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Abstract

Semantic parsers are used to convert user’s
natural language commands to executable log-
ical form in intelligent personal agents. La-
beled datasets required to train such parsers
are expensive to collect, and are never com-
prehensive. As a result, for effective post-
deployment domain adaptation and personal-
ization, semantic parsers are continuously re-
trained to learn new user vocabulary and para-
phrase variety. However, state-of-the art atten-
tion based neural parsers are slow to retrain
which inhibits real time domain adaptation.
Secondly, these parsers do not leverage numer-
ous paraphrases already present in the train-
ing dataset. Designing parsers which can si-
multaneously maintain high accuracy and fast
retraining time is challenging. In this paper,
we present novel paraphrase attention based
sequence-to-sequence/tree parsers which sup-
port fast near real time retraining. In addition,
our parsers often boost accuracy by jointly
modeling the semantic dependencies of para-
phrases. We evaluate our model on benchmark
datasets to demonstrate upto 9X speedup in re-
training time compared to existing parsers, as
well as achieving state-of-the-art accuracy.

1 Introduction

Semantic parsers are used in modern intelligent
personal agents (e.g. Alexa, Bixby, Jibo) to al-
low users carry out a wide variety of tasks us-
ing natural language commands/queries. Specif-
ically, these parsers convert the input query to
an executable logical form representation. How-
ever, labeled datasets required to train state-of-
the-art neural semantic parsers are difficult to col-
lect due to their annotation complexity. Secondly,
users from different locale tend to use different
vocabulary, and paraphrases making it nearly im-
possible to collect a comprehensive dataset cov-
ering all possible variety of queries. As a result,

once deployed, the semantic parsers require fre-
quent retraining for adaptation to the locale and
user specific vocabulary (Thomason et al., 2015;
Azaria et al., 2016; Ray et al., 2018). Such do-
main adaptation and personalization is a key fea-
ture in current commercial personal agents (Kim
et al., 2018).

Recently, neural semantic parsers based on at-
tention based sequence-to-sequence/tree models
were proposed (Jia and Liang, 2016; Dong and
Lapata, 2016). These are attractive for commer-
cial personal agents, since unlike previous ap-
proaches these can be trained end-to-end with-
out requiring hand crafted domain specific gram-
mar/lexicon, thereby improving scalability. How-
ever, these parsers are particularly prone to error
when queries contain out-of-vocabulary (OOV)
words (Ray et al., 2018). They are also slow to
retrain since the attention layer, which is critical
for boosting accuracy (Dong and Lapata, 2016),
also constraints the encoder and decoder to be re-
trained simultaneously. As an example, in bench-
mark ATIS dataset with 4,485 training queries,
a sequence-to-sequence semantic parser requires
over 1 hour retraining time using a single GPU.

In this paper, we present novel sequence-to-
sequence/tree parsers with two key advantages
over previous parsers. First, our parser is trained
to use either attention from input query or atten-
tion from its paraphrase (referred as paraphrase at-
tention) when available. For learning new vocabu-
lary from paraphrased queries (Azaria et al., 2016;
Ray et al., 2018), this naturally enables our parsers
to be retrained much faster, since in our parser
only the encoder requires retraining. Secondly,
by jointly modeling the semantic dependencies be-
tween paraphrases, our parser often achieves bet-
ter accuracy over previous models. Our main con-
tributions are summarized below.

• We propose novel sequence-to-sequence and
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tree parsers with paraphrase attention which
can be retrained much faster than previous
models, enabling real time domain adaptation
of intelligent agents.

• Our models explicitly leverage paraphrases in
the training dataset resulting in better seman-
tic understanding. On benchmark datasets
our models achieve similar or better parsing
accuracy over previous models.

• On OOV datasets, our models can learn new
personalized words/phrases upto 9X faster
than previous attention based parsers after re-
training.

1.1 Related work
In this section we highlight the most related prior
literature. In the last few decades a wide variety of
semantic parsers have been proposed using both
rule based and supervised approaches (Zelle and
Mooney, 1996; Wong and Mooney, 2007; Zettle-
moyer and Collins, 2005, 2007; Kwiatkowski
et al., 2010, 2011; Artzi and Zettlemoyer, 2013).
More recently, end-to-end neural network models
are being explored due to their superior perfor-
mance and ease of training (Jia and Liang, 2016;
Dong and Lapata, 2016; Iyer et al., 2017; Dong
and Lapata, 2018). The use of paraphrases to boost
performance of semantic parsers have been stud-
ied (Berant and Liang, 2014; Ray et al., 2018).

Domain adaptation of semantic parsers have
been explored in both pre–deployment (Herzig
and Berant, 2017; Fan et al., 2017) and post–
deployment (Thomason et al., 2015; Azaria et al.,
2016; Iyer et al., 2017; Ray et al., 2018) settings,
and using both CCG based and neural network
parsers. In (Ray et al., 2018), the authors propose
new models to effectively learn user specific OOV
words by retraining neural semantic parsers.

Neural semantic parsers are mainly based on at-
tention based sequence-to-sequence networks. Al-
though sequence-to-sequence networks were first
proposed to solve the problem of machine trans-
lation (Sutskever et al., 2014; Bahdanau et al.,
2015), it has been applied successfully in a wide
range of NLP tasks (Cho et al., 2014; Vinyals
et al., 2015b; Prakash et al., 2016). While adding
extra context information from the input in the
form of attention network greatly improves the
performance of these models (Bahdanau et al.,
2015; Vinyals et al., 2015a; Dong and Lapata,
2016), they also slow down their retraining time

by constraining both the encoder and decoder net-
works to be retrained simultaneously.

Our work lie in the intersection of these ar-
eas. We propose new sequence-to-sequence/tree
parsers using paraphrase attention, which facili-
tates faster domain adaptation, while maintaining
competitive parsing accuracy as current models.

This paper is organized as follows. Section 2
formally defines our problem and discuss related
background. We describe our new paraphrase at-
tention based parsers in Section 3. In Section 4 we
present our numerical evaluation results. Finally,
we conclude in Section 5.

2 Problem and Background

In this section, we concretely define our prob-
lem and discuss related notations. A semantic
parser P converts an user provided query q =
(w1, . . . , wn) to its corresponding logical form
representation l(q) = (l1, . . . , lm), where wi-s
represents words from vocabulary V, and lj-s cor-
respond to logical expression tokens. The parser
P is trained over a labeled training set T. After
deployment, users often use their own personal
or locale specific vocabulary in queries, some of
which are absent in the training vocabulary V . Let
p∗ be a query with OOV words which parser P
cannot parse. We follow the post–deployment do-
main adaptation settings similar to (Azaria et al.,
2016; Ray et al., 2018), where using user feed-
back/dialog, a paraphrased query q∗ of p∗ is ob-
tained which is parsable. The main task of do-
main adaptation is to retrain P using both the
given paraphrased sample (p∗,q∗, l(q∗)), and the
training set T to obtain an improved personalized
parser P ′.

2.1 Sequence-to-sequence/tree parsers

In (Dong and Lapata, 2016; Jia and Liang,
2016), the authors demonstrate that attention
based sequence-to-sequence/tree models can be
utilized to solve the semantic parsing task. A basic
attention based sequence-to-sequence/tree parser
consists of an encoder, a decoder, and an attention
layer. The encoder, and the decoder again con-
sists of recurrent neural networks (e.g. LSTM).
The model is trained by maximizing the simplified
likelihood function:

P (l1, .., lm|w1, .., wn) = Πm
t=1P (lt|l1, .., lt−1, c)

(1)
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where c is the context vector (or final encoder hid-
den state).

Figure 1: Figure showing our new sequence-to-
sequence parser with paraphrase attention. During
training, encoder 1 encodes a query (“i want to fly
from ci0 to ci1”), and encoder 2 encodes its paraphrase
(“show flights between ci0 and ci1”). For decoding,
the context state is provided by encoder 1 and attention
is computed from encoder 2 top states. Both encoders
share same LSTM parameters. During inference, a sin-
gle encoder is used to compute both context and atten-
tion states.

3 Our Model

In this section we describe our new sequence-
to-sequence/tree parser using paraphrase atten-
tion. The motivation behind our parser is as
follows. Existing attention based sequence-to-
sequence/tree parsers are slow to retrain since both
the encoder and decoder needs to be retrained
simultaneously to achieve satisfactory accuracy,
hindering real time domain adaptation. While it
may be possible to freeze the decoder parameters,
and finetune only the encoder, however this is still
slow since the error gradients need to be propa-
gated all the way back to the encoder. Freezing
the encoder parameters and finetuning just the de-
coder results in poor performance (shown in eval-
uation Section 4) since the model fails to learn
the proper encoder representation corresponding
to new OOV words.

Recall that, to teach a query p∗ with OOV
words to an intelligent agent, user provides a para-
phrased query q∗ with known words which the
parser P understands. Since p∗ and q∗ have
the same meaning (hence the same logical form),
their context representation c should be the same.
We make two key observations. First, to learn
new query p∗ we can finetune just the encoder

Figure 2: Illustration of data pre-processing and train-
ing process of our sequence-to-sequence/tree with
paraphrase attention parser.

by treating the context vector c (computed from
paraphrased query q∗) as ground-truth. However,
the top encoder states corresponding to query p∗,
which are required for attention computation, are
still unknown. We make a second observation that,
if during training the model is taught to use at-
tention either from a query, or its paraphrase, we
can simply use attention from q∗ to decode p∗.
Therefore, we do not require knowledge of top en-
coder states of p∗, instead we just need to know
those of q∗. This can be obtained since P can
correctly parse q∗. Before describing our model
details, we discuss another essential data process-
ing step which identifies paraphrased sentences for
model training.

3.1 Data preprocessing

We now describe two key preprocessing steps re-
quired to train our paraphrase attention model.
Figure 2 provides an overview of these data pro-
cessing steps.

Argument replacement: In (Dong and Lapata,
2016; Ray et al., 2018), the authors use an impor-
tant preprocessing step called argument replace-
ment. This step replaces certain words/phrases in
the user query (e.g. entities or numbers), which
correspond to logical form arguments, using spe-
cial argument tokens before training. This greatly
improves parsing accuracy by reducing the in-
put variability (Dong and Lapata, 2016). Figure
1 shows an example of argument replaced query
“i want to fly from ci0 to ci1” for the original
query “i want to fly from atlanta to philadelphia”
in ATIS dataset, where ci0, ci1 are special argu-
ment tokens. As a first preprocessing step, we per-
form this argument replacement to convert original
training set T to an argument replaced training set
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Ta.

Paraphrase identification: In order to train a
sequence-to-sequence parser which can use atten-
tion either from a query or its paraphrase, first we
need to identify sentential paraphrases in the train-
ing dataset. Intuitively, if two paraphrased queries
have the same meaning, they must share the same
logical form. However, in the original training
set T there are not many paraphrases, since of-
ten logical forms differ only by a constant. In-
stead, if we consider the argument replaced train-
ing set Ta, where such constants have been re-
placed by argument tokens, many identical logical
forms exist. In our second paraphrase identifica-
tion step, using the queries in Ta whose paraphrase
exist, we construct a new paraphrase training set
Tp = {qi

1,q
i
2, l(q

i
1)}

p
i=1 of a given size p, where

qi
1,q

i
2 are paraphrases. An example of such para-

phrase pair is shown in Figure 1.

Figure 3: Illustration of fast encoder fine-tuning pro-
cess in our sequence-to-sequence/tree parser P .

3.2 Sequence-to-sequence/tree with
paraphrase attention

Now we describe our sequence-to-sequence with
paraphrase attention model. Our model consists
of two encoders (with shared parameters), one de-
coder, and one attention layer as shown in Figure
1. Sequence encoders 1 and 2 encode a query and
its paraphrase respectively. During, decoding the
decoder context is initialized from encoder 1 fi-
nal hidden state, however the attention states are
computed using the top hidden states of encoder
2. This enables our model to jointly capture the
semantic dependence between the paraphrase pair.

Training: A key feature of our model is that
the attention network is able to generate atten-
tion signals from both the query, or its paraphrase.

To ensure this, we train our model on a com-
bined dataset Ta

⋃
Tp using a multi-task objective.

For a sample without a paraphrase (q, l(q)) ∈
Ta, we perform forward/backward propagation
identical to sequence-to-sequence with attention
parsers using a single encoder (either 1 or 2 since
they share parameters). For a sample with para-
phrase (q1,q2, l(q1)) ∈ Tp, we perform for-
ward/backward propagation using both encoders,
and use the attention from encoder 2. We use
the overall negative log-likelihood function as our
training objective.

L = − logP (l(q1)|q1,q2)

Figure 2 provides an overview of the data process-
ing steps and training procedure of our new parser.

Inference: During model inference/testing we
only have one user provided query q and no para-
phrase. However, thanks to the shared encoder pa-
rameters, both encoder context and top states can
be computed from this query q. Therefore, during
inference the model essentially acts as a normal
sequence-to-sequence/tree parser.

Fast domain adaptation: For domain adapta-
tion, user provides a OOV query p∗ and its para-
phrase q∗. In end-to-end neural network models it
is straight-forward to fine-tuning the parser P af-
ter adding this new sample (p∗,q∗, l(q∗)) to the
training set. As mentioned before, in previous
sequence-to-sequence parsers such fine-tuning is
slow since it involves updating the entire model
parameters. In our model, a faster alternative is to
fine-tune just the encoder. We can perform this by
using a MSE objective as follows.

L =

|q|∑
t=1

‖h̄t − ĥt‖2 + ‖c̄− ĉ‖2

where {ĥt}|q|t=1, ĉ are the predicted top encoder
states, and context vector respectively; while
{h̄t}|q|t=1, c̄ are their ground-truths. For all training
samples of P, the ground-truths can be computed
by a single forward pass using P. Unfortunately,
in sequence-to-sequence with attention parser, the
ground-truth top encoder states {h̄t}|p

∗|
t=1 , for the

new OOV query p∗, are unknown. This cannot be
computed even from the paraphrase q∗ since they
may have different lengths (example in Figure 1).
In our paraphrase attention model, we can natu-
rally fine-tune the encoder, since the attention is
computed from a paraphrase q∗. Specifically,



98

1. The ground-truth encoder 1 context c̄ is com-
puted by encoding q∗ using encoder 2, since
query p∗ should have the same meaning rep-
resentation as q∗.

2. The ground-truth encoder 2 states {h̄t}|q
∗|

t=1

are also computed by encoding q∗ using en-
coder 2. Since only encoder 2 provides the
attention signal, the different length of query
p∗ is irrelevant.

Figure 3 illustrates the encoder fine-tuning process
for our parser. Note that, so far we have mainly de-
scribed our sequence-to-sequence with paraphrase
attention parser. However we can easily construct
a similar sequence-to-tree with paraphrase atten-
tion parser by simply replacing the sequence de-
coder with the tree decoder in (Dong and Lapata,
2016).

Discussion: Note that, by fine-tuning using a
MSE objective may result in a new context vec-
tor ĉ which is perturbed from the original seman-
tic feature space that represented training queries.
Thankfully, we observe in our experiments that the
intermediate neural network layers are robust to
small perturbations from the context feature space,
and may not result in any significant changes in
final classification output (or accuracy). Such ro-
bustness of intermediate layers have also been ob-
served in works on neural network model com-
pression (Denton et al., 2014; Aghasi et al., 2017;
Kasiviswanathan et al., 2018).

To the best of our knowledge, this is the first
work to use attention from paraphrase to improve
parsing accuracy, and retraining time. Observe
that, we harness accurate paraphrases from the
training dataset itself as opposed to noisy auto-
generated paraphrases from external resource like
PPDB (Ganitkevitch et al., 2013; Dong et al.,
2017), or a domain specific KB (Berant and Liang,
2014) used in recent literature. Moreover, in low
resource languages such external paraphrase re-
source are generally unavailable. In (Ray et al.,
2018) the authors train a paraphrase generator by
first training an auto-encoder, and subsequently
fine-tuning it with user provided paraphrases. In
contrast, our model is trained using paraphrases
identified within the training data even without any
user input. Our model can also be trained end-to-
end, unlike the hybrid parser model of (Ray et al.,
2018).

4 Experiments

In this section we present our evaluation results.
We have the following objectives. First we show
that our new parsers using paraphrase attention
can achieve a competitive or better parsing accu-
racy over previous models on benchmark datasets.
Next, we present the main result that our new mod-
els can be retrained significantly faster to learn
new OOV words/phrases than previous models.

4.1 Datasets

In order to test the performance of our model
we consider three benchmark semantic parsing
datasets:

1. airline queries dataset (ATIS) with 5,410
queries (4,480 training, 480 validation, 450 test)
2. geographical queries dataset (GEO) with 880
queries
3. job queries dataset (JOB) with 640 queries

For ATIS dataset we use the standard train-test
split for our evaluation. However, for GEO and
JOB datasets, owing to their small size, the parsing
accuracy can vary significantly depending on the
chosen split. Hence, in these smaller datasets we
perform a 10 fold validation similar to (Wong and
Mooney, 2007; Lu et al., 2008; Ray et al., 2018).

To test domain adaptation, we use OOV datasets
used in (Ray et al., 2018) referred as PARA-
ATIS and PARA-GEO datasets respectively (ex-
amples in Table 1). These datasets were con-
structed from benchmark datasets by substituting
words w in the benchmark queries by synonymous
OOV words and phrases s ∈ Syn(w), to gener-
ate candidate paraphrases. For a given train–test
split, the dataset is in the form of tuple pairs (word
w, synonym s, Ttrn(w, s), Ttst(w, s)), where
Ttrn(w, s)/Ttst(w, s) denotes the subset of queries
from original train/test set where w has been re-
placed by s. The PARA-GEO dataset contains
180 word–synonym pairs and 5,783 OOV queries;
while the PARA-ATIS dataset contains 161 word–
synonym pairs and 13,501 OOV queries. Note
that, the crowdsourced benchmark datasets con-
tain typical queries that most users may ask. How-
ever, in order to test domain adaptation we need
to consider atypical queries which are rare over-
all, but important for a particular user or locale.
Hence, these OOV datasets containing atypical
queries are suitable for this evaluation task.
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Benchmark Original benchmark query q∗ OOV substituted query p∗ Logical form l(q∗) OOV dataset

ATIS list all flights departing from ap0 list all flights taking off from ap0 (λ $0 (and (flight $0) (from $0 ap0))) PARA-ATIS
ATIS i need a flight from ci0 to ci1 i require a flight from ci0 to ci1 (λ $0 (and (flight $0) (from $0 ci0) (to $0 ci1))) PARA-ATIS

GEO how many big cities are in s0 how many large cities are in s0 (count (λ $0 (and (major $0) (city $0) (loc $0 s0)))) PARA-GEO

GEO which state has the highest elevation which state has the highest
natural elevation (argmax (λ $0 (state $0)) (λ $1 (elevation $1))) PARA-GEO

Table 1: Table showing examples from OOV datasets PARA-GEO and PARA-ATIS which were constructed from
the benchmark GEO and ATIS datasets (Ray et al., 2018). Underlined words in the original benchmark queries are
replaced with synonymous out-of-vocabulary words and phrases.

Model 10 fold accuracy %

COCKTAIL (Tang and Mooney, 2001) 79.40
argument transfer (Ray et al., 2018) 88.59
seq-to-seq + attention (our baseline) 93.75
seq-to-tree + attention (our baseline) 95.31

seq-to-seq + paraphrase attention (our model) 95.31
seq-to-tree + paraphrase attention (our model) 95.31

Table 2: Comparison of best 10 fold accuracy of all
models on benchmark JOB dataset. In our paraphrase
attention models we use p = 50 paraphrase pairs.

4.2 Methodology

First we train our parsers P on the combined
dataset Ta ∪ Tp, where Ta correspond to the ar-
gument replaced benchmark dataset, and Tp con-
tain p1 randomly sampled paraphrase pairs from
the dataset Ta. We compare the parsing accuracy
(computed as exact logical form match) on the
test set with baseline attention based sequence-to-
sequence and tree models by (Dong and Lapata,
2016). Next, to evaluate retraining performance,
we follow the same experimental setup as (Ray
et al., 2018). We fine-tune the parser P adding
at most 5 samples (i.e. user provides 5 paraphrase
pairs) from OOV training set Ttrn(w, s) to train-
ing set of P, and test accuracy on the correspond-
ing OOV test set Ttst(w, s) (referred as the re-
trained accuracy). Within an appropriate retrain-
ing period, let tb be the minimum time required
by the baseline model to achieve best retrained
accuracy, and tp be the minimum time required
by our paraphrase attention model to achieve the
same retrained accuracy. We compute the retrain-
ing speedup tb/tp achieved by our parser over
baseline. An alternative evaluation methodology
involves crowdsourcing sentence level paraphrase
datasets (from benchmark dataset) and split it into
train–test sets containing different sentential para-
phrases. However, such evaluation is less in-
terpretable, since it is not clear exactly which
words/phrases are leaned by the model. We defer
this for our future work.

1The number of paraphrase pairs p is treated as an addi-
tional hyperparameter.

Model 10 fold accuracy %

λ-WASP (Wong and Mooney, 2007) 86.60
generative model + EM (Lu et al., 2008) 81.80
paraphrase + arg. transfer (Ray et al., 2018) 88.30
seq-to-seq + attention (our baseline) 89.77
seq-to-tree + attention (our baseline) 90.91

seq-to-seq + paraphrase attention (our model) 90.91
seq-to-tree + paraphrase attention (our model) 92.05

Table 3: Comparison of best 10 fold accuracy of all
models on benchmark GEO dataset. In our paraphrase
attention models we use p = 150 paraphrase pairs.

4.3 Parameters

We implemented our models using Torch 7. All
baseline model hyper-parameters were tuned on
validation data. To test the performance gain, our
models use the same hyper-parameters as the base-
line model. To compare retraining time, all models
were trained/retrained on a server with NVIDIA
Tesla K80 GPU. At the encoder, we initialize all
embedding vectors (including OOV words) with
GLOVE embeddings (Pennington et al., 2014).
RMSProp was used as the optimization algorithm.
We restrict the embedding dimension, and hidden
state dimension d ∈ {100, 200, 300}. The learning
rate was chosen in the range [0.0125, 0.005], and
dropout rates among {0.5, 0.4, 0.3, 0.2}. For para-
phrase attention models we choose the number of
paraphrase pairs p ∈ {50, 100, 150, 200, 250}. For
the baseline model, we use the code made avail-
able by the authors of (Dong and Lapata, 2016).

Model test accuracy %

online CCG (Zettlemoyer and Collins, 2007) 84.60
seq-to-seq + attn + copy (Jia and Liang, 2016) 83.30
seq-to-seq + attn (Dong and Lapata, 2016) 84.20
seq-to-tree + attn (Dong and Lapata, 2016) 84.60
seq-to-seq + attn + arg. transfer (Ray et al., 2018) 85.27
coarse2fine (Dong and Lapata, 2018) 87.70
seq-to-seq + attention (our baseline) 85.71
seq-to-tree + attention (our baseline) 82.59

seq-to-seq + paraphrase attention (our model) 86.16
seq-to-tree + paraphrase attention (our model) 82.37

Table 4: Comparison of best test accuracy of all models
on benchmark ATIS dataset. In our paraphrase atten-
tion models we use p = 200 paraphrase pairs.
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(a)

(b)

Figure 4: Comparison of the average retrained accu-
racy of all sequence-to-sequence based models with
retraining time in (a) PARA-ATIS (b) PARA-GEO
datasets. We show in brackets the part of the model
being fine-tuned; where Encoder=E, Decoder=D, At-
tention=A. Our paraphrase attention model with en-
coder fine-tuning seq2seq + para attn (E), reaches
the retrained accuracy of baseline seq-to-seq + atten-
tion model 4X faster in PARA-ATIS, and 9X faster in
PARA-GEO dataset.

4.4 Results

First, we compare the accuracy of our models to
baseline sequence-to-sequence/tree with attention
parsers (Dong and Lapata, 2016). Table 2 com-
pares the best 10 fold accuracy achieved by all
models in JOB dataset, while Table 3 compares the
same in GEO dataset. For our paraphrase attention
models we randomly choose p = 50 paraphrase
pairs in JOB dataset, and p = 150 paraphrase pairs
in GEO dataset. We observe our paraphrase atten-
tion parsers to outperform most baseline models
achieving state-of-the-art 10 fold accuracy. In Ta-
ble 4 we report the best test accuracy achieved in
ATIS dataset. In this dataset we use p = 200 para-
phrase pairs for our paraphrase attention models.
Our sequence-to-sequence + paraphrase attention
model achieves a highly competitive accuracy of

86.16% on the benchmark test set outperforming
all baselines except (Dong and Lapata, 2018). We
remind that, our models do not use any external
data compared to baselines since the paraphrases
are harnessed from the training data itself.

(a)

(b)

Figure 5: Comparison of the average retrained accu-
racy of all sequence-to-tree based models with retrain-
ing time in (a) PARA-ATIS (b) PARA-GEO datasets.
We show in brackets the part of the model being fine-
tuned; where Encoder=E, Decoder=D, Attention=A.
Our paraphrase attention model with encoder fine-
tuning seq2tree + para attn (E), reaches the retrained
accuracy of baseline seq-to-tree + attn model 3X faster
in PARA-ATIS, and 5X faster in PARA-GEO dataset.

Next, we present our main domain adaptation
results by comparing the retraining performance
of all models using the OOV datasets. In Fig-
ure 4, we plot the average retrained accuracy ver-
sus retraining time for PARA-ATIS and PARA-
GEO datasets using sequence-to-sequence based
models. The average retrained accuracy is com-
puted on the OOV test set Ttst(w, s), and fur-
ther averaged over all word–synonym pairs in
this dataset. We observe that, our sequence-
to-sequence + paraphrase attention model with
fast encoder fine-tuning (referred as seq2seq+para
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attn (E)), achieves the maximum retrained accu-
racy of baseline sequence-to-sequence + atten-
tion model (denoted as seq2seq+attn (E,D,A)) 4X
faster in PARA-ATIS, and 9X faster in PARA-
GEO dataset. The reference accuracy denotes the
accuracy of the original parser P, on the subset of
test queries from which the OOV test set Ttst(w, s)
was obtained, and acts as a soft upper bound on
retrained accuracy. Ideally, the fine-tuned parser
P ′ should achieve retrained accuracy comparable
to this target reference. In PARA-GEO dataset,
our model achieves accuracy close to the refer-
ence. As discussed in Section 3, the baseline
parser can also be fine-tuned faster by freezing
encoder parameters, and retraining only the de-
coder + attention layers. This however achieves a
poor retrained accuracy as shown in Figure 4 (de-
noted as seq2seq+attn (D,A)) since proper encoder
representations corresponding to OOV words are
not learned. In Figure 5 we compare the re-
training performance of all sequence-to-tree based
models. We again observe that sequence-to-tree
with paraphrase attention model achieves max-
imum retrained accuracy of baseline model 3X
faster in PARA-ATIS, and 5X faster in PARA-
GEO dataset.

Finally, in Figure 6 we plot the average retrain-
ing time with epochs, for all sequence-to-sequence
models. As expected, our paraphrase attention
model with fast encoder fine-tuning (seq2seq +
para attn (E)) is the fastest, and it shows a runtime
speedup of 3X-4X over baseline models in both
OOV datasets. When we fine-tune the entire para-
phrase attention model, this too takes similar run-
time as the baseline (with full model fine-tuning).
When the baseline model is fine-tuned with frozen
encoder parameters, it is relatively faster since the
gradients need not be back-propagated to the en-
coder. However, as shown earlier in Figure 4, this
model achieves very poor retrained accuracy. Note
that, it is possible to fine-tune the baseline model
with frozen decoder + attention layers, updating
only encoder parameters. However, this is not ex-
pected to be significantly faster than full model
fine-tuning, since it still needs to compute all de-
coder and attention gradients in order to back-
propagate the gradients to the encoder.

5 Conclusion

Post-deployment domain adaptation of intelligent
agent to better understand user and locale spe-
cific vocabulary require frequent retraining of

(a)

(b)

Figure 6: Figure showing the average runtime of all
sequence-to-sequence models with retraining epochs in
(a) PARA-ATIS (b) PARA-GEO datasets. We show
in brackets the part of the model being fine-tuned;
where Encoder=E, Decoder=D, Attention=A. Our
paraphrase attention model, with fast encoder fine-
tuning, achieves a 3X-4X runtime speedup over base-
line seq-to-seq + attention model in both dataset.

its semantic parser. In this paper, we propose
novel paraphrase attention based sequence-to-
sequence/tree models for semantic parsing, which
enables near real-time domain adaptation. Our
parsers can be retrained quickly by fine-tuning
just the encoder network; which was not possi-
ble in previous attention based parsers. On OOV
datasets our parsers are shown to achieve target
retrained accuracy over 3-9X faster than baseline
parsers. Moreover, by jointly learning the seman-
tic relationship between paraphrases within the
model, our parsers can achieve better or compara-
ble parsing accuracy to previous models on bench-
mark datasets. Our models can also be easily
adapted to transformer based sequence networks,
which outperform recurrent networks for many
NLP tasks (Vaswani et al., 2017; Devlin et al.,
2019), as shown recently.
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