.10%(2.18%) 71.52%(1.98%) 75.29%(3.35%)
Bi-LSTMBERT 79.29%(3.06%) 91.26%(2.82%) 66.78%(3.50%) 69.45%(3.55%)
Bi-LSTMGloVe + AF 79.00%(2.07%) 94.02%(1.98%) 69.70%(2.81%) 73.11%(3.19%)
Bi-LSTMELMo + AF 83.30%(3.16%) 94.25%(2.86%) 69.96%(2.12%) 75.43%(4.82%)
Bi-LSTMBERT + AF 80.68%(3.23%) 93.10%(2.77%) 67.42%(2.10%) 73.39%(4.12%)
BERT (c-top) 74.63%(3.23%) 92.87%(2.04%) 63.14% (2.08%) —
BERT (c-bottom) 86.97%(2.24%) 93.68%(2.37%) 76.78%(2.04%) 81.91%(3.04%)
BERT (c-bottom) + AF 87.03%(2.38%) 93.45%(1.63%) 79.00%(1.37%) 80.64%(2.57%)

The number in the parenthesis indicates the standard deviation of the score.
a These results are generated using an older version of the corpus annotation.
b Since this work is aimed at cross-lingual negation detection, the reported results are based on using
cross-language word embeddings, which are likely to degrade a single-language model performance.
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Figure 2: A diagram of the proposed BERT-based ar-
chitecture for negation and speculation scope detection
with inclusion of additional features.

• Word embedding dimension: GloVe: 300;
ELMo, BERT: 1024

• Syntactic feature embedding dimension: 10
per feature

• Task-specific LSTM embedding dimension:
400

During training, a dropout rate of 0.5 (Gal and
Ghahramani, 2016) was used to prevent overfit-
ting. The Adam optimizer (Kingma and Ba, 2014)
was used with step size of 10−3 and batch size of
32 for 50 epochs for BioScope and 200 epochs
for NegPar. The reason why we use different
epochs is that there are fewer training examples for

NegPar than BioScope. Therefore, it takes more
epochs for the NegPar models to converge.

BERT Fine-tuning The BERT models have the
following architecture parameters:

• Word embedding dimension: 1024

• BERTLARGE layer transformer configuration
(Devlin et al., 2018)

• Syntactic features embedding dimension:
1024 for each feature

• Cue embedding dimensions: 1024

We perform fine tuning on the nega-
tion/speculation task for 20 epochs. The Adam
optimizer was used with learning rate of 10−5 and
batch size of 2 for 10 epochs for the BioScope
corpus and 50 epochs for the NegPar corpus.

4.4 Evaluation Procedure
We report our results in terms of the percentage
of number of predicted scopes that exactly match
the golden scopes (PCS). Since pre-trained BERT
models use their own tokenization algorithm, it
results in inconsistent final number of tokens in
the dataset across evaluation modes. As a result,
other traditional evaluation metrics such as preci-
sion, recall and F1 are inappropriate to be used in
this study as they depend on the number of tokens.
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Since the BioScope dataset does not have a
canonical training/development/test set split, we
report 10-fold cross-validation results together
with the standard deviation of the resulting scores.

For the NegPar dataset, we report the result on
the test set as well as 10-fold cross-validation re-
sults. To overcome the possible random initializa-
tion influences on the results, we report the aver-
age score for 10 random seeds on the test set to-
gether with the associated standard deviation.

5 Results

The performance of different approaches on Bio-
Scope and NegPar corpora for the negation scope
detection and the speculating scope detection are
shown in Table 1 and Table 2, respectively. Bi-
LSTM-marked entries of the table correspond to
Feature-based and BERT-marked entries corre-
spond to BERT fine-tuning approaches.

5.1 Feature-based Approach

Effect of embedding on performance: Except
for the negation scope detection task on Bio-
Scope clinical notes, ELMo embeddings signif-
icantly outperformed GloVe embeddings as well
as the feature-based use of BERT embeddings,
but not the fined-tuned version of BERT. While
the former is expected, the latter is noteworthy:
for NER task (Devlin et al., 2018), for example,
the difference in performance between the fine-
tuning and feature-based approach results is 1.5%
of the F1 score. For negation scope detection
the difference is a striking 7.68% on BioScope-
abstracts and 10% on a test set of the NegPar
dataset. For speculation scope detection the dif-
ference remains as large (7.93%). We theorize that
this differences comes from the different syntactic
nature of the target strings of tokens: NER sys-
tems are concerned with finding named entities in
text, where the majority of the named entities are
represented by relatively short (token-wise) noun
phrases, negation/speculation scope detection re-
quires recognition of a much more diverse set of
syntactic phenomena. This suggests an impor-
tant difference between the featurized and fine-
tuned approaches for highly syntax-dependent to-
ken classification tasks.

Syntactic features induced gains: In general,
we observe consistent small gains in performance
for all types of embedding on BioScope (both
speculation and negation detection modalities) but

not on the NegPar dataset. The only exception to
this pattern is in non-context aware GloVe embed-
dings. Adding syntactic features embeddings has
inconsistent effects on standard deviations over
modalities and datasets.

5.2 BERT fine-tuning approach

Cue-conditioning influence on the results The
way to condition a given instance on a particu-
lar cue greatly influences the model performance:
providing cue information at the top layer of the
model results in poor performance of the model
for all datasets and both negation and speculation
modalities.

Syntactic features induced gains and the
importance of Cross Validation evaluation:
Adding features to the best performing BERT fine-
tuned models does not result in any significant dif-
ferences on the BioScope dataset. We observe a
significant gain in performance on NegPar: note
that in this case the gain is purely train/test set
split induced and disappears entirely in a cross-
validation mode of evaluation.

Artificial noise and the model performance:
Even though the experimental results suggest no
to minimal contribution of the additional features
to the best model performance, natural questions
to ask are: “Does the feature enriched model
rely on the provided features during the predic-
tion phase?” and “Do the final learned representa-
tions differs significantly for feature-enriched and
featureless inputs?” We introduce noise into the
trained model inputs to check if artificial noise un-
dermines its performance. In particular, we con-
sider the model BERT(cue-bottom) + AF, as it
provides the best performance out of all feature-
enriched models.

With a given probability, which we call the
noise level, we replace a given feature value with a
random value: for categorical features (POS, DEP,
PATH), we replace it with a random category, and
for numerical features (LPATH,CP), we replace it
with a random integer drawn from a uniform dis-
tribution bounded by the feature’s possible mini-
mum and maximum values. We observe a con-
sistent and significant decrease in performance as
the probability of seeing the incorrect features in-
creases (see Figure 3). This suggests that the ad-
ditional features introduced in this paper play an
important role in decision making. This is sup-
ported by the fact that the performance on clini-
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Table 2: Performance of speculation scope detection task on BioScope corpus using different approaches. Results
are reported as the percentage of number of the predicted scopes that exactly match the golden scope (PCS).

Model BioScope Abstracts BioScope Clinical

Qian et al. (2016) 85.75% 73.92%

Bi-LSTMGloVe 47.99%(4.07%) 46.90%(2.87%)
Bi-LSTMELMo 84.62%(2.33%) 81.82%(2.74%)
Bi-LSTMBERT 81.35%(1.95%) 78.75%(3.24%)
Bi-LSTMGloVe + AF 85.07%(2.66%) 80.73%(3.01%)
Bi-LSTMELMo + AF 86.57%(2.65%) 81.55%(2.74%)
Bi-LSTMBERT + AF 84.43%(1.08%) 81.37%(4.32%)
BERT (cue-top) 57.32%(2.14%) 60.49%(4.77%)
BERT (cue-bottom) 89.28%(1.65%) 83.71%(2.77%)
BERT (cue-bottom) + AF 88.91%(1.65%) 82.36%(4.27%)

The number within the parentheses indicates the standard deviation of the score.

cal reports negation detection remains almost un-
affected by the change, since the majority of the
negation scopes in this dataset can be captured by
structure-independent heuristics.
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Figure 3: Performance of the BERT + AF models with
respect to the noise level, averaged for 10 fold CV

5.3 Linear punctuation cues and model
performance

Even though the scope boundaries correlate to the
syntactic structures of the sentence, a good per-
formance on a given dataset does not necessarily
prove the model acquired any kind of a structural
knowledge: as was noted in Fancellu et al. (2017),
the majority of scopes in the BioScope corpus
consist of cases where the punctuation boundaries
match the scope boundaries directly. For those
cases, the model does not have to learn any kinds
of underlying syntactic phenomena: learning a
simple heuristic to mark everything between a cue
and the next punctuation mark as a scope would

produce an illusion of a more complex syntax-
informed performance.

To see if our model’s performance is signifi-
cantly affected by the punctuation clues, we re-
move all the punctuation from the training cor-
pus, re-train all the models on the modified data-
set and evaluate the learned models on the test set.
We also report the performance on “hard” (non-
punctuation bound) instances of scopes separately.

As can be seen in Table 3, removing punctua-
tion affects all models’ behaviour similarly: model
performance degrades by losing 2-3 percent of
PCS on average. Interestingly, the performance on
the non-punctuation boundaries scopes declines
similarly, which suggest that punctuation plays an
important role in computing a given token repre-
sentation, and not only as a direct linear cue that
signifies the scope’s start and end.

5.4 Error overlap

Given the difference in the model architectures, a
natural question to ask is: “Is the best perform-
ing model strictly better than the others, or do
they make different types of errors?” We compute
the error overlap between BERT and ELMo on
the negation detection task as shown in Figure 4.
About half of ELMo and slightly more than a quar-
ter of BERT errors appear to be model specific,
suggesting the potential for ensemble-induced im-
provements.

We also compute the error overlap for the Neg-
Par test set performance for the top 3 performing
models: almost half of the ELMo errors and about
3/4 of BERT fine-tuned and BERT fine-tuned with
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Table 3: Performance on percentage of correct span on BioScope Abstracts sub-corpus trained under different
schemes.

Trained w/ punctuation Trained w/o punctuation
all hard cases all hard cases

Bi-LSTMGloVe 63.24%(1.80%) 51.83%(3.47%) 57.19%(2.48%) 48.82%(3.36%)
Bi-LSTMELMo 81.62%(1.87%) 73.07%(3.60%) 76.90%(2.72%) 69.88%(3.78%)
Bi-LSTMBERT 79.29%(3.06%) 70.37%(6.60%) 77.54%(3.18%) 70.28%(5.41%)
Bi-LSTMGloVe + AF 79.00%(2.07%) 68.79%(4.06%) 76.21%(1.76%) 67.96%(2.64%)
Bi-LSTMELMo + AF 83.30%(3.16%) 75.56%(4.46%) 82.31%(2.95%) 76.58%(3.67%)
Bi-LSTMBERT + AF 80.68%(3.23%) 72.68%(6.71%) 80.45%(3.24%) 73.19%(5.52%)
BERT (c-bottom) 86.97%(2.24%) 82.51%(3.78%) 83.48%(3.22%) 79.42%(4.46%)
BERT (c-bottom +AF) 87.03%(2.38%) 82.38%(4.48%) 84.58%(3.58%) 79.27%(5.82%)

165 151 73

BERT: 224 total

ELMo: 316 total

Figure 4: Distribution of error overlaps: BERT vs.
ELMo on BioScope Abstracts dataset.

features are common for all of the models. It is in-
teresting to note that the the errors of BERT with-
out the features are not a subset of BERT with
the features, suggesting the possibility of a per-
formance trade-off instead of a straight feature-
induced performance improvement.

Qualitatively, on average ELMo tends to pre-
fer longer scopes, sometimes extending the scope
for an additional clause. Both models have trou-
ble with common words that can be encountered
in a variety of different contexts, such as certain
prepositions and personal pronouns.

33

9

86

7

3

29

BERT: 53 total

ELMo: 78 total

BERT + AF: 49 total

Figure 5: Distribution of error overlaps: BERT vs.
BERT with features (BERT + AF) vs. ELMo on Neg-
Par test set.

6 Conclusions and Future Work

This work presents a comparison among different
context-aware neural token representations and the
corresponding performance on the negation and
speculation scope detection tasks. Furthermore,
we introduce a new state-of-the-art BERT-based
cue-conditioned feature-enriched framework for
negation/speculation scope detection. Based on
the empirical results, we are inclined to recom-
mend BERT fine-tuning over using a feature-based
approach with BERT for syntax-dependent tasks.

We used two commonly used publicly avail-
able datasets, BioScope and NegPar for our evalu-
ation. Despite the observed gains on the test set of
the NegPar corpus, the effect of the syntactic fea-
tures on BERT (fine-tuned) performance remains
largely inconclusive.

It is also important to note that the syntactic in-
formation we have been trying to incorporate into
the model was generated automatically; one of the
possible avenues of research would be comparing
the possible golden annotation induced gains with
the imperfect information gain we observe when
incorporating silver syntactic features.

We were unable to find any consistent grammat-
ical explanation for the errors context-aware mod-
els result in on the test data; however, this does not
conclusively mean that such an explanation does
not exist. An appropriate next step would be an-
notating a smaller set of sentences, grouped by the
corresponding syntactic construction and see if a
given token representation yields improved perfor-
mance on such a construction.
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