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Abstract

At present, different deep learning models are
presenting high accuracy on popular inference
datasets such as SNLI, MNLI, and SciTail.
However, there are different indicators that
those datasets can be exploited by using some
simple linguistic patterns. This fact poses dif-
ficulties to our understanding of the actual ca-
pacity of machine learning models to solve the
complex task of textual inference. We propose
a new set of syntactic tasks focused on con-
tradiction detection that require specific ca-
pacities over linguistic logical forms such as:
Boolean coordination, quantifiers, definite de-
scription, and counting operators. We evaluate
two kinds of deep learning models that implic-
itly exploit language structure: recurrent mod-
els and the Transformer network BERT. We
show that although BERT is clearly more ef-
ficient to generalize over most logical forms,
there is space for improvement when dealing
with counting operators. Since the syntac-
tic tasks can be implemented in different lan-
guages, we show a successful case of cross-
lingual transfer learning between English and
Portuguese.

1 Introduction

Natural Language Inference (NLI) is a com-
plex problem of Natural Language Understanding
which is usually defined as follows: given a pair
of textual inputs P and H we need to determine
if P entails H , or H contradicts P , or H and P
have no logical relationship (they are neutral) The
Fracas Consortium et al. (1996). P and H , known
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as “premise” and “hypothesis” respectively, can be
either simple sentences or full texts.

The task can focus either on the entailment
or the contradiction part. The former, which is
known as Recognizing Textual Entailment (RTE)
Dagan et al. (2013), classifies the pair P ,H in “en-
tailment” or “non-entailment”. The latter, which
is know as Contradiction Detection (CD), classi-
fies that pair in terms of “contradiction” or “non-
contradiction”. Independently of the form that we
frame the problem, the concept of inference is the
critical issue here.

With this formulation, NLI has been treated as a
text classification problem suitable to be solved by
a variety of machine learning techniques Bowman
et al. (2015a); Williams et al. (2017). Inference
itself is also a complex problem. As shown in the
following sentence pairs:

1. “A woman plays with my dog”, “A person
plays with my dog”

2. “Jenny and Sally play with my dog”, “Jenny
plays with my dog”

Both examples are cases of entailment, with dif-
ferent properties. In (1) the entailment is caused
by the hypernym relationship between “person”
and “woman”. Example (2) deals with interpre-
tation of the coordinating conjunction “and” as a
Boolean connective. As (1) relies on the mean-
ing of the noun phrases we call it “lexical infer-
ence”. As (2) is invariant under substitution we
call it “structural inference”. The latter is the fo-
cus of this work.

In this paper, we propose a new synthetic CD
dataset that enables us to:

1. compare the NLI accuracy of different deep
learning models.
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2. diagnose the structural (logical and syntactic)
competence of each model.

3. verify the cross-lingual performance of each
method.

The contributions presented in this paper are: i)
the presentation of a structure oriented CD dataset;
ii) the comparison of traditional neural recurrent
models against the Transformer network BERT;
iii) a success case of cross-lingual transfer learn-
ing for structural NLI between English and Por-
tuguese.

2 Background and Related Work

The size of NLI datasets has been increasing since
the initial proposition of the FraCas test suit com-
posed of 346 examples The Fracas Consortium
et al. (1996). Some old datasets like RTE-6 Ben-
tivogli et al. (2009) and SICK Marelli et al. (2014),
with 16K and 9.8K examples, respectively, are rel-
atively small if compared with the current ones
like SNLI Bowman et al. (2015a) and MNLI
Williams et al. (2017), with 570K and 433K exam-
ples, respectively. This increase was possible with
the use of crowdsource platforms like the Amazon
Mechanical Turk Bowman et al. (2015a); Williams
et al. (2017). The annotation performed by a
formal semanticist, like in RTE 1-3 Giampiccolo
et al. (2007), was replaced with the generation of
sentence pairs done by average English speakers.
This change in dataset construction has been crit-
icised with the argument that it is hard for an av-
erage speaker to produce different and creative ex-
amples of entailment and contradiction pairs Gu-
rurangan et al. (2018). By looking at the hypoth-
esis alone a simple text classifier can achieve an
accuracy significantly better than a random classi-
fier in datasets such as SNLI and MNLI. This was
explained by a high correlation of occurrences of
negative words (“no”, “nobody”, “never”, “noth-
ing”) in contradiction instances, and high corre-
lation of generic words (such as “animal”, “in-
strument”, “outdoors”) with entailment instances.
Thus, despite of the large size of the corpora the
task was easier to perform than expected Poliak
et al. (2018).

The new wave of pre-trained models Howard
and Ruder (2018); Devlin et al. (2018); Liu et al.
(2019) poses both a challenge and an opportunity
for the NLI field. The large-scale datasets are
close to being solved (the benchmark for SNLI,

MNLI, and SciTail is 91.1%, 85.3%/85.0%, and
94.1%, respectively, as reported in Liu et al.
(2019)), giving the impression that NLI will be-
come a trivial problem. The opportunity lies in the
fact that, by using pre-trained models, training will
no longer need such large datasets. Then we can
focus our efforts in creating small, well-thought
datasets that reflect the variety of inferential tasks,
and so determine the real competence of a model.

Here we present a collection of small datasets
designed to measure the competence of detecting
contradictions in structural inferences. We have
chosen the CD task because it is harder for an av-
erage annotator to create examples of contradic-
tions without excessively relying on the same pat-
terns. At the same time, CD has practical impor-
tance since it can be used to improve consistency
in real case applications, such as chat-bots Welleck
et al. (2018).

We choose to focus on structural inference be-
cause we have detected that the current datasets
are not appropriately addressing this particular
feature. In an experiment, we verify the deficiency
reported in Gururangan et al. (2018); Glockner
et al. (2018). First, we transformed the SNLI and
MNLI datasets to a CD task. The transformation is
done by converting all instances of entailment and
neutral into non-contradiction, and by balancing
the classes in both training and test data. Second,
we applied a simple Bag-of-Words classifier, de-
stroying any structural information. The accuracy
was significantly higher than the random classifier,
63.9% and 61.9% for SNLI and MNLI, respec-
tively. Even the recent dataset focusing on contra-
diction, Dialog NLI Welleck et al. (2018), presents
a similar pattern. The same Bag-of-Words model
achieved 76.2% accuracy in this corpus.

Our approach of isolating structural forms by
using synthetic data to analyze the logical and syn-
tactical competence of different neural models is
similar to Bowman et al. (2015b); Evans et al.
(2018); Tran et al. (2018). One main difference
between their approach and ours is that we are in-
terested in using a formal language as a tool for
performing a cross-lingual analysis.

3 Data Collection

The different datasets that we propose are divided
by tasks, such that each task introduces a new lin-
guistic construct. Each task is designed by apply-
ing structurally dependent rules to automatically
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generate the sentence pairs. We first define the
pairs in a formal language and then we use it to
generate instances in natural language. In this pa-
per, we have decided to work with English and
Portuguese.

There are two main reasons to use a formal
language as a basis for the dataset. First, this
approach allows us to minimize the influence of
common knowledge and lexical knowledge, high-
lighting structural features. Second, we can ob-
tain a structural symmetry between the English
and Portuguese corpora.

Hence, our dataset is a tool to measure infer-
ence in two dimensions: one defined by the struc-
tural forms, which corresponds to different levels
in our hierarchical corpus; and other defined by
the instantiation of these forms in multiple natural
languages.

3.1 Template Language

The template language is a formal language used
to generate instances of contradictions and non-
contradictions in a natural language. This lan-
guage is composed of two basic entities: peo-
ple, Pe = {x1, x2, ..., xn} and places, Pl =
{p1, p2, ..., pm}. We also define three binary re-
lations: V (x, y) , x > y, x ≥ y. It is a simplistic
universe with the intended meaning for binary re-
lations such as “x has visited y”, “x is taller than
y” and “x is as tall as y”, respectively.

A realisation of the template language r is a
function mapping Pe and Pl to nouns such that
r(Pe) ∩ r(Pl) = ∅; it also maps the relation sym-
bols and logic operators to corresponding forms in
some natural language.

Each task is defined by the introduction of a new
structural and logical operator. We define the tasks
in a hierarchical fashion: if a logical operator ap-
pears on a task n, it can appear in any task k (with
k > n). The main advantage of our approach com-
pared to other datasets is that we can isolate the
occurrences of each operator to have a clear no-
tion in what forces the models to fail (or succeed).

For each task, we provide training and test data
with 10K and 1K examples, respectively. All data
is balanced; and, as usual, the model’s accuracy
is evaluated on the test data. To test the model’s
generalization capability, we have defined two dis-
tinct realization functions rtrain and rtest such that
rtrain(Pe) ∩ rtest(Pe) = ∅ and rtrain(Pl) ∩
rtest(Pl) = ∅. For example, in the English ver-

sion rtrain(Pe) and rtrain(Pl) are composed of
common English masculine names and names of
countries, respectively. Similarly, rtest(Pe) and
rtest(Pl) are composed of feminine names and
names of cities from the United States. In the
Portuguese version we have done a similar con-
struction, using common masculine and feminine
names together with names of countries and names
of Brazilian cities.

3.2 Data Generation

A logical rule can be seen as a mapping that trans-
forms a premise P into a conclusion C. To obtain
examples of contradiction we start with a premise
P and define H as the negation of C. The exam-
ples of non-contradiction are different negations
that do not necessarily violate P . We repeat this
process for each task. What defines the difference
from one task to another is the introduction of log-
ical and linguist operators, and subsequently, new
rules. We have used more than one template pair to
define each task; however, for the sake of brevity,
in the description below we will give only a brief
overview of each task.

The full dataset in both languages, together with
the code to generate it and the detailed list of all
templates, can be found online Salvatore (2019).

Task 1: Simple Negation We introduce
the negation operator ¬, “not”. The premise
P is a collection of facts about some agents
visiting different places. Example, P :=
{V (x1, p1), V (x2, p2)} (“Charles has visited
Chile, Joe has visited Japan”). The hypothesis H
can be either a negation of one fact that appears in
P , ¬V (x2, p2) (“Joe didn’t visit Japan”); or a new
fact not related to P , ¬V (x, p) (“Lana didn’t visit
France”). The number of facts that appear in P
vary from two to twelve.

Task 2: Boolean Coordination In this task, we
add the Boolean conjunction ∧, the coordinating
conjunction “and”. Example, P := {V (x1, p) ∧
V (x2, p) ∧ V (x3, p)} (“Felix, Ronnie, and Tyler
have visited Bolivia”). The new information H
can state that one of the mentioned agents did
not travel to a mentioned place, ¬V (x3, p) (“Tyler
didn’t visit Bolivia”). Or it can represent a new
fact, ¬V (x, p) (“Bruce didn’t visit Bolivia”).

Task 3: Quantification By adding the quan-
tifiers ∀ and ∃, “for every” and “some”, respec-
tively, we can construct example of inferences
that explicitly exploit the difference between the
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two basic entities, people and places. Exam-
ple, P states a general fact about all people,
P := {∀x∀pV (x, p)} (“Everyone has visited ev-
ery place”) . H can be the negation of one particu-
lar instance of P , ¬V (x, p) (“Timothy didn’t visit
El Salvador”). Or a fact that does not violate P ,
¬V (x, x1) (“Timothy didn’t visit Anthony”).

Task 4: Definite Description One way to test
if a model can capture reference is by using def-
inite description, i.e., by adding the operator ι to
perform description and the equality relation =.
Hence, x = ιyQ(y) is to be read as “x is the
one that has property Q”. Here we describe one
property of one agent and ask the model to com-
bine the description with a new fact. For example,
P := {x1 = ιy∀pV (y, p), V (x1, x2)} (“Carlos
is the person that has visited every place, Car-
los has visited John”). Two new hypotheses can
be introduced: ¬V (x1, p) (“Carlos did not visit
Germany”) or ¬V (x2, p) (“John did not visit Ger-
many”). Only the first hypothesis is a contradic-
tion. Although the names “Carlos” and “John”
appear on the premise, we expected the model to
relate the property “being the one that has visited
every place” to “Carlos” and not to “John”.

Task 5: Comparatives In this task we are in-
terested to know if the model can recognise a ba-
sic property of a binary relation: transitivity. The
premise is composed of a collection of simple facts
P := {x1 > x2, x2 > x3}. (“Francis is taller
than Joe, Joe is taller than Ryan”). Assuming the
transitivity of >, the hypothesis can be a conse-
quence of P , x1 > x3 (“Francis is taller than
Ryan”), or a fact that violates the transitivity prop-
erty, x3 > x1 (“Ryan is taller than Francis”). The
size of the P varies from four to ten. Negation is
not employed here.

Task 6: Counting In Task 3 we have added
only the basic quantifiers ∀ and ∃, but there
is a broader family of operators called gener-
alised quantifiers. In this task we introduce the
counting quantifier ∃=n (“exactly n”). Example,
P := {∃=3pV (x1, p) ∧ ∃=2xV (x1, x)} (“Philip
has visited only three places and only two peo-
ple”). H can be an information consistent with
P , V (x1, x2) (“Philip has visited John”), or some-
thing that contradicts P , V (x1, x2) ∧ V (x1, x3) ∧
V (x1, x4) (“Philip has visited John, Carla, and
Bruce”). We have added counting quantifiers cor-
responding to numbers from one to thirty.

Task 7: Mixed In order to guarantee variability,

we created a dataset composed of different sam-
ples of the previous tasks.

Basic statistics for the English and Portuguese
realisations of all tasks can be found in Table 1.

Task
Vocab
size

Vocab
inter-
section

Mean
input
length

Max
input
length

1 (Eng) 3561 77 230.6 459
2 (Eng) 4117 128 151.4 343
3 (Eng) 3117 70 101.5 329
4 (Eng) 1878 62 100.81 134
5 (Eng) 1311 25 208.8 377
6 (Eng) 3900 150 168.4 468
7 (Eng) 3775 162 160.6 466
1 (Pt) 7762 254 209.4 445
2 (Pt) 9990 393 148.5 388
3 (Pt) 5930 212 102.7 395
4 (Pt) 5540 135 91.8 140
5 (Pt) 5970 114 235.2 462
6 (Pt) 9535 386 87.8 531
7 (Pt) 8880 391 159.9 487

Table 1: Task description. Column 1 presents two re-
alizations of the described tasks - one in English (Eng)
and the other in Portuguese (Pt). Column 2 presents
the vocabulary size for the task. Column 3 presents
the number of words that occurs both in the training
and test data. Column 4 presents the average length in
words of the input text (the concatenation of P andH).
Column 5 presents the maximum length of the input
text.

Since we are using a large number of facts in P ,
the input text is longer than the ones presented in
average NLI datasets.

4 Models and Evaluation

To evaluate the accuracy of each CD task we em-
ployed three kinds of models:

Baseline The baseline model (Base) is a Ran-
dom Forest classifier that models the input text,
the concatenation of P and H , using the Bag-of-
Words representation. Since we have constructed
the dataset centered on the notion of structure-
based contradictions, we believe that it should per-
form slightly better than random. At the same
time, by using such baseline, we can certify if
the proposed tasks are indeed requiring structural
knowledge.

Recurrent Models The dominant family of
neural models in Natural Language Processing
specialised in modelling sequential data is the
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one composed by the Recurrent Neural Networks
(RNNs) and its variations, Long Short-Term Mem-
ory (LSTM), and Gated Recurrent Unit (GRU)
Goldberg (2015). We consider both the standard
and the bidirectional variants of this family of
models. As input for these models, we use the
concatenation of P and H as a single sentence.

Traditional multilayer recurrent models are not
the best choice to improve the benchmark on
NLI Glockner et al. (2018). However, in recent
works, it has been reported that recurrent models
achieve a better performance than Transformer-
based models to capture structural patterns for
logical inference Evans et al. (2018); Tran et al.
(2018). We want to investigate if the same result
can be achieved using our tasks as the base of com-
parison.

Transformer-based Models A recent non-
recurrent family of neural models known as Trans-
former networks was introduced in Vaswani et al.
(2017). Different from the recurrent models that
recursively summarizes all previous input into a
single representation, the Transformer network
employes a self-attention mechanism to directly
attend to all previous inputs (more details of this
architecture can be found in Vaswani et al. (2017)).
Although, by performing regular training using
this architecture alone we do not see surprising re-
sults in inference prediction Evans et al. (2018);
Tran et al. (2018), when we pre-trained a Trans-
former network in the language modeling task and
fine-tuned afterwards on an inference task we see
a significant improvement Devlin et al. (2018).

Among the different Transformer-based models
we will focus our analysis on the multilayer bidi-
rectional architecture known as Bidirectional En-
coder Representation from Transformers (BERT)
Devlin et al. (2018). This bidirectional model, pre-
trained as a masked language model and as a next
sentence predictor, has two versions: BERTBASE

and BERTLARGE. The difference lies in the size of
each architecture, the number of layers and self-
attention heads. Since BERTLARGE is unstable on
small datasets Devlin et al. (2018) we have used
only BERTBASE.

The strategy to perform NLI classification us-
ing BERT is the same the one presented in De-
vlin et al. (2018): together with the pair P,H we
add new special tokens [CLS] (classification to-
ken) and [SEP] (sentence separator). Hence, the
textual input is the result of the concatenation:

[CLS] P [SEP] H [SEP]. After we obtain the vec-
tor representation of the [CLS] token, we pass it
through a classification layer to obtain the predic-
tion class (contradiction / non-contradiction). We
fine-tune the model for the CD task in a standard
way, the original weights are co-trained with the
weights from the new layer.

By comparing BERT with other models we are
not only comparing different architectures but dif-
ferent techniques of training. The baseline model
uses no additional information. The recurrent
models use only a soft version of transfer learning
with fine-tuning of pre-trained embeddings (the
fine-tuning of one layer only). On the other side,
BERT is pre-trained on a large corpus as a lan-
guage model. It is expected that this pre-training
helps the model to capture some general proper-
ties of language Howard and Ruder (2018). Since
the tasks that we proposed are basic and cover very
specific aspects of reasoning, we can use it to eval-
uate which properties are being learned in the pre-
training phase.

The simplicity of the tasks motivated us to use
transfer-learning differently: instead of simply us-
ing the multilingual version of BERT1 and fine-
tune it on the Portuguese version of the tasks, we
have decided to check the possibility of transfer-
ring structural knowledge from high-resource lan-
guages (English / Chinese) to Portuguese.

This can be done because for each pre-trained
model there is a tokenizer that transforms the Por-
tuguese input into a collection of tokens that the
model can process. Thus, we have decided to use
the regular version of BERT trained on an En-
glish corpus (BERTeng), the already mentioned
Multilingual BERT (BERTmult), and the version
of the BERT model trained on a Chinese corpus
(BERTchi).

We hypothesize that most structural patterns
learned by the model in English can be transferred
to Portuguese. By the same reasoning, we believe
that BERTchi should perform poorly. Not only the
tokenizer associated to BERTchi will add noise to
the input text, but also Portuguese and Chinese are
grammatically different; for example, the latter is
overwhelmingly right-branching while the former
is more mixed Levy and Manning (2003).

1Multilingual BERT is a model trained on the concate-
nation of the entire Wikipedia from 100 languages, Por-
tuguese included. https://github.com/google-research/bert/
blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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4.1 Experimental settings

Given the above considerations, four research
questions arose:

(i) How the different models perform on the pro-
posed tasks?

(ii) How much each model rely on the occurrence
of non-logical words?

(iii) Can cross-lingual transfer learning be suc-
cessfully used for the Portuguese realization
of those tasks?

(iv) Is the dataset biased? Are the models learn-
ing some unexpected text pattern?

To answer those questions, we evaluated the
models performance in four different ways:

(i) Each model was trained on different propor-
tions of the dataset. In this case, rtrain(Pe)∩
rtest(Pe) = ∅ and rtrain(Pl) ∩ rtest(Pl) =
∅.

(ii) We have trained the models on a version
of the dataset where we allow full intersec-
tion of the train and test vocabulary, i.e.,
rtrain(Pe) = rtest(Pe) and rtrain(Pl) =
rtest(Pl).

(iii) For the Portuguese corpus, we have fine-
tuned the three pre-trained models men-
tioned previously: BERTeng, BERTmult, and
BERTchi.

(iv) We have trained the best model from (i)
on the following modified versions of the
dataset:

(a) Noise label - each pair P , H is
unchanged but we randomly labeled
the pair as contradiction or non-
contradiction.

(b) Premise only - we keep the labels the
same and omit the hypothesis H .

(c) Hypothesis only - the premise P is re-
moved, but the labels remain intact.

4.2 Implementation

All deep learning architectures were implemented
using the Pytorch library Paszke et al. (2017).
To make use of the pre-trained version of
BERT we have based our implementation on the

public repository https://github.com/huggingface/
pytorch-pretrained-BERT.

The different recurrent architectures were op-
timized with Adam Kingma and Ba (2014).
We have used pre-trained word embedding from
Glove Pennington et al. (2014) and Fasttext Joulin
et al. (2016), but we also used random initialized
embeddings. We random searched across embed-
ding dimensions in [10, 500], hidden layer size of
the recurrent model in [10, 500], number of recur-
rent layer in [1, 6], learning rate in [0, 1], dropout
in [0, 1] and batch sizes in [32, 128].

The hyperparameter search for BERT follows
the one presented in Devlin et al. (2018) that uses
Adam with learning rate warmup and linear decay.

We randomly searched the learning rate in [2 ·
10−5, 5 · 10−5], batch sizes in [16, 32] and number
of epochs in [3, 4].

All the code for the experiments is public avail-
able Salvatore (2019).

4.3 Results

How the different models perform on the proposed
tasks?

In most of the tasks, BERTeng presents a clear
advantage when compared to all other models.
Tasks 3 and 6 are the only ones where the differ-
ence in accuracy between BERTeng and the recur-
rent models is small, as can be seen in Table 2.
Even when we look at BERTeng’s results on the
Portuguese corpus, which are slightly worse when
compared to the English one, we still see a similar
pattern.

Figure 1 shows that BERTeng is the only model
improved by training on more data. All other mod-
els remain close to random independently of the
amount of training data.

Accuracy improvement over training size in-
dicates the difference in difficulty of each task.
On the one hand, Tasks 1, 2 and 4 are practi-
cally solved by BERT using only 4K examples of
training (99.5%, 99.7%, 97.6% accuracy, respec-
tively). On the other hand, the results for Tasks 3
and 6 remain below average, as seen in Figure 2.

How much each model rely on the occurrence
of non-logical words?

With the full intersection of the vocabulary,
experiment (ii), we have observed that the av-
erage accuracy improvement differs from model
to model: Baseline, GRU, BERTeng, LSTM and
RNN present an average improvement of 17.6%,

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Task Base RNN GRU LSTM BERT
1 (Eng) 52.1 50.1 50.6 50.4 99.8
2 (Eng) 50.7 50.2 50.2 50.8 100
3 (Eng) 63.5 50.3 66.1 63.5 90.5
4 (Eng) 51.0 51.7 52.7 51.6 100
5 (Eng) 50.6 50.1 50.2 50.2 100
6 (Eng) 55.5 84.4 82.7 75.1 87.5
7 (Eng) 54.1 50.9 53.7 50.0 94.6
Avg. 53.9 55.4 58.0 56.2 96.1
1 (Pt) 53.9 50.1 50.2 50.0 99.9
2 (Pt) 49.8 50.0 50.0 50.0 99.9
3 (Pt) 61.7 50.0 70.6 50.1 78.7
4 (Pt) 50.9 50.0 50.4 50.0 100
5 (Pt) 49.9 50.1 50.8 50.0 99.8
6 (Pt) 58.9 66.4 79.7 67.2 79.1
7 (Pt) 55.4 51.1 51.6 51.1 82.7
Avg. 54.4 52.6 57.6 52.6 91.4

Table 2: Results of the experiment (i), accuracy per-
centage on test data for the English and Portuguese cor-
pora

9.6%, 5.3%, 4.25%, 1.3%, respectively. This may
indicate that the recurrent models are relying more
on noun phrases than BERT. However, since the
difference is not significant, more investigation is
required.

Can cross-lingual transfer learning be success-
fully used for the Portuguese realization of those
tasks?

As expected, when we fine-tuned BERTmulti

to the Portuguese version of the dataset we have
observed an overall improvement. Most notably,
in Tasks 6 and 7 we have achieved a new accu-
racy of 87.4% and 92.3% respectively. Surpris-
ingly, BERTchi is able to solve some simple tasks,
namely Tasks 1, 2 and 4. But when trained on
the mixed version of the dataset, Task 7, this pre-
trained model had repeatedly present a random
performance.

One of the most important features observed by
evaluating the different pre-training models is that
although BERTeng and BERTmult show a similar
result on the Portuguese corpus, BERTeng needs
more data to improve its performance, as seen in
Figure 3.

Is the dataset biased? Are the models learning
some unexpected text pattern?

By taking BERTeng as the best classifier, we re-
peated the training using all the listed data modifi-

cation techniques. The results, as shown in Figure
4, indicate that BERTeng is not memorizing ran-
dom textual patterns, neither excessively relying
on information that appears only in the premise P
or the hypothesis H . When we applied it on these
versions of the data, BERTeng behaves as a ran-
dom classifier.

Figure 1: Results of the experiment (i), accuracy for
each model on different data proportions (English cor-
pus)

Figure 2: Results of the experiment (i), BERTeng’s ac-
curacy on the different different tasks (English corpus)

Figure 3: Results of the experiment (iii), different pre-
trained BERT versions tested on Portuguese corpus

5 Discussion

The results presented above are similar to the ones
reported in Goldberg (2019) : Transformer-based
models like BERT can successfully capture syntac-
tic regularities and logical patterns.
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Figure 4: Results of the experiment (iv), BERTeng’s
accuracy on the different versions of the data (English
corpus)

These findings do not contradict the results re-
ported on Evans et al. (2018); Tran et al. (2018),
because in both papers, the Transformer models
are trained from scratch, while here we have used
models that were pre-trained on large datasets with
the language model objective.

The results presented both in Table 2 and Fig-
ure 3 seem to confirm our initial hypothesis on the
effectiveness of transfer learning in a cross-lingual
fashion. What has surprised us was the excellent
results regarding Tasks 1, 2 and 4 when transfer-
ring structural knowledge from Chinese to Por-
tuguese. We offer the following explanation for
these results. Take the contradiction pair defined
in the template language:

P := {x1 = ιy∀x2V (y, x2), V (x1, x3)}
(“x1 is the person that has visited everybody,
x1 has visited x3”)

H := ¬V (x1, x4) (“x1 didn’t visit x4”)

If we take one possible Portuguese realization
of the pair above and apply the different tokenizers
we have the following strings:

1. Original sentence: “[CLS] gabrielle é a
pessoa que visitou todo mundo gabrielle
visitou luı́s [SEP] gabrielle não visitou iane-
sis [SEP]”.

2. Multilingual tokenizer: “[CLS] gabrielle a
pessoa que visito ##u todo mundo gabrielle
visito ##u lu ##s [SEP] gabrielle no
visito ##u ian ##esis [SEP]”

3. English tokenizer: “[CLS] gabrielle a pe
##sso ##a que visit ##ou tod ##o
mundo gabrielle visit ##ou lu ##s [SEP]
gabrielle no visit ##ou ian ##esis [SEP]”

4. Chinese tokenizer: “[CLS] ga ##b
##rie ##lle a pe ##ss ##oa q ##ue
vi ##sit ##ou to ##do mu ##nd ##o
ga ##b ##rie ##lle vi ##sit ##ou
lu ##s [SEP] ga ##b ##rie ##lle no
vi ##sit ##ou ian ##es ##is [SEP]”

Although the Portuguese words are destroyed
by the tokenizers, the model is still able to learn in
the fine-tuning phase the simple structural pattern
between the tokens highlighted above. This may
explain why the counting task (Task 4) presents
the highest difficulty for BERT. There is some
structural grounding for finding contradictions in
counting expressions, but to detect contradiction
in all cases one must fully grasp the meaning of
the multiple counting operators.

6 Conclusion

With the possibility of using pre-trained models
we can successfully craft small datasets (∼ 10K
sentences) to perform fine grained analysis on ma-
chine learning models. In this paper, we have pre-
sented a new dataset that is able to isolate a few
competence issues regarding structural inference.
It also allows us to bring to the surface some inter-
esting comparisons between recurrent neural net-
works and pre-trained Transform-based models.
As our results show, compared to the recurrent
models, BERT presents a considerable advantage
in learning structural inference. The same result
appears even when fine-tuned one version of the
model that was not pre-trained on the target lan-
guage.

By the stratified nature of our dataset, we can
pinpoint BERT’s inference difficulties: there is
space for improving the model’s counting under-
standing. Hence, we can either craft a more realis-
tic NLI dataset centered on the notion of counting
or modify BERT’s training to achieve better results
in the counting task.

The results on cross-lingual transfer learning
are stimulating. One possible area for future re-
search is to check if the same results can be at-
tainable using simple structural inferences that oc-
cur within complexes sentences. This can be done
by carefully selecting sentence pairs in a cross-
lingual NLI corpus like Conneau et al. (2018). We
plan to explore these paths in the future.
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