
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo), pages 47–55
Hong Kong, China, November 3, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

47

BERT is Not an Interlingua and the Bias of Tokenization

Jasdeep Singh1, Bryan McCann2, Caiming Xiong2, Richard Socher2

Stanford University1, Salesforce Research2

jasdeep@cs.stanford.edu {bmccann,cxiong,rsocher}@salesforce.com

Abstract

Multilingual transfer learning can benefit both
high- and low-resource languages, but the
source of these improvements is not well
understood. Cananical Correlation Analysis
(CCA) of the internal representations of a pre-
trained, multilingual BERT model reveals that
the model partitions representations for each
language rather than using a common, shared,
interlingual space. This effect is magnified at
deeper layers, suggesting that the model does
not progressively abstract semantic content
while disregarding languages. Hierarchical
clustering based on the CCA similarity scores
between languages reveals a tree structure that
mirrors the phylogenetic trees hand-designed
by linguists. The subword tokenization em-
ployed by BERT provides a stronger bias to-
wards such structure than character- and word-
level tokenizations. We release a subset of
the XNLI dataset translated into an additional
14 languages at https://www.github.
com/salesforce/xnli_extension to
assist further research into multilingual repre-
sentations.

1 Introduction

Natural language processing (NLP) in multilin-
gual settings often relies on transfer learning be-
tween high- and low-resource languages. Word
embeddings trained with the Word2Vec (Mikolov
et al., 2013b) or GloVe (Pennington et al., 2014)
algorithms are trained with large amounts of unsu-
pervised data and transferred to downstream tasks-
specific architectures in order to improve perfor-
mance. Multilingual word embeddings have been
trained with varying levels of supervision. Paral-
lel corpora can be leveraged when data is avail-
able (Gouws et al., 2015; Luong et al., 2015),
monolingual embeddings can be learned sepa-
rately (Klementiev et al., 2012; Zou et al., 2013;
Hermann and Blunsom, 2014) and then aligned

using dictionaries between languages (Mikolov
et al., 2013a; Faruqui and Dyer, 2014), and cross-
lingual embeddings can be learned jointly through
entirely unsupervised methods (Conneau et al.,
2017; Artetxe et al., 2018).

Contextualized word embeddings like CoVe,
ElMo, and BERT (McCann et al., 2017; Peters
et al., 2018; Devlin et al., 2018) improve a wide
variety of natural language tasks (Wang et al.,
2018; Rajpurkar et al., 2016; Socher et al., 2013;
Conneau et al., 2018). A multilingual version
of BERT trained on over 100 languages achieved
state-of-the-art performance across a wide range
of languages as well. Performance for low-
resource languages has been further improved
by additionally leveraging parallel data (Lam-
ple and Conneau, 2019) and leveraging machine
translation systems for cross-lingual regulariza-
tion (Singh et al., 2019).

Prior work in zero-shot machine translation has
investigated the extent to which multilingual neu-
ral machine translation systems trained with a
shared subword vocabulary Johnson et al. (2017);
Kudugunta et al. (2019) learn a form of interlin-
gua, a common representational space for seman-
tically similar text across languages. We aim to
extend this study to language models pretrained
with multilingual data in order to investigate the
extent to which the resulting contextualized word
embeddings represent an interlingua.

Canonical correlation analysis (CCA) is a clas-
sical tool from multivariate statistics (Hotelling,
1992) that investigates the relationships between
two sets of random variables. Singular value and
projection weighted variants of CCA allow for
analysis of representations of the same data points
from different models in a way that is invariant to
affine transformations (Raghu et al., 2017; Mor-
cos et al., 2018), which makes them particularly
suitable for analyzing neural networks. They have

https://www.github.com/salesforce/xnli_extension
https://www.github.com/salesforce/xnli_extension
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Figure 1: Agglomerative clustering of Languages based on the PWCCA similarity between their represenations,
generated from layer 6 of a pretrained multilingual uncased BERT.

been used to explore learning dynamics and rep-
resentational similarity in computer vision (Mor-
cos et al., 2018) and natural language process-
ing (Saphra and Lopez, 2018; Kudugunta et al.,
2019).

We analyze multilingual BERT using pro-
jection weighted canonical correlation analysis
(PWCCA) between representations from semanti-
cally similar text sequences in mulitple languages.
We find that the representations from multilingual
BERT can be partitioned using PWCCA similarity
scores to reflect the linguistic and evolutionary re-
lationships between languages. This suggests that
BERT does not represent semantically similar data
points nearer to each other in a common space as
would be expected of an interlingua. Rather, rep-
resentations in this space are primarily organized
around features that respect the natural differences
and similarities between languages. Our analysis
shows that the choice of tokenization can heav-
ily influence this space. Subword tokenization, in
contrast to word and character level tokenization,
provides a strong bias towards discovering these
linguistic and evolutionary relationships between
languages. As part of our experiments, we trans-
lated a subset of the XNLI data set into an addi-
tional 14 languages, which we publicly release to
assist further research into multilingual represen-
tations.

2 Background and Related Work

2.1 Natural Language Inference and XNLI

The Multi-Genre Natural Language Inference
(MultiNLI) corpus (Williams et al., 2017) uses

data from ten distinct genres of English language
for the the task of natural language inference (pre-
diction of whether the relationship between two
sentences represents entailment, contradiction, or
neither). XNLI (Conneau et al., 2018) is an
evaluation set grounded in MultiNLI for cross-
lingual understanding (XLU) in 15 different lan-
guages that include low-resource languages such
as Swahili and Urdu. XNLI serves as the pri-
mary testbed for bench marking multilingual un-
derstanding. We extend a subset of XNLI to an
additional 14 languages for our analysis.

2.2 CCA

Deep network analyses techniques focusing on
the weights of a network are unable to distin-
guish between several invariances such as permu-
tation and scaling. CCA (Hotelling, 1992) and
variants that use Singular Value Decomposition
(SVD) (Raghu et al., 2017) or projection weight-
ing (Morcos et al., 2018) are apt for analyzing the
activations of neural networks because they pro-
vide a similarity metric that is invariant to permu-
tations and scaling of neurons. These methods
also allow for comparisons between representa-
tions for the same data points from different neural
networks where there is no naive alignment from
neurons of one network to another.

Given a dataset X = {x1, . . . xn}, let L1 ∈
Rm1×n and L2 ∈ Rm2×n be two sets of neu-
rons. Often these sets correspond to layers in neu-
ral networks. CCA transforms L1 and L2 to a>1 L1

and b>1 L2 respectively where the pair of canoni-
cal variables {a1, b1} is found by maximizing the
correlation between the transformed subspaces:
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Translation 
System

[CLS] One of our number will carry out 
your instructions minutely. [SEP] A 

member of my team will execute your 
orders with immense precision.

[CLS] Eine unserer Nummern wird Ihre 
Anweisungen minutiös ausführe. [SEP] 

Ein Mitglied meines Teams wird Ihre 
Aufträge mit immenser Präzision 

ausführen.

[CLS] L’un de nos numéros exécutera 
minutieusement vos instructions. [SEP] 

Un membre de mon équipe exécutera vos 
ordres avec une précision extrême.

CCA CCA CCA

Figure 2: How CCA is used to compare the representations of different languages at different layers in BERT.

ρ1 = max
a∈Rm1 ,b∈Rm2

〈a>L1, b
>L2〉

‖a>L1‖ · ‖b>L1‖

Given the set {a1, b1}, we can find another pair
{a2, b2}:

ρ2 = max
a2∈Rm1 ,b2∈Rm2

〈a>2 L1, b
>
2 L2〉

‖a>2 L1‖ · ‖b>2 L1‖

under the constraints that 〈a2, a1〉 = 0 and
〈b2, b1〉 = 0. This continues until {am′ , bm′}
and ρm′ have been found such that m′ =
min (m1,m2).

The average of {ρ1, ... ρm′} is often used as an
overall similarity measure, as in related work ex-
ploring multilingual representations in neural ma-
chine translation systems (Kudugunta et al., 2019)
and language models (Saphra and Lopez, 2018).
Morcos et al. (2018) show that in studying re-
current and convolutional networks, replacing a
weighted average leads to a more robust measure
of similarity between two sets of activations. For
the rest of the paper we use this PWCCA measure
to determine the similarity of two sets of activa-
tions. The measure lies between [1,0] with 1 be-
ing identical and 0 being no similarity between the
representations.

CCA is typically employed to compare repre-
sentations for the same inputs for different models
or layers (Raghu et al., 2017; Morcos et al., 2018).
We also use CCA to compare representations from

the same neural network when fed two translated
versions of the same input (Figure 2).

3 Experiments and Discussion

We use the uncased multilingual BERT model
(Devlin et al., 2018) and the XNLI data set for
most experiments. Multilingual BERT is pre-
trained on the Wikipedia articles form 102 lan-
guages and is 12-layers deep. The XNLI dataset
consists of the MultiNLI dataset translated into
15 languages. The uncased multilingual BERT
model does not contain tokenization or pretain-
ing for Thai so we focus our analysis on the re-
maining 14 languages. To provide a more ro-
bust study of a broader variety of languages, we
supplement the XNLI data set by further translat-
ing the first 15 thousand examples using google
translate. This allows for analysis of representa-
tions for 14 additional languages including Azer-
baijani, Czech, Danish, Estonian, Finish, Hungar-
ian, Kazakh, Latvian, Lithuanian, Dutch, Norwe-
gian, Swedish, Ukrainian, and Uzbek.

Following the standard approach to using
BERT (Devlin et al., 2018), a [CLS] token is
prepended to each example, which consists of a
premise, a [SEP] token and a hypothesis. The
[CLS] token has been pretrained to extract inter-
sentence relationships between the sentences that
follow it. When fine-tuned on XNLI, the final rep-
resentations for the [CLS] token is used to predict
the relationship between sentences as either entail-
ment, contradiction or neutral. This [CLS] token
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can be thought of as a summary embedding for
the input as a whole. We analyze the activations
of this [CLS] token for the same XNLI examples
across all available languages (Figure 2). These
representations have 768 neurons computed over
15 thousand datapoints.

For all fine-tuning experiments we use the hy-
perparameters and optimization strategies recom-
mended by (Devlin et al., 2018) unless otherwise
specified. We use a learning rate warm-up for 10%
of training iterations and then linearly decay to
zero. The batch size is 32 and the target learning
rate after warm-up is 2e− 5.

3.1 Representations across languages are less
similar in the deeper layers of BERT

Figure 3 demonstrates that for all language com-
binations tested, the summary representation (as-
sociated with the [CLS] token) for semantically
similar inputs translated into multiple languages
is most similar at the shallower layers of BERT,
close to the initial embeddings. The representa-
tions steadily become more dissimilar in deeper
layers until the final layer. The jump in similarity
in the final layer can be explained by the common
classification layer that contains only three classes.
In order to finally choose an output class, the net-
work must project towards one of the three em-
beddings associated with those classes (Liu et al.,
2019).

The trend towards dissimilarity in deeper layers
suggests that contextualization in BERT is not a
process of semantic abstraction as would be ex-
pected of an interlingua. Though semantic fea-
tures common to the multiple translations of the
input might also be extracted, the similarity be-
tween representations is dominated by features
that differentiate them. BERT appears to preserve
and refine features that separate the inputs, which
we speculate are more closely related to syntactic
and grammatical features of the input.

Representations at the shallower layers, closer
to the subword embeddings, exhibit the highest
degree of similarity. This provides further evi-
dence for how a subword vocabulary can effec-
tively span a large space of languages.

3.2 Representations diverge with depth after
fine-tuning

In the previous set of experiments, BERT had
only been pretrained on the unupservised masked
language modeling objective. In that setting the

Figure 3: The similarity between representations of dif-
ferent languages decreases deeper into a pretrained un-
cased multilingual BERT model. Here we show the
similarity between English and 5 other languages as a
function of model depth

Figure 4: The similarity between representations of dif-
ferent languages decreases deeper into an uncased mul-
tilingual BERT model finetuned on XNLI.

[CLS] token was trained to predict whether the
second sentence followed the first. This does not
align well with the XNLI task in cases in which
the hypothesis would not likely follow the premise
in the corpora used for pretraining. To alleviate
concerns that this might influence the representa-
tional similarity, we repeat the above experiments
after fine-tuning BERT on several languages. Fig-
ure 4 confirms that representations for semanti-
cally similar inputs in different languages diverge
in PWCCA similarity in deeper layers of BERT.

3.3 Deeper layers change more dramatically
during fine-tuning

We also notice that during fine-tuning, the deep-
est layers of BERT change the most according to
PWCCA similarity . In these experiments, we use
PWCCA in the more standard setting, in which
identical inputs are provided to two different mod-
els in order to get two set of neuron activations.
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(a) (b)

(c) (d)

Figure 5: CCA experiments showing the finetuning behavior
of BERT

The two different models are different checkpoints
of pretrained, multilingual BERT over the course
of fine-tuning. Figures 5a - 5d follow a similar
structure in which the PWCCA value is computed
between all the layers of two models. The matri-
ces are symmetric in expectation, but noise dur-
ing optimization creates slight asymmetry. Fig-
ure 5a shows a baseline case demonstrating that a
pretrained, multilingual BERT compared with it-
self has a PWCCA value of 1 with strong diago-
nal showing the identity between each layer. The
off-diagonal entries show that layer-wise similar-
ity depends on relative depth. This successive and
gradual changing of representations is precisely
the behavior we expect from networks with resid-
ual connections (Raghu et al., 2017).

We compare the pretrained multilingual BERT
to a converged BERT fine-tuned on XNLI in Fig-
ure 5b and 5c. We use representations for the
[CL] token in Figure 5b and the first token in the
premise for Figure 5c. Both confirm that the func-
tion of early layers remains more similar as the
network is fine-tuned. We find this trend to hold
for a wide range of tasks including SST and QNLI
as well.

Figure 5d shows that deep pretrained networks
also converge bottom up during fine-tuning by
comparing the representations a quarter of the
way through fine-tuning with those of a converged
model. Most of the remaining change in the rep-
resentations between a quarter of the way through

Figure 6: PWCCA generated similarity matrix between
languages.

training and convergence happens in the later lay-
ers. Therefore the changes to middle layers we ob-
serve in Figure 5b happen during the first quarter
of training.

3.4 Phylogentic Tree of Language Evolution

Figures 3 and 4 show that the representations
learned for different languages diverge as we go
deeper into the network, as opposed to converging
if the network were learning an interlingua or a
shared representation space. However, the relative
similarities between languages clearly varies for
different pairs and changes as a function of depth.
To further investigate the internal relationships be-
tween representations learned by BERT we cre-
ate a similarity matrix using PWCCA between all
28 languages for all 12 layers in BERT. For the
PWCCA calculations we use the representations
of the [CLS] token to generate L1 and L2. The
resulting similarity matrix for Layer 1 is shown in
Figure 6.

To visualize these relationships this matrix can
be converted to a phylogentic tree using a clus-
ter algorithm. In Figure 1 we use unweighted pair
group method with arithmetic mean (UPGMA),
a simple agglomerative (bottom-up) hierarchical
clustering method (Sokal, 1958) to generate a phy-
logentic tree from the representations from Layer
6 of BERT. The generated phylogentic tree closely
resembles the language tree constructed by lin-
guists to explain the relationships and evolution
of human languages. The details of the linguis-
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tic evolutionary phylogentic tree of languages is
still debated and a tree model faces some limita-
tions as not all evolutionary relationships are com-
pletely hierarchical and it can not easily account
for horizontal transmissions. However many of
the commonly known relationships between lan-
guages are embedded in BERT’s representations.
We see that BERT’s space of its internal represen-
tations is finely partitioned into families and sub-
familes of languages.

Northern Germanic languages are clustered to-
gether and the Western Germanic languages are
clustered together before being combined together
into the pro-germanic family. Romantic languages
are clustered together before the Romantic and
Germanic families are combined together. BERT’s
internal representation of English is in-between
that of the Germanic and Romantic sub-families.
This captures evolution and structure of English,
which is considered a Germanic language but bor-
rows heavily from romantic and latin languages.
By varying the layer at which the representations
are used to create the phylogentic tree, different
structures emerge. Sometimes English is clustered
with German before it is combined with the ro-
mantic languages, but mostly BERT seems to clas-
sify English as a romantic language.

For Layers 6 through 12 the trees generated are
almost or exactly like Figure 1. At these lay-
ers, Azerbaijani, Turkish, Kazakh, and Uzbek are
grouped into the same family although these lan-
guages span multiple scripts and have had their of-
ficial scripts changed multiple times allowing for
the possible introduction of confounding differ-
ences. Interestingly, at these same layers in Fig-
ure 3, languages seem to diverge the most from
each other. This seems to suggest that instead of
finding a shared latent space for all of the lan-
guages, as would be necessary for an interlingua,
BERT is actually carefully partitioning its space in
a fashion that linguistic and evolutionary relation-
ships are preserved between languages. Trees gen-
erated from Layers 1 through 5 seem to make more
mistakes than those of later layers. We see that
these trees end up failing to group Azerbaijani,
Turkish, Kazakh, and Uzbek into the same family,
often leaving Kazakh out which is written in Cyril-
lic script. We can hypothesis that BERT’s inter-
nal representations are more reliant on the identity
of shared subwords earlier in the network as op-
posed to later in the network. As a matter of fact,

if we use agglomerative clustering to construct a
tree from a matrix of subword overlap counts (Fig-
ure 7a), we find that it almost exactly matches the
tree constructed from BERT’s earlier layers.

It seems that BERT’s shared multilingual sub-
word vocabulary (Mikolov et al., 2012; Sennrich
et al., 2015) provides it with a strong bias towards
what linguistic relationships exist between human
languages. Instead of then fusing the representa-
tions of different languages into one shared repre-
sentation during training, BERT actually succes-
sively refines this partitioned space to better reflect
the linguistic relationships between languages at
higher layers (Figure 1).

3.5 Tokenization Provides a Strong Bias
Towards Knowledge of Linguistic
Relationships Between Languages

We tokenize the first 15 thousand examples from
XNLI and our translated data using different to-
kenization methods and compute the token over-
lap between different languages, generating sim-
ilarity matrices similar to the one shown in Fig-
ure 6. From these matrices we perform agglomer-
ative clustering of languages to generate phyloge-
netic trees (Figure 7). These trees show how dif-
ferent tokenization schemes can embed different
linguistic biases into our models. We investigate
subword, word, and character level tokenization.
The subword tokenization is done using BERT’s
learned BPE vocabulary. The word level tokeniza-
tion is achieved by simply tokenizing at spaces,
and the character level tokenization is done us-
ing Python’s native character level string split-
ting. Figure 7a is generated from using subwords,
and although is not as accurate as the tree gener-
ated from BERT’s representation at layer 6 (Fig-
ure 1), it is still non-trivially close to a linguisti-
cally accurate depiction of human language evo-
lution. We see that by using a shared subword vo-
cabulary, multilingual BERT has a very strong bias
to discover the linguistic relationships between
languages. However, this bias is not as strong if
other forms of tokenization are used. Figures 7b
and 7c show the trees generated by word level and
character level tokenization respectively. We see
that word level tokenization splits the Romantic
and Germanic languages into completely different
trees, and that character level tokenization ends
up combining all languages that share the Latin
script regardless of their true families. Perhaps the
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(a) Agglomerative clustering of languages based on subword overlap, generated from using the BERT tokenizer to tokenize the
first 15 thousand examples from XNLI and our translated data.

(b) Agglomerative clustering of languages based on word overlap, generated from splitting the first 15 thousand examples from
XNLI and our translated data on spaces.

(c) Agglomerative clustering of languages based on character overlap, generated from splitting the first 15 thousand examples
from XNLI and our translated.

Figure 7: Different agglomerative clusterings of languages based on subword, word, and character overlap. We
see that different tokenization schemes used in NLP embed different linguistic biases into models.
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ability of subwords to capture these linguistic re-
lationships between languages has contributed to
their wide success in applications including ma-
chine translation and language modeling.

4 Conclusion and Future Directions

While natural language processing systems often
focus on a single language, multilingual transfer
learning has the potential to improve performance,
especially for low-resource languages. Many pre-
vious multilingual approaches claim to develop
shared representations of different languages. Re-
cently, multilingual BERT and related models
trained in an unsupervised fashion on monolingual
corpora from over 100 languages achieve state of
the art performance on many tasks involving low
resource languages. Using Cononical Coreelation
Analysis (CCA) on the internal representations of
BERT, we find that it is not embedding different
languages into a shared space. Rather, at deeper
layers, BERT partitions the space to better reflect
the linguistic and evolutionary relationships be-
tween languages. We also find that subword tok-
enization, in contrast to word and character level
tokenization, provides a strong bias to discover
linguistic and evolutionary relationships between
languages.
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