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Abstract

Active learning (AL) for machine translation
(MT) has been well-studied for the phrase-
based MT paradigm. Several AL algorithms
for data sampling have been proposed over
the years. However, given the rapid advance-
ment in neural methods, these algorithms have
not been thoroughly investigated in the con-
text of neural MT (NMT). In this work, we
address this missing aspect by conducting a
systematic comparison of different AL meth-
ods in a simulated AL framework. Our exper-
imental setup to compare different AL meth-
ods uses: i) State-of-the-art NMT architecture
to achieve realistic results; and ii) the same
dataset (WMT’13 English-Spanish) to have
fair comparison across different methods. We
then demonstrate how recent advancements
in unsupervised pre-training and paraphrastic
embedding can be used to improve existing
AL methods. Finally, we propose a neural ex-
tension for an AL sampling method used in
the context of phrase-based MT - Round Trip
Translation Likelihood (RTTL). RTTL uses a
bidirectional translation model to estimate the
loss of information during translation and out-
performs previous methods.

1 Introduction

Active learning (AL) is an iterative supervised
learning procedure where the learner is able to
query an oracle for labeling new data points. Since
the learner chooses the data points for annotation,
the amount of labeling needed to learn a concept
can be much lower than annotating the whole un-
labeled dataset (Balcan et al., 2009). This ap-
proach is useful in low-resource scenarios where
unlabeled data is abundant but manual labeling is
expensive. AL has been successfully applied to
many areas of NLP like classification, sequence
labeling, spoken language understanding (Cohn
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et al., 1994; Guo and Greiner, 2007; Dagan and
Engelson, 1995; Settles and Craven, 2008; Tur
et al., 2005) as well as machine translation (MT)
(Ambati, 2011; Haffari et al., 2009; Eck, 2008;
Peris and Casacuberta, 2018; Zhang et al., 2018).
In MT, most of the AL methods have been investi-
gated under the phrase-based paradigm. Although
neural MT has dominated the field (Barrault et al.,
2019), there has only been limited effort to in-
vestigate and compare existing AL algorithms in
this newer paradigm. The few recently published
papers in this direction (Peris and Casacuberta,
2018; Zhang et al., 2018) use LSTM-based MT
systems, whereas, the latest state-of-the-art sys-
tems are based on the Transformer architecture
(Vaswani et al., 2017). Moreover, these papers ei-
ther investigate different algorithms of the same
class or compare only a handful of methods from
different classes. Thus a global picture showing
the effect of different AL methods on the same
dataset for the state-of-the-art (SotA) MT system
has been missing.

In this work, we fill this missing gap by per-
forming a comprehensive evaluation of different
AL algorithms on a publicly available dataset
(WMT’13) using the SotA NMT architecture. To
make our analysis thorough, we take into account
different evaluation metrics to avoid any bias aris-
ing because of similarity between the evaluation
metric and some components of the AL algorithm.
Finally, we propose two extensions of existing
AL algorithms. One leverages recent advances
in paraphrastic embeddings (Wieting and Gimpel,
2018) and other is based on round-trip transla-
tion - a neural variant of the approach proposed
in phrase-based MT (Haffari et al., 2009). Both
of these approaches outperform existing methods
with the latter showing the best results.
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2 Active Learning Framework

We simulate AL in a batch setup because it is more
practical to send batches of data for manual trans-
lation rather than a single sentence at disjoint in-
tervals of time. Algorithm 1 summarizes the pro-
cedure. It expects: i) a labeled parallel corpus (L),
which is used to train the NMT system (M) ; ii) an
unlabeled monolingual corpus (U), which is used
to sample new data points for manual translation;
iii) a scoring function (ψ), which is used to es-
timate the importance of data points in (U); and
iv) batch size (B), which indicates the number of
data points to sample in each iteration.1 In prac-
tice, the AL algorithm will iterate until we exhaust
the budget for annotation (step 2). However, in
our simulation we already have reference transla-
tions for all the unlabeled data points (see Foot-
note 1), therefore, we iterate until we exhaust all
the data points in U . In each iteration, we first
train an NMT system from scratch using L (step
3). We then score all the sentences in U with ψ that
takes in to account L, U , andM (step 4-6). The ψ
function is a key component in all AL algorithms,
which is discussed in detail along with its variants
in the next section. We then select the highest scor-
ing B sentences for manual translation (step 7-8).
These sentences are removed from U (step 9), and
added to L along with their reference translations
(step 10). The algorithm then proceeds to step 2
for the next round.

Algorithm 1 Batch Active Learning for NMT
1: Given: Parallel data L, Monolingual source

language data U , Sampling strategy ψ(·),
Sampling batch size B.

2: while Budget 6= EMPTY do
3: M = TrainNMTsystem(L) ;
4: for x ∈ U do
5: f(x) = ψ(x,U ,L,M);
6: end for
7: XB = TopScoringSamples(f(x),B);
8: YB = HumanTranslation(XB) ;
9: U = U −XB;

10: L = L ∪ {XB, YB} ;
11: end while
12: return L

1In our simulation, U is basically the source side of a par-
allel corpus L′ (L′ 6= L), and to label new data points from
U we simply extract the corresponding references from L′
rather than asking a human annotator.

3 Methodology

In this section we outline the AL methods - i.e.
the scoring functions (ψ), which have been pro-
posed to work best for NMT, SMT and various
sequence labeling tasks (Peris and Casacuberta,
2018; Zhang et al., 2018; Ambati, 2011; Haffari
et al., 2009; Settles and Craven, 2008). These
approaches can be broadly categorized into two
classes: model-driven and data-driven.

Model-driven approaches sample instances
based on the model, the labeled dataset and the un-
labeled dataset, i.e. ψ(x, . . . ) = ψ(x,M,U ,L).
These methods receive direct signal from the
model, which can potentially help in sampling
more sentences from regions of the input space,
where the model is weak. We first describe several
model-driven approaches from the above works,
all of which sample instances where the modelM
is least certain about the prediction. We then pro-
pose Round Trip Translation Likelihood, a neu-
ral extension of an existing method, which outper-
forms other model-driven methods substantially.

Data-driven approaches on the other hand only
rely on U and L to sample sentences, i.e.
ψ(x, . . . ) = ψ(x,U ,L). Since these methods are
model independent, model training in step 3 of Al-
gorithm 1 can be ignored, making these methods
computationally faster. We summarize various ex-
isting data-driven approaches from MT literature
and demonstrate how these approaches can bene-
fit considerably from sentence embeddings specif-
ically trained for capturing semantic similarity.

3.1 Model-Driven

In this class of methods, we explore uncertainty
sampling (Lewis and Catlett, 1994) strategies that
have been widely used in MT. In this strategy an
unlabeled example x is scored with some measure
of uncertainty in the probability distribution over
the label classes assigned by the model pM(y|x).
In the case of classification tasks, using the en-
tropy H(pM(y|x)) is the most obvious choice,
but in the case of structure prediction tasks, the
space of all possible labels is usually exponen-
tial, making entropy calculation intractable. Set-
tles and Craven (2008) found two heuristics: Least
Confidence and N-best Sequence Entropy, which
seemed to be the most effective estimators of
model uncertainty across for two sequence label-
ing tasks. In addition to these, we also investigate
Coverage Sampling (Peris and Casacuberta, 2018)
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proposed for interactive NMT, and our version of
Round Trip Translation Likelihood inspired from
the work in phrase-based MT (Haffari et al., 2009).

3.1.1 Least Confidence (LC)
This method estimates the model uncertainty of
a source sentence x by averaging token-level log
probability of the corresponding decoded transla-
tion ŷ. In our formulation, we further add length
normalization to avoid any bias towards the length
of the translations.

ψLC(x,M) = − 1

L
log pM(ŷ|x), (1)

where L denotes the length of ŷ.

3.1.2 N-best Sequence Entropy (NSE)
Another tractable approximator of model uncer-
tainty is computing the entropy of the n-best hy-
pothesis. Corresponding to a source sentence x,
let N = {ŷ1, ŷ2 . . . ŷn} denote the set of n-best
translations. The normalized probability P̂ of each
hypothesis can be computed as:

∀ŷ ∈ N , P̂ (ŷ) =
pM(ŷ|x)∑
ŷ∈N pM(ŷ|x)

. (2)

Each source sentence is scored with the entropy of
the probability distribution P̂ :

ψNSE(x,M) = −
∑
ŷ∈N

P̂ (ŷ) log P̂ (ŷ). (3)

3.1.3 Coverage Sampling (CS)
Under-translation is a well known problem in
NMT (Tu et al., 2016), wherein not all source to-
kens are translated during decoding. The attention
mechanism in LSTM based encoder-decoder ar-
chitecture (Bahdanau et al., 2015) can model word
alignment between translation and source to some
degree. The extent of coverage of the attention
weights over the source sentence can be an indi-
cator of the quality of the translation. Peris and
Casacuberta (2018) proposed Coverage Sampling
(CS), which uses this coverage to estimate uncer-
tainty. Formally:

ψCS(x,M) = −
∑|x|

j=1 log(min(
∑|ŷ|

i=1 αi,j , 1))

|x|
(4)

where x and ŷ are the source sentence and the de-
coded translation respectively, |·| denotes the num-
ber of tokens and αi,j denotes the attention proba-
bility on the jth word of x while predicting the ith

word of the ŷ.

3.1.4 Round Trip Translation Likelihood
(RTTL)

Ott et al. (2018) showed that even a well trained
NMT model does not necessarily assign higher
probabilities to better translations. This behavior
can be detrimental for methods like LC in which
sentences with highly probable translations are not
selected for human translations. In this scenario
we assume that a low quality translation will lose
some source-side information and it will become
difficult to reconstruct the original source from
this translation. To this end, we train models M
and Mrev to translate from source language to
target language and the reverse direction respec-
tively. Mrev is identical to M except that it is
trained on data obtained by flipping source and tar-
get sentences in L. Formally, for any source sen-
tence x of length L, we first translate it to a target
sentence ŷ usingM. Then we translate ŷ back us-
ing Mrev, but instead of decoding, we compute
the probability of the original source sentence x
and use it as a measure of uncertainty.

ŷ ≈ argmax
y

pM(y|x). (beam search) (5)

ψRTTL(x,M,Mrev) = −
1

L
log pMrev(x|ŷ).

(6)

RTTL is inspired by one of the methods proposed
by Haffari et al. (2009), but differs from it in terms
of modeling uncertainty. In their formulation, x
is first translated to ŷ like us but instead of scor-
ing the likelihood of x given ŷ, underMrev, they
useMrev to translate ŷ to a new source sentence
x̂ and measure uncertainty using sentence-level
BLEU between x and x̂. They showed that their
approach did not perform better than a random
baseline, however, in our experiments, RTTL out-
performs the random baseline as well as all other
model-driven methods. We suspect that this might
be due to model log probability being a much finer
grained metric than sentence-level BLEU.

3.2 Data-Driven
The data-driven approaches usually score sen-
tences based on optimizing either one or a trade-
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off between the following two metrics:

• Density: This metric scores sentences based
on how similar they are with respect to the en-
tire data in U . In other words, sentences with
higher likelihood under the data distribution
of U are scored higher. This strategy assumes
that the test set has the same distribution as U ,
which makes achieving good translations on
the dense regions of U more important.

• Diversity: This metric compliments the
above and encourages sampling sentences
which are less similar to the data in L. This
eventually leads to L containing a diverse set
of sentences, leading to better generalization
performance of modelM.

A key component in the above two metrics is
how the similarity between two sentences is mea-
sured. We select the two common practices in lit-
erature are using n-gram overlap and cosine sim-
ilarity between sentence embeddings. In the sec-
tions below, we describe the formulation of var-
ious data-driven methods based on how sentence
similarity is measured.

3.2.1 N-gram Overlap
Ambati (2011) and Eck (2008) investigated den-
sity and diversity metrics using n-gram overlap
for phrase-based MT and concluded that the best
approach is to combine both of them together in
the scoring function. Therefore, we select Den-
sity Weighted Diversity method from the former
and Static Sentence Sorting from the latter in our
study. Both methods use the following notations:

• I: denotes the indicator function,

• n-gram(x): denotes the multiset of n-grams
in a sentence (or a set of sentence) x,

• #(a|X ): denotes the frequency of an n-gram
a in n-gram(X ).

Density Weighted Diversity (DWDS) com-
bines the density and diversity metrics using a har-
monic mean. Equation 7 and 8 respectively define
the density (α) and diversity (β) metrics, which
are combined together in Equation 9 to obtain the
DWDS scoring function.

α(x,U ,L) =

∑
s∈n-gram(x)

#(s|U)e−λ#(s|L)

|n-gram(x)||n-gram(U)|
(7)

Here, λ is used as a decay parameter to give dis-
count the n-grams which have already been seen
in the bilingual data.

β(x,U ,L) =

∑
x∈n-gram(x)

I(s /∈ n-gram(L))

|n-gram(x)|
(8)

ψDWDS(x,U ,L) =
α(x,U ,L)β(x,U ,L)

kα(x,U ,L) + β(x,U ,L)
(9)

Here, k controls the relative weighting of α and β.

Static Sentence Sorting (SSS) is a much sim-
pler formulation which samples sentences from
dense regions of U , containing n-grams which are
absent in L.

ψSSS(x,U ,L) =

∑
s∈n-gram(x)

I(s /∈ L)#(s|U)

|x|
(10)

3.2.2 Cosine Similarity
Zhang et al. (2018) proposed S-Score (SS) to use
cosine similarity between sentence embeddings
rather than n-gram overlap as a measure of sen-
tence similarity. S-Score mainly relies on the
diversity metric for selection. It samples sen-
tences from U which are furthest from their near-
est neighbors in L. Essentially sentences which
are semantically different from all the sentences in
L would be selected. Let e(x) denote the embed-
ding vector of the sentence x and cos(·, ·) denote
the cosine similarity, then S-Score is defined as:

ψSS(x,L) = min
y∈L

cos(e(x), e(y)) (11)

Zhang et al. (2018) used learnt sentence em-
beddings starting from fasttext (Bojanowski
et al., 2017) and fine-tuned using Paragraph Vec-
tor (Le and Mikolov, 2014).

To better understand how recent advances in un-
supervised pre-training can benefit active learn-
ing, we perform an ablation study of the S-Score
method with varying the source of embeddings.
We experiment with the following three increas-
ingly expressive sentence representations:

Bag of words (SS-BoW): This is the simplest
method in which the sentence embeddings are
computed by taking the average of all the word
embeddings. The word embeddings are obtained
from the fasttext tool.
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Contextual embedding (SS-CE): In this
method, we leverage unsupervised pre-training
techniques like BERT which have significantly
advanced the SotA in NLP (Devlin et al., 2019).
Specifically, we train the Transformer Encoder
using the Masked Language Modeling (MLM)
objective proposed in BERT (Devlin et al., 2019).
We then compute the sentence embedding by
averaging outputs from the trained encoder
corresponding to all the sentence tokens.

Paraphrastic embedding (SS-PE): The sen-
tence embedding methods listed above and those
used by Zhang et al. (2018) are all trained with
the objective of predicting tokens based on their
context. While this allows the embeddings to be
somewhat correlated with the semantics, explic-
itly fine-tuning the embeddings on semantic simi-
larity can be helpful for our use case. Therefore,
we fine-tune the contextual embedding model dis-
cussed above on the paraphrase task as proposed
in Wieting and Gimpel (2018).

Wieting and Gimpel (2018) created a
dataset2containing pairs of English paraphrases
by back-translating the Czech side of an English-
Czech corpus. We fine-tune the embeddings of the
paraphrase pairs to be close to each other using a
contrastive loss. We specifically choose this task
because it does not utilize any supervised human
annotated corpus for semantic similarity while
achieving competitive performance on SemEval
semantic textual similarity (STS) benchmarks.

We show that using contextual sentence em-
beddings does not give any noticeable gains over
simply using bag of words embeddings, however
fine-tuning the embeddings on semantic similarity
tasks improves the performance of S-Score sub-
stantially, enabling it to outperform other data-
driven approaches.

4 Experiments

4.1 Dataset
Our setup is based on the WMT’13 English-
Spanish news translation task. We use the Eu-
roparl and News Commentary Corpus consisting
of ∼ 2M sentence pairs. We randomly sample
10% of the whole bilingual data to create the base
parallel dataset L (∼ 200K) which is used to train

2https://drive.google.com/file/d/
19NQ87gEFYu3zOIp_VNYQZgmnwRuSIyJd/view?
usp=sharing

an initial NMT model. We then randomly sam-
ple 50% from the remaining data to the unlabeled
dataset U (∼ 1M) used for simulating the AL ex-
periments. Note that we do the random sampling
just once and fix L and U for all the experiments
for fair comparison. Since we experiment in a sim-
ulated AL framework, the target sentences in U are
hidden while scoring source sentences with differ-
ent AL strategies. Once the AL algorithm samples
a batch B containing 100k source sentences from
U , the sampled sentences along with their corre-
sponding “hidden” translations are added toL. We
use newstest-2012 as the validation set and
newstest-2013 as the test set, each consist-
ing of about 3000 sentence pairs. For training the
contextual embeddings, we use the English News
Crawl corpus from years 2007-17, consisting of
∼ 200M sentences. For preprocessing, we apply
the Moses tokenizer (Koehn et al., 2007) without
aggressive hyphen splitting and with punctuation
normalization. We learn a joint source and target
Byte-Pair-Encoding (BPE, Sennrich et al. (2016))
on the whole bilingual data with 32k merge oper-
ations.

4.2 Training and Model Hyperparameters

For the NMT models in all the experiments, we
use the base Transformer configuration with 6
encoder and decoder layers, 8 attention heads,
embedding size of 512, shared input and output
embeddings, relu activation function and sinu-
soidal positional embeddings. We train with a
batch size of 2000 tokens on 8 Volta GPUs us-
ing half-precision for 30 epochs. Furthermore we
use Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 0.001, β1 = 0.9, β2 = 0.98,
learning rate warmup over the first 4000 steps and
inverse square root learning rate scheduling. We
also apply dropout and label smoothing of 0.1
each. We average the weights of 5 checkpoints
with the best validation loss and run inference with
a beam size of 5.

While training the Transformer Encoder using
the Masked Language Modeling (MLM) objec-
tive, we switch to the big configuration with an
embedding size of 1024 and 16 attention heads.
The masking probabilities are the same as de-
scribed in Devlin et al. (2019), however instead
of pair of sentences, we use text streams span-
ning across multiple sentences (truncated at 256
tokens) (Lample and Conneau, 2019). This model

https://drive.google.com/file/d/19NQ87gEFYu3zOIp_VNYQZgmnwRuSIyJd/view?usp=sharing
https://drive.google.com/file/d/19NQ87gEFYu3zOIp_VNYQZgmnwRuSIyJd/view?usp=sharing
https://drive.google.com/file/d/19NQ87gEFYu3zOIp_VNYQZgmnwRuSIyJd/view?usp=sharing
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is trained using 64 Volta GPUs, each processing
a batch of 128 segments. We use a learning rate
of 0.0003, with other hyperparameters similar to
the NMT model. The above model is fine-tuned
on the task of Paraphrastic Sentence Embeddings.
Specifically we use a margin of 0.4, learning rate
0.0005, batch size 3500 tokens and megabatches
consisting of 32 batches. We train for 5 epochs
using 8 Volta GPUs. Lastly for DWDS, we set
k = 1, λ = 1. For both the n-gram based methods,
we consider up to tri-grams. In case of NSE, we
restrict the n-best list to be of size 5. Our baseline
is a system that randomly selects sentences from
the unlabeled data.

5 Results and Discussion

In this section, we compare the performance of
different AL algorithms of each class: model-
driven and data-driven. For a comprehensive com-
parison, we evaluate the best approaches of both
classes on:

• Various MT evaluation metrics. N-gram
overlap based metrics like BLEU (Papineni
et al., 2002) might be biased towards AL
methods based on n-gram similarity (DWDS,
SSS). For a fair comparison, we evaluate
the AL approaches on BLEU, TER (Snover
et al., 2006), which is based on edit distance,
and BEER (Stanojević and Sima’an, 2015),
which uses a linear model trained on human
evaluations dataset.

• Out-of-domain evaluation sets. Since AL
algorithms are sensitive to the labeled (L) and
unlabeled data (U) distributions, it is possi-
ble that some AL algorithms perform worse,
when evaluated on out-of-domain test sets.
To compare the robustness of different AL
approaches, we evaluate them on a test set
sourced from biological domain, which is
very different from the training data distribu-
tion (parliament speech and news).

• Evaluation sets without any translationese
source sentences. Translationese refers to
the distinctive style of sentences which are
translated by human translators. These sen-
tences tend to be a simplistic, standardized,
explicit and lack complicated constructs like
idioms etc. These properties might make
it easy to reconstruct source sentences from

the translationese domain, hence discourag-
ing them to be sampled by RTTL. Presence
of translationese source sentences in the test
sets might unfairly penalize RTTL.

5.1 Model-Driven Approaches

Figure 1 and Table 1 compares the results of
model-driven approaches and random sampling
baseline. We observe that CS performs worse than
the random baseline. This is in contrast to the
results reported in Peris and Casacuberta (2018)
where it is amongst the best performing methods.
The performance of CS is dependent upon the as-
sumption that attention probabilities are good at
modeling word alignments. While this assump-
tion is valid in the case Peris and Casacuberta
(2018), which uses attentional sequence-sequence
models with LSTMs/GRUs, it breaks down in
the presence of multi-layered, multi-headed atten-
tion mechanism of the Transformer architecture.
Upon closer inspection, we found that this method
sampled very long sentences with rare words and
many BPE splits, resulting in sub-optimal perfor-
mance. LC has slightly better performance than
NSE, while RTTL outperforms all the other meth-
ods consistently by a non-trivial margin. This
demonstrates that our proposed extension is an ef-
fective approximation of model uncertainty.

Figure 1: Results of model-driven approaches.

5.2 Data-Driven Approaches

Figure 2 shows the results of n-gram based data-
driven approaches. As illustrated in Figure 2,
these computationally inexpensive methods can
consistently outperform the random baseline by a
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Table 1: Results for Model-Driven and Data-Driven approaches. We report the average BLEU scores across 20
active learning iterations. Best methods within each category are boldened.

Random Model-Driven Data-Driven (N-Gram) Data-Driven (Embedding)
LC CS NSE RTTL DWDS SSS SS-BoW SS-CE SS-PE

29.54 30.06 29.35 29.93 30.29 30.22 30.21 29.84 30 30.17

large margin. In spite of modeling density and di-
versity in very different ways, both the methods
achieve similar performance.

Figure 3 shows the results of embedding based
data-driven approaches (SS) corresponding to dif-
ferent sources of embeddings. It is noteworthy
that using bag-of-words (SS-BoW) and contextual
embeddings (SS-CE) results in roughly the same
performance, barely beating the random baseline.
However, fine-tuning the contextual embeddings
on the paraphrase task (SS-PE), brings about a
large performance gain, emphasizing the effective-
ness of fine-tuning on semantic similarity tasks for
AL.

The above trends are inline with the results re-
ported in Table 1 as well.

Figure 2: Results of data-driven approaches based on
n-gram similarity.

5.3 Performance on Different Evaluation
Metrics

Figure 4 compares the top three AL methods
(RTTL, DWDS, SS-PE) using BLEU. All three
methods are quite competitive, with RTTL and SS-
PE performing slightly better than DWDS in the
beginning. Figures 4 and 5 show consistent per-
formance trends using all the three metrics. It is
worth noting from figure 4, that all the methods

Figure 3: Results of the SS method with various
sources of embeddings.

are able to achieve the same BLEU (as with using
the whole bitext) with using only 70% of the bi-
text. This outlines that AL can be quite effective
for NMT.

Figure 4: Results of best performing approaches with
BLEU.
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Figure 5: Results of best performing approaches with
BEER (B-X) and TER (T-X) evaluation metrics.

5.4 Evaluation on Test Sets Without
Translationese

Zhang and Toral (2019) brought to light the ef-
fect of having translationese in the source side of
the evaluation sets used in WMT over the years.
The situation is even worse for newstest2013
which contains translations of sentences from 5
different languages, in the source side. We create a
new test set, by collecting ∼ 2000 sentences from
newstest2009-13 except newstest2012
(since we use newstest2012 as validation set)
which are originally from English. The BLEU
scores of all the methods are much higher on this
test set corrected for translationese (∼38 BLEU),
as compared to newstest2013 (∼31 BLEU),
however the relative performance trends remain
the same.

5.5 Evaluation on Out-of-Domain Test Sets

Figure 6 shows the results on out-of-domain test
set from the WMT16 Shared Task on Biomedical
Translation. It can be observed from figure 6 that,
while RTTL and DWDS are quite robust to the
test domain, and strongly outperform the random
baseline, there is some degradation in the perfor-
mance of SS-PE.

6 Related Work

Early work on AL for MT includes Ambati (2011);
Eck (2008); Haffari et al. (2009) among others.
These papers investigated the AL approaches for
phrase-based MT systems. Given that the current
SotA MT systems are neural-based, in this work,
we investigate the effectiveness of their proposed
methods in the neural paradigm. Couple of works

Figure 6: Results of the best performing approaches on
Biomedical Translation test set

that did investigate the AL methods for NMT are
Peris and Casacuberta (2018) and Zhang et al.
(2018). Both of these used RNN/LSTM based
NMT architecture, whereas, we use the latest
SotA Transformer in our investigation. Peris and
Casacuberta (2018) used an interactive NMT setup
and mostly focused on model-driven approaches
disregarding data-driven methods. Zhang et al.
(2018) did compare methods from both the classes
but considered only a handful of methods. Our
work is closer to Zhang et al. (2018), but we cover
much a wider spectrum of methods in AL. We
also go one step further and show that the cosine
similarity based methods proposed in Zhang et al.
(2018) are more effective when the embeddings
are optimized for the paraphrase task. As far as we
know, most of the prior work concluded that data-
driven methods outperform model-driven meth-
ods, however, our model-driven RTTL formula-
tion obtains slight gain over the best data-driven
method.

7 Conclusion

In this work, we performed an empirical evalu-
ation of different AL methods for the state-of-
the-art neural MT architecture, a missing aspect
in prior work. We explored two classes of ap-
proaches: data-driven and model-driven, and ob-
served that all the methods outperform a random
baseline, except coverage sampling which relies
on the attention mechanism. Coverage sampling
was shown to be amongst the best approaches in
prior work that used LSTM-based NMT model.
Given Transformer’s more complex attention ar-
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chitecture (multi-headed and multi-layered), it ap-
pears that the attention scores are not reliable
enough to be used with the AL methods.

From our ablation study on using different
sources of embeddings, we discovered that opti-
mizing the embeddings towards a semantic sim-
ilarity task can give significant performance im-
provements in data-driven AL methods. Also, for
the first time, we observed that a model-driven
approach can outperform data-driven methods.
The improvement was more evident in the out-
of-domain evaluation results. This was possible
with our proposed neural extension - RTTL, which
computes the likelihood score of re-constructing
the original source from its translation using a re-
verse translation model. Overall, we observed that
the performance trends of different AL methods
were consistent with all the three evaluation met-
rics (BLEU, BEER, and TER) and on different
evaluation sets (in-domain and out-of-domain).
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