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Laboratório de Inteligência Artificial e Ciência de Computadores (LIACC)

Departamento de Engenharia Informática,
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Abstract

To overcome the lack of annotated resources
in less-resourced languages, recent approaches
have been proposed to perform unsupervised
language adaptation. In this paper, we explore
three recent proposals: Adversarial Train-
ing, Sentence Encoder Alignment and Shared-
Private Architecture. We highlight the dif-
ferences of these approaches in terms of un-
labeled data requirements and capability to
overcome additional domain shift in the data.
A comparative analysis in two different tasks
is conducted, namely on Sentiment Classifi-
cation and Natural Language Inference. We
show that adversarial training methods are
more suitable when the source and target lan-
guage datasets contain other variations in con-
tent besides the language shift. Otherwise,
sentence encoder alignment methods are very
effective and can yield scores on the target lan-
guage that are close to the source language
scores.

1 Introduction

Recently proposed approaches for unsupervised
adaptation have been explored in a variety of ma-
chine learning domains, including image recog-
nition (Ganin and Lempitsky, 2015; Bousmalis
et al., 2016) and natural language process-
ing (Chen et al., 2018; Conneau et al., 2018).

In unsupervised language adaptation, annotated
resources on a source language (S) are available,
in the form 〈XS , YS〉. For the target language (T ),
however, no annotations are assumed to exist for
training machine learning models with. The goal
is to learn representations that are useful to per-
form a given task on S while using representations
useful to perform the same task in the target lan-
guage T (or even across multiple languages).

Approaches to unsupervised language adap-
tation can be divided into those that (a) do

not assume any particular kind of inter-language
data (Chen et al., 2018), and those that (b) re-
quire sentences aligned for the source and target
languages, obtained either manually or through
machine translation systems (Banea et al., 2008;
Zhou et al., 2016).

In this paper, we explore recent proposals from
different domains for unsupervised adaptation and
employ them to two natural language tasks. To do
so without making use of aligned sentences, we
explore Adversarial Training (Section 4.1) (Chen
et al., 2018). Assuming the availability of par-
allel data, we also explore approaches that learn
the similarities and differences between source
and target language. We explore two different
approaches that leverage parallel data: a Sen-
tence Encoder Alignment (Section 4.2) (Conneau
et al., 2018) and a Shared-Private Architecture
(Section 4.3) (Bousmalis et al., 2016). We select
these approaches from many recent proposals be-
cause they differ on the main axis of our analysis
(assumptions made on the availability of unlabeled
data resources), they approach the problem using
conceptually different methods, and they corre-
spond to state-of-the-art approaches.

To evaluate the proposed approaches, we ex-
plore two different cross-lingual tasks: Natural
Language Inference (NLI) (also know as Recog-
nizing Textual Entailment) (Dagan et al., 2013)
and Sentiment Classification (Socher et al., 2013).
Our source language is English, in both cases.
For the target language, we constrain our work to
Chinese and Arabic, the languages that the both
tasks have in common. We believe that the lin-
guistic differences between the source and target
languages explored in this work are rich enough
to demonstrate the quality of the proposed ap-
proaches, in particular in such a challenging set-
ting as unsupervised language adaptation.

The main contributions of this work can be sum-
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marised as follows: (a) we divide and analyse
proposed approaches for unsupervised language
adaptation by taking into account their assump-
tions on available resources; (b) for the natural lan-
guage inference (NLI) task, we explore adversarial
training approaches and provide a new baseline for
sentence encoders without requiring parallel data.
Moreover, we explore a shared-private architec-
ture that leverages parallel sentences; (c) for the
sentiment classification task, we explore recent ap-
proaches that use parallel data (sentence encoder
alignment and shared-private architecture).

2 Related Work

The Natural Language Inference (NLI) task has
emerged as one of the main tasks to evaluate NLP
systems for sentence understanding. Given two
text fragments, “Text” (T ) and “Hypothesis” (H),
NLI is the task of determining whether the mean-
ing of H is in an entailment, contradiction or nei-
ther (neutral) relation to the text fragment T . Con-
sequently, this task is framed in a 3-way classifi-
cation setting (Dagan et al., 2013).

State-of-the-art systems explore complex sen-
tence encoding techniques using a variety of
approaches, such as recurrent (Bowman et al.,
2015a) and recursive (Bowman et al., 2015b) neu-
ral networks. To capture the relations between the
text and hypothesis, sentence aggregation func-
tions (Chen et al., 2017; Peters et al., 2018) and
attention mechanisms (Rocktäschel et al., 2016)
have been successfully applied to address the
task. On the cross-lingual setting, there has been
work using parallel corpora (Mehdad et al., 2011)
and lexical resources (Castillo, 2011), as well
as shared tasks (Camacho-Collados et al., 2017).
Most of these systems rely heavily on the avail-
ability of multilingual resources (e.g. bilingual
dictionaries) and on machine translation systems
to explore projection (Yarowsky et al., 2001) or di-
rect transfer (McDonald et al., 2011) approaches.
Recently, a large-scale corpus for NLI for 15 lan-
guages was released (details in Section 3) to-
gether with multilingual sentence encoders base-
lines (Conneau et al., 2018). More recently, new
methods to train language models provided the
ground basis for contextualized word embeddings
(Peters et al., 2018), which constitute the new
state-of-art in several tasks, including the NLI and
XNLI tasks (Devlin et al., 2019; Lample and Con-
neau, 2019). In this paper, we constraint our

work to the conventional (cross-lingual) word em-
beddings (Ruder, 2017) that have been widely
used and focus on a comparative analysis between
different approaches for unsupervised language
adaptation. We leave the study of the effects of
this recent line of work on our analysis as future
work.

For Sentiment Classification, several efforts
have been made to address the task in a cross-
lingual setting. Similarly to the NLI research fo-
cus, most of the approaches rely on projection
or direct transfer approaches (Wan, 2008; Mihal-
cea et al., 2007; Banea et al., 2008; He et al.,
2010). Some works explore parallel datasets to
learn bilingual document representations (Zhou
et al., 2016) or to perform cross-lingual distilla-
tion (Xu and Yang, 2017). Without requirements
for parallel data resources and machine transla-
tion systems, Adversarial Deep Averaging Net-
works (ADAN) (Chen et al., 2018) employing ad-
versarial training have been proposed to address
the task in an unsupervised language adaption set-
ting, which we follow in our work.

Crucial for our work is the existence of cross-
lingual word embeddings (Ruder, 2017). Sim-
ilarly to monolingual word embeddings, vari-
ous approaches to learn cross-lingual word em-
beddings have been proposed in recent years,
leading to existence of several pre-trained cross-
lingual embeddings, including fastText embed-
dings (Joulin et al., 2018; Bojanowski et al., 2017),
Multilingual Unsupervised and Supervised Em-
beddings (MUSE) (Lample et al., 2018), and bilin-
gual word embeddings (BWE) (Zhou et al., 2016).

3 Corpora

In this section we detail on the corpora used to
evaluate the unsupervised language adaptation ap-
proaches explored in this work.

3.1 Natural Language Inference

The Cross-Lingual Natural Language Inference
corpus (XNLI) (Conneau et al., 2018) is a large-
scale corpus for the task of NLI that contains an-
notations for 15 languages. Each pair of sentences
is annotated with one of three labels: Entailment,
Contradiction or Neutral.

The XNLI corpus is an extension for cross-
lingual settings of the Multi-Genre Natural Lan-
guage Inference (MultiNLI) corpus (Williams
et al., 2018). This is a crowd-sourced collection
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of 433k sentence pairs annotated with textual en-
tailment information. The corpus is modeled on
the Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015a), but differs in that
it covers a range of genres of spoken and written
text, and supports a distinctive cross-genre gener-
alization evaluation. Given that the test portion of
the MultiNLI data was kept private, they collect
and validate 750 new test set examples from each
of the ten text sources. To create the test set for
the remaining languages, professional translators
were asked to translate it into the ten target lan-
guages. The training set for the English portion
is the same training data from the MultiNLI cor-
pus. Additionally, in the official repository of the
XNLI corpus, machine translations of the English
data (including training, validation, and test set) to
each of the 15 languages of XNLI are provided.

3.2 Sentiment Classification

For the Sentiment Classification task we follow
the work of Chen et al. (2018), and replicate the
dataset collection used by the authors.

For the English partition, we use a balanced
dataset of 700k Yelp reviews from Zhang et al.
(2015) with their ratings as labels (scale 1-5). We
adopt the same training set of 650k reviews, but
we randomly split the original 50k reviews valida-
tion set into 25k for the test set and the remain-
ing for the validation set (keeping label distribu-
tions unchanged). For the Chinese dataset, 10k
balanced Chinese hotel reviews from Lin et al.
(2015) are used as validation set for model selec-
tion and parameter tuning. The results are reported
on a separate test set of another 10k hotel reviews.
Similarly to the English dataset, data is annotated
with 5 labels (1-5). For the unlabeled target lan-
guage data used during the training, we use an-
other 150k unlabeled Chinese hotel reviews.

Regarding the Arabic dataset, we use the BBN
Arabic Sentiment Analysis dataset (Mohammad
et al., 2016) for Arabic sentiment classification.
The dataset contains 1200 sentences (600 valida-
tion + 600 test) from social media posts annotated
with 3 labels (−, 0, +). Since the label set does
not match with the English dataset, we map the
4 and 5 English ratings to + and the 1 and 2 rat-
ings to −, while the 3 rating is converted to 0. For
the unlabeled target language data used during the
training, we use the text from the validation set
(without labels) during training (similar to proce-

dure followed by Chen et al. (2018)).

3.3 Parallel Sentence Resources

We use publicly available parallel sentence re-
sources to learn the alignment between English
and target language sentence encoders, an ap-
proach that is used by Sentence Encoder Align-
ment (Section 4.2) and Shared-Private Architec-
ture (Section 4.3). To retrieve and preprocess these
parallel sentence datasets, we follow the descrip-
tion presented by Conneau et al. (2018). For the
target languages addressed in this work, Arabic
and Chinese, we use the United Nations (UN)
corpus (Ziemski et al., 2016). This parallel cor-
pus consists of manually translated UN documents
from the last 25 years (1990 to 2014). In all the ex-
periments reported in this paper, we set the maxi-
mum number of parallel sentences to 2 million.

4 Methods

To address the task of unsupervised language
adaptation, we explore three approaches: Adver-
sarial Training (Section 4.1), Sentence Encoder
Alignment (Section 4.2), and Shared-Private Ar-
chitecture (Section 4.3). By unsupervised lan-
guage adaptation we consider that during the train-
ing phase the model is fed with labeled data (for
the task at hand) on the source language and that
no labeled data on target language is available.
However, to train the model on a cross-lingual set-
ting, unlabeled data on the source and target lan-
guage are provided. We study on the assumptions
that are made on the availability of unlabeled data
for the source and target language.

The first, Adversarial Training, only requires
the availability of unlabeled data in both lan-
guages, without requiring parallel sentences to
perform the language adaptation. The remaining
two approaches require parallel sentences for the
source and target languages.

4.1 Adversarial Training

In a cross-lingual setting, the aim of adversarial
training is to make the neural network agnostic
to the input language while learning to address
a specific task, following the intuition that if the
network learns representations that are useful for
the task and at the same time agnostic to language
specificities, then such representations can be di-
rectly employed to address the task on a target lan-
guage (unsupervised language adaptation).
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A neural network with adversarial training is
typically composed of three main components: a
Feature Extractor F that maps the input sequence
x to a feature space F(x), a Task Classifier P that
given the feature representation F(x) predicts the
labels for the task at hand, and a Language Dis-
criminator Q that also receives F(x) as input and
aims to discriminate the language of the input se-
quence. F and P correspond to the typical com-
ponents employed to address a text classification
task. Q corresponds to the second objective we
want to optimise the neural network for, where the
adversarial objective is defined.

The first formulation for an adversarial com-
ponent following this setting was the Gradient
Reversal Layer (GRL) (Ganin and Lempitsky,
2015), where Q is a binary classifier distinguish-
ing whether the input sequence x comes from the
source or target language.

However, training a neural network using the
GRL is very unstable, and efforts need to be made
to coordinate the adversarial training. To address
this issue, Chen et al. (2018) propose to min-
imise the Wasserstein distanceW between the dis-
tribution of the joint hidden features F for the
source P srcF , P (F(xsrc)) and, similarly, for
the target instances according to the Kantorovich-
Rubinstein duality, and demonstrate that this im-
proves the stability for hyperparameter selection.
Following Chen et al. (2018), the adversarial com-
ponent aims to maximize the following loss:

Ladv ≡ max
θq

(EF(xscr)∼P src
F

[Q(F(xsrc))]− (1)

EF(xtgt)∼P tgt
F

[
Q(F(xtgt))

]
)

For the task classifier component P , we want to
minimize the negative log-likelihood of the target
class for each source language example:

Ltask = −
Nsrc∑
i=0

ysrci · log ŷsrci , (2)

where ysrci is the one-hot encoding of the class la-
bel for source input i and ŷsrci are the softmax pre-
dictions of the model: ŷsrci = P(F(xsrci )).

Finally, the goal of training the complete neural
network is to minimize both the task classifier and
adversarial component losses:

LADAN = Ltask + λ Ladv (3)

where λ is a hyper-parameter that balances the im-
portance of the adversarial component in the over-
all loss computation. Differently from Chen et al.

(2018), who use a constant value λ = 0.01, we
employ a λ schedule that increases with the num-
ber of epochs. The intuition is to make the ad-
versarial component more important along time,
while keeping a good performance on the task.
Following Ganin and Lempitsky (2015), λ starts
at 0 and is gradually increased up to 1:

λp =
2

1 + exp(−γ · p)
− 1 (4)

where γ was set to 10 and p corresponds to the per-
centage of training completed given a predefined
maximum number of epochs.

4.2 Sentence Encoder Alignment

The Sentence Encoder Alignment method aims
to align the encoder for the target language
based on a pre-trained encoder on the source lan-
guage (Conneau et al., 2018). The key idea is that
the target encoder learns to copy the source en-
coder representation based on parallel sentences in
both languages. This method relies on the assump-
tion that the representations captured by the source
encoder (based solely on source language training
for the task at hand) are useful for the target lan-
guage as well. We hypothesise that in situations
where the only variation between task and parallel
data is the language shift, this approach can obtain
promising results. However, in cases where the
language shift is accompanied by other linguistic
phenomena discrepancies (e.g. differences in do-
main), sentence encoder alignment might not yield
competitive results.

This method includes three steps: (a) source
language training using labeled data on the task at
hand, (b) aligning sentence encoders with parallel
data, and (c) inference on the target language. The
architecture has three main components: a Feature
Extractor for the Source Language FS that maps
input sequence xsrc to a feature space FS(xsrc), a
Feature Extractor for the Target LanguageFT that
maps the input sequence xtgt to a feature space
FT (xtgt), and a Task Classifier P that given the
feature representation F(x) predicts the labels for
the task at hand.

The first step, source language training, follows
the typical training on monolingual settings. FS
and P are trained using labeled data in the source
language. In the next step, the goal is to align a
target encoderFT based on the source encoderFS
learned in the previous step.
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Given parallel sentences (from resources exter-
nal to the task at hand) in the source and target lan-
guage, zsrc and ztgt, we train FT to represent in-
put sequence ztgt as close as possible in the feature
space to the representation produced byFS for the
parallel sentence zsrc. To this end, we follow the
alignment loss Lalign (Conneau et al., 2018):

Lalign =dist(FS(zsrc),FT (ztgt))− (5)

η(dist(FS(zsrcneg),FT (ztgt))+
dist(FS(zsrc),FT (ztgtneg)))

where (zsrcneg, z
tgt
neg) are contrastive terms obtained

using negative sampling (i.e. zsrcneg was randomly
sampled from the parallel sentences dataset and
does not correspond to a parallel sentence of ztgt;
similarly between ztgtneg and zsrc), and η controls
the weight of the negative examples in the loss
(we fix η = 0.25 has suggested by Conneau et al.
(2018)). For the distance measure, we use the L2
norm dist(x, y) = ‖x − y‖2. During training,
we only back-propagate through FT when opti-
mizing Lalign such that the target feature extractor
is mapped to the source language feature space.

In the last step, the neural network is composed
of FT obtained in the second step of this method
and P obtained in the first step. Following this
procedure we can directly make inferences on the
target language, without requiring any kind of su-
pervision on the target language.

4.3 Shared-Private Architecture
The key idea of a shared-private architecture is
to obtain two different representations of the in-
put. The shared representation aims to capture lan-
guage agnostic features that can be shared across
different languages. On the other hand, the pri-
vate representation aims to capture language spe-
cific features. To prevent the shared and private
spaces from interfering with each other, two strate-
gies are typically used: adversarial training (Ganin
and Lempitsky, 2015; Liu et al., 2017) and orthog-
onality constraints (Bousmalis et al., 2016).

A neural network following a shared-private ar-
chitecture designed for a cross-lingual setting is
composed of: a Shared Feature Extractor FC that
maps the input sequence x to a common/shared
feature space FC(x), a Private Feature Extrac-
tor FP that maps the input sequence to a private
feature space FP(x), Task Classifier P that given
FC(x) predicts the labels for the task at hand, and
a Language Discriminator Q that receives FP(x)

as input and aims to discriminate the language of
the input sequence.

For the task classifier component P , the goal
is to minimize the negative log-likelihood of the
ground truth class for each source language input
sequence xsrc given the representation obtained
from FC(xsrc). The loss used for this component
is defined in Equation 2.

For the language discriminator component Q
the main goal is to train the private feature ex-
tractor FP to capture language specific phenom-
ena. In the language discriminator component, we
aim to minimize the negative log-likelihood of the
ground truth language discrimination for each in-
put sequence in xmix, where xmix corresponds to
a balanced sample of sentences randomly taken
from both source and target language datasets. Q
receives the representation of the input sequence
xmix from the private feature extractor FP(xmix).
Again, we use the loss defined in Equation 2.

The difference loss, Ldiff , is applied to input
sentences of both languages xmix and encourages
the shared and private feature extractors to encode
different aspects of the input sequences. Follow-
ing Bousmalis et al. (2016), we define the loss via
a soft subspace orthogonality constraint between
the private and shared representations, as follows:

Ldiff =
∥∥∥FC(xmix)>FP(xmix)∥∥∥2

F
(6)

where ‖ · ‖2F is the squared Frobenius norm.
The similarity loss, Lsim, encourages the repre-

sentations FC(xsrc) and FP(xtgt) to be as similar
as possible irrespective of the language. We em-
ploy the same loss defined in Equation 5 as sim-
ilarity loss, i.e., Lsim = Lalign. However, we
emphasise that the training procedure is different.
Here the alignment loss is one component of the
total loss applied to the neural network, working
concurrently with the other components.

Finally, the goal of training the complete neural
network is to minimize the following loss:

LSP = Ltask + λ Llang + (7)

β Ldiff + γ Lsim

where λ, β and γ are hyper-parameters that bal-
ance the importance of each component in the
overall loss computation. All these values are pa-
rameterized with the same schedule (Eq. 4). We
leave for future work finding optimal values for
these hyper-parameters.
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5 Experiments

To evaluate the methods described in Section 4
for unsupervised cross-lingual settings, we report
on experiments performed on two different tasks:
Natural Language Inference and Sentiment Clas-
sification. On both tasks we consider English (en)
as source language and Chinese (zh) and Arabic
(ar) as target languages.

5.1 Implementation Details

For the NLI task, we kept most of the architec-
ture details as similar as possible to the initial work
(Conneau et al., 2018). More specifically, the Sen-
tence Encoder Alignment architecture is similar to
this work. However, some of the parameters were
changed to speedup computations on all architec-
tures, so we expect the results to be worst than
those reported by Conneau et al. (2018). The main
goal of this work is not to provide a new state-of-
the-art system for the task, but instead we focus
on alternative architectures that explore different
assumptions about the data and that are backed up
by promising theoretical motivations.

The only pre-processing step required is the to-
kenization of the input sequence. We use MOSES
tokenizer (Koehn et al., 2007) for sentences in En-
glish and Arabic, and Stanford segmenter (Chang
et al., 2008) for Chinese. Each token is as-
sociated to the corresponding word embedding.
We use the fastText1 pre-trained 300 dimensional
word vectors computed on Wikipedia, aligned on
several languages using the relaxed cross-domain
similarity local scaling (RCSLS) method (Joulin
et al., 2018; Bojanowski et al., 2017). For the
Feature Extractor component F , we use a BiL-
STM (Hochreiter and Schmidhuber, 1997) with
128 hidden units, concatenating the initial and fi-
nal hidden states (Sutskever et al., 2014). For
the Task Classifier P and Language Discrimina-
tor Q we employ a feed-forward neural network
with a 128 hidden units hidden layer, regularized
with dropout (Srivastava et al., 2014) at a rate
of 0.2. As suggested by Chen et al. (2018), the
weights of the adversarial component are clipped
to [−0.01, 0.01]. For optimization, we use Adam
(Kingma and Ba, 2014) with default parameters.

To compare the results of the different archi-
tectures described in Section 4 on the Sentiment
Classification task with existing work, we fol-

1https://fasttext.cc/docs/en/
aligned-vectors.html

low the experimental setup used by Chen et al.
(2018). The tokenization is performed using Stan-
ford CoreNLP (Manning et al., 2014) for all lan-
guages. Regarding word embeddings, for Chi-
nese we used the pre-trained 50 dimensional Bilin-
gual Word Embeddings (BWE) by Zhou et al.
(2016). For Arabic, the 300 dimensional Bil-
BOWA BWE (Gouws et al., 2015) trained by Chen
et al. (2018) were not available. Instead, we used
the pre-trained 300 dimensional word vectors fast-
Text. For the Feature Extractor component F , we
use the Deep Averaging Network (DAN) (Iyyer
et al., 2015). For each input sequence, DAN cal-
culates the average of the word vectors in the input
sequence, then passes this tensor of average values
through a feed-forward network with ReLU (Glo-
rot et al., 2011) non-linearities. The feature ex-
tractor F has three fully-connected layers, while
both P andQ have two. All hidden layers contain
900 hidden units. We also use Adam optimizer
for this task, but using a learning rate of 0.0005 as
employed by Chen et al. (2018).

For both tasks, to find the best model in each
experiment, we stop training once the accuracy on
the validation set does not improve for 3 epochs
(early-stop criterion) or when 30 epochs are com-
pleted. The batch size used in the experiments was
set to 96 learning instances.

5.2 Analysis

Experimental results for the NLI task are shown
in Table 1. The “Conneau et al. (2018) BiLSTM-
last” architecture corresponds to the BiLSTM-last
multilingual sentence encoders (in-domain) pro-
posed by Conneau et al. (2018); the remaining ar-
chitectures correspond to those described in sec-
tions 4.1, 4.2 and 4.3, respectively. The evaluation
metric used is accuracy given that all labels are
equally represented (balanced dataset).

Comparing our results with existing state-of-
the-art (e.g. Conneau et al. (2018)), we can ob-
serve that our scores are lower. We attribute this to
some parameter choices that were driven by com-
putational efficiency concerns (described in Sec-
tion 5.1). We focus our work on a comparison
between different architectures and, therefore, we
aim at a comparative analysis between those archi-
tecture in similar settings.

Comparing the architectures presented in Sec-
tion 4, we can conclude that the Sentence Encoder
Alignment architecture yields better results in both

https://fasttext.cc/docs/en/aligned-vectors.html
https://fasttext.cc/docs/en/aligned-vectors.html
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Architecture en zh ar
Conneau et al. (2018)
BiLSTM-last

71.00 63.70 62.7

Adversarial 68.62 47.29 45.59
Sent Enc Align 68.62 58.24 57.33
Shared-Private 68.62 49.14 48.80

Table 1: XNLI accuracy scores

languages. Against our intuition, the Shared-
Private Architecture presents a considerable drop
of performance when compared with the Sentence
Encoder Alignment method even if the sentence
encoder alignment procedure is also performed in
the former (i.e. Lsim = Lalign). We attribute this
to the reduced number of updates that is performed
for the alignment procedure in the Shared-Private
Architecture (given that we compute a joint loss,
the number of iterations is determined by the size
of the labeled data for the task at hand). On
the other hand, the Sentence Encoder Alignment
method can make complete use of the 2 million
parallel sentences. We also studied the capability
of the shared and private feature extractors to pre-
dict the language of a given set of input sequences.
After some epochs of training, we observe that the
shared feature extractor is unable to distinguish the
input sequence language (obtaining 50% of accu-
racy to distinguish the languages). On the other
hand, the private feature extractor masters the task
reaching an accuracy of approximately 100%.

Adversarial Training performed considerably
worst in both target languages. We emphasise
that this architecture relieves the assumption of
the availability of parallel sentences in both lan-
guages, and therefore removes the expense of
acquiring such data. This can be relevant for
less-resourced languages, where the availability of
such parallel datasets is scarce and where neural
machine translation systems perform worst. To the
best of our knowledge, this constitutes the first ef-
fort to obtain a NLI system in a cross-lingual set-
ting employing adversarial training, and to address
the task without making any requirement on the
availability of parallel sentences. Therefore, we
present here a baseline system in this setting.

The results of the experiments conducted for
the Sentiment Classification task are shown in Ta-
ble 2. The “ADAN” architecture corresponds to
the ADAN model (Chen et al., 2018). In the 5 la-
bels setting, the labels are distributed equally (bal-

5 labels 3 labels
Architecture en zh en ar
ADAN - 42.49 - 54.54
Adversarial 60.40 43.22 77.68 52.17
Sent Enc Align 60.40 35.10 77.68 48.17
Shared-Private 60.40 29.13 77.68 43.50

Table 2: Sentiment Classification accuracy scores

anced dataset). In the 3 labels setting, the classes
are unbalanced in both target languages. We keep
using the accuracy metric in order to compare with
the current state-of-the-art in this task.

Since in this setting we follow the same com-
ponent architectures and parameters used in Chen
et al. (2018), the results of our implementation us-
ing Adversarial Training are close to the scores
reported by Chen et al. (2018). From this we
can conclude that the differences introduced in
this work, namely the dynamic schedule for the λ
value, did not influence the overall scores. Even
if no substantial differences exist between the
scores, we obtain a new state-of-the-art score for
the Chinese language. We attribute the small drop
of performance in Arabic to the different word em-
beddings used.

It is interesting to notice that in this task Ad-
versarial Training works substantially better than
the remaining architectures. We attribute this to
the differences of domain between the source and
the target language datasets (for both Chinese and
Arabic). Using the Sentence Encoder Alignment
in such a setting is not as promising, compar-
ing with the NLI setting, where both source and
target languages share the domain (even if the
XNLI dataset is composed of different domains,
they overlap between the languages). In fact, in
the Sentiment Classification task we perform the
alignment of the target language feature extractor
to the source language feature extractor (i.e. for
Yelp related reviews) and then ask the system to
perform predictions on a different language and
domain (e.g. Chinese and hotel reviews, respec-
tively). On the other hand, Adversarial Training
aims to obtain representations that are agnostic in
respect to an auxiliary task, in our case related
with language and domain shift. Consequently,
despite the considerable drop of performance of
Adversarial Training when compared to the source
language, it might be a strong baseline for unsu-
pervised adaption for datasets that differ not only
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Figure 1: XNLI accuracy scores for Chinese in the
semi-supervised setting.

in language but also in other phenomena (such as
domain, genre, style, etc).

5.3 Semi-Supervised Learning

In several scenarios, some annotated data in the
target language is available. In this section we
study how performance of the methods detailed in
Section 4 evolve as some examples in the target
language are added to the training set.

For the NLI task, results are shown in Figure 1.
The blue dotted line, dubbed “Supervised”, corre-
sponds to training the model in a supervised set-
ting on the target language, using the machine
translated training set provided by the XNLI cor-
pus. Sentence Encoder Alignment already ob-
tained scores close to the supervised model in
the unsupervised language adaptation setting. By
adding 100 instances from the target language,
scores increase slightly. However, adding more in-
stances does not affect overall performance. For
the remaining models, only when we add 1k in-
stances the accuracy starts to increase substan-
tially. As we add more target language instances,
accuracy keeps increasing at a consistent rate,
reaching the Sentence Encoder Alignment and Su-
pervised baseline when we add 200k instances.

For the Sentiment Classification task, results are
shown in Figure 2. Adversarial Training remains
the best model for this task as we increase learn-
ing instances from the target language in the semi-
supervised setting. Accuracy scores increase as
we add more instances. The Sentence Encoder
Alignment is the method that less effectively takes
advantage of the added data on the target language.
On the other side, the Shared-Private Architecture
is the method that makes better use of the added
target language instances, surpassing the Sentence

Figure 2: Sentiment Classification accuracy scores for
Chinese in the semi-supervised setting.

Encoder Alignment when we add 800 instances
and becoming competitive with Adversarial Train-
ing when 1600 instances are added.

In both tasks, the Sentence Encoder Alignment
is the method that takes less profit from the added
supervision in the target language, while Adver-
sarial Training and Shared-Private Architecture
can improve the overall accuracy as more super-
vision is provided.

6 Conclusions and Future Work

We have studied unsupervised language adapta-
tion approaches on two natural language process-
ing tasks, taking into consideration the assump-
tions made regarding the availability of unlabeled
data in the source and target languages.

Our results indicate that the characteristics of
the datasets used in the source language (to train
the models) and on the target language (to eval-
uate the cross-lingual approaches) are an impor-
tant factor to consider when choosing the archi-
tecture to employ. When the source and target
datasets present other variations in content besides
the language shift, adversarial training approaches
outperform those that rely on sentence alignment
methods. On the other hand, when the source and
target language datasets have the same character-
istics, sentence alignment approaches are very ef-
fective and obtain scores in the target language
that are closer to source language scores.

In future work, we aim to explore recent ad-
vances made on multilingual contextualized word
embeddings and determine whether they impact
the results reported in this work. Hyper-parameter
tuning of different loss components is a challeng-
ing task that we aim to study in more detail.
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