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Abstract

We introduce a simple yet effective method of
integrating contextual embeddings with com-
monsense graph embeddings, dubbed BERT
Infused Graphs: Matching Over Other em-
beDdings. First, we introduce a preprocess-
ing method to improve the speed of querying
knowledge bases. Then, we develop a method
of creating knowledge embeddings from each
knowledge base. We introduce a method of
aligning tokens between two misaligned tok-
enization methods. Finally, we contribute a
method of contextualizing BERT after com-
bining with knowledge base embeddings. We
also show BERTs tendency to correct lower
accuracy question types. Our model achieves a
higher accuracy than BERT, and we score fifth
on the official leaderboard of the shared task
and score the highest without any additional
language model pretraining.

1 Introduction

Recently, wide-scale pre-training and deep con-
textual representations have taken the world by
storm. Peters et al. (2018) underscored the im-
portance of bidirectional contextual representa-
tions by using traditional neural networks trained
on a large corpus of text. Devlin et al. (2018)
used transformers (Vaswani et al., 2017) and word
masking to pre-train on another large corpus of
data, reporting human-level performance on one
commonsense dataset (Zellers et al., 2018). Yang
et al. (2019) achieves state-of-the-art on RACE
(Lai et al., 2017) with a Transformer-XL based
model (Dai et al., 2019).

The key to success in the performance of many
of these models is their ability to train on ex-
tremely large datasets. BERT (Devlin et al., 2018),
for example, trains on the BooksCorpus (Zhu
et al., 2015) and English Wikipedia, for a com-
bined 3,200M words. Other iterations increased

the amount of knowledge used during pre-training,
such as RoBERTa (Liu et al., 2019). Training
large-scale models on these massive datasets has
drawbacks, such as significantly increased carbon
pollution and harm to the environment (Schwartz
et al., 2019; Strubell et al., 2019).

We present a methodology of combining
queries from commonsense knowledge bases with
contextual embeddings, BIG MOOD - BERT
Infused Graphs: Matching Over Other embeD-
dings, and abbreviated for its relationship to hu-
man knowledge awareness. Our methodology
achieves a increase without significant additional
fine-tuning or pre-training. Instead, it learns a sep-
arate representation from commonsense graphical
knowledge bases, and augments the BERT rep-
resentation with this learned explicit representa-
tion. We introduce several methods of combining
and querying knowledge base embeddings to in-
troduce them to the BERT embedding layers.

2 Related Work

2.1 Knowledge Graphs

Significant research has been put into represent-
ing human knowledge in various ways (Lenat
and Guha, 1989; Auer et al., 2007; Cham-
bers and Jurafsky, 2008). ConceptNet (Speer
and Havasi, 2013) contains various aspects of
commonsense knowledge through a knowledge
graph.The knowledge is collected from crowed-
sourced resources (Meyer and Gurevych, 2012;
Havasi et al., 2010; von Ahn et al., 2006) and
expert-created resources (Miller, 1992; Breen,
2004). WebChild (Tandon et al., 2017) is a col-
lection of commonsense knowledge automatically
extracted from web contents. The database is con-
structed similarly to ConceptNet, and intended to
cover concepts that ConceptNet does not cover.
ATOMIC (Sap et al., 2018) focuses on inferential
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Passage: I had decided that I wanted to visit
my friend Paul whom lives quite a distance
away. With this and my fear of air travel in
mind I decided to take a train. After research-
ing and finding one online I was well on my
way to going to see my friend Paul. I drive
to the station and decide that I am going to
purchase a round trip ticket as this would be
cheaper than just buying both tickets sepa-
rately. Whenever my train arrives I have to
get in line as they process our tickets. After
all this is done I decide to take a seat by the
window. I sit and fall asleep a bit as I ride on
the train for hours. After a couple hours we
finally reach the destination and I get off the
train, excited to see my friend.
When did they wait for their train?
a) before buying the ticket
b) after buying a ticket

Table 1: Example of a prompt from the shared task
dataset, an everyday commonsense reasoning dataset.
Questions often require script knowledge that extends
beyond referencing the text.

If − Then relations, built for everyday common-
sense reasoning.

2.2 Knowledge Integration
Knowledge graphs have been applied in various
natural language processing applications, such as
reading comprehension (Lin et al., 2017; Yang and
Mitchell, 2017) and machine translation (Zhang
et al., 2017). ERNIE: Enhanced Representation
through Knowledge Integration (Sun et al., 2019)
appends knowledge to the input of the model and
learns via knowledge masking, as well as entity-
level masking and phrase-level masking. TriAN
(Wang, 2018), the top public model on the MC-
Script (Ostermann et al., 2018) shared task, uses
ConceptNet embeddings to highlight relationships
between the question, text, and answer.

3 Model

We present our model for this shared task. Our
model has three major components: language
model adaptation, knowledge graph embeddings,
and attention for classification.

3.1 Data Preprocessing
Before model usage, we preprocess the data in
two ways to make it easier for the model to un-

derstand. For language modeling, we create train-
ing data similar to those in BERT (Devlin et al.,
2018). For knowledge graph use, we preprocess
language to create commonsense object and rela-
tionship vocabulary and to match as many related
commonsense objects as possible.

3.1.1 Language Model Preprocessing
We prepossess each passage for training. We use
this process for each training epoch, since it allows
for the most dense pretraining framework.

Commonly known as a cloze task, Devlin
et al. (2018) introduced a framework that pre-
trained transformers (Vaswani et al., 2017) based
on masked token prediction. First, we prepro-
cess the tokens with WordPiece embeddings (Wu
et al., 2016). Then, we append special [CLS] and
[SEP ] to each datum. We append [CLS] to the
beginning of each datum, and [SEP ] to separate
the question with the answer, as such:

[CLS] passage question [SEP ] ans. [SEP ]

Then, we randomly mask 15% of all WordPiece
embeddings. Unlike Devlin et al. (2018), we run
the randomization script once per each training
epoch. Otherwise, we follow the procedure in De-
vlin et al. (2018). 80% of the time, we replace the
word with the [MASK] prediction, to be replaced
through cloze task prediction. 10% of the time, we
replace the word with a random word. 10% of the
time, we keep the word unchanged.

Combined with the above cloze task, we pro-
cess the data for next sentence prediction. We do
this process after the cloze task masking, similar
to Devlin et al. (2018). For each datum, we ran-
domly pick either a sentence labeled correctly as
the next sentence 50% of the time, or a random
sentence 50% of the time. We ensure that the ran-
dom sentence is not the next sentence.

3.1.2 Knowledge Graph Processing
We preprocess the data in the shared task along
with knowledge graph preprocessing. The purpose
of this procedure is to reduce the number of items
in the knowledge graph, to speed up fine-tuning
since the knowledge graphs are extremely large,
and also to ensure matching between as many dif-
ferent types of knowledge graph edges that are rel-
evant as possible.

First, we create an index of (start, end, edge)
relationships that match vocabulary within the
shared task prompt. For each (start, end, edge), we
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Figure 1: Our model architecture. Our design mimics (Vaswani et al., 2017). Since the queries work on whole
words only, one knowledge base embeddings may be integrated with one or more language embedding. Several
self-attention encoding layers are used.

Algorithm 1: Knowledge Graph Vocab Cre-
ation
for prompt in dataset do

for KG in knowledge graphs do
for (start, end, edge) in KG do

if start in prompt & end in prompt
then

add((start, end, edge))
index as relationship(edge)

end if
end for

end for
end for

check to see if there are any matching prompts in
which start is present in the text and end is present
in the text. If so, we store the (start, end, edge),
and note the edge as a relationship. We also index
the relationship (edge), giving an index for each
unique relationship.

For longer sequences, we allow matches be-
tween any trigram, and store an index for each tri-
gram matched. In addition, we stem words before-
hand, to ensure that the different word endings do
not effect the result of the matches. We use the
Porter Stemmer (Porter, 1980) to stem each word
in both the text and the knowledge graph. Note
that we only use the stemming to match differ-
ent words, and do not keep the stemmed words for
later use in the process, as to keep comparability

between embedding types. We also stem words in
knowledge bases, to allow for comprasion. Algo-
rithm 1 shows our process for matching sequences.

3.2 Knowledge Graph Usage

We query each of three knowledge bases to cre-
ate an embedding layer, for each word, for each
knowledge graph. Here, we describe our proce-
dure for querying each knowledge graph. We stem
words beforehand, to allow for matches agnostic
of linguistic postfixes (Merkhofer et al., 2018).

3.2.1 ConceptNet
ConceptNet (Speer and Havasi, 2013) represents
everyday words and phrases, with edges be-
tween the commonsense relationships between
them. We first preprocess ConceptNet, keep-
ing only the vocabulary present in the shared
task. Then, for each edge, we store a tu-
ple (agent, dependent, relationship) that de-
scribes the commonsense relationship mentioned
in the knowledge graph.

During fine-tuning, we check the text for any
present agent, dependent pairs. If any word in
the text is an agent, and the dependent is present
in the text, we add that relationship index as in-
put into the embedding layer. (For agents that
span more than one word, such as the phrase ”ap-
ple pie”, we apply the index to the first word, as
long as the entire phrase is found in the text). We
randomly generate a length 10 embedding for each
relationship, and if more than one relationship is
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matched, we randomly pick one.

3.2.2 WebChild

WebChild (Tandon et al., 2017) is a large collec-
tion of commonsense knowledge collected from
various sources on the web. The format is similar
to ConceptNet, which allows us to follow a simi-
lar process. WordNet instances are split into cat-
egories part − whole, comparative, property,
activity, and spatial. For each category, we cap-
ture the (agent, dependent, relationship) tu-
ple, which is usually defined as properties such
as xdisambi, ydisambi, and sub − relation, but is
slightly different for each category. We ignore the
WordNet (Miller, 1992) relation (some categories
will contain subjects such as bike#n#1, and take
only the stemmed word. For fine-tuning, we fol-
low the same procedure as ConceptNet, creating
an additional 10-length embedding for each word.

3.2.3 ATOMIC

ATOMIC (Sap et al., 2018) is a resource that fo-
cuses on inferential knowledge via If − Then re-
lations. ATOMIC separates its relationships into
nine different types (xNeed, xIntent, xAttr,
xEffect, xReact, xWant, oEffect, oWant).
For each of the nine categories, for each datum in
the given category, we search our text for relation-
ships that match the defined If − Then relation-
ship. Since each relationship is nearly a full sen-
tence, we allow a match to be any trigram matched
between the given datum and the text. Then, we
append an index [0, 8] to the embedding layer of
the first word in the selected trigram based on the
type of relationship matched. For fine-tuning, we
follow the same procedure as ConceptNet and We-
bChild, creating an additional 10-length embed-
ding for each word.

3.3 Architecture

Out modeling procedure consists of three parts.
First, we query each knowledge graph, allowing
us to create embeddings for each specific graph.
Then, we describe our word-level knowledge fu-
sion procedure, creating augmented embeddings
for each word. Finally, we describe our fine-tuning
procedure for the shared task dataset. We modify
pytorch-transformers1.

1https://github.com/huggingface/pytorch-transformers

3.3.1 Language Model Fine-Tuning
Contrary to Devlin et al. (2018), we do language
model fine-tuning in addition to classification fine-
tuning. We find that this generally provides better
results, and allows for more stable accuracy since
the shared task involves a small dataset. For each
prompt, we use the previous preprocessed data to
create tasks for our model to predict. We do this
before token realignment, so this happens before
any extra knowledge graph embeddings are added
to the model architecture. For masked tokens, we
predict that token through bidirectional context,
the same as Devlin et al. (2018). For next sentence
prediction, we use the unbiased method previously
introduced as well as in Devlin et al. (2018).

3.3.2 Token Realignment
We do a word-level fusion to incorporate knowl-
edge embeddings into the BERT model. First, we
collect word embeddings from BERT. We sum the
last four layer of BERT together, as suggested by
”The Illustrated BERT, ELMo, and co.” 2. We fuse
these embeddings with the embeddings gathered
from querying each of the three databases. For
each word, we take the dyadic product, or linear
fusion, of the contextual BERT embeddings with
the concatenation of the three graph embeddings.
When there is no related embedding (if the word
did not match any edges during querying, or if the
word is a BERT-specific token such as [CLS], we
do not do any dyadic fusion. Finally, to get a sin-
gle linear layer, we concatenate each dimension
of the result of the dyadic fusion with the original
BERT embedding. Algorithm 2 shows a detailed
explanation of our token realignment process.

3.3.3 Re-Attention
To get a final result, we do a few more neces-
sary steps. First, we do a single layer of self-
attention over the text, allowing each of the word-
level embeddings to interact with one another.
For this self-attention, we follow the same pro-
cess as in (Vaswani et al., 2017). We compare
each token with each other and do token-level fu-
sion with each other to learn an attention embed-
ding layer. Then, we use the sequence embed-
ding for classification. We add a simple linear
layer over the sequence embedding for classifica-
tion, and softmax over the given choices. Note
that we do not freeze any weights along the pro-
cess, allowing the transformer and perceptron to

2http://jalammar.github.io/illustrated-bert/
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Algorithm 2: Psuedocode for the token realignment algorithm, a method of finding token alignments
between two different sequences.

token realignment(seq 1, seq 2):
alignment dict = dict
seq 1 i = 0
seq 2 i = 0
while seq 1 i <len(seq 1) & seq 2 i <len(seq 2) do

if seq 1[seq 1 i] is seq 2[seq 2 i] then
alignment dict[seq 1 i].append(seq 2 i)
seq 1 i++
seq 2 i++

end if
if seq 1[seq 1 i] in seq 2[seq 2 i] then

alignment dict[seq 1 i].append(seq 2 i)
seq 1 i++

end if
if seq 2[seq 2 i] in seq 1[seq 1 i] then

alignment dict[seq 1 i].append(seq 2 i)
seq 2 i++

end if
end while
return alignment dict

be fine-tuned during this process. We also allow
the knowledge embeddings to be modified through
this back-propagation. Hyperparameters are noted
in Section 4.1. We also ablate our use of this
extra attention layer, showing that it is important
to learn comparisons between knowledge embed-
dings. For BERT baselines, we use the process
in Devlin et al. (2018), and use the [CLS] token,
without attention, for classification.

4 Analysis

4.1 Hyperparameter Tuning

For hyperparameter tuning with BERT, we find
that grid search is the best method. We tune var-
ious hyperparameters, including batch size, learn-
ing rate, warmup, and epoch count (for hyperpa-
rameter details, see appendix). Graph 2 shows
the results of several hyperparameters on BERT
with our additional knowledge bases. We find
that B. MOOD seems to correct its deficiencies
as it gets closer to the maxima. Interestingly, B.
MOOD seems to be naturally good “What” ques-
tions, which commonly require commonsense in-
ference. This could be explained by the effect of
the commonsense knowledge graphs, showing that
is picking up on commonsense attributes. How-

Figure 2: Example of B. MOOD accuracy across cat-
egories during hyperparameter turning. Values to the
right are closer to the maxima.

ever, for “Where” questions, which it requires
more information from the text, B. MOOD needs
to learn and thus experiences a greater gain as the
accuracy gets closer to its maxima.

We also compare to TriAN (Wang, 2018), the
previous state-of-the-art. Table shows our results.
For the majority of categories, it seems to be-
gin to be 50/50 between TriAN and MOOD, with
TriAN showing more strength in commonsense
categories. However, B. MOOD begins to get
large jumps in accuracy in categories that it is beat
in (such as “Who” and “Where”). For knowledge
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System
Accuracy

Dev Test
Human 97.4 98.0
Logistic Baseline - 60.8
TriAN (Wang, 2018) 76.1 -
BERTLARGE 82.3 -
B. MOOD (with ConceptNet) 83.1 -
B. MOOD (with WebChild) 82.7 -
B. MOOD (with ATOMIC) 82.5 -
B. MOOD (w/o final attention) 82.4 -
B. MOOD (with all KB) 83.3 80.7

Table 2: Results with B. MOOD on task dev and test
set. “with all KB” describes results using all Concept-
Net, WebChild, and ATOMIC embeddings. “Human”
and “Regression Baseline” accuracy is from the shared
task paper (Ostermann et al., 2018). TriAN (Wang,
2018) uses ConceptNet as features.

Category
System Accuracy

TriAN BERT B. MOOD
What 79.3 81.6 84.5
When 69.4 80.0 81.3
Where 75.1 77.3 78.3
Who 79.4 86.5 86.6
How 76.8 83.2 83.4
Overall 76.1 82.3 83.3

Table 3: Question type comparison between different
models on the shared task: previous state-of-the-art
TriAN (Wang, 2018), BERTLARGE , and B. MOOD
(with all 3 knowledge bases).

embeddings, we use a size of 10 for each knowl-
edge graph, combining for a size 30 knowledge
graph embedding. We randomly init each embed-
ding, and if there is more than one embedding for
token, we pick one at random (Wang, 2018). For
BERT fine-tuning, we use a maximum sequence
length of 450, a train batch size of 32, four epochs,
1e− 5 learning rate, and a 20% warmup.

4.2 Results
We show our results and give analysis for MOOD.
We show that each of the knowledge bases help the
accuracy of our model, and our strongest model
involves the union of all three knowledge bases.
ConceptNet gives the largest increase, likely be-
cause there are the most matches between the
prompts and ConceptNet, since ConceptNet cov-
ers everyday concepts that are relatively more
common. WebChild gives a boost also, but not
as large as ConceptNet. ATOMIC gives the small-

est boost, likely because 1) ATOMIC queries are
the longest, and thus, least likely to match, and
2) there is not as much inferential commonsense
present.

We also note that the base B. MOOD accuracy
is higher than the base TriAN (Wang, 2018) accu-
racy, the previous state of the art. By appending
similar knowledge embeddings, we find that we
can bring the TriAN accuracy up to 77.8%, which
is more comparable with MOOD. This shows that
the additional knowledge bases (ATOMIC, We-
bChild) contribute to the overall accuracy even
without the contextual embeddings. However,
we find that the knowledge bases combined with
TriAN still do not provide an improvement above
that of MOOD, and thus, the knowledge bases
alone are not enough to capture the necessary in-
formation. Instead, the knowledge graphs must be
used through combination with contextual embed-
dings for the most effective model. This shows
that BERT may lack the complete amount of infor-
mation needed to understand this dataset. We also
show that the attention is needed to understand
the knowledge graphs alongside BERT, showing
the importance of learning the different knowledge
base embeddings within the text. This highlights
the fact that using the knowledge base embeddings
is helpful, and also comparisons between different
sections of text is helpful for reading comprehen-
sion tasks.

5 Conclusion

We introduce a method of fine-tuning with graphi-
cal embeddings alongside contextual embeddings,
MOOD. Our method uses three different knowl-
edge bases, and introduces ways of improving
both learning speed and knowledge embedding
effectiveness. First, we preprocess the dataset,
showing that both language model preprocessing
and knowledge graph preprocessing is important
to the final result. Then, we tune our language
model on the shared task, stabilizing the hyperpa-
rameter search. We create knowledge graph em-
beddings and concatenate the embeddings via to-
ken realignment. Then, we introduce a final layer
of attention that learns both contextual and explicit
graph embeddings through contextualization. We
show the effect of various knowledge bases, and
show our accuracy across various question types.
Our model gets fifth on the task leaderboard and
outperforms BERT across all question types. We
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hope that this investigation motivates and furthers
additional research in combining commonsense
knowledge awareness with transformers.
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A Appendices

A.1 Hyperparameters
Seen in Table 4 is a list of hyperparameters for our
experiments. We use the same parameters for both
uses of explicit knowledge embeddings.

Explicit Knowledge Embeddings
Embedding size 10
Knowledge bases used 3

BERT Fine-Tuning
Maximum sequence length 450
Train batch size 32
Learning rate 1e-5
Epochs 4
Warmup 20%

TriAN Parameters
Optimizer adamax
Learning rate 2e-3
Batch size 32
Hidden size 96
RNN type lstm
Embedding dropout 0.4

Table 4: Hyperparameters used throughout experi-
ments. TriAN parameters are used for TriAN compari-
son only.


