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Abstract
Natural language communication between ma-
chines and humans are still constrained. The
article addresses a gap in natural language un-
derstanding about actions, specifically that of
understanding commands. We propose a new
method for commonsense inference (ground-
ing) of high-level natural language commands
into specific action commands for further ex-
ecution by a robotic system. The method al-
lows to build a knowledge base that consists
of a large set of commonsense inferences. The
preliminary results have been presented.

1 Introduction

There is a significant progress in movement from
early natural language understanding computer
programs like SHRDLU (Winograd, 1972) with
its deterministic actions in the virtual world to
modern cognitive robots operating in the physical
world and mapping language to actions. Artificial
agents enter our lives and the end users of such
systems are not technical experts. The only way
for them to communicate with AI is to use natural
language. For example, humans can give a natural
language command expecting a follow-up action
by the agent.

Nowadays in robotics, in order to execute a nat-
ural language command which is considered as
a high-level instruction, an agent needs to trans-
form it to a sequence of lower-level primitive ac-
tions (Figure 1.). For example, the industrial
arm SCHUNK has three primitives: open-gripper,
close-gripper, move-to and for this agent any high-
level command should be transformed into a se-
quence of these 3 actions to be performed (Kress-
Gazit et al., 2008). For smarter agents with more
primitives, complicated commands like fill up the
cup with water can be executed by transforma-
tion into a long sequence of the lower-level ac-
tions: pick up the cup, move to your left, put the

Figure 1: Transformation of high-level command for
an agent.

cup under the faucet, turn on the faucet, turn off
the faucet, etc. In other words, natural language
command decomposition is a necessary step for an
agent to be capable of executing.

To make such transformations possible, pre-
vious works (Misra et al., 2015; She and Chai,
2016) explicitly model verbs with predicates de-
scribing the resulting states of actions. Their em-
pirical evaluations have demonstrated how incor-
porating result states into verb representations can
link language with underlying planning modules
for robotic systems (Gao et al., 2016). Recent in-
vestigations use reinforcement learning to trans-
form language commands into primitive actions
(Misra et al., 2017) or representation of actions
(Arumugam et al., 2017).

The current studies in human-robot communi-
cation (She and Chai, 2017; Chai et al., 2018)
show that natural language understanding of com-
mands is difficult for machines because commands
in human-human communications are usually ex-
pressed through a desired change of state.

2 Problem Statement

As Rappaport Hovav and Levin (2010) pointed
out, any action can be expressed in two different
ways. Firstly, there are manner verbs that describe
how actions are carried out – i.e. manners of do-
ing: hit, stab, scrub, sweep, wipe, yell, etc. Sec-
ondly, there are verbs that describe results of an
action or a change of state: break, clean, crush,
destroy, shatter, etc.

Further we will use a term “action verb” as a
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synonym for a manner verb and a term “result
verb” as a synonym for a verb that describes a re-
sult of an action or a change of state.

For commands in human-human communica-
tion, people mostly use result verbs. We say open
the door, not push the door; clean the table, not
wipe the table.

It should be underlined that result verbs don’t
express any concrete action. For instance, the
command open the door represents a particular
kind of change of state in an entity but it is silent
about how this change comes about. The verb
clean doesn’t indicate whether it was done by
sweeping, wiping, washing or sucking; the same
way the verb kill does not indicate how a killing
was done1.

On the contrary, the action verbs in the com-
mands pull the door, push the door, kick the door,
etc. represent different kinds of action necessary
to implement the change of state open the door.

The obvious question arises: if a command is
expressed through a desired change of state, how
humans know what actions to do? The point is that
humans derive the information about the concrete
actions related to the desired change from shared
background knowledge about the world. There is
no need to explicitly represent it in human com-
munication. It is commonsense knowledge that
enables us to understand each other (Clark, 1996;
Tomasello, 2008) and to know how to open the
door or how to clean the table (see Figure 2.).

AI systems, even new generations of cognitive
agents, have significantly less knowledge about
the world and are not able to ground result-verb
commands into action-verb commands. A com-
mand with a result verb does not give AI any in-
formation on what actions should be performed to
achieve the disable change of state. As a result
of that, commands to robots are directly linked to
primitive actions implemented by a robot without
the intermediate step of identifying them with ac-
tion verbs (see Figure 1.).

The straightforward approach “command →
primitive actions” fails to achieve two significant

1The separation of verbs on action verbs and result verbs
got further elaboration in cognitive science where an event
representation is considered to be based on 2-vector struc-
ture model: a force vector representing the cause of a change
and a result vector representing a change in object properties
(Gardenfors, 2017; Gardenfors and Warglien, 2012; Warglien
et al., 2012). It is argued that this framework gives a cognitive
explanation for manner verbs as force vectors and for result
verbs as result vectors.

Figure 2: Transformation of high-level command for a
human.

points.
First, a result verb being applied to the same ob-

ject can be executed by different action-verb com-
mands. For instance, the command with the result
verb fill up (the cup with water) can be executed
by the action verb pour (water into the cup) or by
the action verb scoop (water from the bucket).

Second, a result verb being applied to differ-
ent objects assumes different action verbs. For
instance, the following commands with the same
result verb open require different action verbs to
be executed: open the door; open the book; open
the refrigerator; open the can; open the envelope,
etc. Even for the similar commands open the door
and open the refrigerator there is a difference that
must be noted: the last command cannot be imple-
mented by pushing.

The general problem of overcoming the gap
in human-robot natural language understanding
being applied to the high-level natural language
commands can be formulated the following way.
How can AI systems transform high-level natural
language commands with result verbs into com-
mands with action verbs2?

3 Related Work

Although commonsense inference between ac-
tion verbs and result verbs has been described in
linguistic studies (Rappaport Hovav and Levin,
2010), there is still a lack of detailed account of
potential causality that could be denoted by an ac-
tion verb (Gao et al., 2016).

From the AI domain, there were investigations
2In the article we do not consider the follow-up step in

the transformation of action verbs into action primitives for
further execution by AI agent. This kind of transformation
depends on the type of the agent.
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devoted to learning the physics of the world from
videos (Fire and Zhu, 2016) and simulations (Wu
et al., 2017). However, except for a few works that
explored the physical properties of verbs (Forbes
and Choi, 2017; Zellers and Choi, 2017), how
verbs and their corresponding actions affect the
state of the physical world is still largely under-
explored.

Well-known knowledge bases like Freebase,
YAGO or DBPedia, even being automatically pop-
ulated by modern NLP methods, do not contain
commonsense inferences we are going to create.

Crowd-sourcing resources such as ConceptNet
have an incomplete coverage, which is its main
drawback. A human knowledge engineer may not
list all possible events related to a particular action
verb or a result verb. For example, the inference
scrub → clean might be listed while others such
as mop → clean, suck → clean, or sweep → clean
might be missed.

Existing linguistic resources such as Propbank,
FrameNet or VerbNet provide important informa-
tion about verb classification, its arguments and
semantic roles, but they do not distinguish action
verbs and result verbs. For instance, in the largest
domain-independent computational verb lexicon
VerbNet (Kipper Schuler, 2005), that provides se-
mantic role representation for 6394 verbs (version
3.2b), the action verb hit and the result verb break
have the same structure: [Agent, Instrument, Pa-
tient, Result]. Even if the semantic representation
for a verb may indicate that a change of state is in-
volved, it does not provide the specifics associated
with the verb’s meaning (e.g., to what attribute of
its patient the changes might occur) (Gao et al.,
2016).

WordNet, manually created by professional lin-
guists, to the best of our knowledge, is the only
linguistic resource that partly provides informa-
tion about causal links between action verbs and
result verbs. As we will indicate below, these links
overlap with the hypernym-hyponym relations in
WordNet.

Finally, the broad-coverage resource VerbO-
cean (Chklovski and Patel, 2004) set a seman-
tic relation “enablement” between verbs using the
following 4 patterns: “Xed * by Ying the”; “Xed
* by Ying or”; “to X * by Ying the” and “to X
* by Ying or”, where “X” and “Y” are verbs; (*)
matches any single word. The patterns are similar
to the one we are going to use. The only signifi-

Figure 3: Transformation of high-level command.

cant difference is that all of them do not include a
noun after a verb “X”. As it was mentioned in the
section 3 (2nd point), a result verb being applied
to different objects assumes different action verbs.

4 Proposed Approach

We consider the transformation formulated in sec-
tion 3 as a process of grounding where a high-level
command representing a desired change of state is
grounded to an action(s) command.

The following two assumptions will be made to
formalize the process of grounding.

1) The commands in human-robot interactions
can occur in various forms and patterns. Some
of them can be rather complicated. Our work ad-
dresses the simplest case where a command is rep-
resented by the structure V+NP, where V is a verb,
NP is a noun phrase.

2) The grounding of a result-verb command
into an action-verb command is represented as:
Vr+NP1+by+Va+NP2, where Vr is a result verb;
Va is an action verb3.

Since a result verb being applied to the same ob-
ject can be executed by different action-verb com-
mands, the schema on the Figure 2. will be un-
folded as one-to-multi relations between a result-
verb command and an action-verb command (see
Figure 3.).

The key point here is how to extract one-to-
multi relations. In reality, these relations are com-
monsense inferences that allow humans easily to

3NP1 can be the same or different from NP2.. Compare:
open the door by pulling the door and open the door by push-
ing the button
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transform result-verb commands into action-verb
commands. These commonsense inferences are
so obvious and so well-known to everybody that
are very rarely expressed anywhere in a written
form. It makes it hard to find and extract from
any source of information. As a consequence of
that, we cannot apply deep learning techniques for
extraction of above-mentioned one-to-multi rela-
tions. Deep learning has proved incredibly pow-
erful and effective for many practical tasks from
perceptual classification to self-driving cars. But
we have to acknowledge the data-hungry nature of
systems based on deep learning. The side-effect of
that is a long tail of low-frequency data that cannot
be treated the same way. Our research deals with
such data.

The method suggested for one-to-multi rela-
tions extraction is based on 3 non-related ap-
proaches and includes three steps accordingly.

1. Getting 2 sets of verbs: a set of result verbs
{Vr} and a set of action verbs {Va};

2. Getting a set of the most frequent pairs
{Vr+NP};

3. Getting a set of commonsense inferences
{Vr+NP1+by+Va+NP2}.

In the first step, result verbs (Vr) and ac-
tion verbs (Va) are separated. The separation is
based on analysis of Wordnet; this is a domain-
independent step that aims to cover generally re-
sult and action verbs representing the physical
world. In the second step, the set of the most
frequent pairs {Vr+NP} are extracted using the
N-gram approach to form result-verb commands:
clean the floor, cool the beer, etc. In the third step,
we use a search engine to check all around the web
if there is a commonsense inference between an
action-verb command and a result-verb command
(open the door by pressing the button). If a com-
monsense inference exists in the web it is consid-
ered as being validated and added to the set.

4.1 Step #1: Getting Two Sets of Verbs

The output of the step #1 is two sets of verbs: a
set of action verbs {Va} and a set of result verbs
{Vr}. The separation is based on the analysis of
the entire set of verbs through Princeton Word-
Net (WN) (Fellbaum, 1998) which is widely used
in a variety of tasks related to extraction of se-
mantic relations. The verb part of WN contains

11529 unique verbs (version WN 3.0)4. They
are organized in verb synsets ordered mainly by
troponym-hypernym hierarchical relations (Fell-
baum and Miller, 1990). According to the def-
initions, a hypernym is a verb with a more gen-
eralized meaning, while a troponym replaces the
hypernym by indicating a manner of doing some-
thing. The closer a verb is to the bottom of
a verb tree, the more specific the manners that
are expressed by troponyms: communicate-talk-
whisper5.

Meanwhile, action verbs are hidden in the WN
verb structure since troponyms are not always ac-
tion verbs. In some troponym-hypernym relations
the verbs are in fact action verbs like in {kill}-
{drown}. However, there are no explicit ways to
extract them yet.

The idea is that action verbs can be extracted
from WN if at least one of four conditions, applied
to a verb is valid6 :

1. A verb in WN is an action verb if its gloss
contains the following template: “V + by
[...]ing”, where V=hypernym. Example:
{sweep} (clean by sweeping);

2. A verb in WN is an action verb if its gloss
contains the following template: “V + with
+ [concrete object]”, where V=hypernym.
Example: {brush} (clean with a brush).
Restriction on the concrete object is made
to avoid cases like with success (pleasure,
preparation, etc).

3. A verb in WN is an action verb if it repre-
sents movement in any direction: lift, turn,
descend, etc.

4. A verb in WN is an action verb if its hyper-
nym is an action verb. In other words, once
a verb is an action verb, all branches located
below consist of action verbs as well, regard-
less of their glosses.

The procedure of using conditions 1-4 goes
from all top verbs to the bottom verbs. For ex-

4 https://wordnet.princeton.edu/documentation/wnstats
7wn. The following paper (McCrae et al., 2019) outlines a
roadmap for adding new entries to WordNet, so the number
of verbs is not fixed, but increasing over time.

5Note that these are defined on verb-senses, not verbs.
For example, the verb see “perceive: I see the picture” will
behave differently from the verb see “understand: I see the
problem”.

6These 4 conditions elaborate the approach developed in
(Huminski and Zhang, 2018a,b)
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ample, we start from the top synset {change, alter,
modify} (gloss: cause to change; make different;
cause a transformation). It doesn’t satisfy the 1st
or the 2nd condition, so we go down on 1 level
and examine one of its troponyms: {clean, make
clean} (make clean by removing dirt, filth, or un-
wanted substances from). It is still not an action
verb synset: in the pattern from the 1st condition
– “V + by [...]ing” – the verb make clean is not
a hypernym. On the next level there are synsets
with glosses that satisfy either the 1st or the 2nd
condition:

• {sweep} (clean by sweeping);

• {brush} (clean with a brush);

• {steam, steam clean} (clean by means of
steaming).

So, the verbs sweep, brush, steam, steam clean are
action verbs. Applying the 3rd condition on them,
one can state that all synsets located below these 3
synsets (if any) are action verb synsets. The frame-
work is the basis of the procedure for action ex-
traction.

We implemented the procedure following the
conditions 1.-4. and got the following results:

1. 191 verb synsets have been extracted by
matching the template “V + by [...]ing”;

2. 329 verb synsets have been extracted by
matching the template “V + with + (a/an)? +
...” ;

3. 1408 verb synsets have been extracted from
the motion lexicographer file;

4. a total of 3063 verb synsets have been ex-
tracted as a total number of action verbs in-
cluding all the verb synsets that are located
under the hypernyms as action verbs; 3063
extracted verb synsets contain 3294 unique
action verbs.

All other verbs are potentially result verbs. Also
some restrictions need to be applied to consider
only the result and action verbs that are repre-
sented in the physical world and necessary for
robot actions.

We will evaluate the results intrinsically (a lin-
guist will judge the validity), and extrinsically,
i.e. for English verbs also found in Levin’s En-
glish Word Classes and Alternations (1992) we

will compare our results to her classes. For exam-
ple, class 10.3 “clear” verbs (clean, clear, drain,
empty) are result verbs while 10.4.1 “wipe” verbs
(bail, buff, dab, distill, dust, erase, expunge, flush,
leach, lick ..) are action verbs.

4.2 Step #2: Getting Set of Pairs {Vr+NP}
The output of the step #2 is a set of the most fre-
quent (commonly used) pairs {Vr+NP}. The pur-
pose of this step is based on the observation that
a result verb being applied to different objects as-
sumes different action-verb commands.

To generate the set {Vr+NP} we use N-grams
(which are a contiguous sequence of n items from
a given text) extracted from the largest publicly-
available, genre-balanced corpus of English: the
Corpus of Contemporary American English7 with
about 430 million words in size. With this N-
grams data (2, 3, 4, 5-word sequences, with their
frequency), the subset of N-grams are extracted
where the 1st word is a result verb in any grammat-
ical form. A threshold was set for the frequency.
For example, for the result verb open we extracted
all 3-grams that look like the following (with fre-
quency at the beginning):

3459 opened the door
2611 open the door
.......
201 open the window
169 opened the window
......
130 opened the box
89 open the box
etc.

If the data from N-grams is insufficient we use
larger, noisier corpora such as the common crawl8.

4.3 Step #3: Getting a Set of Commonsense
Inferences

The output of the final step #3 is a set of common-
sense inferences between an action-verb command
and a result-verb command validated by a search
engine from the web. The search engine is used to
check (validate) if a commonsense inference ex-
ists in the web. Each commonsense inference for
the checking has a structure Vr+NP1+by+Va+NP2
(open the door by pressing the button).

The procedure is the following:

7https://www.ngrams.info/
8https://commoncrawl.org/
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1. make a cartesian multiplication of pairs
{Vr+NP} and action verbs {Va}: {(Vr+NP),
Va};

2. create a sequence for each element from 1.:
Vr+NP+by+Va (fill the cup by pouring);

3. run the sequence from 2. on the
search engine looking for the sequence
Vr+NP1+by+Va+NP2(concrete object) in the
web. Estimate the frequency (or getting no
result).

4. If we do not find sufficient action-verb tem-
plates Va+NP2(concrete object), we will use
the learned combinations to learn new tem-
plates, extending the approach (Snow et al.,
2006) to learning wordnet relations.

All validated commonsense inferences will be
added to the set with frequencies and stored.

5 Implementation and Preliminary
Results

The flowchart (Fig. 4) shows the general approach
of causal relations extraction from text. Three
modules on the bottom in grey color represent
three steps from section 5. The details of the ap-
proach are given below.

Raw data. WordNet is used as raw data.
Algorithm of separation. For getting prelimi-

nary results, commonly used result verbs and ac-
tion verbs were taken from the linguistic literature.
We extracted 12 result verbs and 50 action verbs.

Result verbs: break, clean, clear, close, raise,
cut, fill, heat, kill, lift, open, remove.

Action verbs: blow, brush, chip, chop, clip,
comb, compress, drown, flap, grab, grasp, grind,
grip, hack, hammer, hit, kick, knead, lever, mow,
pound, pour, press, pull, push, rinse, rub, saw,
scoop, scrape, scratch, scribble, scrub, shake,
shave, shoot, shovel, slap, slash, smear, soap,
splash, sponge, squeeze, stab, steam, sweep,
touch, wash, wipe.

N-gram approach. For each of 12 result verbs,
we extracted five 3-grams Vr+NP. Each 3-gram
contains the most frequent noun phrase with the
corresponding verb. Totally 60 3-grams were ex-
tracted (see Table 1 for details).

Web-search. Cartesian multiplication of 60 3-
grams and 50 action verbs produces 3000 combi-
nations “Vr+NP by Va”. We use search engine
Bing for running the template “Vr+NP by Va...”.

Accordingly, 3000 searches were made. The re-
sults were taken and analyzed from the first 10
web pages that appeared. We were looking for
the results corresponding the template “Vr+NP by
Va+NP/Pronoun”.

Results. As a result we got 497 causal relations.
Sample of 20 extracted causal relations is given in
Table 2.

Examples of causal relations for the 3-gram
“open the window” is given in Table 3.

6 Evaluation

The evaluation was based on a sample of 100
causal relations randomly taken from extracted
497 ones.

Due to the restrictions applied on event and
causal relation between events we can not evalu-
ate the recall of the extraction.

The precision (validity) of extracted causal rela-
tions were evaluated by five human judges. They
were given instructions to rate the causal relations
by marking each relation with a number from 1
(very bad) to 5 (very good). Examples of invalid
(break the ice by seeing it) and valid (opened the
box by pulling on the handle) causal extractions
were provided.

6.1 Simple Average

After 5 judges put their marks, the simple average
was calculated by dividing the sum of all marks by
500. We got 3.1.

6.2 Extraction of valid causal relations

We calculated the average between judges for each
causal relation and extracted 62 causal relations
(among 100 randomly taken) with average score
more or equal 3.

6.3 Analysis of invalid causal relations

38 causal relations with the average score lower
than 3 were preliminarily analyzed for detecting
the reasons. We found the following:

a) bad parsing or bad POS tagging (kill the bac-
teria by pouring a half cup; fill the hole by push-
ing thousands; open the window by grabbing the
opening);

b) unusual causal relations that require a con-
text: heat the oil by pressing the palms; cut the
engine by pulling both paddles.

c) meaningless causal relations: break the ice by
seeing it; killing each other by slashing the rate;
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Figure 4: Flowchart of causal relations extraction from text

Table 1: Most frequent 3-grams for extracted result verbs

Table 2: Samples of extracted causal relations

7 Conclusion and Further Work

Commonsense inferences allow us to equip and
empower cognitive robots with an ability to under-
stand high-level natural language commands (or
instructions). We present a method for acquir-

Table 3: Examples of causal relations for the 3-gram
“open the window”

ing the knowledge needed to transform high-level
result-verb commands into action-verb commands
for further implementation into primitive actions.

In the future, to improve the results and increase
the quality of retrieved actions we are planning to:

• improve the instruction for judges to decrease
the deviation in evaluation;
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• use better NLP tools for POS tagging and
parsing;

• develop more elaborated procedure for com-
monsense inferences, for example, to exclude
search results with negation (“don’t open the
window by throwing the stone”) that produce
wrong commonsense inferences;

• use metrics for calculation of consistency (re-
liability) of the results (for example, Krippen-
dorff’s alpha coefficient);

• enlarge the set of verbs used for com-
monsense inferences using resource such as
WordNets.

• build multilingual commonsense inferences
(starting with Chinese and Indonesian) based
on (Bond and Foster, 2013; Bond et al.,
2014), (Wang and Bond, 2013).
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