
EMNLP 2019

Proceedings of the First Workshop on Commonsense
Inference in Natural Language Processing

November 3, 2019
Hongkong



c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-79-6

ii



Introduction

Welcome to the first Workshop on Commonsense Inference in Natural Language Processing, COIN.

This workshop takes place for the first time and has a focus on research around modeling commonsense
knowledge, developing computational models thereof, and applying commonsense inference methods in
NLP tasks. This includes any type of commonsense knowledge representation, and explicitly also work
that makes use of knowledge bases and approaches developed to mine or learn commonsense from other
sources. Evaluation proposals that explore new ways of evaluating methods of commonsense inference,
going beyond established natural language processing tasks are also of interest for the workshop.

The workshop included two shared tasks on English reading comprehension using commonsense
knowledge. The first task is a multiple choice reading comprehension task on everyday narrations. The
second task is a cloze task on news texts.

Several teams participated in the shared tasks, with 4 teams submitting results for task 1, and one
team submitting results for both tasks. All models are based on Transformer architectures. The best
performing models reach 90.6% accuracy and 83.7% F1-score on task 1 and task 2, respectively.

In total, we received 22 paper submissions (among them 6 shared task papers), out of which 16 were
accepted. All workshop papers are presented as talks, while the shared task papers are presented in
a poster session. In addition, the workshop includes two invited talks on the topics of commonsense
inference and commonsense in question answering.

The program committee consisted of 21 researchers, who we’d like to thank for providing helpful and
constructive reviews on the papers. We’d also like to thank all authors for their submissions and interest
in our workshop.

Simon, Sheng, Michael and Peter
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Cracking the Contextual Commonsense Code: Understanding
Commonsense Reasoning Aptitude of Deep Contextual Representations

Jeff Da Jungo Kasai
Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, WA, USA
{jzda,jkasai}@cs.washington.edu

Abstract

Pretrained deep contextual representations
have advanced the state-of-the-art on various
commonsense NLP tasks, but we lack a con-
crete understanding of the capability of these
models. Thus, we investigate and challenge
several aspects of BERT’s commonsense rep-
resentation abilities. First, we probe BERT’s
ability to classify various object attributes,
demonstrating that BERT shows a strong abil-
ity in encoding various commonsense features
in its embedding space, but is still deficient in
many areas. Next, we show that, by augment-
ing BERT’s pretraining data with additional
data related to the deficient attributes, we
are able to improve performance on a down-
stream commonsense reasoning task while us-
ing a minimal amount of data. Finally, we
develop a method of fine-tuning knowledge
graphs embeddings alongside BERT and show
the continued importance of explicit knowl-
edge graphs.

1 Introduction

Should I put the toaster in the oven? Or does the
cake go in the oven? Questions like these are triv-
ial for humans to answer, but machines have a
much more difficult time determining right from
wrong. Researchers have chased mimicking hu-
man intelligence through linguistic commonsense
as early as McCarthy (1960):

... [machines that] have much in com-
mon with what makes us human are de-
scribed as having common sense. (Mc-
Carthy, 1960).

Such commonsense knowledge presents a severe
challenge to modern NLP systems that are trained
on a large amount of text data. Commonsense
knowledge is often implicitly assumed, and a sta-
tistical model fails to learn it by this reporting bias

(Gordon and van Durme, 2013). This critical dif-
ference of machine learning systems from human
intelligence hurts performance when given exam-
ples outside the training data distribution (Gordon
and van Durme, 2013; Schubert, 2015; Davis and
Marcus, 2015; Sakaguchi et al., 2019).

On the other hand, NLP systems have recently
improved dramatically with contextualized word
representations in a wide range of tasks (Peters
et al., 2018; Radford et al., 2018; Devlin et al.,
2019). These representations have the benefit of
encoding context-specific meanings of words that
are learned from large corpora. In this work, we
extensively assess the degree to which these repre-
sentations encode grounded commonsense knowl-
edge, and investigate whether contextual represen-
tations can ameliorate NLP systems in common-
sense reasoning capability.

We present a method of analyzing common-
sense knowledge in word representations through
attribute classification on the semantic norm
dataset (Devereux et al., 2014), and compare a
contextual model to a traditional word type rep-
resentation. Our analysis shows that while contex-
tual representations significantly outperform word
type embeddings, they still fail to encode some
types of the commonsense attributes, such as vi-
sual and perceptual properties. In addition, we
underscore the translation of these deficiencies to
downstream commonsense reasoning tasks.

We then propose two methods to address these
deficiencies: one implicit and one explicit. Im-
plicitly, we train on additional data chosen via at-
tribute selection. Explicitly, we add knowledge
embeddings during the fine-tuning process of con-
textual representations. This work shows that
knowledge graph embeddings improve the ability
of contextual embeddings to fit commonsense at-
tributes, as well as the accuracy on downstream
reasoning tasks.
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2 Attribute Classification

First, we preform an investigation to see if the
output from BERT is able to encode the neces-
sary features to determine if an object has a re-
lated attribute. We propose a method to evaluate
BERT’s representations and compare to previous
non-contextual GloVe (Pennington et al., 2014)
baselines, using simple logistic classifiers.

2.1 Commonsense Object Attribution

To get labels for attribute features of common-
sense features of objects, we utilize CSLB, a se-
mantic norm dataset collected by the Cambridge
Centre for Speech, Language, and the Brain (De-
vereux et al., 2014). Semantic norm datasets are
created through reports from human participants
asked to label the semantic features of a given
object. Thus, a proportion of these features are
obvious to humans, but may be difficult to find
written in text corpora. This is notably different
from the collection methods of prominent com-
monsense databases, such as ConceptNet (Speer
and Havasi, 2013).

CSLB gives 638 different attributes describ-
ing a variety of objects provided by 123 partici-
pants. To make results consistent between base-
lines (GloVe) and BERT, we first preprocess the
attributes present in CSLB. We removed attributes
with two-word names, ambiguous meanings (i.e.
homographs), or missing GloVe representations.
This gives a 597 attribute vocabulary. Examples
of objects described are zebra, wheel, and wine.
Example of attributes are is upright, is a toy, and
is an ingredient.

2.2 Contextualization

Since BERT is commonly utilized at the sequence
embedding level (Devlin et al., 2019), we develop
a contextualization module to allow representa-
tions of (object, attribute) pairs, allowing us to
acquire one sequence embedding from BERT for
each pair. From a high level, we want to develop a
method to transform (object, attribute) into simple
grammatical sentences.

For each (object, attribute) pair, we raise the
pair to a sentence structure such that the attribute is
describing the object. We would enforce the fol-
lowing representation, in line with the procedure
of Devlin et al. (2019):
[CLS] cprefix noun caffix adj. cpostfix [SEP ]

The goal is to create a simple formula that al-
lows the model to isolate the differences between
the object-attribute (noun-adjective) pairs, rather
than variation in language. cprefix represents pre-
vious context, i.e. context that appears before the
word. caffix is context that appears between the
noun and the adjective. cpostfix is context that
closes out the sentence.

We illustrate this algorithm for use with CSLB,
but this methodology can be used for any dataset,
such as other semantic norm datasets. We use this
process for each (object, attribute) pair in CSLB.
First, we check if any words in the attribute need
to be changed. For example, in CSLB, instead of
does deflate, we use deflates as the attribute text,
since it simplifies the language. Then, for cprefix,
we use either A or An, and for cpostfix, and use a
period. For caffix, we use either is or nothing, de-
pending on the attribute. Some example sentences
would be: (shirt, made of cotton) would become
”A shirt is made of cotton.” and (balloon, does de-
flate) becomes ”A balloon deflates.” See the ap-
pendix for full pseudocode.

We find that this method is a better alternative
to simply creating a sequence with the concatena-
tion of the object and the attribute. Some attribute-
object pairs translate better to English than others.
For example, ”wheel does deflate” might be a rel-
atively uncommon and awkward English phrase
when compared to more natural phrases such as
”shirt made of cotton”.

2.3 Determining Attribute Fit

We explore if word embeddings contain the nec-
essary information within their embedding space
to classify various semantic attributes. Our proce-
dure involves use of a simple logistic classifier to
classify if an attribute applies to a candidate ob-
ject. We create a list of (object, attribute) pairs as
training examples for the logistic classifier (thus,
there are nobjects × nattributes training examples
in total). We then train logistic classifiers for each
attribute, and use leave-one-out accuracy as accu-
racy – averaging the leave-out-one result across all
nobjects classifiers, since we leave out a different
object each time. For example, to examine the at-
tribute made of cotton, we train on all objects ex-
cept one, using the label 1 if the object is made of
cotton, and 0 otherwise. Then, we test to see if the
left-out object is classified correctly. We repeat
nobjects times, removing a different object each

2



(a) GloVe (b) BERT

Figure 1: Swarm plots showing attribute fit scores for GloVe (left) and BERT (right). Each dot represents a
single attribute, displayed along the x-axis according to the classifier’s ability to fit that feature with the given
embeddings. The y-axis is not significant, and instead, dots are displaced along the y-axis instead of overlapping
to show quantity. The median fit score per embedding type is displayed with a dotted line.

(a) Small increase in fit score (< 0.15) (b) Large increase in fit score (> 0.3)

Figure 2: Differences between fit scores when using GloVe (start of arrow) or BERT (end of arrows) embeddings.

time. To judge fit, we use F1 score, as F1 score
is not affected by dataset imbalance. We consider
other classifiers, such as SVD classifiers, but we
find that there is no significant empirical differ-
ence between the classifiers. For baseline tests, we
use the pretrained 300 dimensional GloVe embed-
dings,1 as they have shown to perform better than
word2vec embeddings (Lucy and Gauthier, 2017).
See appendix for specific logistic regression pa-
rameters, such as the number of update steps used.

2.4 Attribute Scores
We show our findings for feature fit for each at-
tribute. Figure 1 highlights that BERT is much
stronger on this benchmark – the median fit score
is nearly double that of the previously reported
GloVe baselines. This suggests that BERT en-

1https://nlp.stanford.edu/projects/
glove/

codes commonsense traits much better than pre-
vious baselines, which is suggestive of its strong
scores on several commonsense reasoning tasks.
Notably, we can see that much fewer features have
a fit score less than 0.5. We observe that many
more traits have a perfect fit score of 1.0. How-
ever, our results also show that BERT is still un-
able to fully fit many attributes. This underscores
that BERT still lacks much attribution ability, per-
haps in areas outside of its training scheme or pre-
training data. Seen in Figure 2 is the change in
fit scores between GloVe and BERT. We can see
that some traits exhibit much larger increases – in
particular, physical traits such as made of wood,
does lock, and has a top. Traits that are more ab-
stract tend to have a lesser increase. For example,
is creepy and is strong still are not able to be fit by
the contextualized BERT module.
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Metric Visual Encyclopedic Functional Perceptual Taxonomic Overall
MedianGloV e 46.2 38.9 44.4 49.0 89.1 46.1
MedianBERT 83.3 76.2 78.3 80.0 100 82.7
∆ +37.1 +37.3 +33.9 +31.0 +10.9 +36.6

Table 1: Comparison of median logistic classifier fit scores (out of 100 percent fit) across categories defined in
CSLB.

Category Lower scoring attributes (fit score < 1.0) Attributes perfectly fit (fit score = 1.0)
Visual is triangular, is long and thin, is upright,

has two feet, does swing, is rigid
does come in pairs, has a back, has a bar-
rel, has a bushy tail, has a clasp

Encyclopedic is hardy, has types, is found in bible, is
American, does play, is necessary essen-
tial

does grow on plants, does grow on trees,
does live in rivers, does live in trees, does
photosynthesize, has a crew

Functional does work, does spin, does support, does
drink, does breathe, does hang

does DIY, does carry transport goods,
does chop, does drive

Perceptual is chewy, does rattle, is wet, does squeak,
is rough, has a strong smell

does bend, has a sting, has pollen, has
soft flesh, is citrus, is fermented

Taxonomic is a home, is a dried fruit, is a garden tool,
is a vessel, is a toy, is an ingredient

is a bird of prey, is a boat, is a body part,
is a cat, is a citrus fruit, is a crustacean

Table 2: Fine-grained comparison across categories between attributes that lack some level of fit (left) and perfectly
fit attributes (right) with classification using BERT representations.

Table 1 shows a comparison of fit scores across
different types of attribute categories. These cate-
gories are defined per attribute in CSLB (Devereux
et al., 2014). Visual attributes define features that
can be perceived visually, such as is curved. Per-
ceptual defines attributes that can be perceived in
other non-visual ways, such as does smell nice.
Functional describes the ability of an object, such
as is for weddings. Taxonomic defines a biolog-
ical or symbolic classification of an object like
is seafood. Finally, encyclopedic are traits that
may be the most difficult to classify, as they are
attributes that most pertain to abstract common-
sense, such as is collectible.

BERT has stronger scores in all categories, and
just short of double the overall accuracy. Impor-
tantly, however, it struggles to classify many cat-
egories of objects. In taxonomic categories, it is
able to perfectly fit more than half the objects. We
suspect that this is intuitive, as BERT is trained on
text corpora that allow for learning relationships
between classes of objects and the object itself.
GloVe notably also preforms strong in this cate-
gory, for the same reasons. BERT scores the low-
est on encyclopedic traits, which most closely re-
semble traits that would appear in commonsense
tasks. This suggests that BERT maybe be rela-
tively deficient in regards to reasoning about com-

monsense attributes.
We also examine specific attributes where

BERT is fully fit (with a perfect fit score), and
compare those attributes to features where BERT
is unable to fit. Table 2 shows examples of both
levels of fit. BERT is able to fit many features
that would be easily represented in text, such as
does bend, does grow on plants, and does drive.
It is unable to fit traits that may be less com-
mon in text and more susceptible to the report-
ing bias, such as is American, is chewy, and
has a strong smell. Surprisingly, it is also unable
to fit several features that would be likely common
in text such as is a toy, suggesting that BERT’s
training procedure is lacking coverage of many ev-
eryday events perhaps due to the reporting bias.

2.5 Do Knowledge Graphs Help?

We extend our investigation with two inquiries.
First, given the large gain in accuracy over GloVe,
we wonder if BERT embeddings now encode
the same information that external commonsense
knowledge graphs (such as ConceptNet (Speer and
Havasi, 2013)) provide. Second, we question if it
is possible to increase the overall accuracy above
the accuracy presented by using BERT embed-
dings (otherwise, it could mean that the deficit is
simply because the logistic classifier does not have

4



System Median
GloVe 46.1
BERTLARGE 82.7
ConceptNet 23.2
BERTLARGE + ConceptNet 90.7

Table 3: Results for attribute classification with Con-
ceptNet as a knowledge graph source.

needed capacity (Liu et al., 2019a)).
We use ConceptNet (Speer and Havasi, 2013)

for our experiments. We label each relationship
type with an index. (antonym as 0, related to
as 1, etc.) During classification, we query the
knowledge base with the object and the attribute
and check if there are any relationships between
the two. We embed the indexes of matched rela-
tionships to randomly initialized embeddings and
concatenate them with the original BERT embed-
dings. If more than one relationship is found, we
randomly choose a relationship to use.

Table 3 shows our results. By itself, the explicit
commonsense embeddings do not have enough
coverage to learn classifications of each attribute,
since the knowledge graph does not contain in-
formation about every (object, attribute) pair.
However, by combining the knowledge graph em-
beddings with the BERT embeddings, we illus-
trate that knowledge graphs cover information that
BERT is unable to generate the proper features for.
In addition, the results suggest that BERT is de-
ficient over various attributes, and the traditional
knowledge graphs are able to cover this feature
space. These results support the hypothesis that
BERT simply lacks the features rather than the
problem of the logistic classifier.

3 Improving BERT’s Representations

We have gained an understanding of the types of
commonsense attributes BERT is able to classify
and encode in its embeddings, and also have an un-
derstanding of the types of attributes that BERT’s
features are deficient in covering. In Section
2.5, we have shown that commonsense knowledge
graphs may also help encode information that ex-
tends beyond BERT’s embedding features. How-
ever, we have yet to know whether this BERT’s
deficiency will translate to any of BERT’s down-
stream reasoning ability, which is ultimately more
important.

We empirically address the gap between at-

Passage: For my anniversary with my hus-
band, I decided to cook him a very fancy
and nice breakfast. One thing I had always
wanted to do but never got to try was mak-
ing fresh squeezed orange juice. I got about
ten oranges because I wasn’t sure how much
I was going to need to make enough juice
for both me and my husband. I got home
and pulled my juicer out from underneath my
sink. I began using the juicer to squeeze the
juice out of my orange juice. I brought my
husband his breakfast with the orange juice,
and he said that the juice was his favorite
part!
How were the oranges sliced?
a) in half
b) in eighths
When did they plug the juicer in?
a) after squeezing oranges
b) after removing it from the box

Table 4: Example of a prompt from MCScript 2.0 (Os-
termann et al., 2018), an everyday commonsense rea-
soning dataset. Questions often require script knowl-
edge that extends beyond referencing the text.

tribute classification and downstream ability in
BERT. First, we demonstrate that there is a corre-
lation between low-scoring attributes and low ac-
curacy on reasoning questions that involve those
attributes. Then, we leverage our investiga-
tion to build two baseline methods of improving
BERT’s commonsense reasoning abilities (Figure
4). Since BERT is trained on implicit data, we ex-
plore a method of using RACE (Lai et al., 2017)
alongside a list of attributes that BERT is deficient
in (such as the one in Section 2.4). We also extend
our investigation in Section 2.5 on commonsense
knowledge graphs by proposing a method to inte-
grate BERT with external knowledge graphs. See
appendix for hyperparameters.

3.1 Background: MCScript 2.0
We leverage MCScript 2.0 (Ostermann et al.,
2019) for several investigations in this paper. MC-
Script 2.0 is a downstream commonsense reason-
ing dataset. Each datum involves one passage,
question, and two answers, and the goal is to pick
the correct answer out of the two choices. Many
questions involve everyday scenarios and objects,
which helps us link our semantic norm results to
more downstream reasoning capability. Table 4

5



Figure 3: Linear regression fit of accuracy on MCScript
2.0, per attribute, versus fit score, with the inner 90
percent bootstrap confidence intervals highlighted (n =
1000). Each dot represents the accuracy of questions
related to one attribute.

shows an example.

3.2 Do Low Classification Scores Result in
Low Performance?

We examine if low-scoring attributes result in
low downstream performance, and high-scoring
attributes also result in high downstream perfor-
mance. For each question in MCScript, we re-
late that question to 1 or more of the attributes in
the previous experiment. For example, a question
might be talking about whether to use a camera
flash, and would be thus related to the traits does
have flash, is dark, and is light. Here we aim to
empirically assess deficiencies in BERT’s ability
and their downstream implications. For instance,
if it is unable to fit does have flash, will it have a
gap in knowledge in areas regarding camera flash?
If a given feature does not have a related question,
we do not include it in our experiments. In total,
nquestions = 193, and nattributes = 92.

For the MCScript model, we simply classify
based on the [CLS] token, as suggested in De-
vlin et al. (2019). We softmax over the logits be-
tween the two answers when producing our final
answers, and split the passage-question pair and
answer by a [SEP ] token. The attribute-related
questions here are from the development set only.

Seen in Figure 3 are the results. We do not see a
clear pattern, but we can still make several obser-
vations. First, we notice that there are simply a lot
of items with a high fit score. Next, there are a lot
of attributes that BERT simply gets correct. How-
ever, notably, BERT is less consistent with getting

items that have a low fit score (< 0.5). We can also
notice that all attributes that have high accuracy on
MCScript also have a high fit score.

3.3 Implicit Fine-Tune Method

We develop a method of fine-tuning with addi-
tional data based on the deficiencies found in the
previous section. We fine-tune on additional data,
but we select only data related to attributes that
BERT is deficient in.

3.3.1 Data Selection
In our experiments, we use RACE (Lai et al.,
2017) as our supplementary dataset. While we can
fine-tune on the entire dataset, we can also select a
subset that directly targets the deficient attributes
in semantic norm. To select such a subset, we
define a datum as related if any words match be-
tween the datum in the supplementary dataset and
the deficient feature in semantic norm, stemming
all words beforehand. For some attributes, we re-
move frequent words (“is, “does”, and “has”) to
avoid matching too many sentences within RACE.

Since each datum in RACE involves a question,
answer, and passage, we allow matches between
either of the three texts, and do not differentiate
between matches in the question, answer, and pas-
sage. We find that this keeps around a third of
the data in RACE (around 44K, out of the 97K
data present in RACE). It is also key that this data
selection process does not require access to the
downstream task dataset. Thus, this procedure has
the ability to generalize to other tasks beyond MC-
Script 2.0.

3.3.2 Fine-Tuning Procedure
We fine-tune BERT’s language objectives on
RACE. We do not change the properties of either
objective, to keep comparability between our anal-
ysis and BERT. This mimics Devlin et al. (2019),
and thus, we fine-tune the token masking objective
and the next sentence prediction objective. Several
works have improved on BERT’s language objec-
tives (Yang et al., 2019; Liu et al., 2019b), but we
keep the language objectives in BERT intact for
comparison.

After fine-tuning on RACE, we fine-tune on
MCScript with the classification objective only.
We do this since we need to build a classification
layer for the specific task, as noted in Devlin et al.
(2019). We do not freeze the weights in this pro-
cess, as to keep comparability with the fine-tuning
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Figure 4: Outline of our baseline method of improving BERT for commonsense reasoning. Our method fine-tunes
BERT through multiple facets while optimizing for accuracy and reduced train steps. We use RACE (Lai et al.,
2017) as an external dataset, and MCScript 2.0 (Ostermann et al., 2019) as our downstream task.

procedure in Devlin et al. (2019).

3.4 Explicit Fine-Tune Method

Motivated by our results in 2.5, we develop a
method of integrating knowledge graph embed-
dings with the BERT embeddings. First, we query
knowledge graphs based on the given text to find
relationships between objects in the text. Then, we
generate an embedding for each relationship found
(similar to Section 2.5). Finally, we fine-tune these
embeddings alongside the BERT embeddings.

3.4.1 Knowledge Graph Query

We query a suite of knowledge bases (Concept-
Net (Speer and Havasi, 2013), WebChild (Tandon
et al., 2017), ATOMIC (Sap et al., 2019)) to create
knowledge graph embeddings. First, we examine
all relationships, indexing each unique relation-
ship sequentially. Then, during fine-tuning, for
each prompt in MCScript 2.0, we query the knowl-
edge bases to find any (start node, end node,
edge) matches between the knowledge base and
the current prompt. For example, if eat and
dinner are both present in the text, the rela-
tionship at location in ConceptNet would match
(Figure 5). We record the index of the matched re-
lationship, keeping a list of matched relationships
per word in the prompt. If a start node spans more
than one word, we record the match as occurring
for the first word in the phrase.

System Acc. Data
BERTLARGE + RACE 84.3 98 K
BERTLARGE + RACE (random) 84.0 44 K
BERTLARGE + RACE (selected) 84.5 44 K

Table 5: Test set results from the implicit method
on MCScript 2.0. “selected” indicates a subset of
RACE that consists of misclassified attributes in se-
mantic norm. “random” is a randomly chosen subset.

3.4.2 Fine-Tuning Procedure
We fine-tune our knowledge graph embeddings
alongside the BERT fine-tuning procedure. We
randomly initialize an embedding for each rela-
tionship and each knowledge graph. We choose
an embedding for each word in the prompt (ran-
domly, if there is more than one relationship asso-
ciated), creating a sequence of knowledge graph
embeddings. We create a sequence embedding
for the 30-dimensional graph embeddings by feed-
ing the sequence through an bidirectional LSTM.
Then, during fine-tuning, we classify each datum
in MCScript based on the concatenation of the ex-
plicit graph sequence representation and the BERT
sequence embedding (i.e. [CLS]), as per Devlin
et al. (2019).

3.5 Results and Analysis

Table 5 shows the results from the implicit
method. Accuracy is consistent across the board,
with all models giving about a 2% downstream ac-

7



Figure 5: Visualization of ConceptNet knowledge base queries. The word eat is being queried with the other
words in the text, with the valid edges discovered displayed against the left.

System Accuracy
Human (Ostermann et al., 2019) 97.4
Random Baseline 48.9
BERTLARGE 82.3
with ConceptNet 83.1
with WebChild 82.7
with ATOMIC 82.5
with all KB 83.3
with all KB + RACE (selected) 85.5

Table 6: Test set results for knowledge base embed-
dings on MCScript 2.0.

curacy boost. However, the model with the less
amount of data (RACE, selected from deficiencies
only) achieves equivalent accuracy to the entire
RACE dataset, while using only half the amount
of data. This underscores the importance of the
abstract semantic norm task, as the related data se-
lection process was effective in choosing examples
that are directly related to deficiencies.

Table 6 shows our results with explicit knowl-
edge embeddings. Each knowledge base improves
accuracy, with ConceptNet giving the largest per-
formance boost. ATOMIC gives the smallest
boost, likely because the ATOMIC edges involve
longer phrases, which means less matches, and the
overlap between ATOMIC text and the text present
in the task is not as large as either ConceptNet or
WebChild.

We can also combine the explicit knowledge
base embeddings and the implicit RACE fine-
tuning, yielding the highest accuracy (with all KB
+ RACE (subset) in Table 6). The knowledge em-
beddings provide a similar +1% absolute improve-
ment (85.5 vs. 84.5), suggesting that the knowl-
edge embeddings cover different aspects and re-
lationships in the text than learned during fine-
tuning on RACE.

4 Related Work

Similar to our attribute classification investiga-
tion, several other works have used applied se-
mantic norm datasets to computational linguistics
(Agirre et al., 2009; Bruni et al., 2012; Kiela et al.,
2016). Methodologically, our work is most simi-
lar to Lucy and Gauthier (2017), who use a logistic
regression classifier to determine fit score of word
type embeddings based on leave-one-out verifica-
tion. Forbes et al. (2019) investigates the com-
monsense aptitude of contextual representations.
However, our work differs in several important
ways: 1) we connect our analysis to downstream
reasoning aptitude, underscoring the importance
of the semantic norm analysis, and 2) we intro-
duce various ways of improving BERT, motivated
by our analysis.

In contemporaneous work, various research has
been done in improving upon BERT’s perfor-
mance through knowledge augmentation. Implic-
itly, Sun et al. (2019) explores fine-tuning on in-
domain data, similarly to our fine-tuning on the
RACE dataset (Lai et al., 2017). They discover
an increase in accuracy that is especially preva-
lent over smaller datasets. Our work differs in that
we do not fine-tune on the entire domain data, but
rather select a smaller subset of data to fine-tune
on. Other work extends BERT to domains where
its original training data does not suffice (Belt-
agy et al., 2019; Lee et al., 2019). RoBERTa (Liu
et al., 2019b) also pretrains on RACE, and finds in-
creased results through altering several of BERT’s
pretraining tasks, claiming that BERT was exten-
sively undertrained. Explicitly, ERNIE, Zhang
et al. (2019) introduces information to contextual
representations during pretraining. ERNIE uses
word-level fusion between the contextual repre-
sentation and explicit information.

Prior work has developed several bench-
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mark datasets to assess commonsense knowl-
edge of NLP models (Roemmele et al., 2011;
Mostafazadeh et al., 2016; Zhang et al., 2017;
Zellers et al., 2018, 2019; Ostermann et al., 2018,
2019; Sakaguchi et al., 2019). These benchmarks
are typically posed as question answering, but we
use semantic norm datasets to specifically assess
BERT’s ability to represent grounded attributes.
Further, we demonstrate that these abstract at-
tributes can be used to enhance BERT’s represen-
tations and improve the downstream performance.

5 Conclusion

We found that BERT outperforms previous dis-
tributional methods on an attribute classification
task, highlighting possible reasons why BERT im-
proves the state-of-the-art on various common-
sense reasoning tasks. However, we show that
BERT still lacks proper attribute representations
in many areas. We developed implicit and explicit
methods of remedying this deficit on the down-
stream task. We demonstrated that, individually
and combined, both methods can improve scores
on the downstream reasoning task. We motivate
future work in probing and improving the ability
of neural language models to reason about every-
day commonsense.
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A Appendices

A.1 Hyperparameters
Seen in Table 7 is a list of hyperparameters for our
experiments. We use the same parameters for both
uses of explicit knowledge embeddings.

Regression Classifier
Penalty L2
# Penalty Coefficient 1.0
Iteration count 200
Optimizer lbfgs
Patience 1e-4
Explicit Knowledge Embeddings

Embedding size 10
Knowledge bases used 3

BERT Fine-Tuning
Maximum sequence length 450
Train batch size 32
Learning rate 1e-5
Epochs 4
Warmup 20%

LSTM
Hidden size 32
Dropout 0.0
Bidirectional Yes

Table 7: Hyperparameters used throughout experi-
ments.

A.2 Contextualization Module Pseudocode
Psuedocode can be found by referencing Algo-
rithm 1.
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Algorithm 1: Contextualization Module for CSLB Attributes

contextualize (object, attribute):
to remove = [does]
if attribute[first word] in to remove then

attribute[second word] = make plural(attribute[second word])
attribute.remove(attribute[first word])

end if
if starts with vowel(attribute[first word]) then

cprefix = An
else

cprefix = A
end if
needs affix = [made]
if attribute[first word] in needs affix then

caffix = is
else

caffix = None
end if
cpostfix = .
return cprefix + object + caffix + attribute + cpostfix
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Abstract

This paper proposes a hybrid neural network
(HNN) model for commonsense reasoning.
An HNN consists of two component mod-
els, a masked language model and a seman-
tic similarity model, which share a BERT-
based contextual encoder but use different
model-specific input and output layers. HNN
obtains new state-of-the-art results on three
classic commonsense reasoning tasks, push-
ing the WNLI benchmark to 89%, the Wino-
grad Schema Challenge (WSC) benchmark to
75.1%, and the PDP60 benchmark to 90.0%.
An ablation study shows that language mod-
els and semantic similarity models are com-
plementary approaches to commonsense rea-
soning, and HNN effectively combines the
strengths of both. The code and pre-trained
models will be publicly available at https:
//github.com/namisan/mt-dnn.

1 Introduction

Commonsense reasoning is fundamental to natural
language understanding (NLU). As shown in the
examples in Table 1, in order to infer what the pro-
noun “they” refers to in the first two statements,
one has to leverage the commonsense knowledge
that “demonstrators can cause violence and city
councilmen usually fear violence.” Similarly, it is
obvious to humans what the pronoun “it” refers to
in the third and fourth statements due to the com-
monsense knowledge that “An object cannot fit in
a container because either the object (trophy) is
too big or the container (suitcase) is too small.”

In this paper, we study two classic common-
sense reasoning tasks: the Winograd Schema
Challenge (WSC) and Pronoun Disambiguation
Problem (PDP) (Levesque et al., 2011; Davis and
Marcus, 2015). Both tasks are formulated as
an anaphora resolution problem, which is a form
of co-reference resolution, where a machine (AI

1. The city councilmen refused the demonstra-
tors a permit because they feared violence.
Who feared violence?
A. The city councilmen B. The demon-
strators

2. The city councilmen refused the demonstra-
tors a permit because they advocated vio-
lence. Who advocated violence?
A. The city councilmen B. The demon-
strators

3. The trophy doesn’t fit in the brown suitcase
because it is too big. What is too big?
A. The trophy B. The suitcase

4. The trophy doesn’t fit in the brown suitcase
because it is too small. What is too small?
A. The trophy B. The suitcase

Table 1: Examples from Winograd Schema Challenge
(WSC). The task is to identify the reference of the pro-
noun in bold.

agent) must identify the antecedent of an ambigu-
ous pronoun in a statement. WSC and PDP dif-
fer from other co-reference resolution tasks (Soon
et al., 2001; Ng and Cardie, 2002; Peng et al.,
2016) in that commonsense knowledge, which
cannot be explicitly decoded from the given text,
is needed to solve the problem, as illustrated in the
examples in Table 1.

Comparing with other commonsense reason-
ing tasks, such as COPA (Roemmele et al.,
2011), Story Cloze Test (Mostafazadeh et al.,
2016), Event2Mind (Rashkin et al., 2018), SWAG
(Zellers et al., 2018), ReCoRD (Zhang et al.,
2018), and so on, WSC and PDP better approxi-
mate real human reasoning, can be easily solved
by native English-speaker (Levesque et al., 2011),
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and yet are challenging for machines. For exam-
ple, the WNLI task, which is derived from WSC,
is considered the most challenging NLU task in
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018). Most ma-
chine learning models can hardly outperform the
naive baseline of majority voting (scored at 65.1)
1, including BERT (Devlin et al., 2018a) and Dis-
tilled MT-DNN (Liu et al., 2019a).

While traditional methods of commonsense rea-
soning rely heavily on human-crafted features
and knowledge bases (Rahman and Ng, 2012a;
Sharma et al., 2015; Schüller, 2014; Bailey et al.,
2015; Liu et al., 2017), we explore in this study
machine learning approaches using deep neural
networks (DNN). Our method is inspired by two
categories of DNN models proposed recently.

The first are neural language models trained on
large amounts of text data. Trinh and Le (2018)
proposed to use a neural language model trained
on raw text from books and news to calculate
the probabilities of the natural language sentences
which are constructed from a statement by replac-
ing the to-be-resolved pronoun in the statement
with each of its candidate references (antecedent),
and then pick the candidate with the highest prob-
ability as the answer. Kocijan et al. (2019) showed
that a significant improvement can be achieved by
fine-tuning a pre-trained masked language model
(BERT in their case) on a small amount of WSC
labeled data.

The second category of models are semantic
similarity models. Wang et al. (2019); Opitz and
Frank (2018) formulated WSC and PDP as a se-
mantic matching problem, and proposed to use
two variations of the Deep Structured Similarity
Model (DSSM) (Huang et al., 2013) to compute
the semantic similarity score between each candi-
date antecedent and the pronoun by (1) mapping
the candidate and the pronoun and their context
into two vectors, respectively, in a hidden space
using deep neural networks, and (2) computing co-
sine similarity between the two vectors. The can-
didate with the highest score is selected as the re-
sult.

The two categories of models use different in-
ductive biases when predicting outputs given in-
puts, and thus capture different views of the data.
While language models measure the semantic co-

1See the GLUE leaderboard at https://
gluebenchmark.com/leaderboard

herence and wholeness of a statement where the
pronoun to be resolved is replaced with its candi-
date antecedent, DSSMs measure the semantic re-
latedness of the pronoun and its candidate in their
context.

Therefore, inspired by multi-task learning
(Caruana, 1997; Liu et al., 2015, 2019b), we pro-
pose a hybrid neural network (HNN) model that
combines the strengths of both neural language
models and a semantic similarity model. As
shown in Figure 1, HNN consists of two com-
ponent models, a masked language model and a
deep semantic similarity model. The two compo-
nent models share the same text encoder (BERT),
but use different model-specific input and output
layers. The final output score is the combina-
tion of the two model scores. The architecture of
HNN bears a strong resemblance to that of Multi-
Task Deep Neural Network (MT-DNN) (Liu et al.,
2019b), which consists of a BERT-based text en-
coder that is shared across all tasks (models) and a
set of task (model) specific output layers. Follow-
ing (Liu et al., 2019b; Kocijan et al., 2019), the
training procedure of HNN consists of two steps:
(1) pretraining the text encoder on raw text 2, and
(2) multi-task learning of HNN on WSCR which
is the most popular WSC dataset, as suggested by
Kocijan et al. (2019).

HNN obtains new state-of-the-art results with
significant improvements on three classic com-
monsense reasoning tasks, pushing the WNLI
benchmark in GLUE to 89%, the WSC benchmark
3 (Levesque et al., 2011) to 75.1%, and the PDP-60
benchmark 4 to 90.0%. We also conduct an abla-
tion study which shows that language models and
semantic similarity models provide complemen-
tary approaches to commonsense reasoning, and
HNN effectively combines the strengths of both.

2 The Proposed HNN Model

The architecture of the proposed hybrid model is
shown in Figure 1. The input includes a sentence
S, which contains the pronoun to be resolved, and
a candidate antecedent C. The two component
models, masked language model (MLM) and se-

2In this study we use the pre-trained BERT large models
released by the authors.

3https://cs.nyu.edu/faculty/davise/
papers/WinogradSchemas/WS.html

4https://cs.nyu.edu/faculty/davise/
papers/WinogradSchemas/PDPChallenge2016.
xml
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Figure 1: Architecture of the hybrid model for commonsense reasoning. The model consists of two component
models, a masked language model (MLM) and a semantic similarity model (SSM). The input includes the sentence
S, which contains a pronoun to be resolve, and a candidate antecedent C. The two component models share the
BERT-based contextual encoder, but use different model-specific input and output layers. The final output score is
the combination of the two component model scores.

mantic similarity model (SSM), share the BERT-
based contextual encoder, but use different model-
specific input and output layers. The final output
score, which indicates whether C is the correct
candidate of the pronoun in S, is the combination
of the two component model scores.

2.1 Masked Language Model (MLM)
This component model follows Kocijan et al.
(2019). In the input layer, a masked sentence
is constructed using S by replacing the to-be-
resolved pronoun in S with a sequence of N
[MASK] tokens, where N is the number of tokens
in candidate C.

In the output layer, the likelihood of C being re-
ferred to by the pronoun in S is scored using the
BERT-based masked language model Pmlm(C|S).
If C = {c1...cN} consists of multiple tokens,
logPmlm(C|S) is computed as the average of log-
probabilities of each composing token:

Pmlm(C|S) = exp

(
1

N

∑

k=1...N

logPmlm(ck|S)

)
.

(1)

2.2 Semantic Similarity Model (SSM)
In the input layer, we treat sentence S and candi-
date C as a pair (S,C) that is packed together as

a word sequence, where we add the [CLS] token
as the first token and the [SEP] token between S
and C.

After applying the shared embedding layers, we
obtain the semantic representations of S and C,
denoted as s ∈ Rd and c ∈ Rd, respectively.
We use the contextual embedding of [CLS] as s.
Suppose C consists of N tokens, whose contex-
tual embeddings are h1, ...,hN , respectively. The
semantic representation of the candidate C, c, is
computed via attention as follows:

αk = softmax(
s>W1hk√

d
), (2)

c =
∑

k=1...N

αk · hk. (3)

where W1 is a learnable parameter matrix, and α
is the attention score.

We use the contextual embedding of the first to-
ken of the pronoun in S as the semantic represen-
tation of the pronoun, denoted as p ∈ Rd. In the
output layer, the semantic similarity between the
pronoun and the context is computed using a bi-
linear model:

Sim(C, S) = p>W2c, (4)
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where W2 is a learnable parameter matrix. Then,
SSM predicts whether C is a correct candidate
(i.e., (C, S) is a positive pair, labeled as y = 1)
using the logistic function:

Pssm(y = 1|C, S) =
1

1 + exp (−Sim(C, S))
.

(5)
The final output score of pair (S,C) is a linear

combination of the MLM score of Eqn. 1 and the
SSM score of Eqn. 5:

Score(C, S) =
1

2
[Pmlm(C|S)+Pssm(y = 1|C, S)].

(6)

2.3 The Training Procedure
We train our model of Figure 1 on the WSCR
dataset, which consists of 1886 sentences, each
being paired with a positive candidate antecedent
and a negative candidate.

The shared BERT encoder is initialized using
the published BERT uncased large model (Devlin
et al., 2018a). We then finetune the model on the
WSCR dataset by optimizing the combined objec-
tives:

Lmlm + Lssm + Lrank, (7)

where Lmlm is the negative log-likelihood based
on the masked language model of Eqn. 1, and
Lssm is the cross-entropy loss based on semantic
similarity model of Eqn. 5.
Lrank is the pair-wise rank loss. Consider a

sentence S which contains a pronoun to be re-
solved, and two candidates C+ and C−, where
C+ is correct and C− is not. We want to maxi-
mize ∆ = Score(S,C+) − Score(S,C−), where
Score(.) is defined by Eqn. 6. We achieve this via
optimizing a smoothed rank loss:

Lrank = log(1 + exp (−γ(∆ + β))), (8)

where γ ∈ [1, 10] is the smoothing factor and
β ∈ [0, 1] the margin hyperparameter. In our
experiments, the default setting is γ = 10, and
β = 0.6.

3 Experiments

We evaluate the proposed HNN on three common-
sense benchmarks: WSC (Levesque et al., 2012),
PDP605 and WNLI. WNLI is derived from WSC,
and is considered the most challenging NLU task
in the GLUE benchmark (Wang et al., 2018).

5https://cs.nyu.edu/faculty/davise/
papers/WinogradSchemas/PDPChallenge2016.
xml

3.1 Datasets

Corpus #Train #Dev #Test
WNLI - 634 + 71 146
PDP60 - - 60
WSC - - 285
WSCR 1322 564 -

Table 2: Summary of the three benchmark datasets:
WSC, PDP60 and WNLI, and the additional dataset
WSCR. Note that we only use WSCR for training. For
WNLI, we merge its official training set containing 634
instances and dev set containing 71 instances as its final
dev set.

Table 2 summarizes the datasets which are used
in our experiments. Since the WSC and PDP60
datasets do not contain any training instances, fol-
lowing (Kocijan et al., 2019), we adopt the WSCR
dataset (Rahman and Ng, 2012b) for model train-
ing and selection. WSCR contains 1886 instances
(1322 for training and the rest as dev set). Each
instance is presented using the same structure as
that in WSC.

For the WNLI instances, we convert them to
the format of WSC as illustrated in Table 3: we
first detect pronouns in the premise using spaCy6;
then given the detected pronoun, we search its left
of the premise in hypothesis to find the longest
common substring (LCS) ignoring character case.
Similarly, we search its right part of the LCS;
by comparing the indexes of the extracted LCSs,
we extract the candidates (e.g., the cookstove, the
kitchen and the lamplight as shown in Table 3). A
detailed example of the conversion process is pro-
vided in Table 3.

3.2 Implementation Detail

Our implementation of HNN is based on the Py-
Torch implementation of BERT7. All the models
are trained with hyper-parameters depicted as fol-
lows unless stated otherwise. The shared layer
is initialized by the BERT uncased large model.
Adam (Kingma and Ba, 2014) is used as our opti-
mizer with a learning rate of 1e-5 and a batch size
of 32 or 16. The learning rate is linearly decayed
during training with 100 warm up steps. We select
models based on the dev set by greedily searching

6https://spacy.io
7https://github.com/huggingface/

pytorch-pretrained-BERT

16



1. Premise: The cookstove was warming the
kitchen, and the lamplight made it seem even
warmer.
Hypothesis: The lamplight made the cook-
stove seem even warmer.
Index of LCS in the hypothesis: left[0, 2],
right[5, 7]
Candidate: [3, 4] (the cookstove)

2. Premise: The cookstove was warming the
kitchen, and the lamplight made it seem even
warmer.
Hypothesis: The lamplight made the kitchen
seem even warmer.
Index of LCS in the hypothesis: left[0, 2],
right[5, 7]
Candidate: [3, 4] (the kitchen)

3. Premise: The cookstove was warming the
kitchen, and the lamplight made it seem even
warmer.
Hypothesis: The lamplight made the lamp-
light seem even warmer.
Index of LCS in the hypothesis: left[0, 2],
right[5, 7]
Candidate: [3, 4] (the lamplight)

4. Converted: The cookstove was warming the
kitchen, and the lamplight made it seem even
warmer.
A. the cookstove B. the kitchen C. the
lamplight

Table 3: Examples of transforming WNLI to WSC for-
mat. Note that the text highlighted by brown is the
longest common substring from the left part of pronoun
it, and the text highlighted by violet is the longest com-
mon substring from its right.

epochs between 8 and 10. The trainable parame-
ters, e.g., W1 and W2, are initialized by a trun-
cated normal distribution with a mean of 0 and a
standard deviation of 0.01. The margin hyperpa-
rameter, β in Eqn. 8, is set to 0.6 for MLM and
0.5 for SSM, and γ is set to 10 for all tasks. We
also apply SWA (Izmailov et al., 2018) averaging
the model weights to reduce the variance during
inference. All the texts are tokenized using Word-
Pieces, and are chopped to spans containing 512
tokens at most.

3.3 Results
We compare our HNN with a list of state-of-the-art
models in the literature, including BERT (Devlin
et al., 2018b), GPT-2 (Radford et al., 2019) and
DSSM (Wang et al., 2019). The brief description
of each baseline is introduced as follows.

1. BERTLARGE-LM (Devlin et al., 2018b): This
is the large BERT model, and we use MLM to
predict a score for each candidate following
Eq 1.

2. GPT-2 (Radford et al., 2019): During predic-
tion, We first replace the pronoun in a given
sentence with its candidates one by one. We
use the GPT-2 model to compute a score for
each new sentence after the replacement, and
select the candidate with the highest score as
the final prediction.

3. BERTWiki-WSCR and BERTWSCR (Kocijan
et al., 2019): These two models use the same
approach as BERTLARGE-LM, but are trained
with different additional training data. For
example, BERTWiki-WSCR is firstly fine-tuned
on the constructed Wikipedia data and then
on WSCR. BERTWSCR is directly fine-tuned
on WSCR.

4. DSSM (Wang et al., 2019): It is the unsu-
pervised semantic matching model trained on
the dataset generated with heuristic rules.

5. HNN: It is the proposed hybrid neural net-
work model.

The main results are reported in Table 4.
Compared with all the baselines, HNN obtains
much better performance across three bench-
marks. This clearly demonstrates the advantage
of the HNN over existing models. For exam-
ple, HNN outperforms the previous state-of-the-
art BERTWiki-WSCR model with a 11.7% abso-
lute improvement (83.6% vs 71.9%) on WNLI
and a 2.8% absolute improvement (75.1% vs
72.2%) on WSC in terms of accuracy. Mean-
while, it achieves a 11.7% absolute improvement
over the previous state-of-the-art BERTLARGE-LM
model on PDP60 in accuracy. Note that both
BERTWiki-WSCR and BERTLARGE-LM are using lan-
guage model-based approaches to solve the pro-
noun resolution problem. On the other hand, We
observe that DSSM without pre-training is com-
parable to BERTLARGE-LM which is pre-trained on
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WNLI WSC PDP60
DSSM (Wang et al., 2019) - 63.0 75.0
BERTLARGE-LM (Devlin et al., 2018a) 65.1 62.0 78.3
GPT-2 (Radford et al., 2019) - 70.7 -
BERTWiki-WSCR (Kocijan et al., 2019) 71.9 72.2 -
BERTWSCR (Kocijan et al., 2019) 70.5 70.3 -
HNN 83.6 75.1 90.0
HNNensemble 89.0 - -

Table 4: Test results

Figure 2: Comparison with SSM and MLM on WNLI examples.

WNLI WSCR WSC PDP60
HNN 77.1 85.6 75.1 90.0
-SSM 74.5 82.4 72.6 86.7
-MLM 75.1 83.7 72.3 88.3

Table 5: Ablation study of the two component models
in HNN. Note that WNLI and WSCR are reported on
dev sets while WSC and PDP60 are reported on test
sets.

the large scale text corpus (63.0% vs 62.0% on
WSC and 75.0% vs 78.3% on PDP60). Our results
show that HNN, combining the strengths of both
DSSM and BERTWSCR, has consistently achieved
new state-of-the-art results on all three tasks.

To further boost the WNLI accuracy on the
GLUE benchmark leaderboard, we record the
model prediction at each epoch, and then produce
the final prediction based on the majority voting
from the last six model predictions. We refer to the
ensemble of six models as HNNensemble in Table 4.
HNNensemble brings a 5.4% absolute improvement
(89.0% vs 83.6%) on WNLI in terms of accuracy.

3.4 Ablation study

In this section, we study the importance of each
component in HNN by answering following ques-
tions:
How important are the two component models:

MLM and SSM?
To answer this question, we first remove each

component model, either SSM or MLM, and then
report the performance impact of these compo-
nent models. Table 5 summarizes the experimen-
tal results. It is expected that the removal of ei-
ther component model results in a significant per-
formance drop. For example, with the removal
of SSM, the performance of HNN is downgraded
from 77.1% to 74.5% on WNLI. Similarly, with
the removal of MLM, HNN only obtains 75.1%,
which amounts to a 2% drop. All these observa-
tions clearly demonstrate that SSM and MLM are
complementary to each other and the HNN model
benefits from the combination of both.

Figure 2 gives several examples showing how
SSM and MLM complement each other on WNLI.
We see that in the first example, MLM correctly
predicts the label while SSM does not. This is due
to the fact that “the roof repaired” appears more
frequently than “the tree repaired” in the text cor-
pora used for model pre-training. However, in the
second pair, since both “the demonstrators” and
“the city councilment” could advocate violence
and neither occurs significantly more often than
the other, SSM is more effective in distinguish-
ing the difference based on their context. The
proposed HNN, which combines the strengths of
these two models, can obtain the correct results in
both cases.
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Does the additional ranking loss help?
As shown in Eqn. 7, the training objective of

HNN model contains three losses. The first two
are based on the two component models, respec-
tively, and the third one, as defined in Eqn. 8, is a
ranking loss based on the score function in Eqn. 6.
At first glance, the ranking loss seems redundant.
Thus, we compare two versions of HNN trained
with and without the ranking loss. Experimental
results are shown in Table 6. We see that without
the ranking loss, the performance of HNN drops
on three datasets: WNLI, WSCR and WSC. On
the PDP60 dataset, without the ranking loss, the
model performs slightly better. However, since
the test set of PDP60 includes only 60 samples,
the difference is not statistically significant. Thus,
we decide to always include the ranking loss in the
training objective of HNN.

WNLI WSCR WSC PDP60
HNN 77.1 85.6 75.1 90.0
HNN-Rank 74.8 85.1 71.9 91.7

Table 6: Ablation study of the ranking loss. Note that
WNLI and WSCR are reported on dev sets while WSC
and PDP60 are reported on test sets.

Is the WNLI task a ranking or classification
task?

Figure 3: Comparison of different task formulation on
WNLI.

The WNLI task can be formulated as either a
ranking task or a classification task. To study the
difference in problem formulation, we conduct ex-
periments to compare the performance of a model
used as a classifier or a ranker. For example, given
a trained HNN, when it is used as a classifier we
set a threshold to decide label (0/1) for each input.

When it is used as a ranker, we simply pick the
top-ranked candidate as the correct answer. We
run the comparison using all three models HNN,
MLM and SSM. As shown in Figure 3, the rank-
ing formulation is consistently better than the clas-
sification formulation for this task. For example,
the difference in the HNN model is about absolute
2.5% (74.6% vs 77.1%) in terms of accuracy.

4 Conclusion

We propose a hybrid neural network (HNN) model
for commonsense reasoning. HNN consists of two
component models, a masked language model and
a deep semantic similarity model, which share a
BERT-based contextual encoder but use different
model-specific input and output layers.

HNN obtains new state-of-the-art results on
three classic commonsense reasoning tasks, push-
ing the WNLI benchmark to 89%, the WSC
benchmark to 75.1%, and the PDP60 benchmark
to 90.0%. We also justify the design of HNN via a
series of ablation experiments.

In future work, we plan to extend HNN to other
reasoning tasks, especially those where large-scale
language models like BERT and GPT do not per-
form well, as discussed in (Gao et al., 2019; Niven
and Kao, 2019).
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Abstract

Non-extractive commonsense QA remains a
challenging AI task, as it requires systems to
reason about, synthesize, and gather disparate
pieces of information, in order to generate re-
sponses to queries. Recent approaches on such
tasks show increased performance, only when
models are either pre-trained with additional
information or when domain-specific heuris-
tics are used, without any special considera-
tion regarding the knowledge resource type.
In this paper, we perform a survey of recent
commonsense QA methods and we provide a
systematic analysis of popular knowledge re-
sources and knowledge-integration methods,
across benchmarks from multiple common-
sense datasets. Our results and analysis show
that attention-based injection seems to be a
preferable choice for knowledge integration
and that the degree of domain overlap, be-
tween knowledge bases and datasets, plays a
crucial role in determining model success.

1 Introduction

With the recent success of large pre-trained
language models (Devlin et al., 2019; Radford
et al., 2019; Yang et al., 2019; Liu et al.,
2019), model performance has reached or sur-
passed human-level capability on many previ-
ous question-answering (QA) benchmarks (Her-
mann et al., 2015; Rajpurkar et al., 2016; Lai
et al., 2017). However, these benchmarks do
not directly challenge model reasoning capabil-
ity, as they require only marginal use of exter-
nal knowledge to select the correct answer, i.e.,
all the evidence required to solve questions in
these benchmarks is explicit in the context lexi-
cal space. Efforts have been made towards build-
ing more challenging datasets that, by design, re-
quire models to synthesize external commonsense

∗Work was done during an internship at Bosch Research.

knowledge and leverage more sophisticated rea-
soning mechanisms (Zhang et al., 2018; Oster-
mann et al., 2018), showing that the previous state-
of-the-art models often struggle to solve these
newer tasks reliably. As a result, commonsense
has received a lot of attention in other areas as
well, such as natural language inference (Zellers
et al., 2018b, 2019) and visual question answer-
ing (Zellers et al., 2018a). Despite the impor-
tance of commonsense knowledge, however, pre-
vious work on QA methods takes a coarse-grained
view of commonsense, without considering the
subtle differences across the various knowledge
types and resources. Such differences have been
discussed at length in AI by philosophers, compu-
tational linguists, cognitive psychologists (see for
instance (Davis, 2014)): at the high level, we can
identify declarative commonsense, whose scope
encompassess factual knowledge, e.g., ‘the sky is
blue’, ‘Paris is in France’; taxonomic knowledge,
e.g., ‘football players are athletes’, ‘cats are mam-
mals’; relational knowledge, e.g., ‘the nose is part
of the skull’, ‘handwriting requires a hand and
a writing instrument’; procedural commonsense,
which includes prescriptive knowledge, e.g., ‘one
needs an oven before baking cakes’, ‘the electric-
ity should be off while the switch is being re-
paired’ (Hobbs et al., 1987); sentiment knowledge,
e.g., ‘rushing to the hospital makes people wor-
ried’, ‘being in vacation makes people relaxed’;
and metaphorical knowledge (e.g., ‘time flies’,
‘raining cats and dogs’). We believe that it is im-
portant to identifiy the most appropriate common-
sense knowledge type required for specific tasks,
in order to get better downstream performance.
Once the knowledge type is identified, we can
then select the appropriate knowledge-base(s), and
the suitable neural integration mechanisms (e.g.,
attention-based injection, pre-training, or auxiliary
training objectives).

22



Accordingly, in this work we conduct a com-
parison study of different knowledge bases and
knowledge integration methods, and we evaluate
model performance on two multiple-choice QA
datasets that explicitly require commonsense rea-
soning. In particular, we used ConceptNet (Speer
et al., 2016) and the recently-introduced ATOMIC
(Sap et al., 2019) knowledge resources, integrat-
ing them with the Option Comparison Network
model (OCN; Ran et al. (2019)), a recent state-
of-the-art model for multiple choice QA tasks.
We evalutate our models on the DREAM (Sun
et al., 2019) and CommonsenseQA (Talmor et al.,
2019) datasets. An example from DREAM that
requires commonsense is shown in Table 1, and
an example from CommonsenseQA is shown in
Table 2. Our experimental results and analysis
suggest that attention-based injection is prefer-
able for knowledge integration and that the degree
of domain overlap, between knowledge-base and
dataset, is vital to model success.1

Dialogue:
M: I hear you drive a long way to work every day.
W: Oh, yes. it’s about sixty miles. but it doesn’t seem
that far, the road is not bad, and there’s not much traffic.
Question:
How does the woman feel about driving to work?
Answer choices:
A. She doesn’t mind it as the road conditions are good.*
B. She is unhappy to drive such a long way everyday.
C. She is tired of driving in heavy traffic.

Table 1: An example from the DREAM dataset; the as-
terisk (*) denotes the correct answer.

Question:
A revolving door is convenient for two direction travel,
but it also serves as a security measure at a what?
Answer choices:
A. Bank*; B. Library; C. Department Store;
D. Mall; E. New York

Table 2: An example from the CommonsenseQA
dataset; the asterisk (*) denotes the correct answer.

2 Related Work

It has been recognized that many recent QA tasks
require external knowledge or commonsense to
solve, and numerous efforts have been made in
injecting commonsense in neural models. Bauer

1From a terminological standpoint, ‘domain overlap’ here
must be interpreted as the overlap between question types in
the targeted datasets, and types of commonsense represented
in the knowledge bases under consideration.

et al. (2018) introduced a pipeline for extracting
grounded multi-hop commonsense relation paths
from ConceptNet and proposed to inject common-
sense knowledge into neural models’ intermedi-
ate representations, using attention. Similarly, Mi-
haylov and Frank (2018) also proposed to extract
relevant knowledge triples from ConceptNet and
use Key-Value Retrieval (Miller et al., 2016) to
gather information from knowledge to enhance the
neural representation. Zhong et al. (2018) pro-
posed to pre-train a scoring function using knowl-
edge triples from ConceptNet, to model the direct
and indirect relation between concepts. This scor-
ing function was then fused with QA models to
make the final prediction. Pan et al. (2019a) in-
troduced an entity discovery and linking system
to identify the most salient entities in the question
and answer-options. Wikipedia abstracts of these
entities are then extracted and appended to the ref-
erence documents to provide additional informa-
tion. Weissenborn et al. (2018) proposed a strategy
of dynamically refining word embeddings by read-
ing input text as well as external knowledge, such
as ConceptNet and Wikipedia abstracts. More re-
cently, Lin et al. (2019) proposed to extract sub-
graphs from ConceptNet and embed the knowl-
edge using Graph Convolutional Networks (Kipf
and Welling, 2016). Then the knowledge repre-
sentation is integrated with word representation
through an LSTM layer and hierarchical attention
mechnism. Lv et al. (2019) introduced graph-
based reasoning modules that takes both Concept-
Net knowledge triples and Wikipedia text as inputs
to refine word representations from a pretrained
language model and make predictions.

Commonsense knowledge integration has also
received a lot of attention on many other tasks.
Tandon et al. (2018) proposed to use common-
sense knowledge as hard/soft constraints to bias
the neural model’s prediction on a procedural text
comprehension task. Ma et al. (2018) proposed
to used embedded affective commonsense knowl-
edge inside LSTM cell to control the informa-
tion flow in each gate for sentiment analysis task.
Li and Srikumar (2019) presented a framework
to convert declarative knowlegde into first-order
logic that enhance neural networks’ training and
prediction. Peters et al. (2019) and Levine et al.
(2019) both tried to injecting knowlegde into lan-
guage models by pretraining on knowledge bases.

Previous works only focus on using external
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knowledge sources to improve model performance
on certain tasks, disregarding the type of com-
monsense knowledge and how the domain of the
knowledge resource affects results on downstream
tasks. In this paper, we examine the roles of
knowledge-base domain and specific integration
mechanisms on model performance.

3 Approach Overview

In this section, we describe the model architec-
ture used in our experiments. Next, we intro-
duce two popular knowledge resources, we define
our knowledge-extraction method, then we illus-
trate various neural knowledge-integration mech-
anisms.

3.1 Model architecture
The BERT model (Devlin et al., 2019) has been
applied to numerous QA tasks and has achieved
very promising performance, particularly on the
DREAM and CommonsenseQA datasets. When
utilizing BERT on multiple-choice QA tasks, the
standard approach is to concatenate the dialogue
context and the question with each answer-option,
in order to generate a list of tokens which is
then fed into BERT encoder; a linear layer is
added on top, in order to predict the answer.
One aspect of this strategy is that each answer-
option is encoded independently: from a cogni-
tive perspective, this aspect contradicts how hu-
mans typically solve multiple-choice QA tasks,
namely by weighing each option to find correla-
tions within them, in addition to correlations with
respect to the question. To address this issue, Ran
et al. (2019) introduced the Option Comparison
Network (OCN) that explicitly models pairwise
answer-option interactions, making OCN better-
suited for multiple-choice QA task structures. We
re-implemented OCN while keeping BERT as its
upstream encoder.2 Specifically, given a dialogue
D, a question Q, and an answer-option Ok, we
concatenate them and encode with BERT to get
hidden representation Tenc ∈ Rn×d:

Tenc = BERT(D;Q;Ok) (1)

Where d is the size of BERT’s hidden represen-
tation and n is the total number of words. Next,

2Because the newly-released XLNet has out-performed
BERT on various tasks, we considered using XLNet as the
OCN’s encoder. However, from our initial experiments, XL-
Net is very unstable, in that it easily provides degenerate
solutions—a problem noted by Devlin et al. (2019) for small
datasets. We found BERT to be more stable in our study.

the dialogue encoding Denc ∈ Rnd×d, question
encoding Qenc ∈ Rnq×d, and answer-option en-
coding Ok,enc ∈ Rno×d are separated from Tenc.
Here, option-encoding consists both of question
and option, i.e. Qenc ⊆ Ok,enc and nd + no = n,
as suggested by Ran et al. (2019). Given a set of
options Ok (k = 1, 2, ...), these options are com-
pared, pairwise, using standard tri-linear attention
(Seo et al., 2016):

Att(u, v) =W1 · u+W2·v + (W3 ◦ v) · u (2)

Where, W1,W2,W3 ∈ Rd are trainable weights
and u ∈ Rx×d, v ∈ Ry×d are input matri-
ces; x and y here are generic placeholder for in-
put lengths; matrix multiplication and element-
wise multiplication are denoted by (·) and (◦), re-
spectively. Next, we gather information from all
other options, to form a new option representa-
tion Ok,new ∈ Rno×d. Formally, given option
Ok,enc and another optionOl,enc ∈ Rnl×d, Ok,new
is computed as follows:

Olk = Ol,enc · Att(Ol,enc, Ok,enc) (3)

Õlk = [Ok,enc −Olk;Ok,enc ◦Olk] (4)

Ok,new = tanh(Wc · [Ok,enc; {Õlk}l 6=k]) (5)

Where, Wc ∈ R(d+2d(|O|−1))×d, |O| denotes to-
tal number of options and nl denotes the number
of words in the compared option. Then, a gating
mechanism is used to fuse the option-wise corre-
lation information Ok,new with the current option-
encoding Ok,enc. Gating values are computed as:

G = sigmoid(Wg[Ok,enc;Ok,new; Q̃]) (6)

Q̃ = Qenc · softmax(Qenc · Va)T (7)

Ofuse = G ◦Ok,enc + (1−G) ◦Ok,new (8)

Here, Wg ∈ R3d×d and Va ∈ Rd×1. Co-attention
(Xiong et al., 2016) is applied to re-read the dia-
logue, given the fused option-correlation features:

Ado = Att(Denc, Ofuse) (9)

Aod = Att(Ofuse, Denc) (10)

Od = Aod · [Denc;Ado ·Ofuse] (11)

Õd = ReLU(Wp([Od;Ofuse])) (12)

Here, Wp ∈ R3d×d. Finally, self-attention (Wang
et al., 2017) is used to compute final option repre-
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Figure 1: Option Comparison Network with Knowledge Injection

sentation Õf ∈ Rno×d:

Os = Õd · Att(Õd, Õd) (13)

Of = [Õd;Os,Õd −Os; Õd ◦Os] (14)

Õf = ReLU(Wf ·Of ) (15)

Unlike the vanilla BERT model, which takes
the first token to predict the answer, max-pooling
is applied on the sequence dimension of Õf ∈
Rno×d, in order to generate the final prediction.

3.2 Knowledge bases

The first knowledge-base we consider for our ex-
periments is ConceptNet (Speer et al., 2016). Con-
ceptNet contains over 21 million edges and 8
million nodes (1.5 million nodes in the partition
for the English vocabulary), generating triples of
the form (C1, r, C2): the natural-language con-
cepts C1 and C2 are associated by common-
sense relation r, e.g., (dinner, AtLocation, restau-
rant). Thanks to its coverage, ConceptNet is
one of the most popular semantic networks for
commonsense. ATOMIC (Sap et al., 2019) is
a new knowledge-base that focuses on procedu-
ral knowledge. Triples are of the form (Event,
r, {Effect|Persona|Mental-state}), where head and
tail are short sentences or verb phrases and r rep-
resents an if-then relation type. An example would
be: (X compliments Y, xIntent, X wants to be
nice). Since both DREAM and CommonsenseQA
datasets are open-domain and require general
commonsense, we think these knowledge-bases
are most appropriate for our investigation.

3.3 Knowledge elicitation
ConceptNet. For the DREAM dataset, we find
ConceptNet relations that connect dialogues and
questions to the answer-options. The intuition is
that these relation paths would provide explicit ev-
idence that would help the model find the answer.
Formally, given a dialogue D, a question Q, and
an answer-option O, we find all ConceptNet rela-
tions (C1, r, C2), such that C1 ∈ (D + Q) and
C2 ∈ O, or vice versa. This rule works well for
single-word concepts. However, a large number
of concepts in ConceptNet are actually phrases,
and finding exactly matching phrases in D/Q/O
is much harder. To fully utilize phrase-based Con-
ceptNet relations, we relaxed the exact-match con-
straint to the following:

# words in C ∩ S
# words in C

> 0.5 (16)

Here, S represents D/Q/O, depending on which
sequence we try to match the concept C to. Addi-
tionally, when the part-of-speech (POS) tag for a
concept is available, we make sure it matches the
POS tag of the corresponding word in D/Q/O.
For CommonsenseQA, we use the same proce-
dure to find ConceptNet relations for each answer-
option, except that only Q is present and used. Ta-
ble 3 shows the extracted ConceptNet triples for
the CommonsenseQA example in Table 2. It is
worth noting that we are able to extract the original
ConceptNet sub-graph that was used to create the
question, along with some extra triples. Although
not perfect, the bold ConceptNet triple does pro-
vide some clue that could help the model resolve
the correct answer.
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Options Extracted ConceptNet triples
Bank (revolving door AtLocation bank) (bank RelatedTo security)

Library (revolving door AtLocation library)
Department Store (revolving door AtLocation store) (security IsA department)

Mall (revolving door AtLocation mall)
New York (revolving door AtLocation New York)

Table 3: Extracted ConceptNet relations for sample shown in Table 2.

Input sentence Generated ATOMIC relations
Utterance 1 (xAttr dedicated) (xWant to get to work)
Utterance 2 (xAttr far) (xReact happy) (xWant to get to their destination)
Option A (xAttr calm) (xWant to avoid the road)
Option B (xAttr careless) (xReact annoyed) (xEffect get tired)
Option C (xAttr frustrated) (xEffect get tired) (xWant to get out of car)

Table 4: Sample generated ATOMIC relations for sample shown in Table 1.

ATOMIC. We observe that many questions in
DREAM inquire about agent’s opinion and feel-
ing. Superficially, this particular question type
seems well-suited for ATOMIC, whose focus is on
folk psychology and related general implications;
we could frame our goal as evaluating whether
ATOMIC can provide relevant knowledge to help
answer these questions. However, one challenge
to this strategy is that heads and tails of knowledge
triples in ATOMIC are short sentences or verb
phrases, while rare words and person-references
are reduced to blanks and PersonX/PersonY, re-
spectively. This calls for a new matching pro-
cedure, different from the ConceptNet extrac-
tion strategy, for eliciting ATOMIC-specific rela-
tions: we rely on the recently-published COMET
model (Bosselut et al., 2019) to generate new
ATOMIC relations, with intermediate phrasal res-
olutions. In particular, we first segmented all di-
alogues, questions, and answer-options into sen-
tences. We further segment long sentences into
sub-sentences, using commas as seperators. Be-
cause only verb-phrases satisfy the definition of
an “event” in ATOMIC (i.e., relations are only
invoked by verbs), we remove all sentences/sub-
sentences that do not contain any verb. Next, we
use a pre-trained COMET model (Bosselut et al.,
2019) to generate all possible ATOMIC relations,
for all candidate sentences/sub-sentences and we
use greedy-decoding to take the 1-best sequences.
Table 4 shows the sample ATOMIC relations, gen-
erated using the DREAM example in Table 1. It is
interesting to note that the reaction for the woman
agent (second utterance) is identified as happy,
since she said that ‘the road is not bad.’ If we com-
pare the identified attributes for answer-options,

the one from correct answer seems to be semati-
cally closer than the other two.

3.4 Knowledge injection
Given previously extracted/generated knowledge
triples, we need to integrate them with the OCN
model. Inspired by Bauer et al. (2018), we propose
to use attention-based injection. For Concept-
Net knowledge triples, we first convert concept-
relation tokens into regular tokens, in order to gen-
erate a pseudo-sentence. For example, “(book, At-
Location, library)” would be converted to “book
at location library.” Next, we use the BERT em-
bedding layer to generate an embedding of this
pseudo-sentence, with C denoting a ConceptNet
relation:

HC = BiLSTM(C) (17)

If we let HC ∈ R1×2l be the concatenation of the
final hidden states and l be the number of hidden
units in the LSTM layer, then m ConceptNet re-
lations would yield the commonsense knowledge
matrix HM ∈ Rm×2l. We adopt the attention
mechanism used in QAnet (Yu et al., 2018) to
model the interaction between HM and the BERT
encoding output Tenc (from Equation 1):

H̃M = HM ·Wproj (18)

S = Att(HM , Tenc) (19)

Am = softmax(S) · H̃M (20)

At = softmax(S)·softmax(ST ) · Tenc (21)

TC = [Tenc;Am;Tenc ◦Am;Tenc ◦At] (22)

Tout = ReLU(TC ·Wa) (23)

Specifically, HM is first projected into the same
dimension as Tenc, using Wproj ∈ R2l×d. Then,
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the similarty matrix S ∈ Rn×m is computed us-
ing tri-linear attention, as in Equation 2. We
then use S to compute text-to-knowledge atten-
tion Am ∈ Rn×d and knowledge-to-text attention
At ∈ Rn×d. Finally, the knowledge-aware textual
representation Tout ∈ Rn×d is computed, where
Wa ∈ R4d×d. Tout is fed to subsequent layers (in
place of Tenc), in order to generate the prediction.
The model structure with knowledge-injection is
summarized in Figure 1.

For ATOMIC knowledge triples, the injection
method is slightly different. Because heads of
these knowledge triples are sentences/utterances
and the tails contain attributes of the persons (i.e.,
subject and object of the sentence), it is not pos-
sible to directly inject the knowledge triples, as-
is. We replace the heads of the ATOMIC knowl-
edge triples with the corresponding speaker for
dialogues and leave as blank for the answer-
options. Next, we convert the special relation to-
kens into regular tokens, e.g., “xIntent”⇒“intent”
and “oEffect”⇒ “others effect”, to make pseudo-
sentences. As a result, an ATOMIC relation “(the
road is not bad, xReact, happy)” would be con-
verted to “(W, react, happy).” Moreover, as the
ATOMIC knowledge triples are associated with
dialogues and answer-options, independently, we
inject option relations into Oenc ∈ Rno×d and di-
alogue relations into Denc, respectively, using the
injection method described above.

3.5 Knowledge pre-training

Pre-training large-capacity models (e.g., BERT,
GPT (Radford et al., 2019), XLNet (Yang et al.,
2019)) on large corpora, then fine-tuning on more
domain-specific information, has led to perfor-
mance improvements on various tasks. Inspired
by this, our goal in this section is to observe
the effect of pre-training BERT on commonsense
knowledge and refining the model on task-specific
content from our DREAM and CommonsenseQA
corpora. Essentially, we would like to test if pre-
training on our external knowledge resources can
help the model acquire commonsense. For the
ConceptNet pre-training procedure, pre-training
BERT on pseudo-sentences formulated from Con-
ceptNet knowledge triples does not provide much
gain on performance. Instead, we trained BERT
on the Open Mind Common Sense (OMCS) cor-
pus (Singh et al., 2002), the original corpus that
was used to create ConceptNet. We extracted
about 930K English sentences from OMCS and

randomly masked out 15% of the tokens; we
then fine-tuned BERT, using a masked language
model objective. Then we load this fine-tuned
model into OCN and trained on DREAM and
CommonsenseQA tasks. As for pre-training
on ATOMIC, we again use COMET to convert
ATOMIC knowledge triples into sentences; we
created special tokens for 9 types of relations as
well as blanks. Next, we randomly masked out
15% of the tokens, only masking out tail-tokens.
We use the same OMCS pre-training procedure.

Models Dev Acc Test Acc
BERT Large(*) 66.0 66.8

XLNet(*) - 72.0
OCN 70.0 69.8

OCN + CN injection 70.5 69.6
OCN + AT injection 69.6 70.1

OCN + OMCS pre-train 64.0 62.6
OCN + ATOMIC pre-train 60.3 58.8

Table 5: Results on DREAM; the asterisk (*) denotes
results taken from leaderboard.

Models Dev Acc
BERT + OMCS pre-train(*) 68.8

RoBERTa + CSPT(*) 76.2
OCN 64.1

OCN + CN injection 67.3
OCN + OMCS pre-train 65.2

OCN + ATOMIC pre-train 61.2
OCN + OMCS pre-train + CN inject 69.0

Table 6: Results on CommonsenseQA; the asterisk (*)
denotes results taken from leaderboard.

4 Experiments

4.1 Datasets

We choose to evaluate our hypotheses using the
DREAM and CommonsenseQA datasets, because
some / all questions require commonsense reason-
ing and because there remains a large gap between
state-of-the-art models and human performance.
DREAM is a dialogue-based multiple-choice QA

dataset, introduced by Sun et al. (2019). It was
collected from English-as-a-foreign-language ex-
aminations, designed by human experts. The
dataset contains 10,197 questions for 6,444 dia-
logues in total, and each question is associated
with 3 answer-options. The authors point out that
34% of questions require commonsense knowl-
edge to answer, which includes social implication,
speaker’s intention, or general world knowledge.
CommonsenseQA is a multiple-choice QA

dataset that specifically measure commonsense
reasoning (Talmor et al., 2019). This dataset is
constructed based on ConceptNet (Speer et al.,
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2016). Specifically, a source concept is first ex-
tracted from ConceptNet, along with 3 target con-
cepts that are connected to the source concept,
i.e., a sub-graph. Crowd-workers are then asked
to generate questions, using the source concept,
such that only one of the target concepts can cor-
rectly answer the question. Additionally, 2 more
distractor concepts are selected by crowd-workers
so that each question is associated with 5 answer-
options. In total, the dataset contains 12,247 ques-
tions. For CommonsenseQA, we evaluate mod-
els on the development-set only, since test-set an-
swers are not publicly available.

4.2 Training details

For ease of comparison, we borrow hyperparam-
eter settings from Pan et al. (2019b); we used
the BERT Whole-Word Masking Uncased model
(Devlin et al., 2018) for all experiments. For
DREAM experiments, we used a max sequence-
length of 512, batch-size of 24, learning rate of
1e−5, and we trained the model for 16 epochs.
For CommonsenseQA, we used a max sequence
length of 60, batch-size of 32, learning rate of
1e−5, and trained for 8 epochs. For pre-training
on OMCS, we used max sequence length of 35,
batch-size of 32, learning rate of 3e−5, and trained
for 3 epochs. For pre-training on ATOMIC, the
max sequence length is changed to 45, other hy-
perparameters remain the same, and we only use
the ATOMIC training set. When using OCN on
CommonsenseQA, since there is no dialogue, we
compute co-attention with Qenc, in place of Denc,
in order to keep the model structure consistent.

4.3 Results

DREAM results are shown in Table 5, and
CommonsenseQA results are shown in Table
6. For all of our experiments, we run 3 tri-
als with different random seeds and we report
average scores in the tables. Evaluated on
DREAM, our OCN model got a significant per-
formance boost (+3.0%), compared to BERT-
large from previous work. We think the rea-
sons are that OCN is better-suited for the task
and that we used BERT Whole-Word Mask-
ing Uncased model. OCN with ConceptNet
knowledge-injection achieves slightly better re-
sults on the development-set, while ATOMIC
knowledge-injection helps achieve a small im-
provement on the test-set. However, we recognize
that these improvements are very limited; to our

surprise, OCN pre-trained on OMCS or ATOMIC
got significantly lower performance.

As for results on CommonsenseQA, Concept-
Net knowledge-injection provides a significant
performance boost (+2.8%), compared to the OCN
baseline, suggesting that explicit links from ques-
tion to answer-options help the model find the cor-
rect answer. Pre-training on OMCS also provides
a small performance boost to the OCN baseline.
Since both ConceptNet knowledge-injection and
OMCS pre-training are helpful, we combine both
approaches with OCN and we are able to achieve
further improvement (+4.9%). Finally, similar
to the results on DREAM, OCN pre-trained on
ATOMIC yields a siginificant performance drop.

5 Error Analysis

To better understand when a model performs bet-
ter or worse with knowledge-integration, we ana-
lyzed model predictions. DREAM dataset provides
annotations for about 1000 questions: 500 ques-
tions in the development-set and 500 in the test-
set. Specifically, questions are manually classi-
fied into 5 categories: Matching, Summary, Logic
inference, Commonsense inference, and Arith-
metic inference; and each question can be clas-
sified under multiple categories. We refer read-
ers to Sun et al. (2019) for additional category
information. We extracted model predictions for
these annotated questions in test-set and grouped
them by types. The accuracies for each question-
group are shown in Table 7. Note that we omit-
ted 2 categories that have less than 10 questions.
For the ConceptNet and the ATOMIC knowledge-
injection models, we can see that they did bet-
ter on questions that involve commonsense (last
3 columns in the table), and the performance on
other types are about the same or slightly worse,
compared to baseline OCN. As for models pre-
trained on OMCS corpus or ATOMIC knowledge-
base, we already saw that these model perfor-
mances drop, compared to the baseline. When we
look at the performance difference in each ques-
tion type, it is clear that some categories account
for the performance drop more than others. For
example, for both the OMCS pre-trained model
and the ATOMIC pre-trained model, performance
drops significantly for Matching questions, in par-
ticular. On the other hand, for questions that re-
quire both commonsense inference and summa-
rization, both models’ performances only dropped
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Models M(54) S(15) A+L(11) L(228) C+L(122) C(14) C+S(60)
OCN 88.9 86.7 27.3 75.9 60.7 71.4 70.0

OCN + CN injection 83.3(-5.6) 86.7(+0.0) 18.2(-9.2) 76.8(+0.9) 59.8(-0.9) 64.3(-7.1) 78.3(+8.3)
OCN + AT injection 88.9(+0.0) 80.0(-6.7) 27.3(+0.0) 75.9(+0.0) 66.4(+5.7) 71.4(+0.0) 75(+5.0)

OCN + OMCS pre-train 70.4(-18.5) 73.3(-13.4) 45.4(+18.1) 69.7(-6.2) 48.4(-12.3) 57.1(-14.3) 68.3(-1.7)
OCN + ATOMIC pre-train 66.6(-22.3) 86.7(+0.0) 18.2(-9.2) 64.0(-11.9) 51.6(-9.1) 42.9(-28.5) 70.0(+0.0)

Table 7: Accuracies for each DREAM question type: M means Matching, S means Summary, L means Logic
inference, C means Commonsense inference, and A means Arithmatic inference. Numbers beside types denote the
number of questions of that type.

Models AtLoc.(596) Cau.(194) Cap.(109) Ant.(92) H.Pre.(46) H.Sub.(39) C.Des.(28) Des.(27)
OCN 64.9 66.5 65.1 55.4 69.6 64.1 57.1 66.7

+CN inj, 67.4(+2.5) 70.6(+4.1) 66.1(+1.0) 60.9(+5.5) 73.9(+4.3) 66.7(+2.6) 64.3(+7.2) 77.8(+11.1)
+OMCS 68.8(+3.9) 63.9(-2.6) 62.4(-2.7) 60.9(+5.5) 71.7(+2.1) 59.0(-5.1) 64.3(+7.2) 74.1(+7.4)

+ATOMIC 62.8(-2.1) 66.0(-0.5) 60.6(-4.5) 52.2(-3.2) 63.0(-6.6) 56.4(-7.7) 60.7(+3.6) 74.1(+7.4)
+OMCS+CN 71.6(+6.7) 71.6(+5.1) 64.2(+0.9) 59.8(+4.4) 69.6(+0.0) 69.2(+5.1) 75.0(+17.9) 70.4(+3.7)

Table 8: Accuracies for each CommonsenseQA question type: AtLoc. means AtLocation, Cau. means Causes,
Cap. means CapableOf, Ant. means Antonym, H.Pre. means HasPrerequiste, H.Sub means HasSubevent, C.Des.
means CausesDesire, and Des. means Desires. Numbers beside types denote the number of questions of that type.

slightly or did not change. Based on these results,
we infer that commonsense knowledge-injection
with attention is making an impact on models’
weight distributions. The model is able to do
better on questions that require commonsense but
is losing performance on other types, suggest-
ing a direction for future research in developing
more robust (e.g., conditional) injection methods.
Moreover, pre-training on knowledge-bases seems
to have a larger impact on models’ weight distri-
butions, resulting in inferior performance. This
weight distribution shift also favors of common-
sense, as we see that commonsense types are not
affected as much as other types. We also con-
ducted similar analysis for CommonsenseQA.
Since all questions in CommonsenseQA require
commonsense reasoning, we classify questions
based on the ConceptNet relation between the
question concept and correct answer concept. The
intuition is that the model needs to capture this
relation in order to answer the question. The ac-
curacies for each question type are shown in Ta-
ble 8. Note that we have omitted question types
that have less than 25 questions. We can see
that with ConceptNet relation-injection, all ques-
tion types got performance boosts, for both OCN
model and OCN pre-trained on OMCS, suggest-
ing that knowledge is indeed helpful for the task.
In the case of OCN pre-trained on ATOMIC, al-
though the overall performance is much lower than
OCN baseline, it is interesting to see that perfor-
mance for the “Causes” type is not significantly
affected. Moreover, performance for “CausesDe-
sire” and “Desires” types actually got much bet-
ter. As noted by (Sap et al., 2019), “Causes”
in ConceptNet is similar to “Effects” and “Reac-

tions” in ATOMIC; and “CausesDesire” in Con-
ceptNet is similar to “Wants” in ATOMIC. This
result also correlates with our findings from our
analysis on DREAM, wherein we found that mod-
els with knowledge pre-training perform better on
questions that fit knowledge domain but perform
worse on others. In this case, pre-training on
ATOMIC helps the model do better on questions
that are similar to ATOMIC relations, even though
overall performance is inferior. Finally, we no-
ticed that questions of type “Antonym” appear to
be the hardest ones. Many questions that fall into
this category contain negations, and we hypothe-
size that the models still lack the ability to reason
over negation sentences, suggesting another direc-
tion for future improvement.

6 Discussion

Based on our experimental results and error anal-
ysis, we see that external knowledge is only help-
ful when there is alignment between questions and
knowledge-base types. Thus, it is crucial to iden-
tify the question type and apply the best-suited
knowledge. In terms of knowledge-integration
methods, attention-based injection seems to be
the better choice for pre-trained language mod-
els such as BERT. Even when alignment between
knowledge-base and dataset is sub-optimal, the
performance would not degrade. On the other
hand, pre-training on knowledge-bases would shift
the language model’s weight distribution toward
its own domain, greatly. If the task domain
does not fit knowledge-base well, model perfor-
mance is likely to drop. When the domain of the
knowledge-base aligns with that of the dataset per-
fectly, both knowledge-integration methods bring
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performance boosts and a combination of them
could bring further gain.

7 Future Work

We have presented a survey on two popular
knowledge bases (ConceptNet and ATOMIC) and
recent knowledge-integration methods (attention
and pre-training), on commonsense QA tasks.
Evaluation on two QA datasets suggests that align-
ment between knowledge-bases and datasets plays
a crucial role in knowledge-integration. We be-
lieve it is worth conducting a more comprehen-
sive study of datasets and knowledge-bases and
putting more effort towards defining an auxiliary
learning objective, in a constrained-optimization
(i.e., multi-task learning) framework, that identi-
fies the type of knowledge required, based on data
characteristics. In parallel, we are also interested
in building a global commonsense knowledge base
by aggregating ConceptNet, ATOMIC, and poten-
tially other resources like FrameNet (Baker et al.,
1998) and MetaNet (Dodge et al., 2015), on the
basis of a shared-reference ontology (following
the approaches described in (Gangemi et al., 2010)
and (Scheffczyk et al., 2010)): the goal would be
to assess whether injecting knowledge structures
from a semantically-cohesive lexical knowledge
base of commonsense guarantees stable model ac-
curacy across datasets.
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Abstract

Pretrained language models, such as BERT
and RoBERTa, have shown large improve-
ments in the commonsense reasoning bench-
mark COPA. However, recent work found that
many improvements in benchmarks of natural
language understanding are not due to models
learning the task, but due to their increasing
ability to exploit superficial cues, such as to-
kens that occur more often in the correct an-
swer than the wrong one. Are BERT’s and
RoBERTa’s good performance on COPA also
caused by this? We find superficial cues in
COPA, as well as evidence that BERT ex-
ploits these cues. To remedy this problem,
we introduce Balanced COPA, an extension
of COPA that does not suffer from easy-to-
exploit single token cues. We analyze BERT’s
and RoBERTa’s performance on original and
Balanced COPA, finding that BERT relies on
superficial cues when they are present, but still
achieves comparable performance once they
are made ineffective, suggesting that BERT
learns the task to a certain degree when forced
to. In contrast, RoBERTa does not appear to
rely on superficial cues.

1 Introduction

Pretrained language models such as ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), and
RoBERTa (Liu et al., 2019b) have led to improved
performance in benchmarks of natural language
understanding, in tasks such as natural language
inference (NLI, Liu et al., 2019a), argumentation
(Niven and Kao, 2019), and commonsense rea-
soning (Li et al., 2019; Sap et al., 2019). How-
ever, recent work has identified superficial cues
in benchmark datasets which are predictive of the
correct answer, such as token distributions and
lexical overlap. Once these cues are neutralized,
models perform poorly, suggesting that their good

∗Equal contribution.

The woman hummed to herself. What was the
cause for this?
3 She was in a good mood.
7 She was nervous.

(a) Original COPA instance.

The woman trembled. What was the cause for
this?
7 She was in a good mood.
3 She was nervous.

(b) Mirrored COPA instance.

Figure 1: A COPA instance (a) with premise and cor-
rect (3) and wrong (7) alternatives. Our analysis re-
veals that the unigram a (highlighted orange) is a su-
perficial cue exploited by BERT. We neutralize such
superficial cues by creating a mirrored instance (b). Af-
ter mirroring, the highlighted superficial cue becomes
ineffective in predicting the correct answer, since it oc-
curs with equal probability in correct and wrong alter-
natives.

performance is an instance of the Clever Hans ef-
fect1 (Pfungst, 1911): Models trained on datasets
with superficial cues learn heuristics for exploiting
these cues, but do not develop any deeper under-
standing of the task.

While superficial cues have been identified
in, among others, datasets for NLI (Gururangan
et al., 2018; McCoy et al., 2019), machine read-
ing comprehension (Sugawara et al., 2018), and
argumentation (Niven and Kao, 2019), one of
the main benchmarks for commonsense reason-
ing, namely the Choice of Plausible Alternatives
(COPA, Roemmele et al., 2011), has not been an-
alyzed so far. Here we present an analysis of su-
perficial cues in COPA.

1Named after the eponymous horse which appeared to be
capable of simple mental tasks but actually relied on cues
given involuntarily by its handler.

33



Given a premise, such as The man broke his
toe, COPA requires choosing the more plausible,
causally related alternative, in this case either: be-
cause He got a hole in his sock (wrong) or be-
cause He dropped a hammer on his foot (correct).
To test whether COPA contains superficial cues,
we conduct a dataset ablation in which we pro-
vide only partial input to the model. Specifically,
we provide only the two alternatives, but not the
premise, which makes solving the task impossi-
ble and hence should reduce the model to random
performance. However, we observe that a model
trained only on alternatives performs considerably
better than random chance and trace this result
to an unbalanced distribution of tokens between
correct and wrong alternatives. Further analysis
(§4.3) reveals that finetuned BERT (Devlin et al.,
2019) perform very well (83.9 percent accuracy)
on easy instances containing superficial cues, but
worse (71.9 percent) on hard instances without
such simple cues.

To prevent models from exploiting superficial
cues in COPA, we introduce Balanced COPA. Bal-
anced COPA contains one additional, mirrored in-
stance for each original training instance. This
mirrored instance uses the same alternatives as the
corresponding original instance, but introduces a
new premise which matches the wrong alternative
of the original instance, e.g. The man hid his feet,
for which the correct alternative is now because
He got a hole in his sock (See another example in
Figure 1). Since each alternative occurs exactly
once as correct answer and exactly once as wrong
answer in Balanced COPA, the lexical distribution
between correct and wrong answers is perfectly
balanced, i.e., superficial cues in the original al-
ternatives have become uninformative.

Balanced COPA allows us to study the impact
of the presence or absence of superficial cues on
model performance.

Since BERT exploits cues in the original COPA,
we expected performance to degrade when train-
ing on Balanced COPA. However, BERT trained
on Balanced COPA performed comparably over-
all. As we will show, this is due to better per-
formance on the “hard” instances. This suggests
that once superficial cues are made uninformative,
BERT learns the task to a certain degree.

In summary, our contributions are:

• We identify superficial cues in COPA that al-
low models to use simple heuristics instead

of learning the task (§2);

• We introduce Balanced COPA, which pre-
vents models from exploiting these cues (§3);

• Comparing models on original and Balanced
COPA, we find that BERT heavily exploits
cues when they are present, but is also able to
learn the task when they are not (§4); and

• We show that RoBERTa does not appear to
exploit superficial cues.

2 Superficial Cues in COPA

2.1 COPA: Choice of Plausible Alternatives

Causal reasoning is an important prerequisite for
natural language understanding. The Choice Of
Plausible Alternatives (COPA) (Roemmele et al.,
2011) is dataset that aims to benchmark causal rea-
soning in a simple binary classification setting.2

COPA requires classifying sentence pairs consist-
ing of the first sentence, the premise, and a second
sentence that is either cause of, effect of, or unre-
lated to premise. Given the premise and two alter-
natives, one of which has a causal relation to the
premise, while the other does not, models need to
choose the more plausible alternative. Figure 1a
shows an example of a COPA instance. The over-
all 1000 instances are split into training set3 and
test set of 500 instances each.

Prior to neural network approaches, the most
dominant way of solving COPA was via Pointwise
Mutual Information (PMI)-based statistics using
a large background corpus between the content
words in the premise and the alternatives (Gor-
don et al., 2011; Luo et al., 2016; Sasaki et al.,
2017; Goodwin et al., 2012). Recent studies show
that BERT and RoBERTa achieve considerable
improvements on COPA (see Table 1).

However, recent work found that the strong
performance of BERT and other deep neural
models in benchmarks of natural language un-
derstanding can be partly or in some cases en-
tirely explained by their capability to exploit
superficial cues present in benchmark datasets.
For example, Niven and Kao (2019) found that
BERT exploits superficial cues, namely the oc-
currence of certain tokens such as not, in the Ar-

2http://people.ict.usc.edu/˜gordon/
copa.html

3This set is called development set by Roemmele et al.
(2011), but is used as training set by supervised models.
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Model Accuracy

BigramPMI (Goodwin et al., 2012) 63.4
PMI (Gordon et al., 2011) 65.4
PMI+Connectives (Luo et al., 2016) 70.2
PMI+Con.+Phrase (Sasaki et al., 2017) 71.4

BERT-large (Wang et al., 2019) 70.5
BERT-large (Sap et al., 2019) 75.0
BERT-large (Li et al., 2019) 75.4
RoBERTa-large (finetuned)4 90.6

BERT-large (finetuned)* 76.5 ± 2.7
RoBERTa-large (finetuned)* 87.7 ± 0.9

Table 1: Reported results on COPA. With the exception
of (Wang et al., 2019), BERT-large and RoBERTa-large
yields substantial improvements over prior approaches.
See §2 for model details. * indicates our replication
experiments.

gument Reasoning Comprehension Task (Haber-
nal et al., 2018). Similarly, Gururangan et al.
(2018); Poliak et al. (2018); Dasgupta et al. (2018)
showed that a simple text categorization model
can perform well on the Stanford Natural Lan-
guage Inference dataset (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) when given in-
complete input, even though the task should not be
solvable without the full input. This suggests that
the partial input contains unintended superficial
cues that allow the models to take shortcuts with-
out learning the actual task. Sugawara et al. (2018)
investigated superficial cues that make questions
easier across recent machine reading comprehen-
sion datasets. Given the fact that superficial cues
were found in benchmark datasets for a wide va-
riety of natural language understanding task, does
COPA contain such cues, as well?

2.2 Token Distribution
One of the simplest types of superficial cues are
unbalanced token distributions, i.e tokens appear-
ing more often or less frequently with one partic-
ular instance label than with other labels. For ex-
ample, Niven and Kao (2019) found that the token
not occurs more often in one type of instance an
argumentation dataset.

Similarly we identify superficial cues — in this
case a single token that appears more frequently
in correct alternatives or wrong alternatives — in
the COPA training set. To find superficial cues in
the form of predictive tokens, we use the follow-
ing measures, defined by Niven and Kao (2019).
Let T(i)

j be the set of tokens in the alternatives for

data point i with label j. The applicability αk of
a token k counts how often this token occurs in an
alternative with one label, but not the other:

αk =
n∑

i=1

1

[
∃j, k ∈ T(i)

j ∧ k /∈ T(i)
¬j
]

The productivity πk of a token is the proportion of
applicable instances for which it predicts the cor-
rect answer:

πk =

∑n
i=1 1

[
∃j, k ∈ T(i)

j ∧ k /∈ T(i)
¬j ∧ yi = j

]

αk

Finally, the coverage ξk of a token is the propor-
tion of applicable instances among all instances:

ξk =
αk
n

Table 2 shows the five tokens with highest cov-
erage. For example, a is the token with the high-
est coverage and appears in either a correct al-
ternative or wrong alternative in 21.2% of COPA
training instances. Its productivity of 57.5% ex-
presses that it appears in in correct alternatives
7.5% more often than expected by random chance.
This suggests that a model could rely on such un-
balanced distributions of tokens to predict answers
based only on alternatives without understanding
the task.

To test this hypothesis, we perform a dataset ab-
lation, providing only the two alternatives as input
to RoBERTa, but not the premise, following sim-
ilar ablations by Gururangan et al. (2018); Niven
and Kao (2019). RoBERTa trained5 in this set-
ting, i.e. on alternatives only, achieves a mean ac-
curacy of 59.6 (± 2.3). This is problematic be-
cause COPA is designed as a choice between al-
ternatives given the premise. Without a premise
given, model performance should not exceed ran-
dom chance. Consequently, a result better than
random chance shows that the dataset allows solv-
ing the task in a way that was not intended by its
creators. To fix this problem, we create a balanced
version of COPA that does not suffer from unbal-
anced token distributions in correct and wrong al-
ternatives.

3 Balanced COPA (B-COPA)

To allow evaluating models on a benchmark with-
out superficial cues, we need to make them inef-

5See §4.1 for experimental setup.

35



Cue App. Prod. Cov.

in 47 55.3 9.40
was 55 61.8 11.0
to 82 40.2 16.4
the 85 38.8 17.0
a 106 57.5 21.2

Table 2: Applicability (App.), Productivity (Prod.) and
Coverage (Cov.) of the various words in the alterna-
tives of the COPA dev set.

fective. Our approach is to balance the token dis-
tributions in correct alternatives and wrong alter-
natives in the training set. Without unbalanced to-
ken distributions, we hope models are able to learn
other patterns more closely related to the task, e.g.
a pair of causally related events, rather than super-
ficial cues.

3.1 Data Collection

To create the balanced COPA training set, we man-
ually mirror the original training set by modifying
the premise. Taking the original training set as a
starting point, we duplicate the COPA instances
and modify their premises so that incorrect alter-
natives become correct. Suppose the following
original COPA instance:

• Premise: The stain came out of the shirt.
What was the CAUSE of this?

• Alternative 1: I bleached the shirt. (Correct)

• Alternative 2: I patched the shirt.

We create the following balanced COPA instance,
where the wrong alternative becomes the correct
choice now:

• Premise: The shirt did not have a hole any-
more. What was the CAUSE of this?

• Alternative 1: I bleached the shirt.

• Alternative 2: I patched the shirt. (Correct)

This approach is similar to Niven and Kao (2019),
who create a balanced benchmark of the Argument
Reasoning Comprehension Task by negating and
rotating its ingredients, exploiting the nature of the
task. However, due to the nature of COPA, we
cannot follow their approach and choose to create
new premises.

Dataset Accuracy Fleiss’ kappa k

Original COPA 100.0 0.973
Balanced COPA 97.0 0.798

Table 3: Results of human performance evaluation of
the original COPA and Balanced COPA.

To collect such balanced data, we asked five flu-
ent English speakers who have background knowl-
edge of NLP (see Appendix A for the detailed
guideline). Finally, we collected 500 new mir-
rored instances. Concatenating it with the orig-
inal training instances, the balanced COPA con-
sists of 1,000 instances in total. The corpus is pub-
licly available at https://balanced-copa.
github.io.

3.2 Quality Evaluation

To ensure the quality of the mirrored instances,
we estimate a human performance using Amazon
Mechanical Turk (AMT), a widely-used crowd-
sourcing platform. We randomly sample 100 in-
stances from the original COPA training set and
100 instances from the balanced COPA, and asked
crowdworkers to solve each instance (see Ap-
pendix B for an actual screenshot). To avoid
noisy workers, we presented our tasks to workers
who meet master AMT qualification with at least
10,000 HIT approvals and 99% HIT approval rate.
Per HIT, we assign three crowd workers and offer
10 cents reward.

From the collected responses, we calculate
the accuracy of workers (by majority vot-
ing) and inter-annotator agreement by Fleiss’
Kappa (Fleiss, 1981). The human evaluation
shows that our mirrored instances are compara-
ble in difficulty to the original ones (see Table 3).
However, we found that some mirrored instances
are a bit tricky at first glance. But, with a bit
more attention, the answer is quite obvious (see
Appendix C, for an example).

4 Experiments

4.1 BERT and RoBERTa on COPA

In this section we analyze the performance of
two recent pretrained language models on COPA:
BERT and RoBERTa, an optimized variant of
BERT that achieves better performance on the Su-
perGLUE benchmark (Wang et al., 2019), which
includes COPA.
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Model Method Training Data Overall Easy Hard p-value (%)

Goodwin et al. (2012) PMI unsupervised 61.8 64.7 60.0 19.8
Gordon et al. (2011) PMI unsupervised 65.4 65.8 65.2 83.5
Sasaki et al. (2017) PMI unsupervised 71.4 75.3 69.0 4.8∗

Word frequency wordfreq COPA 53.5 57.4 51.3 9.8

BERT-large-FT LM, NSP COPA 76.5 (± 2.7) 83.9 (± 4.4) 71.9 (± 2.5) 0.0∗

RoBERTa-large-FT LM COPA 87.7 (± 0.9) 91.6 (± 1.1) 85.3 (± 2.0) 0.0∗

Table 4: Model performance on the COPA test set (Overall), on Easy instances with superficial cues, and on Hard
instances without superficial cues. p-values according to Approximate Randomization Tests (Noreen, 1989), with ∗

indicating a significant difference between performance on Easy and Hard p < 5%. Methods are pointwise mutual
information (PMI), word frequency provided by the wordfreq package (Speer et al., 2018), pretrained language
model (LM), and next-sentence prediction (NSP).

We convert COPA instances as follows to
make them compatible with the input format re-
quired by BERT/RoBERTa. For a COPA instance
〈p, a1, a2, q〉, where p is a premise, ai is the i-th
alternative, and q is a question type (either effect
or cause), we construct BERT’s input depending
on the question type. We assume that the first sen-
tence and the second sentence in the next sentence
prediction task describe a cause and an effect, re-
spectively. Specifically, for each i-th alternative,
we define the following input function:

input(p, ai) =

{
“[CLS] p [SEP] ai [SEP]” if q is effect

“[CLS] ai [SEP] p [SEP]” if q is cause

Part of BERT’s training objective includes next
sentence prediction. Given a pair of sentences,
BERT predicts whether one sentence can be plau-
sibly followed by the other. For this, BERT’s input
format contains two [SEP] tokens to mark the two
sentences and the [CLS] token, which is used as
the input representation for next sentence predic-
tion. This part of BERT’s architecture makes it a
natural fit for COPA.

One of the key differences between BERT and
RoBERTa is that the next sentence prediction ob-
jective is not part of RoBERTa’s training objec-
tive. Instead, RoBERTa is trained with masked
language modeling only, with its input consisting
of multiple concatenated sentences. To match this
training setting, we encode two sentences in a sin-
gle segment as follows:

input(p, ai) =

{
“<s> p ai </s>” if q is effect
“<s> ai p </s>” if q is cause

After encoding premise-alternative with BERT
or RoBERTa, we take the first hidden represen-
tation z0

i , i.e. the one corresponding to [CLS] or

<s>, in the final model layer and pass it through
a linear layer for binary classification:

yi = wᵀz0
i + b, (1)

where the parameters w ∈ Rh and b ∈ R are
learned on the COPA training set. Finally, we
choose the alternative with the higher score, i.e.,
aî with î = argmaxi∈{1,2} yi.

For training, we minimize the cross entropy loss
with the logits [y1; y2] and fine-tune BERT and
RoBERTa’s parameters. In our experiments, we
use pretrained BERT-large (uncased) with 24 lay-
ers, 16 self-attention heads (340M parameters) and
pretrained RoBERTa-large with 24 layers, 16 self-
attention heads (355M parameters).6

4.2 Training Details
For training, we consider two configurations: (i)
using the original COPA training set (§4.3), and
(ii) using B-COPA (§4.4). We randomly split the
training data into training data and validation data
with the ratio of 9:1. For B-COPA, we make sure
that a pair of original instance and its mirrored
counterpart always belong to the same split in or-
der to ensure that a model is trained without super-
ficial cues. For testing, we use all 500 instances
from the original COPA test set.

We run each experiment three times with differ-
ent random seeds and average the results. We train
for 10 epochs and choose the best model based on
the validation score. To reduce GPU RAM usage,
we set BERT and RoBERTa’s maximum sequence
length to 32, which covers all training and test in-
stances. We use Adam (Kingma and Ba, 2015)
with warmup, weight decay of 0.01, a batch size

6https://huggingface.co/
pytorch-transformers/
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Model Training data Overall Easy Hard

BERT-large-FT B-COPA 74.5 (± 0.7) 74.7 (± 0.4) 74.4 (± 0.9)
BERT-large-FT B-COPA (50%) 74.3 (± 2.2) 76.8 (± 1.9) 72.8 (± 3.1)
BERT-large-FT COPA 76.5 (± 2.7) 83.9 (± 4.4) 71.9 (± 2.5)

RoBERTa-large-FT B-COPA 89.0 (± 0.3) 88.9 (± 2.1) 89.0 (± 0.8)
RoBERTa-large-FT B-COPA (50%) 86.1 (± 2.2) 87.4 (± 1.1) 85.4 (± 2.9)
RoBERTa-large-FT COPA 87.7 (± 0.9) 91.6 (± 1.1) 85.3 (± 2.0)

Table 5: Results of fine-tuned models on Balanced COPA. Easy: instances with superficial cues, Hard: instances
without superficial cues.

of 4, and a gradient accumulation of 8. We op-
timize hyperparameters for BERT and RoBERTa
separately on the validation set. For BERT, we test
learning rates of 2e-4, 1e-4, 8e-5, 4e-5, 2e-5, and
1e-5, and use warm up proportion of 0.1, with gra-
dient norm clipping of 1.0. For RoBERTa, we test
learning rates of 1e-5, 8e-6, 6e-6, 4e-6, 2e-6, and
1e-6, and use warm up proportion of 0.06, with no
gradient norm clipping.

4.3 Evaluation on Easy and Hard subsets

To investigate the behaviour of BERT and
RoBERTa trained on the original COPA, which
contains superficial cues, we split the test set into
an Easy subset and a Hard subset. The Easy sub-
set consists of instances that are correctly solved
by the premise-oblivious model described in §2.
To account for variation between the three runs
with different random seeds, we deem an instance
correctly classified only if the premise-oblivous
model’s prediction is correct for all three runs.
This results in the Easy subset with 190 instances
and the Hard subset comprising the remaining 310
instances. Such an easy/hard split follows similar
splits in NLI datasets (Gururangan et al., 2018).

We then compare BERT and RoBERTa with
previous models on the Easy and Hard subsets.7

As Table 4 shows, previous models perform simi-
larly on both subsets, with the exception of Sasaki
et al. (2017).8 Overall both BERT (76.5%) and
RoBERTa (87.7%) considerably outperform the

7For previous models, we use the prediction keys avail-
able on http://people.ict.usc.edu/˜gordon/
copa.html

8We conjecture that word frequency is another superficial
cue exploited by models. To verify this we train a classifier
based on word frequencies only (Speer et al., 2018) and find
that this classifier is able to identify the correct alternative
better than random chance, but this result is not significant
(p = 9.8%).

best previous model (71.4%). However, BERT’s
improvements over previous work can be almost
entirely attributed to high accuracy on the Easy
subset: on this subset, finetuned BERT-large im-
proves 8.6 percent over the model by (Sasaki et al.,
2017) (83.9% vs. 75.3%), but on the Hard subset,
the improvement is only 2.9 percent (71.9% vs.
69.0%). This indicates that BERT relies on super-
ficial cues. The difference between accuracy on
Easy and Hard is less pronounced for RoBERTa,
but still suggests some reliance on superficial cues.
We speculate that superficial cues in the COPA
training set prevented BERT and RoBERTa from
focusing on task-related non-superficial cues such
as causally related event pairs.

4.4 Evaluation on Balanced COPA (B-COPA)

How will BERT and RoBERTa behave when there
are no superficial cues in the training set? To
answer this question, we now train BERT and
RoBERTa on B-COPA and evaluate on the Easy
and Hard subsets. The results are shown in Ta-
ble 5. The smaller performance gap between Easy
and Hard subsets indicates that training on B-
COPA encourages BERT and RoBERTa to rely
less on superficial cues. Moreover, training on
B-COPA improves performance on the Hard sub-
set, both when training with all 1000 instances in
B-COPA, and when matching the training size of
the original COPA (500 instances, B-COPA 50%).
Note that training on B-COPA 50% exposes the
model to lexically less diverse training instances
than the original COPA due to the high overlap
between mirrored alternatives (see §3).

These results show that once superficial cues
are removed, the models are able to learn the task
to a high degree. This contrasts with Niven and
Kao (2019), who found that BERT’s performance
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Model Training data Overall Easy Hard

BERT-large B-COPA 70.5 (± 2.5) 72.6 (± 2.3) 69.1 (± 2.7)
BERT-large B-COPA (50%) 69.9 (± 1.9) 71.2 (± 1.3) 69.0 (± 3.5)
BERT-large COPA 71.7 (± 0.5) 80.5 (± 0.4) 66.3 (± 0.8)

RoBERTa-large B-COPA 76.7 (± 0.8) 73.3 (± 1.5) 78.8 (± 2.0)
RoBERTa-large B-COPA (50%) 72.4 (± 2.0) 72.1 (± 1.7) 72.6 (± 2.1)
RoBERTa-large COPA 76.4 (± 0.7) 79.6 (± 1.0) 74.4 (± 1.1)

BERT-base-NSP None 66.4 66.2 66.7
BERT-large-NSP None 65.0 66.9 62.1

Table 6: Results of non-fine-tuned models on Balanced COPA. Easy: instances with superficial cues, Hard: in-
stances without superficial cues.

on the Argument Reasoning Comprehension Task
(Habernal et al., 2018) does not exceed random
chance level after superficial cues are made un-
informative. A likely explanation for this con-
trast is the difference in the inherent task diffi-
culties. Argument reasoning comprehension is a
high level natural language understanding task re-
quiring world knowledge and complex reasoning
skills, while COPA can be largely solved with
associative reasoning, as the performance of the
PMI-based baselines shows (Table 4). A sec-
ond possible explanations is BERT’s insensitiv-
ity to negations (Ettinger, 2019). Since Niven
and Kao (2019) made superficial cues uninforma-
tive by adding negated instances to the dataset,
BERT’s insensitivity to negations makes distin-
guishing between instances and negated instances
difficult (see §3).

4.5 Analysis of sentence pair embeddings

The findings presented in the previous sections,
namely BERT’s and RoBERTa’s good perfor-
mance on COPA in spite of the rather small
amount of training data, leads us to the following
hypothesis that pretraining enables these models
to create an embedding space in which embed-
dings of plausible sentence pairs are distinguish-
able from embeddings of less plausible pairs.

To investigate how well the respective embed-
ding spaces of BERT and RoBERTa separate plau-
sible and less-plausible pairs, we train BERT-large
and RoBERTa-large without fine-tuning. Specif-
ically, we freeze model weights and train a clas-
sifier by parameterizing w and b in Equation 1
as a soft-margin Support Vector Machine (SVM,

Cortes and Vapnik, 1995).9 We also report results
for a simple model that only uses BERT’s pre-
trained next sentence predictor (BERT-base-NSP,
BERT-large-NSP), i.e., we choose the alternative
with the higher next sentence prediction score.
The results are shown in Table 6. The relatively
high accuracies of BERT-large, RoBERTa-large
and BERT-*-NSP show that these pretrained mod-
els are already well-equipped to perform this task
“out-of-the-box”.

4.6 Analysis of sensitivity to cues
To analyze the sensitivity of BERT and RoBERTa
to superficial cues and to content words, we em-
ploy a gradient-based approach, following (Brun-
ner et al., 2019). Specifically, we define the sensi-
tivity si,t of the classification score in i-th COPA
test instance to input token t, as follows:

si,t =
||gt||∑

t′∈Ti ||gt′ ||
, gt =

∂y

∂xt
, (2)

where Ti is a sequence of all input tokens in the
i-th COPA test instance, y is a score function
defined by Equation (1), and xt ∈ R1024 is a
position-augmented token embedding of t. We
then define the sensitivity S(k) to cue k over all
COPA test instances as the average over all m
COPA test instances: S(k) = 1

m

∑m
i si,k.

We are interested in the change of sensitivity to-
wards cue t of a model trained on original COPA
compared to a model trained on Balanced COPA.
We plot this difference as a function of the cue’s
productivity (Figure 2). We observe that BERT
trained on Balanced COPA is less sensitive to a

9We tune the SVM hyperparameter C ∈
{0.0001, 0.001, 0.01, 0.1, 1} on the validation set.
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Figure 2: Change of sensitivity to superficial cues
(in §2) from COPA-trained models to B-COPA-trained
models as a function of their productivity.

Cue SCOPA SB COPA Diff. Prod.

woman 7.98 4.84 -3.14 0.25
mother 5.16 3.95 -1.21 0.75
went 6.00 5.15 -0.85 0.73
down 5.52 4.93 -0.58 0.71
into 4.07 3.51 -0.56 0.40

Table 7: Sensitivity of BERT-large to superficial cues
identified in §2 (unit: 10−2). Cues with top-5 reduction
are shown. SCOPA, SB COPA indicate the mean con-
tributions of BERT-large trained on COPA, and BERT-
large trained on B-COPA, respectively.

few highly productive superficial cues than BERT
trained on original COPA. Note the decrease in the
sensitivity for cues of productivity from 0.7 to 0.9.
These cues are shown in Table 7. However, for
cues with lower productivity, the picture is less
clear, in case of RoBERTa, there are no noticeable
trends in the change of sensitivity.

5 Conclusions

We established that COPA, an important bench-
mark of commonsense reasoning, contains su-
perficial cues, specifically single tokens predic-
tive of the correct answer, that allow models to
solve the task without actually understanding it.
Our experiments suggest that BERT’s good per-
formance on COPA can be explained by its abil-
ity to exploit these superficial cues. BERT per-
forms well on Easy instances with such superfi-
cial cues, and comparable to previous methods on
Hard instances without such cues. RoBERTa, in
contrast, represents a real improvement consider-
ably outperforms both BERT and previous meth-
ods on Hard instances as well.

To allow evaluating models on a benchmark
without predictive single tokens, we created the
Balanced COPA dataset. Balanced COPA neutral-
izes this kind of superficial cue by mirroring in-
stances from the original COPA dataset, thereby
removing any differences in token distributions
between correct and wrong alternatives. Surpris-
ingly, we found that both BERT and RoBERTa
finetuned on Balanced COPA perform compara-
bly overall to the models finetuned on the origi-
nal COPA. However, a more detailed analysis re-
vealed quite different behaviour. Whereas BERT
finetuned on original COPA heavily exploited su-
perficial cues, we now find evidence that BERT
finetuned on balanced COPA appears to learn
some aspects of the task with similar accuracies
on both Easy and Hard instances. Even more sur-
prisingly, RoBERTa benefits from training on Bal-
anced COPA instances and achieves higher accu-
racy than on the original COPA with superficial
cues.

Two important questions remain unanswered at
present, which we plan to explore in future work:
Even in the presence of superficial cues, RoBERTa
does not seem to rely on them. First, why does
RoBERTa not appear to rely on superficial cues,
even when they are available? And second, are the
results of our experiments on Balanced COPA spe-
cific to BERT and RoBERTa or are all pretrained
language models able to exploit superficial cues in
COPA and able to solve the task by other means if
no such cues are present?
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A Balanced COPA New Premise
Guidelines

We instructed dataset creators with the following
guidelines:

1. Ensure as much lexical overlap in new
premise as the original premise.

2. Ensure little lexical overlap between premise
and alternative, but if a word occurs both in
premise and alternatives, it is acceptable to
include it in the premise.

3. Maintain, as much as possible, the length and
style between the new premise and the origi-
nal premise.

4. Ensure that there is no direct association be-
tween the correct alternative and premise.

5. Avoid slang.

B Amazon Mechanical Turk Form

Figure 3: Amazon Mechanical Turk task form

C Example of an instance with low
inter-annotator agreement

I received a package in the mail. What happened
as a result? (effect)
3 The package triggered my curiosity.
7 I took the package to the post office.

(a) Original COPA instance.

I received someone’s package in the mail. What
happened as a result? (effect)
7 The package triggered my curiosity.
3 I took the package to the post office.

(b) Mirrored COPA instance.

Figure 4: An example of one of mirrored COPA in-
stances with low inter-annotator agreement. Paying at-
tention to the highlighted word is key to picking the
correct alternative.
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Abstract

We consider the problem of extracting from
text commonsense knowledge pertaining to
human senses such as sound and smell. First,
we consider the problem of recognizing men-
tions of human senses in text. Our contribution
is a method for acquiring labeled data. Exper-
iments show the effectiveness of our proposed
data labeling approach when used with stan-
dard machine learning models on the task of
sense recognition in text. Second, we propose
to extract novel, common sense relationships
pertaining to sense perception concepts. Our
contribution is a process for generating labeled
data by leveraging large corpora and crowd-
sourcing questionnaires.

1 Introduction

Information extraction methods produce struc-
tured data in the form of knowledge bases of fac-
tual assertions. Such knowledge bases are useful
for porting inference, question answering, and rea-
soning (Bollacker et al., 2008; Hoffart et al., 2012;
Mitchell et al., 2015). However, progress on the
common sense front, as opposed to named enti-
ties such as locations, and people, is still limited
(Havasi et al., 2007; Tandon et al., 2011).

One of the factors impeding progress in com-
mon sense knowledge acquisition is the lack of la-
beled data. Prior work has shown that it can be
straightforward to obtain training data for identi-
fying relationships between named entities such
as companies and their headquarters, or people
and their birth places (Havasi et al., 2007; Tandon
et al., 2011; Bollacker et al., 2008; Hoffart et al.,
2012; Mitchell et al., 2015). Examples of such
relationships can be found in semi-structured for-
mats on the Web(Wu and Weld, 2008; Wang and
Cohen, 2008). This is not the case for common
sense relationships.

We therefore consider the problem of extracting
from text commonsense knowledge pertaining to
human senses such as sound and smell. We split
the problem into two parts, for each part we pro-
pose approaches for obtaining labeled data, and
train standard machine learning models.

1. In the first part of this work, the goal is to de-
tect mentions of concepts that are discernible
by sense. For example, recognize that “chirp-
ing birds” is a mention of an audible con-
cept (sound), and “burning rubber” is a men-
tion of an olfactible concept (smell). We
aim to detect mentions of concepts without
performing co-reference resolution or clus-
tering mentions. Therefore, our setting re-
sembles the established task of entity recog-
nition (Finkel et al., 2005; Ratinov and Roth,
2009), with the difference being that we fo-
cus on un-named entities.

We propose a data labeling method, that
leverages crowd-sourcing and large corpora.
This approach provides the flexibility to con-
trol the size and accuracy of the available
labeled data for model training. Addition-
ally, we train several standard machine learn-
ing models including to recognize mentions
of sound and smell concepts in text. In our
experiments, we show that the combination
of our data labeling approach, and a suitable
learning model are an effective solution to
sense recognition in text.

2. In the second part of this work, we seek to ex-
tract novel common sense relationships about
concepts that are discernible by sense.

Our contributions in this part of the work
are as follows: first, we propose to extract
novel relationships that are sparse in existing
knowledge bases. Second, we propose a pro-
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The sound of clanking swords was
O O O B I O

accompanied by loud screams .
O O O B O

The corridors are municipal and still
O O O O O O

smell of emulsion .
O O B O

Figure 1: Example beginning-inside-outside (BIO) la-
beled sentences with mentions of sound (top) and smell
(bottom) concepts.

cess for generating labeled data by leverag-
ing large corpora and crowd-sourcing ques-
tionnaires. Third, using the resulting la-
beled data, we train standard machine learn-
ing methods (both linear model and memory
neural network models), obtaining high accu-
racy on the task of extracting these previously
under-explored relationships.

In summary, we propose minimal-effort ap-
proaches for obtaining labeled data on two key
tasks: mention recognition, and relationship ex-
traction for concepts pertaining to human senses.
In the first, task we make use of Hearst patterns,
and crowd sourcing, and for the second task, we
make use of part-of-speech tag sequences and
crowd-sourcing. Although these processes are not
new, we have applied them to a novel setting of
common sense about human senses, and showed
their effectiveness. We trained standard machine
learning methods, and showed that the labeled data
generated by our processes lead to high quality
models.

2 Recognizing Mentions of Human
Senses

In this part of the work, we would like to detect
mentions of concepts discernible by sense, we fo-
cus on mentions of audible (sound) and olfactible
(smell) concepts. We treat sense recognition in
text as a sequence labeling task where each sen-
tence is a sequence of tokens labeled using the
BIO tagging scheme (Ratinov and Roth, 2009).
The BIO labels denote tokens at the beginning,
inside, and outside of a relevant mention, respec-
tively. Example BIO tagged sentences are shown
in Figure 1.

2.1 Data Labeling Methodologies
There is a lack of easy to identify labeled data on
the Web for common sense information extraction,

Figure 2: A PCA projection of the embeddings of au-
dible and olfactible phrases labeled by the pattern ap-
proach.

an issue which affects named-entity centric infor-
mation extraction to a lesser degree (Wang and
Cohen, 2008; Wu and Weld, 2008). We consider
three data labeling approaches: i) Automatically
generate training data using judiciously specified
patterns. ii) Solicit input on crowd-sourcing plat-
forms. iii) Leverage both i) and ii) in order to over-
come their respective limitations.

2.1.1 Pattern-based Corpus Labeling
To label data with patterns, we begin by spec-
ifying patterns that we apply to a large cor-
pus. For our concepts of interest, sound, and
smell, we specify the following two patterns.
“ sound of <y>”, and “ smell of <y>”, We
then apply these patterns to a large corpus. In
our experiments, we used the English part of
ClueWeb09. 1. The result is a large collection of
occurrences such as: “ sound of breaking glass”,
“smell of perfume”, etc. The collections contains
134,473 sound phrases, and 18,183 smell phrases.

Figure 2, shows a 2D projection of the 300-
dimensional word vectors2 of the discovered au-
dible and olfactible phrases. We see a strong hint
of two clusters. We later provide a quantitative
analysis of this data.

2.1.2 Crowd-Sourced Supervision
The second way of obtaining labeled data that we
consider is crowd-sourcing. We used the Amazon
Mechanical Turk crowd-sourcing platform.
Crowd Task Definition. To obtain labeled ex-
amples, we could do a “cold call” and ask crowd
workers to list examples of phrases that refer to
senses. However, such an approach requires crowd
workers to think of examples without clues or
memory triggers. This is time consuming and
error prone. We propose to exploit a large cor-
pus to obtain preliminary labeled data, making it
possible to only need crowd workers to filter the
data through a series of “yes/no/notsure” ques-
tions. These types of questions require little effort

1http://lemurproject.org/clueweb09/
2https://code.google.com/archive/p/word2vec/
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% Majority Yes Fleiss κ

Audible 73.4% 0.51
Olfactible 89.6% 0.33

Table 1: Crowd-sourced labeling of phrases generated
by the pattern approach of section 2.1.1.

from crowd workers while mitigating the amount
of noisy input that one could get from open-ended
questions. We randomly selected 1000 phrases
labeled by the pattern approach as described in
Section 2.1.1 to be sound/smell phrases, 500 for
each sense type. Each phrase was given to 3 dif-
ferent workers to annotate “yes/no/notsure”. We
consider a phrase to be a true mention of the
labeled sense if the majority of the participants
chose “yes”. This annotation task serves two pur-
poses: 1) to provide us with human labeled exam-
ples of sound and smell concepts ii) to provide a
quantitative evaluation of pattern generated labels.
Crowd Annotation Results. Table 1 is a sum-
mary of the annotation results. First, we can see
that the accuracy of the patterns is quite high,
which was hinted at in Figure 2. Second, The
inter-annotator agreement rates are moderate, but
lower for olfactible phrases. This is also reflected
by the fact that there were around 3 times as many
“not sure” responses in the smell annotations as
there were in the sound annotation task (27 vs 10).
Nonetheless, the output of these tasks provide us
with another option for labeled data that we can
use to train our models.

2.1.3 Joint Pattern & Crowd-Sourced
Labeling

A third way of obtaining labeled data is to leverage
both pattern-based and crowd-sourced labeling ap-
proaches. One central question pertains to how
we can combine the two sources in a way that ex-
ploits the advantages of each approach while mit-
igating their limitations. We seek to start with the
crowd-sourced labeled, which is small but more
accurate, and expand it with the pattern-generated
labeled data, which is large but less accurate. We
define a function that determines how to expand
the data. Let xci ∈ Dc be a crowd labeled phrase,
and xpi ∈ Dp be a pattern labeled phrase. Then
xpi is added to our training labeled data Dpc if
sim(xci , x

p
i ) >= α where sim is the cosine sim-

ilarity between the vector representations of the
phrases. For vector representations of phrases, we
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Figure 3: Performance as α is varied to control size and
accuracy of labeled data.

use the same pre-trained Google word embeddings
as those used to plot Figure 2. For phrases longer
than one word, we use vector averaging. The ef-
fect of varying α, for a fixed prediction model,
can be seen in Figure 3. When α = 1, that is
we are only using the crowd-sourced labeled data,
performance is at its worst. This is because even
though the human labeled data is more accurate, it
is much smaller, leading to potential model over-
fitting problems. A more subtle finding is that with
low α values (i.e., <0.4 for audible concepts), we
have the highest recall, but not the best precision,
this can be explained by the fact that, with low α
values, we are allowing more of the automatically
labeled data to be part of the training data, thereby
potentially adding noise to the model. However,
the advantage of the mixture approach comes from
the fact that, there comes a point where precision
goes up, recall slightly degrades but we obtain the
best F1 score. In Figure 3, we see these points
at α = 0.6 and α = 0.4 for the audible and ol-
factible concepts respectively. We use these values
to generate the labeled data used to train models
described in the rest of the paper.

2.2 Learning Models
We treat sense recognition in text as sequence
prediction problem, we would like to estimate:
P (yi|xi−k, ..., xi+k; yi−l, ..., yi−1). where x refers
to words, and y refers to BIO labels.

Conditional Random Fields (CRFs) (Lafferty
et al., 2001) have been widely used named en-
tity recognition (Ratinov and Roth, 2009; Finkel
et al., 2005), a task similar to our own. While
the CRF models performed reasonably well on our
task, we sought to obtain improvements by train-
ing variations of Long Short Memory (LSTM) re-
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She heard pounding hammers

LSTM

Vw-2 

dt = softmax(Wd . [Vm; dt-1 ]

LSTM LSTM

Vw-1 

LSTM

Vw Vw+1 

Vm Vm-2 Vm-1 Vm+1 

Figure 4: Our neural network architecture for the task
of recognizing concepts that are discernible by sens-
esss.

current neural networks (Hochreiter and Schmid-
huber, 1997). We found variations of LSTM se-
quence classifiers to do better than the CRF model,
and also better than standard LSTMs. In par-
ticular, the well-studied combination of CRF and
LSTMs works better.

Word and Character Features. As input, the
LSTM neural network model takes a sentence and,
as output, produces a probability distribution over
the BIO tags for each word in the sentence. To
BIO tag each word in the sentence, we use word
features. We chose the word features to be their
word embeddings. As additional features, we
model the character composition of words in or-
der to capture morphology. Neural encodings of
character-level features have been shown to yield
performance gains in natural language tasks (Ling
et al., 2015; Chiu and Nichols, 2016). In all our
experiments, we initialize the word embeddings
with the Google news pre-trained word embed-
dings 3. The character embeddings are learned
from scratch.

Prediction and Output Layer Recurrence. We
represent each word as a mention within a short
context window of length m. We use the LSTM to
encode these windows contexts in order to make
a prediction for each word. The LSTM window
encoding is then used to make predictions over
the BIO labels. The output for each word is de-
coded by a linear layer and a softmax layer into
probabilities over the BIO tag labels. Crucially,
we modify the standard LSTM by modeling tem-
poral dependencies by introducing a recurrence
in the output layer. Therefore, the prediction dt

3https://code.google.com/p/word2vec/

Sound Smell
honking cars burning rubber
snoring chlorine
gunshots citrus blossoms
live music fresh paint

Table 2: Examples of sound and smell concepts recog-
nized by our method.

at time step t takes into account the prediction
dt−1 at the previous time t-1. Formally, we have:
dt = softmax(Wd · [vm;vca ;vs;dt−1]), where
softmax(zi) = ezi/

∑
j e

zj . We illustrate the
model in Figure 4. We found this model to con-
sistently perform well on the senses of sound and
smell.

Model Evaluation. To evaluate the models, we
set aside 200 of the 1000 crowd-annotated phrases
as test data, meaning we have 100 test instances
for each sense type (sound/smell). The rest of
the data, 400 per sense type was used for gener-
ating training data using the combined crowd and
pattern approach described in Section 2.1.3. We
set α = 0.6 and α = 0.4 , based on Figure 3,
for audible and olfactible concepts respectively.
With these α values, the combination approach
produced 1,962 and 1,702 training instances for
audible and olfactible concepts respectively

Performance of the various models is shown in
Table 3. The abbreviations denote the following:
LSTM refers to a vanilla LSTM model, using only
word embeddings as features, + OR refers to the
LSTM plus the output recurrence, + CHAR refers
to the LSTM plus the character embeddings as fea-
tures. + OR + CHAR refers to the LSTM plus
the output recurrence and character embeddings as
features. For the CRF, we use the commonly used
features for named entity recognition: words, pre-
fix/suffices, and part-of-speech tag (Ratinov and
Roth, 2009). We can see that for both senses,
the model that uses both character embedding fea-
tures, and an output recurrence layer yields the
best F1 score. Examples of sounds and smells our
method can recognize are shown in Table 2.

2.3 Sense Mention Recognition Related Work

Our task is related to entity recognition however
in this paper we focused on novel types of en-
tities, which can be used to improve extraction
of common sense knowledge. Entity recogni-
tion systems are traditionally based on a sequen-
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Method F1 P R
Audible

CRF 89.38 87.83 90.99
LSTM 89.64 88.87 90.42
+ OR 89.780 88.60 90.99
+CHAR 87.78 88.18 87.39
+ OR + CHAR 90.91 91.740 90.09

Olfactible
CRF 75.73 79.59 72.22
LSTM 69.96 62.96 78.70
+ OR 78.380 76.320 80.56
+ CHAR 69.57 60.69 81.48
+ OR + CHAR 78.73 76.990 80.56

Table 3: Performance of the various models on the task
of sense recognition.

tial model, for example a CRF, and involve fea-
ture engineering (Lafferty et al., 2001; Ratinov and
Roth, 2009). Like other neural approaches, our ap-
proach does not require feature engineering (Ham-
merton, 2003; Collobert et al., 2011; dos Santos
and Guimarães, 2015; Chiu and Nichols, 2016;
Shimaoka et al., 2016), the only features we use
are word and character embeddings. The work of
(Lample et al., 2016) introduced a CRF on top of
LSTM for the task of named entity recognition.

2.4 Summary on Sense Mention Recognition

We have presented a method for recognizing con-
cepts that are discernible by sense by proposing
a process for collecting data, and then training
standard machine learning methods. The con-
cepts our method recognizes present opportuni-
ties for discovering additional types of common
sense knowledge, for example, learning relation-
ships that encode information such as which ob-
jects produce which sounds, in which environ-
ments can certain sounds be found, what is the
sentiment of various types of smell, etc. These
type of relations can significantly improve cover-
age of common sense in knowledge bases, thereby
improving their utility. We explore this direction
in the next section.

3 Relationships for Concepts Discernible
By Sense

Now that we have a way of recognizing mentions
of sense concepts in text, we can move on to rela-
tionships between such concepts.

To focus our task, we consider three rela-

tions pertaining to sense perception of sound
and smell. Namely: 1) soundSourceRelation, 2)
soundSceneRelation, and 3) smellSentimentRela-
tion.

3.1 Sound-Source Relationship

The sound-source relationship represents informa-
tion pertaining to which objects produce which
sounds. For example, that planes and birds are ca-
pable of flying, the wind blows, and geckos bark.
Obtaining sufficient labeled data to learn an ex-
tractor for this relationship is non-trivial, we pro-
pose one approach in the next section.

Labeled Data Generation. One option for ob-
taining labeled data is to directly request for it on
crowd-sourcing platform by asking crowd work-
ers to list examples of sounds and their sources.
However, such an approach requires crowd work-
ers to think of examples without clues or memory
triggers. This is time consuming and error prone.
Therefore, as we did in the recognition task, we
again propose to exploit a large corpus to obtain
preliminary labeled data. This way, we again only
need crowd workers to filter the data through a
series of “yes/no/notsure” questions. These type
of questions require little effort from crowd work-
ers while mitigating the amount of noisy input that
one could get from open-ended questions.

To pose “yes/no/notsure” questions, we need
a list of plausible sound-source pairs. To this
end, we propose a lightly supervised corpus-based
technique. First, we identify which phrases refer
to sounds using the approach described in the first
Section 2

One important observation we made was that
about 20,000 (15%) of the 134,471 phrases are bi-
grams of the form: “verb noun” or “noun verb”
where in both cases, the verb is in the gerund
or present participle V-ing form. For example,
birds chirping, cars honking,squealing brakes, etc.
From phrases of this kind, we create verb-noun
pairs, that we treat as plausible sound-source pairs
where the verb is the sound and the noun is the
source. We then asked crowd-workers to decide if
the source (noun) produces the sound (verb). Thus
from “birds chirping” we generate the question,
“Is chirping a sound produced by birds?”; Neg-
ative examples include: “surrounding nature”, and
“Standing ovation”, i.e., standing is not a sound
made by ovation. We generated 634 such ques-
tions, from which we obtained a moderate inter-
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Fleiss κ

soundSource 0.57
soundEnvironment 0.35
smellSentiment 0.43

Table 4: Fleiss κ. inter-annotator agreement rates for
the three relations on yes/no type crowd-sourcing tasks.

annotator agreement rate of Fleiss κ = 0.57, see
Table 4. We use the resulting labeled data to train
two types of learning methods.

Linear Learning Model. The learning problem
for the sound-source relationship is as follows:
given a bi-gram phrase n of the form “verb noun”
or “noun verb”, we wish to classify yes or no if a
given noun, denoted by wsrc, produces the verb,
denoted by word wsnd, as a sound. As a simple
linear solution to this problem, we train a logistic
regression classifier. The features we use are the
vectors representing the word embeddings of wsrc
andwsnd, denoted by vsrc, and vsnd. In our exper-
iments, we use the 300-dimensional Google News
pre-trained embeddings 4. There are several ways
in which we combine vsrc, and vsnd into a single
feature vector:
Vector Concatenation: v = concat(vsrc,vsnd)
Size of v, |v| = |vsrc| + |vsnd|
LSTM encoder : v = lstm(vsrc,vsnd)
An LSTM (Hochreiter and Schmidhuber, 1997)
recurrent neural network is used to encode the
phrase containing vsrc and vsnd. |v| = h, where h
is the hidden layer size of the neural network.
Source minus sound: v = vsrc − vsnd
|v| = |vsrc| = |vsnd|
Sound minus source: v = vsnd − vsrc
|v| = |vsrc| = |vsnd|

Memory Networks Learning Model. In addi-
tion to the variations of the linear model, we also
trained a non-linear model in the form of mem-
ory networks (Sukhbaatar et al., 2015). Memory
networks combine their inference component with
a memory component. The memory component
serves as a knowledge base or history vault to re-
call words or facts from the past. For the task
of relation extraction, the memory network model
learns a scoring function to rank relevant memo-
ries (words) with respect to how much they ex-
press a given relationship. This is done for a given
argument pair as a query, i.e., a sound-source

4https://code.google.com/archive/p/word2vec/

Learning Model Accuracy
LM: LSTM encoder 0.90
LM: (Source - Target) 0.88
LM: (Target - Source) 0.87
LM: Vector Concatenation 0.83
MM: 1 hop 0.87
MM: 3 hops 0.85

Table 5: Accuracy of the linear models (LM) and mem-
ory networks models (MM) on the sound-source rela-
tion.

pair. At prediction time, the model finds k rele-
vant memories (words) according to the scoring
function and conditions its output on these memo-
ries. In our experiments, we explore different val-
ues of k, effectively changing how many memo-
ries (words), the model conditions on. We report
results for up to k = 3 as we did not see improve-
ments for larger values of k.

Sound-Source Evaluation. Both the linear
model and the memory networks models were im-
plemented using Tensorflow. For the memory net-
works, we implemented the end-to-end version
as described in (Weston et al., 2014; Sukhbaatar
et al., 2015). Of the 634 crowd-sourced labeled
examples described, we used 100 as test data, the
rest as training data. Model parameters such as
hidden layer size of the memory networks were
tuned using cross-validation on the training data.
As shown in Table 2, we obtain high accuracy
across all models. The best performing model is a
linear model with an LSTM encoding of the sound
phrases, achieving accuracy of 90%. Surprisingly,
we could not obtain better results with the memory
networks model. Increasing the memory size or
the number of hops (how often we iterate over the
memories) did not help. One possible reason is the
size of our training data, in previous work (Weston
et al., 2014; Sukhbaatar et al., 2015), the memory
networks were trained on 1,000 or more examples
per problem type whereas our training data is half
the size. Nevertheless, the memory networks mod-
ule still produces good accuracy, with best perfor-
mance of 87%.

3.2 Sound-Scene Relationship

The sound-scene relationship represents informa-
tion about which sounds are found in which
scenes. For example, birds chirping can be found
in a forest. Therefore, this kind of information can
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also be used in context recognition systems (Ero-
nen et al., 2006), in addition to providing common
sense knowledge that could be useful in language
understanding tasks.

Labeled Data Generation. We would like to
obtain labeled data in the form of scenes and their
sounds. For example, (beach, waves crashing),
(construction, hammering), (street, sirens), (street,
honking cars). To obtain this type of labeled data,
we again would like to only use “yes/no/notsure”
crowd-sourcing questions. To generate plausible
sound-scene pairs, first we find all sentences that
mention at least one scene and one sound concept.
To detect sound concepts, we use the approach de-
scribed in Section 2. To detect mentions of scenes,
we specified a list of 36 example scenes, which in-
cludes scenes such as beach, park, airport most of
our scenes are part of the list of acoustic scenes
from a scene classification challenge 5. For every
sentence that mentions both an acoustic scene and
a sound concept, we apply a dependency parser6.
This step produces dependencies that form a di-
rected graph, with words being nodes and depen-
dencies being edges.

Dependency graph shortest paths between enti-
ties have been found to be a good indicator of rela-
tionships between entities (Xu et al., 2015; Nakas-
hole et al., 2013b). We use shortest paths as fea-
tures in order classify sound-scene pairs. To obtain
training data, we sort the paths by frequency, that
is, how often we have seen the path occur with dif-
ferent sound-scene pairs. We then consider pairs
that occur with frequent shortest paths to be plau-
sible sound-scene pairs which we can present to
crowd-workers in “yes/no/notsure” questions. We
randomly selected 584 sound-scene pairs, and the
corresponding sentences that mention them, which
were then presented to crowd workers in ques-
tions. The inter-annotator agreement rate on this
task is Fleiss κ = 0.35, see Table 4.

Learning Models and Evaluation. For the lin-
ear model, we consider three options for features.
Shortest Paths (SP): LSTM encoding of the de-
pendency shortest path. Sentence (S): an LSTM
encoding of the sentence. SP + S: encoding of
both the shortest path and the sentence are used
as features. For the memory network models, we
considered using the contents of both the shortest

5http://www.cs.tut.fi/sgn/arg/dcase2016/
6https://pypi.python.org/pypi/practnlptools/1.0

Learning Model Accuracy
LM: shortest path 0.81
LM: shortest path +sentence: 0.80
LM: sentence 0.75
MM: 1 hop 0.75
MM: 3 hops 0.80

Table 6: Accuracy on the sound-scene relation.

Learning Model Accuracy
LM: LSTM encoder 0.84
LM: vector addition 0.81
MM: 1 hop 0.82
MM: 3 hops 0.82

Table 7: Accuracy on the sound-sentiment relation.

paths and the sentences to produce memories. We
use 100 of the 584 labeled data for testing, the rest
for training. The shortest paths performed better,
for space reasons we omit the results of using sen-
tences as memories. As shown in Table 6, the lin-
ear model with the shortest path achieves the best
accuracy of 81%. However, the best performing
memory networks model with 3 memory hops is
not significantly worse at 80% accuracy.

3.3 Smell-Sentiment Relationship
For the smell-sentiment relationship, the goal is to
extract information about which smells are con-
sidered pleasant, unpleasant or neutral. In gen-
eral, sentiment is both subjective and context de-
pendent. However, as we show through crowd-
sourced annotations, there is substantial consensus
even on sentiment of smells.

Labeled Data Generation. First we generate a
list of plausible smells phrases, following a sim-
ilar approach to Section 2. We then used these
phrases to evaluate sentiment of smells in a Me-
chanical Turk task. We present a phrase within a
sentence context. We then asked crowd workers to
choose if the phrase refers to a smell that is “pleas-
ant/unpleasant/neutral/notsure/notasmell”. We
generated 600 such questions on which we ob-
tained a moderate inter-annotator agreement rate
of Fleiss κ = 0.43, see Table 4. While this is not a
yes/no task, it is still a simple multiple choice task
with the same advantages of the yes/no tasks as we
described earlier.

Learning Models and Evaluation. We again
use the same earning models. For the linear model,
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we consider two options for features. LSTM en-
coder: LSTM encoding of the smell phrase Vec-
tor addition: vector addition encoding of the
smell phrase. For the memory network models,
the contents of the sentence that mentions the
phrases are stored as memories. We use 100 of
the 600 labeled data for testing, the rest for train-
ing. As can be seen in Table 7, the linear model
with LSTM encoded phrases achieved the highest
accuracy of 84%.

3.4 Summary on Relationships

In this work, we extracted novel common sense re-
lations, using standard machine learning methods.
To obtain labeled data, we proposed a combina-
tion of large corpora, and multiple choice crowd-
sourced questions. These type of questions re-
quire little effort from crowd workers while mit-
igating the amount of noise one might get from
open-ended questions. We have also proposed and
trained models on this data, achieving high accu-
racy for all relations. Scaling up our approach to
more relations is an exciting future direction for
our work. Scale is not expected to be prohibitive,
given the minimally-supervised nature of our ap-
proach.

4 Conclusion

Cyc (Lenat, 1995), and ConceptNet (Havasi et al.,
2007) are well-known examples of knowledge
bases of everyday common sense knowledge.
These projects are decades long efforts involving
either experts or crowd-sourcing. Other knowl-
edge bases focus on facts about named entities
such as people, locations, and companies (Bol-
lacker et al., 2008; Hoffart et al., 2012; Mitchell
et al., 2015). Common sense contained in these
knowledge bases is still limited . We considered
the problem of extracting from text commonsense
knowledge pertaining to human senses such as
sound and smell. We proposed minimal-effort ap-
proaches for obtaining labeled data on two key
tasks: mention recognition, and relationship ex-
traction. In the first task we make use of Hearst
patterns, and crowd sourcing, and for the second
task, we make use of part-of-speech tag sequences
and crowd-sourcing. Although these processes are
not new, we have applied them to a novel setting of
common sense about human senses, and showed
their effectiveness. We trained standard machine
learning methods, and showed that the labeled data

generated by our processes lead to high quality
models.

In the future, we would like to apply our meth-
ods to a broader class of common sense assertion,
and to go develop novel machine learning methods
that improve accuracy on both of these tasks.
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Abstract

Complex questions often require combining
multiple facts to correctly answer, particularly
when generating detailed explanations for why
those answers are correct. Combining mul-
tiple facts to answer questions is often mod-
eled as a “multi-hop” graph traversal problem,
where a given solver must find a series of in-
terconnected facts in a knowledge graph that,
taken together, answer the question and ex-
plain the reasoning behind that answer. Multi-
hop inference currently suffers from semantic
drift, or the tendency for chains of reasoning
to “drift” to unrelated topics, and this seman-
tic drift greatly limits the number of facts that
can be combined in both free text or knowl-
edge base inference. In this work we present
our effort to mitigate semantic drift by extract-
ing large high-confidence multi-hop inference
patterns, generated by abstracting large-scale
explanatory structure from a corpus of detailed
explanations. We represent these inference pat-
terns as sets of generalized constraints over
sentences represented as rows in a knowledge
base of semi-structured tables. We present a
prototype tool for identifying common infer-
ence patterns from corpora of semi-structured
explanations, and use it to successfully extract
67 inference patterns from a “matter” subset
of standardized elementary science exam ques-
tions that span scientific and world knowledge.

1 Introduction

Combining separate pieces of knowledge to answer
complex natural language questions is a central con-
temporary challenge in natural language inference.
For complex questions, a single passage in a corpus
or single fact in a knowledge base is often insuffi-
cient to arrive at an answer, and multiple sentences
or facts must be combined through some inference
process. A benefit and goal of this “multi-hop” in-
ference process is for the set of combined facts to

form a human-readable explanation detailing why
the inference and answer are correct.

Most recent approaches to combining knowledge
to answer questions (e.g. Das et al., 2017; Jansen
et al., 2017; Ding et al., 2019) model inference
as a progressive construction, iteratively adding
nodes (facts) one at a time to a graph that repre-
sents the inference (and explanation) required to
answer a question. This approach suffers from the
phenomenon of semantic drift (Fried et al., 2015),
which is the observation that determining whether
two facts can be meaningfully combined to answer
a question is an extremely noisy process, and most
often results in adding erroneous facts unrelated
to answering a question that causes the inference
to fail. A common signal to determine whether
two facts might be combined is whether those facts
have shared words or entities. For example, for a
question asking about the possible effects of sun-
light on an ice cube, a given solver might choose
to meaningfully connect the facts “melting means
changing from a [solid] to a liquid by adding heat
energy” and “water is a kind of [solid], called ice,
at temperatures below 0◦C” on the shared word
solid. Unfortunately, using shared words alone,
either of these facts could also be connected to
the fact “sound travels fastest through a [solid]”,
which is irrelevant to answering this problem, and
allows further traversals to unrelated facts about
sound that can produce incorrect answers.

Jansen (2018) empirically demonstrated that
combining facts based on lexical overlap has very
low chance of success, which was measured at
between 0.1% and 5% for elementary science ques-
tions, depending on the source corpus of the facts
being retrieved. This is a significant limitation, as
even elementary science questions require combin-
ing an average of 4 to 6 facts (and as many as 16
facts) that span scientific and common-sense or
world knowledge in order to answer and provide
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Figure 1: An overview of our inference pattern extraction approach. A corpus of semi-structured explanations (2) is preprocessed
through a set of heuristics that generate a large number of small (often disconnected) subgraphs in a large graph (2). Those
subgraphs are merged and curated (3). Inference patterns, or subgraphs of nodes can then be extracted from the curated graph, by
the user (4). These patterns for executable constraint satisfaction patterns that can be executed over the knowledge base (5). In
this work we address steps 2 through 5, whereas using these inference patterns to answer and explain unseen questions (6) is part
of ongoing efforts.

a detailed explanation for their reasoning (Jansen
et al., 2018, 2016), and such a low probability of
successfully traversing the knowledge graph places
strong limits on the length of inferences that can
be made (Khashabi et al., 2019). In response to
this challenge, a number of datasets such as Hot-
potQA (Yang et al., 2018) and WorldTree (Jansen
et al., 2018) have emerged to provide explicit gold
explanations that serve as training and evaluation
instruments for multi-hop inference models.

Jansen (2017) proposed combining “common
explanatory patterns”, or groups of frequently inter-
connected facts observed in explanations, as a pos-
sible means of mitigating the semantic drift associ-
ated with combining facts one at a time. Human-
authored explanations contain meaningful connec-
tions between their component facts. Each edge
in an explanatory pattern extracted from a human-
authored explanation is a high-confidence edge that
does not require a solver to use other more noisy
signals (such as lexical overlap) to populate, reduc-
ing the opportunity for semantic drift. An empirical
evaluation using the WorldTree explanation corpus
demonstrated that this approach could in principle
regenerate the majority of unseen gold explana-
tion graphs by using only 2 or 3 hops between
these “explanatory pattern” subgraphs, which is
substantially fewer hops than the up to 16 hops
required if aggregating single facts. The disadvan-

tages of this technique are that (a) it requires the
(currently manual) construction of a large corpus
of detailed explanations to learn these common
explanatory patterns from, which is an expensive
process, and (b) it requires developing automatic
or semi-automatic methods to abstract the structure
of training explanations to mitigate sparsity and
allow known explanations to generalize to unseen
scenarios.

In this work, we explore a hybrid human-in-
the-loop method and tool for abstracting the struc-
ture of common explanatory patterns found in the
WorldTree corpus of structured explanations. We
use this tool to extract 67 inference patterns, speci-
fied as constraint satisfaction patterns over a knowl-
edge base of tables, from detailed explanations to
standardized elementary science exam questions.
Our long-term interests are in generating a corpus
of common inference patterns at scale, and con-
structing an inference system that combines and
uses those patterns to answer questions and produce
detailed explanations for its answers. Conceptually,
this is similar to Explanation-Based Learning (De-
Jong and Mooney, 1986; Baillargeon and DeJong,
2017), but using semi-structured text and constraint
patterns instead of first-order logic. This approach
is also similar to efforts at using scripts or semantic
frames for inference (e.g. Wang et al., 2015; Os-
termann et al., 2017), or automatically extracted

54



proxies (e.g. Khashabi et al., 2018), though con-
fined to the subdomain of elementary science, and
semi-automatically extracted from semi-structured
explanation graphs.

2 Approach and Workflow

The workflow describing our process of taking a
corpus of semi-structured explanations through the
inference pattern discovery process is described in
Figure 1, with further details below.

2.1 Semi-Structured Explanation Corpus

Our technique for discovering inference patterns re-
quires extracting these patterns from a pre-existing
corpus of semi-structured explanations. We make
use of the WorldTree explanation corpus1 (Jansen
et al., 2018), a set of 1,680 detailed explanation
graphs for standardized elementary science ques-
tions. These questions represent the elementary
(3rd through 5th grade) subset of the Aristo Rea-
soning Challenge (ARC) corpus2 (Clark, 2015),
a set of 4-choice multiple choice elementary and
middle-school science questions drawn from 12
US states.

Each question in Worldtree is paired with an ex-
planation graph composed of a set of facts that,
taken together, provide a detailed explanation for
why the answer to a given question is correct. Each
“fact” is a natural language sentence that takes the
form of a row in a knowledge base of 62 semi-
structured tables containing a total of 4,950 unique
rows. Each table centers around encoding a particu-
lar type of knowledge, such as taxonomic relations
(e.g. a bird is a kind of animal), part-of relations
(a wing is a part of a bird), property knowledge
(metals are electrical conductors), or other more
complex relations, such as changes (boiling means
changing from a liquid to a gas by adding heat en-
ergy), coupled relationships (as altitude increases,
air pressure deceases), causality (bacteria can
cause diseases by infecting organisms), and if-then
relationships (if an animal relies on plants for food,
then it must store enough food for winter).

Each semi-structured table contains between 2
and 16 content columns, which form an n−ary re-
lation between the columns in a given row, and are
often used by inference frameworks (e.g. Pasupat
and Liang, 2015; Sun et al., 2016; Khashabi et al.,

1http://www.cognitiveai.org/
explanationbank/

2http://www.allenai.org/data.html

2016) as they afford more fine-grained decomposi-
tion than triple representations (e.g. Etzioni et al.,
2011; Schmitz et al., 2012) common in other in-
ference methods (e.g. Das et al., 2017; Khot et al.,
2017; Kwon et al., 2018). The knowledge base con-
struction was data-driven, where each fact exists
because it was authored to be used in at least one
real explanation. As such, the knowledge base con-
tains a mix of scientific and world knowledge, some
of which is commonly found in other knowledge
bases (e.g., taxonomic, part-of, used-for, Speer
and Havasi, 2012; Tandon et al., 2017), while other
kinds of knowledge (e.g. coupled relationships,
how processes change actors, if-then relationships
centered around elementary science concepts) are
less common. When authoring explanations, the an-
notation protocol required annotators to attempt to
reference existing rows (facts) first rather than cre-
ate duplicate knowledge. The most highly reused
row (an animal is a kind of organism) occurs in
89 different explanations, and 31% of rows in the
knowledge base occur in more than one explana-
tion. This suggests that a subset of core facts are
frequently reused, but that some form of abstraction
or generalization of explanations would be required
for those core facts to connect to the 69% of facts
used in only a single explanation, or to knowledge
imported from other knowledge bases that is not
currently used in any explanation.

2.2 Automatic Generation of Subgraphs

In this work we frame the process of discovering
inference patterns as a process of clustering similar
groups of facts together, and discovering meaning-
ful connections between different groups of facts
in the forms of constraints (see Figure 1, steps 2
to 5). These constraints take the form of edges be-
tween two tables, that can be satisfied by one row
from each table having the same words in specific
columns (see Figure 1, step 5, for an example).

Clustering Facts: Clustering similar facts requires
recognizing that certain groups of facts tend to de-
scribe specific instances of a high-level process,
even when those facts may have little or no lexical
overlap with each other (as in grouping “freezing
means changing from a liquid to a solid” and “boil-
ing means changing from a liquid to a gas”, in the
context of a change of state of matter process).

Discovering Connections: Discovering connec-
tions (i.e. edges) between two or more groups of
facts that tend to occur together in gold explanation
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Error Class
Sparsity in Explanation Annotation

Fact 1 Friction occurs when two object’s surfaces move against each other
Fact 2 As an object’s smoothness increases, it’s friction will decrease when it’s surface moves against another surface.
Issue These facts are not observed together in a single question’s explanation, so they are not connected.

Sparsity in Knowledge Base
Fact 1 If food is cooked then heat energy is added to that food.
Fact 2 A stove generates heat for cooking.
Missing A campfire generates heat for cooking.
Issue Missing facts in the knowledge base limit the generalization of patterns to new scenarios (e.g. campfire).

Permissiveness in automatically populated edges
Fact 1 Melting means changing from a solid to a liquid by adding heat energy
Fact 2 Wax is an electrical energy insulator
Issue Creating edges based on shared words (here, “energy”) does not always generate meaningful connections.

Permissiveness in automatically populated column links
Fact 2 A tape measure∗ is used to measure distance.
Fact 2 centimeters (cm) are a unit used for measuring is distance.
Issue Ideally this edge should generalize to all kinds of measuring tools and units (e.g. X is used to measure Y,

Z is a unit for measuring Y). The connection between tape measure∗ in Fact 1 and measure in Fact 2
makes generalization unlikely, and should be removed.

Table 1: Example classes of errors when automatically generating inference pattern graphs. Fact 1 and Fact 2
represent facts (rows) drawn from the knowledge base of semi-structured tables. Boldface words represent lexical
connections between those facts (edges between tables, on the specific columns those words occupy).

graphs. For example, facts about change of state
processes (freezing, boiling, melting, condensing)
may tend to connect to other groups of facts that
discuss specific solids, liquids, or gasses that are
undergoing the change of state (as in “water is a
kind of liquid”, or “ice is a kind of solid”).

Our initial hypothesis was that it would be possi-
ble to extract a large corpus of inference patterns au-
tomatically from a sufficiently large and structured
corpus of explanations. Instead, we discovered
that both the clustering and connection processes
are susceptible to a number of common opportu-
nities for error (described in Table 1) that limit
this process in practice. In addition to these error
classes, we discovered challenges due to inference
patterns existing at different levels of abstraction,
with patterns at different levels of abstraction fre-
quently overlapping. For example, a high-level
domain-specific pattern might describe the process
of changing from one state of matter to another
through the addition or subtraction of heat energy,
while describing specific substances and sources
of heat or cooling. A substantially more low-level,
domain-general, and common pattern in the corpus
is taxonomic inheritance – the idea that if X is a
kind of Y , and Y is a kind of Z, then X is a kind
of Z (e.g. a bird is a kind of animal, an animal
is a kind of living thing, therefore a bird is a kind
of living thing). Similar low-level science-domain
patterns are common (e.g. X is a kind of Y , Y is
made of Z, as in “an ice cube is a kind of object,

and objects are made of matter”). High-level and
low-level patterns frequently overlap – that is, a
high-level pattern may contain one or more low-
level patterns. This caused challenges for the pilot
experiments in entirely automatic extraction, either
“over-grouping” facts into a single pattern that a
human annotator would likely consider different
patterns, or vice-versa.

Because of the high-precision requirements of
multi-hop inference, our pragmatic solution to the
above technical challenge is to build a hybrid sys-
tem that combines automatic and manual methods.
First, a preprocessing system assembles and con-
nects groups of facts using a set of minimal high-
precision low-recall heuristics. We then provide
the user with a graphical tool to streamline the
workflow for manually editing groupings, adding
or removing edges between groups of facts, and
speeding the inspection and repair of any errors
made by the automated heuristics. Summary statis-
tics on the proportion of these changes and errors
on our analysis are included in Table 2.

2.3 Merging and Curating Subgraphs
To facilitate the assembly of subgraphs into large
high-quality inference patterns, we developed and
iterated the graphical authoring tool shown in Fig-
ure 2. The tool includes four main components:

Graph View: The graph view allows the annotator
to inspect the entire graph in its current state, and
to merge nodes (that represent groups of facts/table
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Figure 2: A screenshot of the grid view (top) and graph view (bottom) of our inference pattern extraction tool. The constraint
view and the tablestore spreadsheet integration are not shown for space.

rows) together to perform the fact clustering proce-
dure. The graph view also allows the annotator to
highlight specific subgraphs to mark as inference
patterns, which enables further functionality in the
constraint view.

Grid View: The grid view enables the curation
of the edges between nodes by visually displaying
them in an interface that allows the user to (a) re-
move automatically populated edges that are not
meaningful, (b) remove only part of edges (i.e. spe-
cific links between columns between two tables),
and (c) manually edit the automatic clustering by
dragging and dropping specific rows in one edge
group either into another existing group, or into a
new group.

Constraint View: Once a user has identified and
marked a subgraph to extract as an inference pat-
tern, the constraint view allows “running” that infer-
ence pattern to generate all possible sets of rows in

the tablestore that satisfy that pattern’s constraints.
As subgraphs extracted directly from the large cu-
rated graph built from the explanation corpus tend
to require edits to their nodes and constraints before
they are generic and runnable inference patterns,
the constraint view also includes a number of de-
bugging tools to facilitate diagnosing constraints
that are unable to be satisfied.3

Table View: The tool also includes an interface to
a Google Sheet4 storing a live copy of the Table-
store that the annotator can edit to refine existing
knowledge, or incorporate additional knowledge,
while curating and debugging inference patterns.

The tool runs in a Chrome browser window, and
is implemented as a Javascript application with
a node.js backend server. We make use of Cy-

3We include exports from the constraint view tool for all
extracted patterns in our supplementary material.

4http://sheets.google.com
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Measure Count
Graph Nodes:

Nodes before merging 700
Nodes after merging 540 (77%)

Graph Edges:
Edges before curation 637
Edges after curation 771 (21%)

Grid Row-to-Row Connections:
Row-to-row connections before curation 1384
Row-to-row connections modified 631 (46%)
Row-to-row connections removed 224 (16%)

Grid Edge Constraints:
Edge constraints before curation 2101
Edge constraints removed 133 (6%)
Edge constraints marked optional 27 (1%)

Table 2: Manual edits done to the automatically gen-
erated graph and grid during the merging and curation
steps. Values in parentheses represent percent change.

toscape.js (Franz et al., 2015) as a graph visual-
ization plugin, while primarily using the CoSE-
Bilkent graph layout algorithm (Dogrusoz et al.,
2009) modified to allow variable edge lengths
based on the maximum degree of connected nodes
to make the graph easier to visualize when assem-
bling densely-connected patterns. The tool was
iterated for usability to maximize throughput for
the merging and curation steps, and includes func-
tionality for quickly finding knowledge in the graph
while seamlessly moving between graph (graphi-
cal) and grid (tabular) views, filtering subsets of
nodes and edges by various metrics (completeness,
table connection, user-selected utility rating), and
keeping track of where the annotator is in the cu-
ration workflow. A Scala preprocessing tool reads
in gold explanations (which can be filtered to in-
clude only subsets of questions by a question clas-
sification label, such as only matter, energy, or
life science questions), applies the initial cluster-
ing heuristics, and outputs tab delimited files that
are then read in by the tool. Edges between rows
in WorldTree are determined by rows have over-
lapping content lemmas (defined as nouns, verbs,
adjectives, or adverbs), with Stanford CoreNLP
(Manning et al., 2014) used for lemmatization and
POS tagging.

3 Preliminary Evaluation

To evaluate the utility of our approach, we made use
of the tool to extract inference patterns present in
all questions in the training subset of the WorldTree
corpus categorized as belonging to the Matter topic,
one of the 9 broad science curriculum categories of
question topics, using the ARC question classifica-

Inference Pattern Nodes Edges
Alloys 5 4
Altitude* 8 10
Building requires measuring 11 13
Burning-Preventing Harm 12 15
Change of State 68 128
Chemical Changes 11 12
Containers contain things 6 6
Cooking Food 9 11
Electrical Conductivity 27 52
Friction 15 24
General Motion* 3 3
Ice Wedging* 4 4
Long lasting vs replacing* 5 4
Magnetism 14 20
Manufacturers use mats. for products 5 5
Measurements 22 34
Navigation lost at sea 6 7
Physical Changes 13 14
Seeing 19 29
Soil erosion* 6 6
Solutions - Dissolving substances* 4 5
Sources of Heat* 3 2
Sunlight as a source of energy* 14 30
Sunlight location and shadow size* 7 7
Taste* 9 11
Taxonomic Inheritance 2 1
Texture* 4 3
Thermal Conductivity 27 34
Touch-Hardness* 4 3

Table 3: A list of high-level inference patterns discov-
ered in the corpus of explanations for Matter science
exam questions using this tool. A full list of patterns is
provided in Table 5 (see Appendix). An asterisk (*)
signifies patterns that are partial or otherwise limited in
size because they overlap with other topics (e.g. from
Earth or Life Science) not examined in this preliminary
study.

tion labels of Xu et al. (2019). This represents 43
of 902 (5%) of questions and explanations in the
training corpus, covering topics such as Changes
of State of Matter (e.g. melting, boiling), Measur-
ing Properties of Matter (e.g. temperature, mass),
Physical vs Chemical Changes (e.g. length vs com-
position), Properties of Materials (e.g. electrical or
thermal conductivity, taste), Properties of Objects
(e.g. shape or volume), and Mixtures (e.g. alloys).

3.1 Initial merging and curation

The preprocessing procedure generated 273 grids
for this subset of the explanation corpus, represent-
ing the specific pairs of tables (e.g. KINDOF↔
CHANGE) that have direct connections in the ex-
planations for these questions. A total of 1,384
unique row-row connections populated these grids,
and required manual verification. Summary statis-
tics for the edits to these grids is shown in Table 2.
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MATERIAL NAME(0) ↔ MATERIAL NAME(0)

INTO(10) ↔ STATEOFMATTER(2)HYPONYM(1) ↔ STATEOFMATTER(2)

PROCESS_NAME(0) ↔ PROCESS_NAME/ ACTION(0)
FROM(8) ↔ AGENT/OBJECT(3)

DIRECTION(7) ↔ PROCESS_NAME/ ACTION(0)

BY/THROUGH/HOW(14) ↔ DIRECTION(7)
BY/THROUGH/HOW(14) ↔ PATIENT(10)

INTO(10) ↔ HYPONYM(1)FROM(8) ↔ HYPONYM(1)AGENT/OBJECT(3) ↔ STATEOFMATTER(2)

(Change of state) means
FROM(8) ↔ STATEOFMATTER(2) HYPONYM(1) ↔ STATEOFMATTER(2)

N821
KINDOF

***
liquid is a kind of state of matter
solid is a kind of state of matter
gas is a kind of state of matter

N823
CHANGE

***
boiling;evaporation means change from a liquid into a gas by adding heat energy

melting means changing from a solid into a liquid by adding heat energy
condensing means changing from a gas into a liquid by removing heat energy

N822
CHANGE-VEC

***
condensing is when gasses are cooled below their boiling point

boiling is when liquids are heated above their boiling point
melting is when solids are heated above their melting point

N813
KINDOF

***
liquid is a kind of state of matter
gas is a kind of state of matter
solid is a kind of state of matter

N824
PROTO-PROP-STATESOFMATTER1

***
water is in the liquid state , called liquid water , for temperatures between 273; 32; 0 and 373; 212; 100 K; F; C

water is in the gas state , called water vapor , for temperatures between 373; 212; 100 and 100000000000 K; F; C
water is in the solid state , called ice , for temperatures between 0; -459; -273 and 273; 32; 0 K; F; C

N820
CHANGE-VEC

***
cooling;colder means removing; reducing; decreasing; subtracting heat; temperature; thermal energy; heat energy

heating means adding; increasing heat; temperature; thermal energy; heat energy

N815
PROTO-PROP-STATESOFMATTER1

***
water is in the gas state , called water vapor , for temperatures between 373; 212; 100 and 100000000000 K; F; C

water is in the liquid state , called liquid water , for temperatures between 273; 32; 0 and 373; 212; 100 K; F; C
water is in the solid state , called ice , for temperatures between (0 ; -459 ; -273) and (273 ; 32 ; 0) (K ; F ; C)

HYPERNYM(4) ↔ OBJECT(2)

HYPONYM(1) ↔ ISMADEOF(6)

HYPERNYM(4) ↔ ISMADEOF(6)HYPERNYM(4) ↔ ISMADEOF(6)

HYPONYM(1) ↔ OBJECT(2)
HYPONYM(1) ↔ ISMADEOF(6)

N1304
KINDOF

***
zinc is a kind of metal

N1307
MADEOF

***
brass is made of copper and zinc

N1310
KINDOF
(Fixed)

***
brass is a kind of alloy

bronze is a kind of alloy

N1311
MADEOF

(Fixed)

***
alloys are made of two or more metals

N1306
KINDOF

***
copper is a kind of metal

Alloys (composition)

HYPONYM(1) ↔ THING(2)
HYPONYM(1) ↔ ACTOR/AGENT/PROCESS(16)

HYPERNYM(4) ↔ AGENT/OBJECT(6)

HYPERNYM(4) ↔ OBJECT/PROPERTY(10)

HYPERNYM(4) ↔ THING(2)
HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)

HYPERNYM(4) ↔ OBJECT/PROPERTY(10)
HYPONYM(1) ↔ AGENT/OBJECT(6)

N1255
KINDOF
(Fixed)

***
a container is a kind of object

N1256
PROTO-ACTION

(Fixed)
Role of a container

***
a container contains (objects ; material ; substances)

N1254
PROTO-IF-THEN

(Fixed)

***
if a container contains something then that container touches that something

N1253
KINDOF

***
metal is a kind of material
gas is a kind of substance

N1252
KINDOF

Kinds of Containers
***

a (pan ; frying pan) is a kind of container for (cooking ; food)

Containers contain objects/materials
Connect on 'phase change' and 'change'

RESULT_AGENT(9) ↔ PROCESS_NAME(0)
[CONDITION_VERB(3) ↔ VERB(5)]

X means changing ... <-> X is a kind of phase change
PROCESS_NAME(0) ↔ HYPONYM(1)

Connect on 'phase change'
PROCESS_NAME(0) ↔ HYPERNYM(4)

N834
CHANGE

(Fixed)

***
a phase change is when matter; a substance changes from one state into another state

N829
CAUSE
(Fixed)

***
temperature changing can cause phase changes

N833
CHANGE

Change of State
***

melting means changing from a solid into a liquid by adding heat energy

N835
KINDOF

Phase Changes
***

melting is a kind of phase change

Phase Changes

ACTION(5) ↔ FOR/PURPOSE(6)ACTION(20) ↔ ACTION(5) x
HYPERNYM(4) ↔ AGENT/THING WHO USES(9)

OBJECT/PATIENT(9) ↔ BY/THROUGH/HOW(11)
SCOPE(11) ↔ AGENT/OBJECT(2)
ACTION(20) ↔ FOR/PURPOSE(6)

HYPERNYM(4) ↔ THING(2)
HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)

FOR/PURPOSE(7) ↔ FOR/PURPOSE(6)
PART(1) ↔ AGENT/OBJECT(2)

N1073
PARTOF
(Fixed)

***
eyes are usually part of an animal for seeing
the eyes are part of the head used for seeing

N1061
KINDOF

Kinds of Objects
***

a balloon is a kind of object
an article of clothing is a kind of object

an atom is a kind of object

N1060
USEDFOR

(Fixed)

***
eyes are used for seeing by animals by sensing light

N1063
SYNONYMY

(Fixed)

***
visible means able to be seen

N1059
KINDOF

Kinds of Animals
***

a human is a kind of animal
an insect is a kind of animal

an alligator is a kind of aquatic animal
an amphibian is a kind of animal
a baby is a kind of young animal

a bat is a kind of animal

N1062
PROTO-IF-THEN

(Fixed)

***
if an object reflects light toward the eye then that object can be seen

Animals see objects with eyes

State of Matter (changing between states of known substances)

Figure 3: Example inference patterns extracted from the WorldTree explanation corpus using this tool. Nodes represent one or
more example facts (table rows) from a specific table (e.g. CHANGE), and edges represent constraints between table rows that
must be satisfied. Facts shown in nodes are examples, and not an exhaustive list of all rows that meet the constraints for a given
inference pattern.
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On average, each grid generally required minimal
to moderate editing. Figure 4 (see Appendix)
shows the full graph before and after the initial
merging and curation process.

3.2 Extracting Inference Patterns

Due to it’s size, the graph after merging and cu-
ration is included in the supplementary material.
Manual inspection of the curated graph using the
Graph View revealed 29 high-level inference pat-
terns shown in Table 3, each containing between
3 and 66 nodes, and up to 107 edges.5 These rep-
resent the high-level inferences being described in
the Matter subset of the explanation corpus, and
include scientific reasoning processes for topics
such as Measuring Properties with Instruments and
Thermal Conductivity, while also describing com-
mon world knowledge such as Seeing, Tasting, and
Cooking Food. These world-knowledge-centered
explanation patterns tend to be either directly re-
quired to answer questions (for example, about
observing material properties), or to process the
examples the questions are grounded in (such as
temperature or state changes caused by cooking
food). While high-level patterns can be classified
as belonging more to scientific or world knowledge,
the individual knowledge present in each pattern
is generally a mix of both, including nodes that
match either scientific knowledge (e.g. “Matter
in the gas phase has variable volume”) or world
knowledge at either a high-level (e.g., “a balloon
is a flexible container”) or low-level (e.g., “if a
container contains something, then that container
touches that something”).

Examining the 29 high-level inference patterns,
we further subdivided them into 38 smaller, more
reusable component inference patterns that de-
scribe narrower inferences for a given problem do-
main. For example, the high-level Change of State
inference pattern was subdivided into 3 smaller
and more specialized patterns such as Changing be-
tween states of known substances, Phase Changes,
and Evaporating Liquids, each containing between
4 and 9 nodes. Examples of these inference pat-
terns are shown in Figure 3, while the full corpus of

5These large inference patterns (up to 66 nodes and 107
edges) represent large topical patterns generated from analyz-
ing many questions on similar topics, and were not derived
from any one question. In these cases, it is likely that only a
small subset of these larger inference patterns would be used
to answer a given question. We describe further subdividing
these larger patterns into smaller reusable pieces further in
Section 3.2.

Change of State
Freezing means changing from a liquid to a solid by

reducing heat energy
A liquid is a kind of state of matter
Water is in the liquid state, called liquid water, for

temperatures between 0 C and 100 C
A solid is a kind of state of matter
Water is in the solid state, called liquid water, for

temperatures between -273 C and 0 C
Cooling means reducing heat energy
Freezing is when liquids are cooled below freezing point

Phase Changes
Boiling means changing from a liquid to a gas by

adding heat energy
Boiling is a kind of phase change
A phase change is when a substance changes from

one state to another state
Temperature changes can cause phase changes

Alloys
Alloys are made of two or more metals
Bronze is a kind of alloy
Bronze is made of copper and tin
Tin is a kind of metal
Copper is a kind of metal

Containers contain objects
A container is a kind of object
If a container contains something, then that container

touches that something
A bowl is a kind of container
A container contains objects
A rock is a kind of object

Table 4: A small subset of example combinations of
knowledge base facts that satisfy the constraints of in-
ference patterns extracted from the explanation corpus.
Each example was generated from the inference pat-
tern, and is not found in the training corpus.

patterns generated is included in the supplementary
material.

3.3 Executing constraint patterns

Our long-term goal is to use the extracted inference
patterns to answer unseen questions, and enable
generating detailed coherent multi-fact explana-
tions for the reasoning behind those answers. We
are currently building a scripting language and de-
velopment environment for easily authoring and
evaluating constraint-based inference patterns.

In the near-term, to evaluate the executability of
each pattern, we incorporate a constraint satisfac-
tion framework into the extraction tool allowing the
user to test each extracted pattern by querying the
tablestore knowledge base and enumerating valid
combinations of table rows that satisfy the con-
straints of a given inference pattern. Our Javascript
table constraint solver is able to process approxi-
mately 2 million constraint evaluations per second,
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which generally satisfies exhaustively testing small
patterns in under one minute.6 The graphical in-
terface allows disabling subsections of larger infer-
ence patterns for speed to exhaustively test larger
inference patterns piece-wise, or limiting specific
nodes to only a small subset of possible facts to
speed evaluation.

Examples of valid combinations of facts satisfy-
ing the extracted inference patterns in Figure 3 are
shown in Table 4. Each of these short explanations
was not observed in the training corpus, but rather
was generated by satisfying the constraints of an
inference pattern by querying the knowledge base,
and could form explanations for unseen questions –
either in whole, or as part of a combination of sev-
eral patterns together (such as combining Changes
of State and Phase Changes). At our current state
of development, each inference pattern generally
matches between one and several thousand unique
patterns in the knowledge base, but precise counts
are limited by the speed of our current constraint
satisfaction solver.

4 Conclusion and Future Work

We present a method and tool for extracting infer-
ence patterns from corpora of explanations, where
these inference patterns provide a mechanism to
combine large amounts of knowledge with high-
confidence. While this ability to combine facts into
meaningful multi-fact patterns exceeds what is cur-
rently possible using contemporary algorithms for
multi-hop reasoning, several challenges remain.

First, while significantly faster and more data-
driven than our manual attempts at constructing
inference patterns, the end-to-end process of con-
structing an explanation for a question, authoring
knowledge base facts, merging and curating a cen-
tral graph, extracting patterns from that graph, and
debugging generic patterns currently comes at a
significant labour cost – an average of approxi-
mately 2 hours per question7 – that we are working
to further reduce to allow the technique to scale.
We hypothesize that a number of the time costs
associated with this process scale sublinearly, and
are currently working on demonstrating this by

6We are currently developing a high-performance stand-
alone constraint satisfaction solver for these types of lexical-
ized table-based constraint satisfaction problems.

7Approximate durations of the most time consuming steps
(average per question): explanation construction: 15 minutes;
merging/graph curation/high-level pattern identification: 45
minutes; subpattern identification/debugging: 45 minutes.

refining the protocol and evaluating on an order-of-
magnitude more explanations.

Second, while these inference patterns have util-
ity for answering and explaining science exam
questions, this needs to be empirically demon-
strated by incorporating the patterns into a question
answering system to measure the overall recall of
this technique. We are actively pursuing both the
construction of a corpus of science-domain expla-
nation patterns, at scale, while concurrently devel-
oping methods of using these inference patterns
to answer questions and provide compelling multi-
fact explanations for their answers.

5 Supplementary Material

This work contains supplementary material, in-
cluding additional tables and figures in the
Appendix below, and a corpus of 67 extracted
inference patterns available at http://www.
cognitiveai.org/explanationbank/ .
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7 Appendix

Annotation Workflow: The annotation workflow
is as follows: The user selects a subset of questions
to process (in this preliminary work, we select all
MATTER questions in the WorldTree corpus). The
user then switches to the Grid View, which displays
one “grid” at a time, where each grid represents all
the connections from a given table to another table
in the tablestore (for example, all the connections
from the KINDOF table to the IF-THEN table).
The user then uses the Grid View to quickly verify
that the automatic groupings are correct, and make
adjustments or edits to these groupings. Here the
user can also remove bad edges (two table rows
that were automatically connected, but whose con-
nection isn’t meaningful), or remove subsets of the
column links on edges that are partially correct
(see Table 1). Once this is completed, the user then
switches to the Graph View, where they click on
each node group from the recently curated grid,
highlight other nodes that contain similar rows, and
make manual node merging decisions (by dragging
and dropping nodes on top of each other). Notes
can also be left on specific nodes or edges, to help
describe what underlying concepts the nodes rep-
resent, and how they interconnect. Once this is
completed, the user marks that grid completed, and
moves on to the next grid. User-selectable filtering
allows only nodes and edges from grids that have
been completed to be displayed, greatly reducing
clutter and visual search time.

Once the user has completed all grids, the graph
is completed, and represents the interconnected
knowledge of all of the explanations in the ques-
tions, typically itself clustered into a number of dis-
connected graphs that represent large high-level in-
ference patterns (such as magnetic attraction, ther-
mal transfer, or changes of state of matter). The
user then manually inspects these, and highlights

subgraphs of nodes to form a candidate inference
pattern. These candidate patterns form a series
of knowledge constraints for a series of tablestore
rows that must be met in each node in order to sat-
isfy the constraints. These constraints can then be
run, debugged (as a whole, or as subsets of nodes
or edges), and saved. During this process, miss-
ing knowledge or edits to existing knowledge in
the tablestore that prevent generalization are often
discovered – these edits can be immediately made
to the Tablestore Google Sheet and the constraints
rerun in seconds, to form a fast iteration cycle for
debugging knowledge base and inference pattern
constraint interactions.

7.1 Additional Resources
A full export of the inference patterns gener-
ated in this work, as well as example patterns
from the knowledge base that satisfy their pat-
terns of constraints, is available at http://www.
cognitiveai.org/explanationbank/ .

7.2 Additional Tables and Figures
Additional tables and figures are provided below.
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ACTION(20) ↔ OBJECT/PROPERTY(22)

THING(2) ↔ PROPERTY/SCOPE(17)

ACTION(6) ↔ ACTION(20)
ADJ/QUANTITY(8) ↔ OBJECT/PATIENT(9)

ADJ/QUANTITY(8) ↔ OBJECT/PROPERTY(22)
OBJECT/PATIENT(9) ↔ OBJECT/PATIENT(9)

OBJECT/PATIENT(9) ↔ OBJECT/PROPERTY(22)

OBJECT/PATIENT(9) ↔ ACTOR/AGENT/PROCESS(16)

THING(2) ↔ OBJECT/PATIENT(9)
THING(2) ↔ OBJECT/PROPERTY(22)

ACTOR/AGENT/PROCESS(16) ↔ OBJECT/PROPERTY(22)

OBJECT/PATIENT(9) ↔ OBJECT/PROPERTY(22)

ACTION(6) ↔ ACTION(20)
THING(2) ↔ THING(2)

THING(2) ↔ ACTOR/AGENT/PROCESS(16)

HYPONYM(1) ↔ AGENT/OBJECT(2)
FOR/PURPOSE(6) ↔ PATIENT(7)FOR/PURPOSE(6) ↔ FOR/PURPOSE(6)

HYPONYM(1) ↔ FOR/PURPOSE(6)

HYPONYM(1) ↔ PATIENT(7)

HYPERNYM(4) ↔ PATIENT(7)

HYPERNYM(4) ↔ SCOPE(12)

HYPERNYM(4) ↔ AGENT/OBJECT(2)

HYPERNYM(4) ↔ AGENT/THING WHO USES(9)

SCOPE(8) ↔ PATIENT(7)

HYPERNYM(4) ↔ THING(2)
HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)

HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)

HYPONYM(1) ↔ ACTION(20)

HYPERNYM(4) ↔ OBJECT/PATIENT(9)

HYPONYM(1) ↔ OBJECT/PROPERTY(22)

SCOPE(3) ↔ SCOPE(3)
HYPERNYM(4) ↔ SCOPE(3)

HYPERNYM(4) ↔ OBJECT/PROPERTY(22)
HYPONYM(1) ↔ OBJECT/PROPERTY(10)

HYPONYM(1) ↔ ACTOR/AGENT/PROCESS(16)
HYPONYM(1) ↔ OBJECT/PROPERTY(10)

HYPONYM(1) ↔ FOR/PURPOSE(6)

HYPERNYM(4) ↔ FOR/PURPOSE(6)

HYPERNYM(4) ↔ HYPERNYM(4)

FOR/PURPOSE(6) ↔ FOR/PURPOSE(6)

THING/PROPERTY(4) ↔ ACTOR/WHO(1)

HYPONYM(1) ↔ HYPERNYM(4)

HYPONYM(1) ↔ HYPONYM(1)

ACTION(20) ↔ ACTION(5)

OBJECT/PATIENT(9) ↔ X(0)
OBJECT/PATIENT(9) ↔ X(4)

OBJECT/PROPERTY(22) ↔ X(0)

OBJECT(9) ↔ ACTOR/WHO(1)

OBJECT/PROPERTY(22) ↔ X(4)

OBJECT/PROPERTY(22) ↔ Y(6)
ACTION(6) ↔ ACTION(5)

OBJECT/PATIENT(9) ↔ Y(2)
OBJECT/PATIENT(9) ↔ Y(6)

OBJECT/PROPERTY(22) ↔ Y(2)

VALUES(6) ↔ VERB(5)

ADJ/QUANTITY(1) ↔ FLEXIBLE;RIGID(5)

OBJECT/AGENT(0) ↔ OBJECT/PROPERTY(10)

ACTION(6) ↔ X(0)

ACTOR/AGENT/PROCESS(16) ↔ X(0)
ACTOR/AGENT/PROCESS(16) ↔ X(4)

ACTOR/AGENT/PROCESS(16) ↔ X(0)
THING(2) ↔ X(0)

FROM(8) ↔ HYPERNYM(4)

INTO(10) ↔ HYPONYM(1)

FROM(8) ↔ HYPONYM(1)

INTO(10) ↔ HYPERNYM(4)

PROCESS_NAME(0) ↔ HYPONYM(1)

PROCESS_NAME(0) ↔ HYPONYM(1)
VERB(5) ↔ HYPERNYM(4)

ACTOR/WHO(3) ↔ HYPERNYM(4)

WHEN/WHERE(11) ↔ THING(2)
WHEN/WHERE(11) ↔ ACTOR/AGENT/PROCESS(16)

WHEN/WHERE(11) ↔ OBJECT/PATIENT(9)
WHEN/WHERE(11) ↔ ACTION(20)

OBJECT/PROPERTY(10) ↔ THING(2)
OBJECT/PROPERTY(10) ↔ ACTOR/AGENT/PROCESS(16)

PATIENT(15) ↔ PHASE(1)

ACTION(9) ↔ ACTION(20)
OBJECT/PROPERTY(10) ↔ OBJECT/PATIENT(9)
AGENT/OBJECT(6) ↔ OBJECT/PROPERTY(22)

OBJECT/PROPERTY(10) ↔ OBJECT/PROPERTY(22)
AGENT/OBJECT(6) ↔ THING(2)

AGENT/OBJECT(6) ↔ ACTOR/AGENT/PROCESS(16)
ACTION(9) ↔ ACTION(6)

OBJECT/PROPERTY(10) ↔ OBJECT/PATIENT(9)

OBJECT/PROPERTY(10) ↔ OBJECT/PROPERTY(22)
OBJECT/PROPERTY(10) ↔ OBJECT/PATIENT(9)
AGENT/OBJECT(6) ↔ OBJECT/PROPERTY(22)

AGENT/OBJECT(6) ↔ OBJECT/PATIENT(9)

ISMADEOF(6) ↔ AGENT/OBJECT(6)

BY/THROUGH/HOW(14) ↔ X(0)
BY/THROUGH/HOW(14) ↔ X(4)

PROCESS_NAME(0) ↔ ACTION(1)

PROCESS_NAME(0) ↔ X(0)
FROM(8) ↔ ACTION(5)

PROCESS_NAME(0) ↔ ACTION(5)

FROM(8) ↔ X(4)

MAGNETIC/NONMAGNETIC/FERROMAGNETIC(3) ↔ VALUES(6)

HYPERNYM(4) ↔ ACTION(1)

HYPERNYM(4) ↔ ACTION(5)

HYPONYM(1) ↔ X(4)
HYPONYM(1) ↔ X(0)

HYPERNYM(4) ↔ Y(6)

FOR/PURPOSE(6) ↔ ACTION(1)

HYPONYM(1) ↔ ACTION(5)

HYPERNYM(4) ↔ X(0)

HYPERNYM(4) ↔ X(4)

X(0) ↔ ACTOR/AGENT/PROCESS(16)

X(0) ↔ OBJECT/PATIENT(9)
Y(2) ↔ THING(2)

Y(2) ↔ ACTOR/AGENT/PROCESS(16)
VALUES(6) ↔ OBJECT/PROPERTY(22)

PROCESS_NAME(0) ↔ PROCESS_NAME/ ACTION(0)
PROCESS_NAME(0) ↔ QUANTITY/RANGE(16)

FROM(8) ↔ AGENT/OBJECT(3)
BY/THROUGH/HOW(14) ↔ DIRECTION(7)

PROCESS_NAME(0) ↔ PROCESS_NAME/ ACTION(0)
FROM(8) ↔ AGENT/OBJECT(3)

HYPERNYM(4) ↔ OBJECT(2)

HYPERNYM(4) ↔ ISMADEOF(6)

HYPONYM(1) ↔ OBJECT(2)

HYPONYM(1) ↔ ISMADEOF(6)

HYPONYM(1) ↔ MATERIAL NAME(0)
HYPONYM(1) ↔ FORM NAME(5)

HYPONYM(1) ↔ FORM NAME(5)

RESULT_PATIENT(11) ↔ HYPONYM(1)
CONDITION_PATIENT(4) ↔ HYPONYM(1)

RESULT_AGENT(9) ↔ HYPERNYM(4)

RESULT_VERB(10) ↔ HYPONYM(1)

CONDITION_AGENT/OBJECT(2) ↔ HYPONYM(1)

CONDITION_AGENT/OBJECT(2) ↔ HYPERNYM(4)
CONDITION_PATIENT(4) ↔ HYPERNYM(4)

RESULT_AGENT(9) ↔ HYPONYM(1)

CONDITION_AGENT/OBJECT(2) ↔ SCOPE(3)

CONDITION_PATIENT(4) ↔ HYPONYM(1)
SCOPE(16) ↔ HYPONYM(1)

RESULT_PATIENT(11) ↔ HYPERNYM(4)

VALUE(2) ↔ VALUE(2)

OBJECT/PATIENT(9) ↔ SOURCE(6)
OBJECT/PATIENT(9) ↔ DESTINATION(8)
OBJECT/PROPERTY(22) ↔ SOURCE(6)

OBJECT/PROPERTY(22) ↔ DESTINATION(8)

THING(2) ↔ PROCESS_NAME(0)
THING(2) ↔ ACTOR/WHO(2)

THING(2) ↔ BY/THROUGH/HOW(12)

THING(2) ↔ WHAT(4)

HYPERNYM(4) ↔ OBJECT/PROPERTY(10)

HYPERNYM(4) ↔ AGENT/OBJECT(6)

HYPONYM(1) ↔ AGENT/OBJECT(6)

HYPONYM(1) ↔ OBJECT/PROPERTY(10)

HYPONYM(1) ↔ DEFINITION_NAME(0)

HYPERNYM(4) ↔ ADJ(5)

THING/PROCESS(2) ↔ FORM NAME(5)

HYPONYM(1) ↔ WHEN/WHERE(11)

FOR/PURPOSE(6) ↔ X(0)

HYPERNYM(4) ↔ Y(2)

HYPERNYM(4) ↔ X(0)
HYPONYM(1) ↔ VALUES(6)

HYPONYM(1) ↔ X(0)

DIRECTION(7) ↔ X(0)

DIRECTION(7) ↔ X(4)

PATIENT(10) ↔ X(0)
PATIENT(10) ↔ X(4)

DIRECTION(7) ↔ ACTION(5)

AGENT/OBJECT(3) ↔ X(4)
AGENT/OBJECT(3) ↔ X(0)

VERB (sourceof, provide, etc)(6) ↔ ACTION(1)

VERB (sourceof, provide, etc)(6) ↔ ACTION(5)

WHAT IT PROVIDES(7) ↔ Y(2)

ADJ(1) ↔ ACTION(1)
ADJ(1) ↔ ACTION(5)

BY/THROUGH/HOW(14) ↔ OBJECT/PROPERTY(22)

PART(1) ↔ SCOPE(8)

VERB(5) ↔ ACTION(20)

HYPONYM(1) ↔ THING(2)

HYPERNYM(4) ↔ THING(2)

HYPONYM(1) ↔ ATTRIBUTE(8)

CONDUCTOR/INSULATOR(3) ↔ X(0)
CONDUCTOR/INSULATOR(3) ↔ X(4)

OBJECT/PROPERTY(10) ↔ ATTRIBUTE(8)

OBJECT/AGENT/PROCESS(2) ↔ AGENT/THING WHO USES(9)
OBJECT(9) ↔ FOR/PURPOSE(6)

OBJECT(9) ↔ AGENT/THING WHO USES(9)

WHOLE(5) ↔ LOCATION(4)

ACTION(0) ↔ FOR/PURPOSE(6)
OBJECT/AGENT/PROCESS(2) ↔ PATIENT(7)

OBJECT/AGENT/PROCESS(2) ↔ BY/THROUGH/HOW(11)
OBJECT(9) ↔ BY/THROUGH/HOW(11)

ACTION(6) ↔ FOR/PURPOSE(6)

OBJECT(9) ↔ PATIENT(7)

KIND OF CONDUCTIVITY(2) ↔ CLASS(7)
CONDUCTOR/INSULATOR(3) ↔ CLASS(7)

PROCESS_NAME/ ACTION(0) ↔ FOR/PURPOSE(6)

OBJECT/PROPERTY(10) ↔ AGENT(2)

THING/PROPERTY(4) ↔ VALUE(3)

OBJECT/PROPERTY(10) ↔ NAME(9)

ACTION(20) ↔ ADJ(1)

Y(2) ↔ SOURCE(6)
Y(2) ↔ DESTINATION(8)

THING/PROPERTY(1) ↔ X(0)
THING/PROPERTY(1) ↔ X(4)

WHOLE(5) ↔ SOURCE(6)
FOR/PURPOSE(7) ↔ SOURCE(6)

WHOLE(5) ↔ DESTINATION(8)
FOR/PURPOSE(7) ↔ DESTINATION(8)

PROCESS_NAME(0) ↔ VERB(5)

ACTION(5) ↔ VERB(3)

HYPONYM(1) ↔ ATTRIBUTE(3)

FOR/PURPOSE(6) ↔ QUANTITY/ADJ(2)
FOR/PURPOSE(6) ↔ ATTRIBUTE(3)

HYPERNYM(4) ↔ AGENT(4)

X(0) ↔ AGENT/OBJECT(2)
X(4) ↔ AGENT/OBJECT(2)

ACTION(5) ↔ FOR/PURPOSE(6)

THING(2) ↔ ACTOR/WHO(1)

RESULT_VERB(10) ↔ ACTION(20)
RESULT_VERB(10) ↔ OBJECT/PATIENT(9)

CONDITION_VERB(3) ↔ ACTION(20)
CONDITION_PATIENT(4) ↔ OBJECT/PROPERTY(10)

RESULT_AGENT(9) ↔ THING(2)
RESULT_AGENT(9) ↔ ACTOR/AGENT/PROCESS(16)

SCOPE(16) ↔ ACTION(20)

RESULT_AGENT(9) ↔ OBJECT/PROPERTY(10)
RESULT_AGENT(9) ↔ OBJECT/PROPERTY(22)

SCOPE(6) ↔ THING(2)
SCOPE(6) ↔ ACTOR/AGENT/PROCESS(16)

KIND OF CONDUCTIVITY(2) ↔ THING(2)

OBJECT/PROPERTY(10) ↔ THING(2)
OBJECT/PROPERTY(22) ↔ ATTRIBUTE(8)

ACTION(5) ↔ ACTION(5)

RESULT_AGENT(9) ↔ WHAT(4)

X(0) ↔ Y(2)

Y(2) ↔ X(4)

ACTION(1) ↔ ACTION(5)

X(0) ↔ X(0)

X(4) ↔ X(4)

X(0) ↔ ACTION(5)

ADJ(5) ↔ X(4)

ACTION(9) ↔ ACTION(1)
ACTION(9) ↔ Y(6)

QUANTIFIER(2) ↔ ACTION(1)

QUANTIFIER(2) ↔ QUALIFIER(3)

SCOPE(8) ↔ FOR/PURPOSE(6)

HYPONYM(1) ↔ OBJECT/AGENT(0)

HYPERNYM(4) ↔ OBJECT/AGENT(0)

HYPONYM(1) ↔ CONDUCTOR/INSULATOR(3)

FOR/PURPOSE(6) ↔ ACTION(6)

HYPERNYM(4) ↔ OBJECT(9)

HYPERNYM(4) ↔ OBJECT/AGENT/PROCESS(2)

OBJECT(2) ↔ CLASS(7)

FROM(8) ↔ STATEOFMATTER(2)

RESULT_VERB(10) ↔ BY/THROUGH/HOW(14)

CONDITION_VERB(3) ↔ PROCESS_NAME(0)
RESULT_AGENT(9) ↔ PROCESS_NAME(0)

CONDITION_VERB(3) ↔ VERB(5)
RESULT_AGENT(9) ↔ VERB(5)

RESULT_VERB(10) ↔ PROCESS_NAME(0)

OBJECT/PROPERTY(3) ↔ OBJECT/PROPERTY(3)

CONDUCTOR/INSULATOR(3) ↔ THING/PROPERTY(1)

HYPONYM(1) ↔ PROCESS_NAME(0)

PART(1) ↔ WHOLE(5)

X(0) ↔ ABBREVIATION(2)
X(4) ↔ UNIT(0)

ISMADEOF(6) ↔ OBJECT/AGENT(0)
OBJECT(2) ↔ OBJECT/AGENT(0)

OBJECT(2) ↔ KIND OF CONDUCTIVITY(2)
ISMADEOF(6) ↔ KIND OF CONDUCTIVITY(2)
OBJECT(2) ↔ CONDUCTOR/INSULATOR(3)

ISMADEOF(6) ↔ CONDUCTOR/INSULATOR(3)

VALUE(7) ↔ PATIENT(7)

ATTRIBUTE(8) ↔ FOR/PURPOSE(6)

THING(2) ↔ AGENT/OBJECT(2)
VALUE(7) ↔ FOR/PURPOSE(6)

CONDITION_VERB(3) ↔ RESULT_VERB(10)

CONDITION_AGENT/OBJECT(2) ↔ RESULT_AGENT(9)

RESULT_VERB(10) ↔ VERB(3)
RESULT_AGENT(9) ↔ WHAT(5)

QUANTIFIER(4) ↔ QUANTIFIER(4)
CLASS(7) ↔ CLASS(7)

PROCESS_NAME/ ACTION(0) ↔ DIRECTION(7)

PROCESS_NAME/ ACTION(0) ↔ QUANTITY/RANGE(16)

THING(2) ↔ OBJECT(9)

AGENT/OBJECT(3) ↔ AGENT/OBJECT(3)

WHAT IT CONTAINS(5) ↔ HYPONYM(1)

WHAT IT CONTAINS(5) ↔ HYPERNYM(4)

QUANTITY/MEASURE(1) ↔ X(4)

CHANGE2(18) ↔ ACTION(5)

CHANGE1(6) ↔ X(0)

CHANGE1(6) ↔ ACTION(5)

OBJECT/PROPERTY(22) ↔ PATIENT(7)
OBJECT/PATIENT(9) ↔ PATIENT(7)

ACTION(6) ↔ FOR/PURPOSE(6)

OBJECT/PROPERTY(10) ↔ PATIENT(7)

OBJECT/PATIENT(9) ↔ BY/THROUGH/HOW(11)

CONDITION_VERB(3) ↔ VERB(5)

THING(2) ↔ AGENT/THING WHO USES(9)

CONDITION_VERB(3) ↔ ACTION(6)
CONDITION_PATIENT(4) ↔ OBJECT(9)

OBJECT/PATIENT(9) ↔ PATIENT(7)
ACTOR/AGENT/PROCESS(16) ↔ PATIENT(7)

VERB(5) ↔ VERB(5)
FROM(8) ↔ INTO(10)

BY/THROUGH/HOW(14) ↔ BY/THROUGH/HOW(14)

AGENT/ATTRIBUTE(2) ↔ HYPERNYM(4)
AGENT/ATTRIBUTE(11) ↔ HYPERNYM(4)

SCOPE(7) ↔ HYPERNYM(4)
SCOPE(12) ↔ HYPERNYM(4)

CHANGE2(18) ↔ HYPONYM(1)

HYPERNYM(4) ↔ WHOLE(5)

HYPONYM(1) ↔ WHOLE(5)

HYPONYM(1) ↔ PART(1)

OBJECT(9) ↔ AGENT(2)
OBJECT(9) ↔ WHAT IT PROVIDES(7)

PATIENT(10) ↔ QUANTITY/MEASURE(1)
DIRECTION(7) ↔ CHANGE1(6)

PATIENT(10) ↔ QUANTITY/MEASURE(10)
DIRECTION(7) ↔ CHANGE2(18)

AGENT/THING WHO USES(9) ↔ ACTOR/WHO(1)
AGENT/OBJECT(2) ↔ WHAT(5)

ATTRIBUTE(3) ↔ MATERIAL NAME(0)

PATIENT(10) ↔ ACTOR/AGENT/PROCESS(16)

PROCESS_NAME/ ACTION(0) ↔ ACTION(20)

CONDITION_AGENT/OBJECT(2) ↔ AGENT(4)
RESULT_AGENT(9) ↔ AGENT(4)
RESULT_VERB(10) ↔ VERB(5)

QUANTITY(9) ↔ ACTION(6)
PATIENT(10) ↔ THING(2)

HYPERNYM(4) ↔ PHASE(1)

ATTRIBUTE(8) ↔ AGENT(2)

SCOPE(8) ↔ ATTRIBUTE(4)

HYPONYM(1) ↔ AGENT(2)

WHOLE(5) ↔ OBJECT/PATIENT(9)
WHOLE(5) ↔ ACTOR/AGENT/PROCESS(16)
FOR/PURPOSE(7) ↔ OBJECT/PATIENT(9)

FOR/PURPOSE(7) ↔ ACTOR/AGENT/PROCESS(16)

AGENT/OBJECT(3) ↔ PROCESS_NAME(0)
AGENT/OBJECT(3) ↔ ACTOR/WHO(2)

AGENT/OBJECT(3) ↔ BY/THROUGH/HOW(12)
PATIENT(10) ↔ WHAT(4)

Y(2) ↔ X(0)

PROPERTY(5) ↔ PATIENT(7)

BY/THROUGH/HOW(14) ↔ X(0)

WHAT(6) ↔ X(0)
ACTOR/WHO(3) ↔ Y(2)

WHAT(6) ↔ Y(2)

VERB(2) ↔ DIRECTION(7)

HYPONYM(1) ↔ PROPERTY(5)

HYPONYM(1) ↔ UNIT(0)
FOR/PURPOSE(6) ↔ PROPERTY(5)

HYPONYM(1) ↔ UNIT(0)

THING(2) ↔ THING/PROPERTY(4)
ACTOR/AGENT/PROCESS(16) ↔ THING/PROPERTY(4)

ACTION(6) ↔ THING/PROPERTY(1)

OBJECT/PATIENT(9) ↔ THING/PROPERTY(1)
ACTION(20) ↔ THING/PROPERTY(1)

OBJECT/PROPERTY(22) ↔ ATTRIBUTE(4)
OBJECT/PROPERTY(10) ↔ ATTRIBUTE(4)

ACTION(6) ↔ VALUE(3)

PROPERTY(0) ↔ MEASURE(0)

ACTION(0) ↔ ACTION(6)

VERB (requires)(5) ↔ VERB (requires)(5)
ACTION(6) ↔ ACTION(6)

QUANTIFIER(4) ↔ QUANTIFIER(4)

PROCESS_NAME(0) ↔ AGENT/THING WHO USES(9)
ACTOR/WHO(2) ↔ AGENT/THING WHO USES(9)

WHAT(4) ↔ AGENT/OBJECT(2)
BY/THROUGH/HOW(12) ↔ AGENT/THING WHO USES(9)

SOURCE(6) ↔ PATIENT(7)
DESTINATION(8) ↔ PATIENT(7)

RESULT_VERB(10) ↔ ACTION(9)

THING/PROPERTY(1) ↔ VALUE(3)

OBJECT/AGENT(1) ↔ OBJECT(1)

CONDITION_PATIENT(4) ↔ AGENT(2)
CONDITION_VERB(3) ↔ ADJ(1)

SCOPE(16) ↔ AGENT(2)

WHOLE(5) ↔ X(4)

AGENT/OBJECT(3) ↔ HYPERNYM(4)
AGENT/OBJECT(3) ↔ HYPONYM(1)

INTO(10) ↔ SCOPE(7)

DIRECTION(7) ↔ VALUES(6)

HYPERNYM(4) ↔ CLASS(7)

HYPERNYM(4) ↔ INSTANCE(2)

OBJECT(2) ↔ THING(2)
OBJECT(2) ↔ ACTOR/AGENT/PROCESS(16)

ISMADEOF(6) ↔ OBJECT/PROPERTY(10)
ISMADEOF(6) ↔ OBJECT/PROPERTY(22)

ISMADEOF(6) ↔ OBJECT/PROPERTY(10)
ISMADEOF(6) ↔ OBJECT/PROPERTY(22)

CLASS(7) ↔ PROCESS_NAME(0)
CLASS(7) ↔ ACTOR/WHO(2)

CLASS(7) ↔ BY/THROUGH/HOW(12)

AGENT(2) ↔ AGENT/THING WHO USES(9)
VERB (sourceof, provide, etc)(6) ↔ FOR/PURPOSE(6)

WHAT IT PROVIDES(7) ↔ FOR/PURPOSE(6)
WHAT IT PROVIDES(7) ↔ AGENT/THING WHO USES(9)

ISMADEOF(6) ↔ THING(2)

AGENT/OBJECT(2) ↔ AGENT/OBJECT(2)

ISMADEOF(6) ↔ X(0)
ISMADEOF(6) ↔ X(4)

FOR/PURPOSE(6) ↔ FOR/PURPOSE(6)

VALUE(2) ↔ ACTION(6)

ATTRIBUTE(4) ↔ PATIENT(10)

VALUE(2) ↔ ACTION(1)

THING(0) ↔ X(4)

PROCESS_NAME(0) ↔ ACTOR/WHO(1)
ACTOR/WHO(2) ↔ ACTOR/WHO(1)

WHAT(4) ↔ WHAT(5)
BY/THROUGH/HOW(12) ↔ ACTOR/WHO(1)

VERB(6) ↔ QUANTITY/ADJ(2)

AGENT/ATTRIBUTE(11) ↔ AGENT/OBJECT(6)
ACTION(14) ↔ ACTION(9)

ATTRIBUTE(4) ↔ PART(1)

VERB(6) ↔ FOR/PURPOSE(6)

RESULT_AGENT(9) ↔ OBJECT/AGENT/PROCESS(2)

OBJECT(2) ↔ Y(2)

FOR/PURPOSE(7) ↔ FOR/PURPOSE(6)
PART(1) ↔ AGENT/OBJECT(2)

WHOLE(5) ↔ AGENT/THING WHO USES(9)

X(0) ↔ PATIENT(7)

VALUES(6) ↔ FOR/PURPOSE(6)

OBJECT(2) ↔ MATERIAL(0)
ISMADEOF(6) ↔ MATERIAL(0)

OBJECT(9) ↔ X(0)
OBJECT(9) ↔ X(4)

VERB (requires)(5) ↔ ACTION(5)

VERB (requires)(5) ↔ ACTION(1)

VERB(2) ↔ RESULT_AGENT(9)

PATIENT(9) ↔ CONDITION_PATIENT(4)
PATIENT(9) ↔ RESULT_PATIENT(11)

CONDITION_PATIENT(4) ↔ Y(2)
RESULT_AGENT(9) ↔ Y(2)

RESULT_PATIENT(11) ↔ X(0)

RESULT_AGENT(9) ↔ MATERIAL NAME(0)
RESULT_AGENT(9) ↔ FORM NAME(5)

HYPERNYM(4) ↔ THING/PROCESS(2)

HYPERNYM(4) ↔ LOCATION(4)

QUANTITY/MEASURE(10) ↔ WHOLE(5)

Y(2) ↔ OBJECT/PROPERTY(10)

AGENT/OBJECT(3) ↔ STATEOFMATTER(2)

Y(2) ↔ ADJ(5)

VALUES(6) ↔ OBJECT/PROPERTY(10)
X(0) ↔ HOW(13)

CLASS(7) ↔ THING/PROPERTY(1)

ATTRIBUTE(4) ↔ ATTRIBUTE(4)

FOR/PURPOSE(7) ↔ ACTION(5)

THING(2) ↔ X(0)

VALUE(7) ↔ X(0)

OBJECT/AGENT(1) ↔ ATTRIBUTE(3)
WHAT IT CONTAINS(5) ↔ ATTRIBUTE(3)

PROCESS_NAME/ ACTION(0) ↔ VERB(5)
DIRECTION(7) ↔ VERB(5)

AGENT(2) ↔ PROCESS_NAME(0)
WHAT IT PROVIDES(7) ↔ PROCESS_NAME(0)

AGENT(2) ↔ ACTOR/WHO(2)
WHAT IT PROVIDES(7) ↔ ACTOR/WHO(2)

AGENT(2) ↔ BY/THROUGH/HOW(12)
WHAT IT PROVIDES(7) ↔ BY/THROUGH/HOW(12)

THING(0) ↔ QUANTIFIER/SCOPE(4)
THING(0) ↔ WHAT(6)

CLASS(7) ↔ ACTOR/WHO(1)

AGENT(4) ↔ MATERIAL NAME(0)
AGENT(4) ↔ FORM NAME(5)

CONDITION_VERB(3) ↔ PROCESS_NAME/ ACTION(0)

VERB(2) ↔ ACTION(20)
OBJECT/PROPERTY(3) ↔ OBJECT/PROPERTY(22)

RESULT_VERB(10) ↔ PROCESS_NAME/ ACTION(0)

AGENT/OBJECT(3) ↔ THING/PROPERTY(1)

X(0) ↔ ATTRIBUTE(4)
VALUES(6) ↔ VALUE(3)

OBJECT/AGENT(1) ↔ MATERIAL NAME(0)
WHAT IT CONTAINS(5) ↔ MATERIAL NAME(0)

Y(2) ↔ Y(2)

QUANTITY/MEASURE(1) ↔ QUANTITY/MEASURE(10)
CHANGE1(6) ↔ CHANGE2(18)

OBJECT/PROPERTY(10) ↔ BY/THROUGH/HOW(11)

PART(1) ↔ ATTRIBUTE(8)

OBJECT/PROPERTY(3) ↔ POSITIVE/NEGATIVE(6)
OBJECT/PROPERTY(3) ↔ PATIENT(9)

PART(1) ↔ Y(2)
WHOLE(5) ↔ Y(2)

KIND OF CONDUCTIVITY(2) ↔ ACTOR/WHO(1)
CONDUCTOR/INSULATOR(3) ↔ ACTOR/WHO(1)

X(0) ↔ ATTRIBUTE(8)
VALUES(6) ↔ VALUE(7)

Y(2) ↔ THING(2)

ACTION(9) ↔ VERB(3)
OBJECT/PROPERTY(10) ↔ THING/PROPERTY(1)
OBJECT/PROPERTY(10) ↔ THING/PROPERTY(4)

THING(0) ↔ PATIENT(7)

THING/PROPERTY(4) ↔ ACTOR/WHO(2)
THING/PROPERTY(4) ↔ BY/THROUGH/HOW(12)

THING(2) ↔ THING(2)

MATERIAL NAME(0) ↔ X(4)

ATTRIBUTE(4) ↔ QUANTITY/MEASURE(10)

ATTRIBUTE(4) ↔ QUANTITY/MEASURE(1)

ATTRIBUTE(4) ↔ X(0)

RESULT_VERB(10) ↔ X(0)
RESULT_VERB(10) ↔ X(4)

CONDITION_VERB(3) ↔ ACTION(5)

AGENT(2) ↔ ACTOR/WHO(1)
WHAT IT PROVIDES(7) ↔ ACTOR/WHO(1)

RESULT_AGENT(9) ↔ AGENT/OBJECT(2)

ACTION(20) ↔ ACTION(6)
OBJECT/PROPERTY(22) ↔ OBJECT(9)

FROM(8) ↔ PHASE(1)

AGENT/OBJECT(3) ↔ ATTRIBUTE(8)

ISMADEOF(6) ↔ OBJECT/PROPERTY(10)

n2
PROTO-IF-THEN

***
if liquid is boiling then that liquid is hot

n9
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

n3
PROTO-IF-THEN

***
if something undergoes a physical change then the physical properties of that something will change

n10
PROTO-IF-THEN

***
if something undergoes physical change then the chemical properties of that something will remain unchanged

n4
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

if a magnet is attracted to a metal then that magnet will stick to that metal
if a hot (object ; substance) is (exposed to ; touches) a cold (object ; substance) then (that object ; that substance) will likely cool

if (one surface ; one substance ; one object) touches something then one is exposed to that something

n11
PROTO-IF-THEN

***
if something is places over a heat source then that something is exposed to that heat source

if something contains a large amount of magnetic material then that something will attract magnets
if something is dropped into a container of something else then that something is touching that something else

if (one surface ; one substance ; one object) touches something then one is exposed to that something
if a container contains something then that container touches that something

n5
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

if (one surface ; one substance ; one object) touches something then one is exposed to that something
if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)

if a container contains something then that container touches that something
if something undergoes physical change then the chemical properties of that something will remain unchanged

if one is holding an object then one is touching that object

n12
PROTO-IF-THEN

***
if food is cooked then heat energy is added to that food

if something is places over a heat source then that something is exposed to that heat source
if liquid is boiling then that liquid is hot

if something undergoes a physical change then the physical properties of that something will change
if too much heat is transferred to an object then that object may burn

n6
PROTO-IF-THEN

***
if liquid is boiling then that liquid is hot

if something is places over a heat source then that something is exposed to that heat source
if too much heat is transferred to an object then that object may burn

n13
PROTO-IF-THEN

***
if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)

if a container contains something then that container touches that something
if one is holding an object then one is touching that object

if (one surface ; one substance ; one object) touches something then one is exposed to that something

n7
PROTO-IF-THEN

***
if a container contains something then that container touches that something

n14
PROTO-IF-THEN

***
if (one surface ; one substance ; one object) touches something then one is exposed to that something

n8
PROTO-IF-THEN

***
if (one surface ; one substance ; one object) touches something then one is exposed to that something

if something contains a large amount of magnetic material then that something will attract magnets
if an object is made of a material then that object has the properties of that material

if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)
if something is outside during the day then that something will receive sunlight

if something lasts longer then that something will not have to be replaced for a long time
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)
if something is made of (something ; a material) then that something contains (that something ; that material)

if something does not have to be replaced for a long time then that something will save money
if (an object ; a substance) absorbs solar energy then (that object ; that substance) will increase in temperature

n15
PROTO-IF-THEN

***
if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)

if something is made of (something ; a material) then that something contains (that something ; that material)
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

if an object is made of a material then that object has the properties of that material
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

if something does not have to be replaced for a long time then that something will save money
if (an object ; a substance) absorbs solar energy then (that object ; that substance) will increase in temperature

if something is outside during the day then that something will receive sunlight
if something contains a large amount of magnetic material then that something will attract magnets

if something lasts longer then that something will not have to be replaced for a long time

n16
KINDOF

***
a magnifying glass is a kind of tool for observing small things

a graduated cylinder is a kind of instrument for measuring volume of liquids or objects
a meter stick is a kind of tool for (measuring length ; measuring distance)

a thermometer is a kind of instrument for measuring temperature
a stopwatch is a kind of tool for measuring time

a ruler is a kind of tool for measuring length
a compass is a kind of object

a centimeter is a kind of unit of measurement
binoculars are a kind of instrument for observing distant objects

a tape measure is a kind of tool for (measuring distance ; measuring length)
a calculator is a kind of tool

seconds are a kind of unit for measuring time
a balance is a kind of instrument for (measuring mass ; measuring weight)

n25
USEDFOR

***
magnifying glass is used to see small things by making objects appear bigger

a graduated cylinder is used to measure volume (of a liquid ; of an object)
a meter stick is used to measure (distance ; height ; length)

a thermometer is used to measure temperature
a stopwatch is used to measure time

a ruler is used for measuring the length of an object
a compass is used to navigate (oceans ; seas)

(meters ; centimeters ; kilometers) are used to (describe distance ; describe length)
a centimeter is used for measuring (short lengths ; short distances)

binoculars are used for observing distant objects
a tape measure is used to measure (length ; distance)

a compass is used for determining direction
a calculator is used for (adding ; subtracting ; multiplying ; dividing)

seconds are used to measure time
a balance is used for measuring (mass ; weight) (of an object ; of a substance)

n17
KINDOF

***
a meter stick is a kind of tool for (measuring length ; measuring distance)

milliliters is a kind of unit for measuring volume of liquids
a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

a balance is a kind of instrument for (measuring mass ; measuring weight)
a stopwatch is a kind of tool for measuring time

n26
USEDFOR

***
a stopwatch is used to measure time

a graduated cylinder is used to measure volume (of a liquid ; of an object)
a balance is used for measuring (mass ; weight) (of an object ; of a substance)

a meter stick is used to measure (distance ; height ; length)

n18
KINDOF

***
measuring is a kind of observing

n27
USEDFOR

***
a thermometer is used to measure temperature

n19
KINDOF

***
weight is a kind of property

a living thing is a kind of object

n28
USEDFOR

***
a scale is used for measuring weight

magnifying glass is used to see small things by making objects appear bigger

n20
KINDOF

***
a sleeping bag is a kind of product

a living thing is a kind of object
a pan is a kind of object

an animal is a kind of living thing

n29
USEDFOR

***
materials are used for making products by manufacturers

binoculars are used for observing distant objects
a handle is used for holding an object

magnifying glass is used to see small things by making objects appear bigger

n21
KINDOF

***
a piece of something is a kind of object

a coin is a kind of object
marble is a kind of (object ; material)

a rock is a kind of object
a living thing is a kind of object

water is a kind of liquid

n30
USEDFOR

***
a balance is used for measuring (mass ; weight) (of an object ; of a substance)

a ruler is used for measuring the length of an object
a graduated cylinder is used to measure volume (of a liquid ; of an object)

n22
KINDOF

***
an electric toothbrush is a kind of electric device

down feathers are a kind of material

n31
USEDFOR

***
electrical devices are used for (industrial purposes ; household purposes) by humans

materials are used for making products by manufacturers

n23
KINDOF

***
a human is a kind of animal

an electric toothbrush is a kind of electric device

n32
USEDFOR

***
eyes are used for seeing by animals by sensing light

electricity is used as an energy source by electrical devices

n24
KINDOF

***
how long something takes is a kind of measurement of time

n33
USEDFOR

***
a stopwatch is used to measure time

n34
KINDOF

***
a spoon is a kind of object

a container is a kind of object
a fork is a kind of object
a nail is a kind of object

a human is a kind of animal
a balloon is a kind of object
butter is a kind of substance
a prong is a kind of object

water is a kind of liquid
air is a kind of gas

a change is a kind of event
a paper clip is a kind of object

a block is a kind of object
water is a kind of substance

an ice cube is a kind of object
soup is a kind of food

a burner is a kind of (object ; surface)
a (pan ; frying pan) is a kind of container for (cooking ; food)

n42
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

if (one surface ; one substance ; one object) touches something then one is exposed to that something
if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)

if an object is made of a material then that object has the properties of that material
when an animal eats or drinks something , that animal tastes that something

if an object reflects light toward the eye then that object can be seen
if a liquid disappears then that liquid probably evaporated

if gas is heated then that gas will (expand ; rise)
if liquid is boiling then that liquid is hot

if an event occurs by adding something then that event requires that something
if a hot (object ; substance) is (exposed to ; touches) a cold (object ; substance) then (that object ; that substance) will likely cool

if food is cooked then heat energy is added to that food
if a container contains something then that container touches that something

n35
KINDOF

***
material composition is a kind of chemical property

a human is a kind of animal
a pan is a kind of object

a living thing is a kind of object

n43
PROTO-IF-THEN

***
if something undergoes a physical change then the physical properties of that something will change

if electricity (flows through ; is transferred through) the body of an animal then that animal is electrocuted
if too much heat is transferred to an object then that object may burn

if something undergoes physical change then the chemical properties of that something will remain unchanged

n36
KINDOF

***
taste is a kind of sense

n44
PROTO-IF-THEN

***
when an animal eats or drinks something , that animal tastes that something

n37
KINDOF

***
sunlight is a kind of solar energy

metal is a kind of material
glass is a kind of open container

n45
PROTO-IF-THEN

***
if (an object ; a substance) absorbs solar energy then (that object ; that substance) will increase in temperature

if something contains a large amount of magnetic material then that something will attract magnets
if something is dropped into a container of something else then that something is touching that something else

n38
KINDOF

***
sunlight is a kind of solar energy

n46
PROTO-IF-THEN

***
if something is outside during the day then that something will receive sunlight

n39
KINDOF

***
glass is a kind of open container

n47
PROTO-IF-THEN

***
when a gas in an open container (evaporates ; boils) , that gas spreads out into the air

n40
KINDOF

***
sunlight is a kind of solar energy

water is a kind of liquid
a pan is a kind of object

a living thing is a kind of object
state of matter at room temperature is a kind of physical property

magnetism is a kind of physical property
conductivity is a kind of physical property

wood is a kind of natural material
metal is a kind of material

soup is a kind of liquid
iron is a kind of metal

solar energy is a kind of heat energy

n48
PROTO-IF-THEN

***
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)
if one is holding an object then one is touching that object

if an object is made of a material then that object has the properties of that material
if something is made of (something ; a material) then that something contains (that something ; that material)

if a magnet is attracted to a metal then that magnet will stick to that metal

n41
KINDOF

***
an animal is a kind of organism
a container is a kind of object

liquid is a kind of state of matter

n49
PROTO-IF-THEN

***
if electricity (flows through ; is transferred through) the body of an animal then that animal is electrocuted

if a container contains something then that container touches that something
if a liquid disappears then that liquid probably evaporated

n50
KINDOF

***
measuring is a kind of observing
a living thing is a kind of object

n57
KINDOF

***
a thermometer is a kind of instrument for measuring temperature

a magnifying glass is a kind of tool for observing small things

n51
KINDOF

***
water is a kind of liquid

an animal is a kind of living thing
a living thing is a kind of object

ice is a kind of food
marble is a kind of (object ; material)

n58
KINDOF

***
a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

a magnifying glass is a kind of tool for observing small things
binoculars are a kind of instrument for observing distant objects

milliliters is a kind of unit for measuring volume of liquids
a (pan ; frying pan) is a kind of container for (cooking ; food)

n52
KINDOF

***
solid is a kind of state of matter
gas is a kind of state of matter

a meter stick is a kind of tool for (measuring length ; measuring distance)
a sheet of sandpaper is a kind of object

a plant is a kind of living thing
marble is a kind of (object ; material)

a table is a kind of object
liquid is a kind of state of matter

oxygen is a kind of element
adding something is a kind of change

a paper is a kind of object
a paper clip is a kind of object

expand is a kind of change in volume
salt is a kind of substance

a calculator is a kind of tool
a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

rubber is a kind of material
aluminum is a kind of element

lead is a kind of element
a living thing is a kind of object

copper is a kind of metal
elements are a kind of substance

magnetism is a kind of physical property
state of matter at room temperature is a kind of physical property

water is a kind of substance

n59
KINDOF

***
liquid is a kind of state of matter

a stopwatch is a kind of tool for measuring time
a block is a kind of object

an animal is a kind of living thing
water is a kind of matter
a table is a kind of object
a statue is a kind of object
iron is a kind of element

reducing is a kind of change
a calculator is a kind of tool
a pencil is a kind of object

contract is a kind of change in volume
sugar is a kind of substance

a balance is a kind of instrument for (measuring mass ; measuring weight)
plastic is a kind of material made by humans

lead is a kind of element
gold is a kind of element
a pan is a kind of object
zinc is a kind of metal

water is a kind of substance
state of matter at room temperature is a kind of physical property

conductivity is a kind of physical property

n53
KINDOF

***
milliliters is a kind of unit for measuring volume of liquids

n60
KINDOF

***
a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

n55
KINDOF

***
an animal is a kind of living thing

metal is a kind of material
gas is a kind of substance

a beverage is a kind of food
water is a kind of liquid

a coin is a kind of object
precipitation is a kind of natural (occurrence ; cause)

liquid is a kind of state of matter
elements are a kind of substance

an insect is a kind of animal
solid is a kind of state of matter

a tool is a kind of object
a living thing is a kind of object
a plant is a kind of living thing

a bird is a kind of animal
a process is a kind of event

a fruit is a kind of object
an animal is a kind of organism

a human is a kind of animal
state of matter at room temperature is a kind of physical property

quail are a kind of bird
a tree is a kind of plant

a container is a kind of object

n62
KINDOF

***
a bird is a kind of animal
copper is a kind of metal

iron is a kind of metal
air is a kind of gas

tea is a kind of beverage
a puddle is a kind of body of water

a dime is a kind of coin
rain is a kind of precipitation

water is a kind of liquid
oxygen is a kind of element

iron is a kind of element
an ant is a kind of insect

an ice cube is a kind of solid
a meter stick is a kind of tool for (measuring length ; measuring distance)

a stopwatch is a kind of tool for measuring time
a calculator is a kind of tool

a plant is a kind of living thing
a tree is a kind of plant
quail are a kind of bird

aluminum is a kind of metal
melting is a kind of process

a butterfly is a kind of animal
gold is a kind of solid

an apple is a kind of fruit
a human is a kind of animal
a student is a kind of human

iron is a kind of solid
solid is a kind of state of matter
valley quail are a kind of quail

a redwood tree is a kind of tree
an animal is a kind of living thing

an insect is a kind of animal
a (pan ; frying pan) is a kind of container for (cooking ; food)

n56
KINDOF

***
water is a kind of liquid

water is a kind of natural resource
a body of water is a kind of environment

paper is a kind of material
soup is a kind of liquid

butter is a kind of substance
rain is a kind of water
ice is a kind of solid

an ice cube is a kind of solid
iron is a kind of solid

n63
KINDOF

***
a body of water is a kind of environment

water is a kind of substance
a paper is a kind of object

soup is a kind of food
butter is a kind of solid below 32 degrees celsius

rain is a kind of precipitation
water is a kind of matter

ice is a kind of food
an ice cube is a kind of object

iron is a kind of metal
water is a kind of liquid

n64
PROTO-IF-THEN

***
if (an object ; a substance) absorbs solar energy then (that object ; that substance) will increase in temperature

if an object reflects light toward the eye then that object can be seen
if a container contains something then that container touches that something

if a flexible container is pushed on then that container will change shape
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)
if liquid is boiling then that liquid is hot

if an event occurs by adding something then that event requires that something
if something is definite in shape then that something will not change shape easily

when a gas in an open container (evaporates ; boils) , that gas spreads out into the air

n78
SYNONYMY

***
to add means to increase

visible means able to be seen
being (on something ; placed in something ; placed over something) means touching that something

variable means able to change
receiving sunlight is synonymous with absorbing sunlight

to receive sunlight means to absorb sunlight
to get hot means become hot

(to depend on ; to rely on ; to need) means to require
staying means not changing
expand means spread out

adding heat means increasing temperature

n65
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

if something is places over a heat source then that something is exposed to that heat source

n79
SYNONYMY

***
heat means heat energy

heat energy is synonymous with thermal energy

n66
PROTO-IF-THEN

***
if an object is made of a material then that object has the properties of that material

n80
SYNONYMY

***
a property of something is a feature of that something

n68
PROTO-IF-THEN

***
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

n82
SYNONYMY

***
heat means heat energy

n69
PROTO-IF-THEN

***
if (one surface ; one substance ; one object) touches something then one is exposed to that something

if something is outside during the day then that something will receive sunlight

n83
SYNONYMY

***
being (on something ; placed in something ; placed over something) means touching that something

receiving sunlight is synonymous with absorbing sunlight
to receive sunlight means to absorb sunlight

n73
PROTO-IF-THEN

***
if a liquid disappears then that liquid probably evaporated

n87
SYNONYMY

***
disappeared is similar to gone

n1199
PROTO-PROP-FLEX-RIGIDITY

***
a beach ball is flexible

n75
PROTO-IF-THEN

***
if food is cooked then heat energy is added to that food

if something does not have to be replaced for a long time then that something will save money
if something lasts longer then that something will not have to be replaced for a long time

n89
SYNONYMY

***
heat energy is synonymous with thermal energy
replacement means something that is replaced

heat means heat energy

n1229
PROTO-MEASUREMENTS

***
density is a measure of mass (over volume ; divided by volume)

n77
PROTO-IF-THEN

***
if an object is made of a material then that object has the properties of that material

if electricity (flows through ; is transferred through) the body of an animal then that animal is electrocuted

n91
SYNONYMY

***
an object is an item

electricity means electrical energy

n92
CHANGE

***
freezing means changing from a liquid into a solid by reducing heat energy

melting means changing from a solid into a liquid by adding heat energy
a phase change is when (matter ; a substance) changes from one state into another state

(boiling ; evaporation) means change from a liquid into a gas by adding heat energy

n101
KINDOF

***
water is a kind of liquid

an ice cube is a kind of solid
ice is a kind of solid

ice cream is a kind of solid
juice is a kind of liquid

butter is a kind of solid below 32 degrees celsius
gold is a kind of solid

solid is a kind of state of matter
liquid is a kind of state of matter

n93
CHANGE

***
melting means changing from a solid into a liquid by adding heat energy

(boiling ; evaporation) means change from a liquid into a gas by adding heat energy
freezing means changing from a liquid into a solid by reducing heat energy

n102
KINDOF

***
liquid is a kind of state of matter
gas is a kind of state of matter
solid is a kind of state of matter

n94
CHANGE

***
melting means changing from a solid into a liquid by adding heat energy

(boiling ; evaporation) means change from a liquid into a gas by adding heat energy

n103
KINDOF

***
solid is a kind of state of matter
liquid is a kind of state of matter

n95
CHANGE

***
melting means changing from a solid into a liquid by adding heat energy

freezing means changing from a liquid into a solid by reducing heat energy
condensing means changing from a gas into a liquid by reducing heat energy

n104
KINDOF

***
water is a kind of liquid

ice is a kind of solid
dew is a kind of liquid

n98
CHANGE

***
condensing means changing from a gas into a liquid by reducing heat energy

(boiling ; evaporation) means change from a liquid into a gas by adding heat energy
melting means changing from a solid into a liquid by adding heat energy

n107
KINDOF

***
condensing is a kind of process
evaporation is a kind of process

melting is a kind of process

n99
CHANGE

***
melting means changing from a solid into a liquid by adding heat energy

phase changes do not change mass
(boiling ; evaporation) means change from a liquid into a gas by adding heat energy

condensing means changing from a gas into a liquid by reducing heat energy

n108
KINDOF

***
melting is a kind of phase change
an increase is a kind of change

adding something is a kind of change
reducing is a kind of change

n100
CHANGE

***
a phase change is when (matter ; a substance) changes from one state into another state

tearing an object changes that object 's shape

n109
KINDOF

***
water is a kind of substance
a pencil is a kind of object
a paper is a kind of object

n110
PROTO-ACTION

***
friction acts to counter the motion of two objects when their surfaces are touching

n118
PROTO-IF-THEN

***
if one surface is (moved against ; moved over ; moved down) another surface then those surfaces are touching

n111
PROTO-ACTION

***
a container contains (objects ; material ; substances)

n119
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

if (one surface ; one substance ; one object) touches something then one is exposed to that something

n113
PROTO-ACTION

***
a magnet attracts (magnetic metals ; ferromagnetic metals) through magnetism

n121
PROTO-IF-THEN

***
if something contains a large amount of magnetic material then that something will attract magnets

n116
PROTO-ACTION

***
a magnet attracts (magnetic metals ; ferromagnetic metals) through magnetism

a container contains (objects ; material ; substances)
shiny (things ; objects) reflect light

a source of something (emits ; produces ; generates) that something
animals taste flavors

n124
PROTO-IF-THEN

***
if a magnet is attracted to a metal then that magnet will stick to that metal

if a container contains something then that container touches that something
if an object reflects light toward the eye then that object can be seen

if a flexible container is pushed on then that container will change shape
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

when an animal eats or drinks something , that animal tastes that something

n117
PROTO-ACTION

***
a source of something (emits ; produces ; generates) that something

a container contains (objects ; material ; substances)
matter with variable volume and shape (assumes ; expands to fill ; takes) the shape and size of its entire container

n125
PROTO-IF-THEN

***
if (one surface ; one substance ; one object) touches something then one is exposed to that something

if an object is made of a material then that object has the properties of that material
if a container contains something then that container touches that something

if a flexible container is pushed on then that container will change shape

n958
CAUSE

***
condensing causes a liquid to form

n128
CHANGE

***
tearing means changing a whole into pieces

n135
SYNONYMY

***
tearing means ripping

n129
CHANGE

***
(boiling ; evaporation) means change from a liquid into a gas by adding heat energy

freezing means changing from a liquid into a solid by reducing heat energy

n136
SYNONYMY

***
boiling point means temperature (at which a liquid boils ; above which a liquid boils)

boiling point is the highest temperature a liquid can reach
freezing point means temperature (at which a liquid freezes ; below which a liquid freezes)

n130
CHANGE

***
freezing means changing from a liquid into a solid by reducing heat energy

n137
SYNONYMY

***
moisture means (liquid ; liquid water)

n1193
PROTO-INSTANCES

***
an element is not an alloy

n140
KINDOF

***
soft is a kind of touch sensation

n149
SYNONYMY

***
touching something means feeling that something

n141
KINDOF

***
water is a kind of liquid

contract is a kind of change in volume
expand is a kind of change in volume

n150
SYNONYMY

***
freezing point means temperature (at which a liquid freezes ; below which a liquid freezes)

boiling point means temperature (at which a liquid boils ; above which a liquid boils)
boiling point is the highest temperature a liquid can reach

variable means able to change

n142
KINDOF

***
a magnifying glass is a kind of tool for observing small things

color is a kind of (physical ; visual) property
ice is a kind of solid

a human is a kind of animal
a piece of something is a kind of object

milliliters is a kind of unit for measuring volume of liquids

n151
SYNONYMY

***
(a hand lens ; a magnifying lens) is synonymous with a magnifying glass

colorless means no color
ice crystals means ice

person is synonymous with human
an instrument is a piece of equipment

mL means milliliters

n143
KINDOF

***
rain is a kind of water

n152
SYNONYMY

***
washing out means being moved from by water

n145
KINDOF

***
a magnifying glass is a kind of tool for observing small things

n154
SYNONYMY

***
observe means see

(inspect ; observe) means examine

n146
KINDOF

***
an increase is a kind of change

n155
SYNONYMY

***
to add means to increase

n147
KINDOF

***
a thermometer is a kind of instrument for measuring temperature

conductivity is a kind of physical property
binoculars are a kind of instrument for observing distant objects

a balance is a kind of instrument for (measuring mass ; measuring weight)
a hair is a kind of object

walking is a kind of motion
a nail is a kind of object

metal is a kind of material
a user is a kind of person

state of matter at room temperature is a kind of physical property
magnetism is a kind of physical property

solid is a kind of state of matter
a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

n156
SYNONYMY

***
instrument means tool

a property of something is a feature of that something
an instrument is a piece of equipment

an object is an item
(motion ; movement) means (moving ; to move)

material means substance
person is synonymous with human

physical state means state of matter

n148
KINDOF

***
water is a kind of natural resource

a body of water is a kind of environment
gas is a kind of substance

sunlight is a kind of solar energy
a sheet of sandpaper is a kind of object

n157
SYNONYMY

***
nature means a natural environment

material means substance
heat means heat energy

texture means how an object feels

n158
PROPERTIES-GENERIC

***
(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

n161
PROTO-IF-THEN

***
if food is cooked then heat energy is added to that food

n160
PROPERTIES-GENERIC

***
(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

conductivity is a property of a (material ; substance)
magnetism is a property of (materials ; objects) and includes ordered values of (nonmagnetic ; magnetic)

n163
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

if (an object ; a substance) absorbs solar energy then (that object ; that substance) will increase in temperature
if (one surface ; one substance ; one object) touches something then one is exposed to that something

if an object is made of a material then that object has the properties of that material
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)

n164
CHANGE

***
(boiling ; evaporation) means change from a liquid into a gas by adding heat energy

melting means changing from a solid into a liquid by adding heat energy
freezing means changing from a liquid into a solid by reducing heat energy

condensing means changing from a gas into a liquid by reducing heat energy

n166
CHANGE-VEC

***
boiling is when liquids are heated above their boiling point
melting is when solids are heated above their melting point

heating means adding heat
(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

n165
CHANGE

***
condensing means changing from a gas into a liquid by reducing heat energy

(boiling ; evaporation) means change from a liquid into a gas by adding heat energy

n167
CHANGE-VEC

***
condensing is when gasses are cooled below their boiling point

drying means (amount of water ; amount of liquid ; wetness) decreases
boiling means the volume of a liquid decreases

n168
KINDOF

***
water is a kind of substance
a table is a kind of furniture

water is a kind of matter
marble is a kind of (object ; material)

a statue is a kind of object
a table is a kind of object

brass is a kind of alloy
metal is a kind of material

a living thing is a kind of object
an insulator is a kind of material

n172
MADEOF

***
(matter ; materials ; substances) are made of (atoms ; particles)

furniture often is made of wood
matter is made of molecules

objects are made of (materials ; substances ; matter)
alloys are made of two or more metals

substances are made of matter
materials are made of matter

n169
KINDOF

***
zinc is a kind of metal

water is a kind of substance
copper is a kind of metal
metal is a kind of material

sugar is a kind of substance

n173
MADEOF

***
alloys are made of two or more metals

objects are made of (materials ; substances ; matter)
(pot ; pan ; frying pan) is made of metal for cooking

a thermal conductor is made of materials that conduct thermal energy
a solution is made of one substance dissolved in another substance

n170
KINDOF

***
brass is a kind of alloy
iron is a kind of solid
iron is a kind of metal

a (pan ; frying pan) is a kind of container for (cooking ; food)
a burner is a kind of (object ; surface)

a sleeping bag is a kind of product
a paper clip is a kind of object

a pan is a kind of object
a nail is a kind of object

n174
MADEOF

***
brass is made of copper and zinc

iron nails are made of iron
(pot ; pan ; frying pan) is made of metal for cooking

a burner is made of metal
sleeping bags usually are made of insulators

a paper clip is often made of (magnetic metals ; ferromagnetic metals)

n171
KINDOF

***
copper is a kind of metal
metal is a kind of material

wood is a kind of natural material
zinc is a kind of metal

n175
MADEOF

***
brass is made of copper and zinc

a paper clip is often made of (magnetic metals ; ferromagnetic metals)
a burner is made of metal

(pot ; pan ; frying pan) is made of metal for cooking
furniture often is made of wood

n176
KINDOF

***
water is a kind of liquid

water is a kind of substance
water is a kind of natural resource

a body of water is a kind of environment
water is a kind of matter

n180
PROTO-PROP-STATESOFMATTER1

***
water is in the gas state , called water vapor , for temperatures between (373 ; 212 ; 100) and 100000000000 (K ; F ; C)

water is in the solid state , called ice , for temperatures between (0 ; -459 ; -273) and (273 ; 32 ; 0) (K ; F ; C)
water is in the liquid state , called liquid water , for temperatures between (273 ; 32 ; 0) and (373 ; 212 ; 100) (K ; F ; C)

n177
KINDOF

***
ice is a kind of food

an ice cube is a kind of solid
ice is a kind of solid

n181
PROTO-PROP-STATESOFMATTER1

***
water is in the solid state , called ice , for temperatures between (0 ; -459 ; -273) and (273 ; 32 ; 0) (K ; F ; C)

n184
CAUSE

***
burning a living thing usually causes harm to that living thing

sugar causes food to taste sweet

n193
KINDOF

***
a living thing is a kind of object

sweet is a kind of flavor

n185
CAUSE

***
condensing causes a liquid to form

completing a circuit causes (electricity ; electric current) to flow through that circuit
friction causes the temperature of an object to increase

freezing causes a solid to form
chemical reactions cause chemical change

sharpening an object causes that object to change shape
sugar causes food to taste sweet

n194
KINDOF

***
dew is a kind of liquid

an electric toothbrush is a kind of electric device
a sheet of sandpaper is a kind of object

a block is a kind of object
ice is a kind of solid

combustion is a kind of chemical change
a paper is a kind of object
a pencil is a kind of object

a beverage is a kind of food
fire is a kind of chemical reaction

n186
CAUSE

***
sugar causes food to taste sweet

fire causes burning

n195
KINDOF

***
taste is a kind of sense

burning is a kind of action

n187
CAUSE

***
fire causes burning

n196
KINDOF

***
fire is a kind of chemical reaction

n188
CAUSE

***
an object being pushed across another object causes their surfaces to move against each other

chemical reactions cause (new substances ; different substances) to form

n197
KINDOF

***
a block is a kind of object

a sheet of sandpaper is a kind of object
fire is a kind of chemical reaction

n189
CAUSE

***
evaporation causes amount of water to decrease

the sun causes water to evaporate more quickly by adding heat
heating salt water causes the water to evaporate while the salt remains

n198
KINDOF

***
water is a kind of liquid

n190
CAUSE

***
chemical reactions cause (new substances ; different substances) to form

n199
KINDOF

***
combustion is a kind of chemical change

n191
CAUSE

***
heating salt water causes the water to evaporate while the salt remains

n200
KINDOF

***
salt is a kind of solid

n192
CAUSE

***
electrocution causes harm to an organism

n201
KINDOF

***
an animal is a kind of organism

n1198
PROTO-IF-THEN

***
if a flexible container is pushed on then that container will change shape

n1223
ATTRIBUTE-VALUE-RANGE

***
shortest means (least ; smallest) in length

n205
PROTO-IF-THEN

***
if one is holding an object then one is touching that object

n212
TRANSFER

***
a thermal energy conductor transfers heat from (warmer objects ; hotter objects) to cooler objects

n207
PROTO-IF-THEN

***
when an electrical conductor is plugged into an outlet , a circuit is completed

n214
TRANSFER

***
electrical conduction is when (metals ; electrical conductors) conduct electricity through (a wire ; electrical conductor ; metal)

n208
PROTO-IF-THEN

***
if electricity (flows through ; is transferred through) the body of an animal then that animal is electrocuted

if too much heat is transferred to an object then that object may burn

n215
TRANSFER

***
electrical conduction is when (metals ; electrical conductors) conduct electricity through (a wire ; electrical conductor ; metal)

a thermal energy conductor transfers heat from (warmer objects ; hotter objects) to cooler objects

n216
KINDOF

***
tea is a kind of beverage
sweet is a kind of flavor
a leaf is a kind of object

a container is a kind of object
metal is a kind of material
gas is a kind of substance
a ball is a kind of object

rolling is a kind of motion
iron is a kind of metal

n226
PROTO-ACTION

***
humans drink beverages

animals taste flavors
classifying means grouping (objects ; materials) by their properties

a container contains (objects ; material ; substances)
friction acts to counter the motion of two objects when their surfaces are touching
a magnet attracts (magnetic metals ; ferromagnetic metals) through magnetism

n217
KINDOF

***
a human is a kind of animal

a bird is a kind of animal
a balloon is a kind of object
the floor is a kind of object

a (pan ; frying pan) is a kind of container for (cooking ; food)

n227
PROTO-ACTION

***
animals taste flavors

animals usually distance themselves from humans
shiny (things ; objects) reflect light

a white object reflects all visible light
a container contains (objects ; material ; substances)

n218
KINDOF

***
a prism is a kind of object

a human is a kind of animal
carpet is a kind of material

a tectonic plate is a kind of object
sugar is a kind of substance

an animal is a kind of living thing

n228
PROTO-ACTION

***
a prism refracts light

humans drink beverages
carpet absorbs sound

a tectonic plate moves along a fault line
sugar dissolves in water when they are combined
animals usually distance themselves from humans

n219
KINDOF

***
a beverage is a kind of food
metal is a kind of material

n229
PROTO-ACTION

***
humans drink beverages

a magnet attracts (magnetic metals ; ferromagnetic metals) through magnetism

n221
KINDOF

***
classifying is a kind of science process

n231
PROTO-ACTION

***
classifying means grouping (objects ; materials) by their properties

n222
KINDOF

***
a block is a kind of object

a sheet of sandpaper is a kind of object

n232
PROTO-ACTION

***
friction occurs when two object 's surfaces move against each other

n969
PARTOF

***
legs are usually a part of an animal

n225
KINDOF

***
water is a kind of substance

n235
PROTO-ACTION

***
sugar dissolves in water when they are combined

n236
KINDOF

***
a balance is a kind of instrument for (measuring mass ; measuring weight)

a gram is a kind of unit for measuring mass

n240
PROPERTIES-GENERIC

***
(mass ; weight) is a property of (matter ; objects ; materials)

n237
KINDOF

***
metal is a kind of material

frosting is a kind of material
a paper bag is a kind of object

a sheet of paper is a kind of object
a spoon is a kind of object

wood is a kind of natural material
a leaf is a kind of object

butter is a kind of substance
a rock is a kind of object

a paper is a kind of object
a sheet of sandpaper is a kind of object

a block is a kind of object
marble is a kind of (object ; material)

a statue is a kind of object
a table is a kind of object

a paper clip is a kind of object
a nail is a kind of object

a pencil is a kind of object
a fruit is a kind of object

n241
PROPERTIES-GENERIC

***
magnetism is a property of (materials ; objects) and includes ordered values of (nonmagnetic ; magnetic)

(mass ; weight) is a property of (matter ; objects ; materials)
size is a property of objects and includes ordered values of (microscopic ; tiny ; small ; medium ; large)

shape is a property of an object
(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

conductivity is a property of a (material ; substance)
thickness is a property of an object and includes ordered values of (thin ; thick)

hardness is a property of a (material ; an object) and includes ordered values of (malleable ; rigid)
texture is a property of (surfaces ; materials ; objects) and includes ordered values of (smooth ; rough)

shape is a property of the appearance of an object
color is a property of (an object ; a material)

n238
KINDOF

***
smooth is a kind of texture

sunlight is a kind of solar energy

n242
PROPERTIES-GENERIC

***
texture is a property of (surfaces ; materials ; objects) and includes ordered values of (smooth ; rough)

(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

n239
KINDOF

***
color is a kind of (physical ; visual) property

n243
PROPERTIES-GENERIC

***
color is a property of (an object ; a material)

n256
CHANGE-VEC

***
climbing increases altitude

melting is when solids are heated above their melting point

n262
SYNONYMY

***
increase means more

heat means heat energy

n257
CHANGE-VEC

***
(to slow ; to slow down) decreases speed

n263
SYNONYMY

***
less is similar to decrease

n258
CHANGE-VEC

***
(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

heating means adding heat
an electrical insulator (slows ; prevents) the (transfer of ; flow of) electricity

n264
SYNONYMY

***
heat means heat energy

heat energy is synonymous with thermal energy
electricity means electrical energy

n259
CHANGE-VEC

***
(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

drying means (amount of water ; amount of liquid ; wetness) decreases
an electrical insulator (slows ; prevents) the (transfer of ; flow of) electricity

n265
SYNONYMY

***
take away means decreasing
to lower means to decrease

protecting something means preventing harm to that something

n260
CHANGE-VEC

***
a thermal insulator (slows ; prevents) the transfer of heat

an electrical insulator (slows ; prevents) the (transfer of ; flow of) electricity

n266
SYNONYMY

***
insulator means good insulator

n927
PROTO-PROPERTIES-THINGS

***
ice is cold in temperature

a freezer is (cool ; cold) in temperature

n245
SOURCEOF

***
fire gives off (light ; heat ; smoke)

the sun is a source of (radiation ; heat) called sunlight
a (hot ; warm) something is a source of heat

n251
SYNONYMY

***
to give off means to be the source of

being in the sun is synonymous with being in the sunlight
being (on something ; placed in something ; placed over something) means touching that something

n246
SOURCEOF

***
sunlight produces heat

n252
SYNONYMY

***
make means produce

n247
SOURCEOF

***
the sun is a source of (radiation ; heat) called sunlight

n253
SYNONYMY

***
adding heat means increasing temperature

n904
PROTO-ACTION

***
matter in the liquid state drips

n249
SOURCEOF

***
a (hot ; warm) something is a source of heat

n255
SYNONYMY

***
to get hot means become hot

n1108
MADEOF

***
iron nails are made of iron

n1192
MADEOF

***
alloys are made of two or more metals

n278
CHANGE

***
freezing means changing from a liquid into a solid by reducing heat energy

tearing an object changes that object 's shape

n285
PROTO-IF-THEN

***
if something is definite in shape then that something will not change shape easily

if something undergoes a physical change then the physical properties of that something will change

n886
PROPERTIES-GENERIC

***
(variability of shape ; variability of volume) is a property of matter and includes values of (variable ; definite)

volume is a property of matter

n288
KINDOF

***
wood is a kind of natural material

water is a kind of substance
oxygen is a kind of element

iron is a kind of element
an insect is a kind of animal

a hair is a kind of object
an ice cube is a kind of object
an ice cube is a kind of solid

water is a kind of liquid

n293
PROTO-PROPERTIES-THINGS

***
wood is usually sturdy

the (freezing point of water ; melting point of water) is (32F ; 0C ; 273K)
the melting point of oxygen is (-361.8F ; -218.8C ; 54.4K)

the melting point of iron is (2800F ; 1538C ; 1811K)
an insect has six legs

hair is thin
ice is cold in temperature

the boiling point of water is (212F ; 100C ; 373K)
an insect usually has a small size

n289
KINDOF

***
an ant is a kind of insect

a paper bag is a kind of object
marble is a kind of (object ; material)

a ladybug is a kind of insect
a living thing is a kind of object

n294
PROTO-PROPERTIES-THINGS

***
an insect usually has a small size

a piece of an object is smaller in size than the whole object
different materials usually have different properties

an insect has six legs
an part of an object is smaller than the entire object

n906
PARTOF

***
a surface is a part of an object

the atmosphere is a part of (nature ; the environment)

n291
KINDOF

***
sunlight is a kind of solar energy

sunlight is a kind of light

n296
PROTO-PROPERTIES-THINGS

***
a sunny day has lots of sunlight

n268
PROP-CONDUCTIVITY

***
metal is an (electrical ; electrical energy) conductor

down feathers are a (thermal ; thermal energy) insulator
rubber is an (electrical ; electrical energy ; thermal ; thermal energy) insulator

n270
SYNONYMY

***
a good conductor is a conductor
insulator means good insulator

n298
REQUIRES

***
electric devices require electrical energy to function

n303
USEDFOR

***
electricity is used as an energy source by electrical devices

n300
REQUIRES

***
cooking food requires adding heat energy

n305
USEDFOR

***
a (pan ; frying pan) is used for cooking food by heating food in it on a stove

n301
REQUIRES

***
determining often requires (measuring ; observing)

comparing requires measuring
building something often requires measuring the materials

cutting a material usually requires measuring length
counting something usually requires seeing that something

n306
USEDFOR

***
a stopwatch is used to measure time

a tape measure is used to measure (length ; distance)
a balance is used for measuring (mass ; weight) (of an object ; of a substance)

a meter stick is used to measure (distance ; height ; length)
a graduated cylinder is used to measure volume (of a liquid ; of an object)

magnifying glass is used to see small things by making objects appear bigger

n302
REQUIRES

***
navigation requires knowing direction

n307
USEDFOR

***
a compass is used for determining direction

n308
PROP-CONDUCTIVITY

***
rubber is an (electrical ; electrical energy ; thermal ; thermal energy) insulator

metal is an (electrical ; electrical energy) conductor
wood is an (electrical ; electrical energy ; thermal energy) insulator

wax is an (electrical ; electrical energy) insulator
brick is an (electrical ; electrical energy) insulator

n309
PROTO-INSTANCES

***
plastic is usually an electrical insulator

n1228
PROTO-INTENSIVE-EXTENSIVE

***
density is an intensive property

n313
PROTO-IF-THEN

***
if liquid is boiling then that liquid is hot

when an electrical conductor is plugged into an outlet , a circuit is completed

n318
SOURCEOF

***
a (hot ; warm) something is a source of heat

a complete electrical circuit is a source of electrical energy

n320
SYNONYMY

***
being (on something ; placed in something ; placed over something) means touching that something

n329
TRANSFER

***
transferring is moving from one place to another place

n1222
ATTRIBUTE-VALUE-RANGE

***
lowest means least in (value ; amount ; number)

n970
PROTO-PROPERTIES-THINGS

***
an insect usually has a small size

n327
SYNONYMY

***
to conduct is similar to to transfer

washing out means being moved from by water

n336
TRANSFER

***
a thermal energy conductor transfers heat from (warmer objects ; hotter objects) to cooler objects

soil erosion is when (wind ; moving water ; gravity) move soil from (fields ; environments)

n344
KINDOF

***
a body of water is a kind of environment

water is a kind of substance
water is a kind of liquid

water is a kind of natural resource

n348
PROTO-MEASUREMENTS

***
humidity is the amount of (water vapor ; moisture) (in the air ; in the atmosphere)

n345
KINDOF

***
a meter stick is a kind of tool for (measuring length ; measuring distance)

a ruler is a kind of tool for measuring length
a thermometer is a kind of instrument for measuring temperature

a balance is a kind of instrument for (measuring mass ; measuring weight)
a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

a stopwatch is a kind of tool for measuring time

n349
PROTO-MEASUREMENTS

***
speed is a measure of distance travelled (over time ; divided by time)

diameter is a measure of length through the center of a circle
temperature is a measure of heat energy

(distance moved ; distance travelled) is a measure of how far an object moves
density is a measure of mass (over volume ; divided by volume)

n347
KINDOF

***
a tectonic plate is a kind of object

n351
PROTO-MEASUREMENTS

***
(distance moved ; distance travelled) is a measure of how far an object moves

n338
SYNONYMY

***
(a hand lens ; a magnifying lens) is synonymous with a magnifying glass

n341
USEDFOR

***
magnifying glass is used to see small things by making objects appear bigger

n339
SYNONYMY

***
not looking means not seeing
visible means able to be seen

observe means see

n342
USEDFOR

***
eyes are used for seeing by animals by sensing light

magnifying glass is used to see small things by making objects appear bigger

n372
CAUSE

***
sharpening an object causes that object to change shape

sugar causes food to taste sweet

n378
PROTO-IF-THEN

***
if something undergoes a physical change then the physical properties of that something will change

when an animal eats or drinks something , that animal tastes that something

n373
CAUSE

***
absorbing sunlight causes objects to heat

burning a living thing usually causes harm to that living thing
completing a circuit causes (electricity ; electric current) to flow through that circuit

n379
PROTO-IF-THEN

***
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

if too much heat is transferred to an object then that object may burn
when an electrical conductor is plugged into an outlet , a circuit is completed

n374
CAUSE

***
ice wedging is when ice causes rocks to crack by expanding in openings

n380
PROTO-IF-THEN

***
when water freezes , that water expands

n377
CAUSE

***
adding heat to an object sometimes causes chemical reactions

chemical reactions cause chemical change

n383
PROTO-IF-THEN

***
if an object undergoes chemical change then that object will have new chemical properties

n384
PROP-CONDUCTIVITY

***
wood is an (electrical ; electrical energy ; thermal energy) insulator

metal is an (electrical ; electrical energy) conductor
water is an (electrical ; electric energy ; thermal ; thermal energy) conductor

metal is a (thermal ; thermal energy) conductor

n386
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

when an electrical conductor is plugged into an outlet , a circuit is completed

n354
SYNONYMY

***
visible means able to be seen
to reduce means to decrease

boiling point means temperature (at which a liquid boils ; above which a liquid boils)

n363
SYNONYMY

***
can be means able to be

take away means decreasing
boiling point is the highest temperature a liquid can reach

to lower means to decrease

n358
SYNONYMY

***
moving is similar to travelling

can be means able to be
to reduce means to decrease

n367
SYNONYMY

***
(motion ; movement) means (moving ; to move)

visible means able to be seen
counter means (reduce ; stop ; resist)

n359
SYNONYMY

***
a good conductor is a conductor

heat means heat energy

n368
SYNONYMY

***
good means positive

heat energy is synonymous with thermal energy

n361
SYNONYMY

***
best means most positive

n370
SYNONYMY

***
good means positive

n362
SYNONYMY

***
boiling point is the highest temperature a liquid can reach

n371
SYNONYMY

***
boiling point means temperature (at which a liquid boils ; above which a liquid boils)

n390
PROTO-ACTION

***
shiny (things ; objects) reflect light

n396
SYNONYMY

***
metallic is similar to shiny

n391
PROTO-ACTION

***
classifying means grouping (objects ; materials) by their properties

friction acts to counter the motion of two objects when their surfaces are touching
matter with variable volume and shape (assumes ; expands to fill ; takes) the shape and size of its entire container

n397
SYNONYMY

***
grouping means (putting ; placing) in different groups

counter means (reduce ; stop ; resist)
expand means spread out

n402
PROTO-MEASUREMENTS

***
speed is a measure of distance travelled (over time ; divided by time)

n405
USEDFOR

***
a calculator is used for (adding ; subtracting ; multiplying ; dividing)

n406
KINDOF

***
metal is a kind of material

wood is a kind of natural material
down feathers are a kind of material

rubber is a kind of material

n409
PROP-CONDUCTIVITY

***
metal is a (thermal ; thermal energy) conductor

wood is an (electrical ; electrical energy ; thermal energy) insulator
down feathers are a (thermal ; thermal energy) insulator

rubber is an (electrical ; electrical energy ; thermal ; thermal energy) insulator
metal is an (electrical ; electrical energy) conductor

n407
KINDOF

***
iron is a kind of metal

copper is a kind of metal

n410
PROP-CONDUCTIVITY

***
metal is an (electrical ; electrical energy) conductor

metal is a (thermal ; thermal energy) conductor

n408
KINDOF

***
an insulator is a kind of material

n411
PROP-CONDUCTIVITY

***
wax is an (electrical ; electrical energy) insulator

n412
KINDOF

***
a stopwatch is a kind of tool for measuring time

a tape measure is a kind of tool for (measuring distance ; measuring length)
a balance is a kind of instrument for (measuring mass ; measuring weight)
a meter stick is a kind of tool for (measuring length ; measuring distance)

a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

n415
REQUIRES

***
determining often requires (measuring ; observing)

building something often requires measuring the materials
comparing requires measuring

cutting a material usually requires measuring length

n413
KINDOF

***
wood is a kind of natural material

n416
REQUIRES

***
building something often requires measuring the materials

n414
KINDOF

***
wood is a kind of natural material

an electric toothbrush is a kind of electric device

n417
REQUIRES

***
cutting a material usually requires measuring length
electric devices require electrical energy to function

n426
CAUSE

***
absorbing sunlight causes objects to heat

n432
CHANGE

***
melting means changing from a solid into a liquid by adding heat energy

n428
CAUSE

***
temperature changing can cause phase changes

freezing causes a solid to form
condensing causes a liquid to form

n434
CHANGE

***
a phase change is when (matter ; a substance) changes from one state into another state

freezing means changing from a liquid into a solid by reducing heat energy
condensing means changing from a gas into a liquid by reducing heat energy

n429
CAUSE

***
water vapor cooling causes that water vapor to condense

n435
CHANGE

***
condensing means changing from a gas into a liquid by reducing heat energy

n422
PROP-CONDUCTIVITY

***
rubber is an (electrical ; electrical energy ; thermal ; thermal energy) insulator

wax is an (electrical ; electrical energy) insulator
brick is an (electrical ; electrical energy) insulator

wood is an (electrical ; electrical energy ; thermal energy) insulator

n424
PROTO-OPPOSITES

***
an insulator is the opposite of a conductor

n440
KINDOF

***
erosion is a kind of change

rain is a kind of water

n445
TRANSFER

***
soil erosion is when (wind ; moving water ; gravity) move soil from (fields ; environments)

raining is when rain falls from clouds to the (Earth ; ground) as a liquid

n460
MADEOF

***
a wax crayon is made of wax

a rubber eraser is made of rubber
a burner is made of metal

(pot ; pan ; frying pan) is made of metal for cooking

n463
PROP-CONDUCTIVITY

***
wax is an (electrical ; electrical energy) insulator

rubber is an (electrical ; electrical energy ; thermal ; thermal energy) insulator
metal is a (thermal ; thermal energy) conductor

n461
MADEOF

***
a thermal conductor is made of materials that conduct thermal energy

n464
PROP-CONDUCTIVITY

***
metal is a (thermal ; thermal energy) conductor

n462
MADEOF

***
sleeping bags usually are made of insulators

n465
PROP-CONDUCTIVITY

***
down feathers are a (thermal ; thermal energy) insulator

n450
PROTO-PROPERTIES-THINGS

***
a desk is usually short (in height ; in width)

a fingerprint is small in size
an insect usually has a small size

n455
USEDFOR

***
a centimeter is used for measuring (short lengths ; short distances)

magnifying glass is used to see small things by making objects appear bigger

n452
PROTO-PROPERTIES-THINGS

***
a desk usually has a length with values between 50 and 250 cm

n457
USEDFOR

***
(meters ; centimeters ; kilometers) are used to (describe distance ; describe length)

n454
PROTO-PROPERTIES-THINGS

***
a freezer is (cool ; cold) in temperature

n459
USEDFOR

***
a freezer is used for cooling things

n476
CAUSE

***
cracking something may cause that something to break apart

condensing causes a liquid to form

n482
CAUSE

***
ice wedging is when ice causes rocks to crack by expanding in openings

water vapor cooling causes that water vapor to condense

n926
CHANGE-VEC

***
cooling means temperature decreases

heat means temperature increases

n478
CAUSE

***
chemical reactions cause (new substances ; different substances) to form

chemical reactions cause chemical change
an object being pushed across another object causes their surfaces to move against each other

n484
CAUSE

***
chemical reactions cause chemical change

adding heat to an object sometimes causes chemical reactions
cooking causes a chemical reaction

combining two substances chemically causes chemical reactions
friction causes the temperature of an object to increase

n900
MADEOF

***
materials are made of matter

n489
CHANGE-VEC

***
(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

n497
CHANGE-VEC

***
condensing is when gasses are cooled below their boiling point

n490
CHANGE-VEC

***
boiling means the volume of a liquid decreases

n498
CHANGE-VEC

***
boiling is when liquids are heated above their boiling point

n1131
PROTO-INSTANCES

***
a rock is usually a solid

n1130
PROTO-INSTANCES

***
a metal is usually a solid

n495
CHANGE-VEC

***
heat means temperature increases

boiling is when liquids are heated above their boiling point

n503
CHANGE-VEC

***
cooling means temperature decreases

boiling means the volume of a liquid decreases

n504
CONTAINS

***
a beach ball contains gas

a body of water contains water

n506
KINDOF

***
gas is a kind of substance

water is a kind of substance
a body of water is a kind of environment

water is a kind of natural resource
water is a kind of liquid

n505
CONTAINS

***
a beach ball contains gas

a body of water contains water
a bubble contains gas

n507
KINDOF

***
air is a kind of gas

a puddle is a kind of body of water

n466
COUPLEDRELATIONSHIP

***
as the temperature of a liquid increases , that liquid will evaporate quicker

n471
SYNONYMY

***
warm means warm temperature

n467
COUPLEDRELATIONSHIP

***
as altitude increases , the temperature of the air will decrease

as the kinetic energy of a molecule increases , the temperature will increase
as the smoothness of something increases , the friction of that something will decrease when its surface moves against another surface

as state of matter changes , mass will not change
as a source of light moves directly overhead of an object , the size of the shadow of that object will decrease

n472
SYNONYMY

***
to lower means to decrease
to add means to increase

to reduce means to decrease
stay the same means not changing

n1017
PROPERTIES-GENERIC

***
(mass ; weight) is a property of (matter ; objects ; materials)

texture is a property of (surfaces ; materials ; objects) and includes ordered values of (smooth ; rough)

n469
COUPLEDRELATIONSHIP

***
as altitude increases , the temperature of the air will decrease

n474
SYNONYMY

***
increase means more

n470
COUPLEDRELATIONSHIP

***
as moisture of an object decreases , the friction of that object against another object will increase

n475
SYNONYMY

***
to reduce means to decrease

n508
PROTO-IF-THEN

***
if one is holding an object then one is touching that object

if a person is lost at sea then that person may not know the direction of land

n515
USEDFOR

***
a handle is used for holding an object

a compass is used for determining direction

n509
PROTO-IF-THEN

***
if a person is lost at sea then that person may not know the direction of land

n516
USEDFOR

***
a compass is used to navigate (oceans ; seas)

n510
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

if an object reflects light toward the eye then that object can be seen

n517
USEDFOR

***
a (pan ; frying pan) is used for cooking food by heating food in it on a stove

eyes are used for seeing by animals by sensing light
a stove is used for cooking by generating heat

n514
PROTO-IF-THEN

***
if too much heat is transferred to an object then that object may burn

n521
USEDFOR

***
a handle is used for holding an object

n528
CHANGE

***
condensing means changing from a gas into a liquid by reducing heat energy

melting means changing from a solid into a liquid by adding heat energy

n532
CHANGE

***
(boiling ; evaporation) means change from a liquid into a gas by adding heat energy

phase changes do not change mass
a phase change is when (matter ; a substance) changes from one state into another state

n536
COUPLEDRELATIONSHIP

***
as the temperature of a liquid increases , that liquid will evaporate quicker

as the thickness of an object increases , the resistance (to tearing ; to breaking) will increase
as the temperature of an object increases , the size of that object will increase

as moisture of an object decreases , the friction of that object against another object will increase
as state of matter changes , mass will not change

as a source of light moves directly overhead of an object , the size of the shadow of that object will decrease

n539
KINDOF

***
water is a kind of liquid

a paper is a kind of object
railroad tracks are a kind of object

a ball is a kind of object
solid is a kind of state of matter
liquid is a kind of state of matter

sunlight is a kind of light

n537
COUPLEDRELATIONSHIP

***
as a source of light moves directly overhead of an object , the size of the shadow of that object will decrease

n540
KINDOF

***
a flagpole is a kind of object

n538
COUPLEDRELATIONSHIP

***
as heat increases , a flexible container containing gas will expand

n541
KINDOF

***
expand is a kind of change in volume

n522
KINDOF

***
a sheet of sandpaper is a kind of object
a body of water is a kind of environment

a human is a kind of animal
an insect is a kind of animal

a ball is a kind of object
carpet is a kind of material

a living thing is a kind of object
a pan is a kind of object

a paper is a kind of object

n525
PARTOF

***
a surface is a part of an object

the atmosphere is a part of (nature ; the environment)
the head is a part of an animal

legs are usually a part of an animal
a surface is a part of a material

a handle is a part of an object for holding that object

n523
KINDOF

***
an animal is a kind of living thing

a sheet of sandpaper is a kind of object

n526
PARTOF

***
legs are usually a part of an animal

a rough surface is a part of sandpaper

n524
KINDOF

***
a burner is a kind of (object ; surface)

n527
PARTOF

***
a burner is a part of a stove

n553
CHANGE-VEC

***
climbing increases altitude
heating means adding heat

n558
COUPLEDRELATIONSHIP

***
as altitude increases , the temperature of the air will decrease

as heat increases , a flexible container containing gas will expand

n1120
PARTOF

***
the atmosphere is a part of (nature ; the environment)

n556
CHANGE-VEC

***
(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

heat means temperature increases

n561
COUPLEDRELATIONSHIP

***
as altitude increases , the temperature of the air will decrease

as the temperature of an object increases , the size of that object will increase

n545
CHANGE-VEC

***
cooling means temperature decreases

n550
PROTO-IF-THEN

***
if a hot (object ; substance) is (exposed to ; touches) a cold (object ; substance) then (that object ; that substance) will likely cool

n568
KINDOF

***
air is a kind of gas

an eraser is a kind of solid
juice is a kind of liquid

n571
PROTO-PROP-STATESOFMATTER

***
Matter in the gas phase has variable volume
Matter in the solid phase has definite shape
Matter in the liquid phase has variable shape
Matter in the gas phase has variable shape

n570
KINDOF

***
expand is a kind of change in volume
contract is a kind of change in volume

n573
PROTO-PROP-STATESOFMATTER

***
Matter in the gas phase has variable volume

n565
PARTOF

***
a handle is a part of an object for holding that object

n567
PROTO-IF-THEN

***
if too much heat is transferred to an object then that object may burn

if one is holding an object then one is touching that object

n579
PROPERTIES-GENERIC

***
magnetism is a property of (materials ; objects) and includes ordered values of (nonmagnetic ; magnetic)

n581
SYNONYMY

***
an object is an item

n582
UNIT

***
liters ( L ) is a unit used for measuring volume generally used for values between 1 and 50000000

kilograms ( kg ) are a unit used for measuring (mass ; weight) generally used for values between 1 and 50000000
centimeters ( cm ) are a unit used for measuring (length ; distance) generally used for values between 1 and 250

milliliters ( mL ) is a unit used for measuring volume generally used for values between 1 and 1000

n584
USEDFOR

***
a graduated cylinder is used to measure volume (of a liquid ; of an object)

a scale is used for measuring weight
a centimeter is used for measuring (short lengths ; short distances)

n1074
AFFECT

***
saving money has a positive impact on (a person ; a company)

n591
CHANGE

***
tearing an object changes that object 's shape

crumple means change shape from smooth into (compacted ; irregular) by physical force
phase changes do not change mass

n593
PROPERTIES-GENERIC

***
shape is a property of the appearance of an object

shape is a property of an object
(mass ; weight) is a property of (matter ; objects ; materials)

n616
KINDOF

***
weight is a kind of property

n619
UNIT

***
kilograms ( kg ) are a unit used for measuring (mass ; weight) generally used for values between 1 and 50000000

n617
KINDOF

***
milliliters is a kind of unit for measuring volume of liquids

a meter is a kind of unit for (measuring distance ; measuring length)
a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

a gram is a kind of unit for measuring mass

n620
UNIT

***
milliliters ( mL ) is a unit used for measuring volume generally used for values between 1 and 1000

meters ( m ) are a unit used for measuring (length ; distance) generally used for values between 1 and 1000
liters ( L ) is a unit used for measuring volume generally used for values between 1 and 50000000

grams ( g ) are a unit used for measuring (mass ; weight) generally used for values between 1 and 2000

n618
KINDOF

***
a centimeter is a kind of unit of measurement

n621
UNIT

***
centimeters ( cm ) are a unit used for measuring (length ; distance) generally used for values between 1 and 250

n910
SYNONYMY

***
not looking means not seeing

n909
SYNONYMY

***
texture means how an object feels

nature means a natural environment

n602
PROTO-IF-THEN

***
if something is definite in shape then that something will not change shape easily

n606
PROTO-OPPOSITES

***
definite is the opposite of variable

n603
PROTO-IF-THEN

***
if something undergoes a physical change then the physical properties of that something will change

if something undergoes physical change then the chemical properties of that something will remain unchanged

n607
PROTO-OPPOSITES

***
changed is the opposite of unchanged

n596
PROTO-IF-THEN

***
if something is definite in shape then that something will not change shape easily

if a flexible container is pushed on then that container will change shape

n598
PROTO-PROP-STATESOFMATTER

***
Matter in the solid phase has definite shape
Matter in the gas phase has variable shape

Matter in the liquid phase has variable shape

n586
REQUIRES

***
measuring the hardness of minerals requires scratching those materials

n588
REQUIRES

***
comparing requires measuring

n587
REQUIRES

***
building something often requires measuring the materials

comparing requires measuring
cutting a material usually requires measuring length

n589
REQUIRES

***
determining often requires (measuring ; observing)

measuring the hardness of minerals requires scratching those materials
building something often requires measuring the materials

n975
REQUIRES

***
popping popcorn requires adding heat

n1007
USEDFOR

***
binoculars are used for observing distant objects

n1107
UNIT

***
milliliters ( mL ) is a unit used for measuring volume generally used for values between 1 and 1000

n1016
PROPERTIES-GENERIC

***
volume is a property of matter

hardness is a property of a (material ; an object) and includes ordered values of (malleable ; rigid)

n630
CAUSE

***
sugar causes food to taste sweet

an object being pushed across another object causes their surfaces to move against each other

n633
PROTO-ACTION

***
animals taste flavors

friction occurs when two object 's surfaces move against each other

n623
CAUSE

***
completing a circuit causes (electricity ; electric current) to flow through that circuit

n627
SOURCEOF

***
a complete electrical circuit is a source of electrical energy

n652
CHANGE-VEC

***
drying means (amount of water ; amount of liquid ; wetness) decreases

boiling means the volume of a liquid decreases
boiling is when liquids are heated above their boiling point
melting is when solids are heated above their melting point

n654
KINDOF

***
water is a kind of liquid

butter is a kind of solid below 32 degrees celsius
ice cream is a kind of solid

an ice cube is a kind of solid

n973
CAUSE

***
adding heat to an object sometimes causes chemical reactions

n662
KINDOF

***
ice is a kind of solid

material composition is a kind of chemical property
brass is a kind of alloy

n665
PROTO-INSTANCES

***
a metal is usually a solid
a rock is usually a solid

appearance is sometimes a physical property
an element is not an alloy

n663
KINDOF

***
aluminum is a kind of element

gold is a kind of element
aluminum is a kind of metal

lead is a kind of element

n666
PROTO-INSTANCES

***
an element is not an alloy
a metal is usually a solid

n676
MADEOF

***
objects are made of (materials ; substances ; matter)

a thermal conductor is made of materials that conduct thermal energy

n678
PROTO-IF-THEN

***
if an object is made of a material then that object has the properties of that material

if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

n1129
PROTO-PROP-FLEX-RIGIDITY

***
a beach ball is flexible

a balloon is highly flexible

n1047
PROTO-LOCATIONS

***
natural resources are found in nature

n636
USEDFOR

***
a centimeter is used for measuring (short lengths ; short distances)

a compass is used to navigate (oceans ; seas)

n640
USEDFOR

***
(meters ; centimeters ; kilometers) are used to (describe distance ; describe length)

a compass is used for determining direction

n638
USEDFOR

***
measuring is used for describing an object

a balance is used for measuring (mass ; weight) (of an object ; of a substance)
a meter stick is used to measure (distance ; height ; length)

n642
USEDFOR

***
(meters ; centimeters ; kilometers) are used to (describe distance ; describe length)

a graduated cylinder is used to measure volume (of a liquid ; of an object)
a stopwatch is used to measure time

n690
ATTRIBUTE-VALUE-RANGE

***
thin means small in width

n693
CHANGE-VEC

***
magnifying makes seeing small things easier through (using a magnifying glass ; using a microscope)

n691
ATTRIBUTE-VALUE-RANGE

***
high means great in altitude

cold means low in temperature
warm means medium (heat energy ; temperature)

(colder ; cooler) means lower in temperature

n694
CHANGE-VEC

***
climbing increases altitude

(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)
heating means adding heat

n960
PROTO-FORMEDBY

***
dew is formed when water vapor (condenses ; cools) over night

n705
ATTRIBUTE-VALUE-RANGE

***
(colder ; cooler) means lower in temperature

n710
SYNONYMY

***
to lower means to decrease

n706
ATTRIBUTE-VALUE-RANGE

***
moist means high in moisture

n711
SYNONYMY

***
sticky is similar to moist

n721
EXAMPLES

***
An example of collecting data is measuring

n725
KINDOF

***
a meter stick is a kind of tool for (measuring length ; measuring distance)

a stopwatch is a kind of tool for measuring time

n714
MADEOF

***
(matter ; materials ; substances) are made of (atoms ; particles)

n717
PROPERTIES-GENERIC

***
composition is a property of (an object ; matter)

n680
PARTOF

***
the eyes are part of the head used for seeing

a handle is a part of an object for holding that object
eyes are usually part of an animal for seeing

n682
USEDFOR

***
eyes are used for seeing by animals by sensing light

a handle is used for holding an object
magnifying glass is used to see small things by making objects appear bigger

n681
PARTOF

***
the head is a part of an animal

n683
USEDFOR

***
eyes are used for seeing by animals by sensing light

n684
PROPERTIES-GENERIC

***
length is a property of the shape of an object

(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)
(mass ; weight) is a property of (matter ; objects ; materials)

n687
USEDFOR

***
a meter stick is used to measure (distance ; height ; length)

a thermometer is used to measure temperature
a balance is used for measuring (mass ; weight) (of an object ; of a substance)

n727
REQUIRES

***
wiring requires an electrical conductor

n731
SYNONYMY

***
to be used for something means to be required by that something

n728
REQUIRES

***
determining often requires (measuring ; observing)

n732
SYNONYMY

***
to be required means to be necessary

n766
AFFECT

***
harming something has a negative (impact on ; effect on) that something

n768
CAUSE

***
electrocution causes harm to an organism

burning a living thing usually causes harm to that living thing
something dangerous can cause harm

n767
AFFECT

***
decreasing something negative has a positive impact on a thing

n769
CAUSE

***
burning a living thing usually causes harm to that living thing

n747
CAUSE

***
sharpening an object causes that object to change shape

an object being pushed across another object causes their surfaces to move against each othern749
PROPERTIES-GENERIC

***
shape is a property of the appearance of an object

(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

n735
CAUSE

***
evaporation causes amount of water to decrease

water vapor cooling causes that water vapor to condense

n737
PROTO-PROP-STATESOFMATTER1

***
water is in the gas state , called water vapor , for temperatures between (373 ; 212 ; 100) and 100000000000 (K ; F ; C)

n739
COUPLEDRELATIONSHIP

***
as a source of light moves directly overhead of an object , the size of the shadow of that object will decrease

as the temperature of an object increases , the size of that object will increase

n743
PARTOF

***
length is a part of size

n1048
PROTO-LOCATIONS

***
ice is found in arctic environments

n1045
KINDOF

***
a body of water is a kind of environment

n778
PROPERTIES-GENERIC

***
shape is a property of an object

conductivity is a property of a (material ; substance)

n781
PROTO-ACTION

***
classifying means grouping (objects ; materials) by their properties

a container contains (objects ; material ; substances)

n980
MADEOF

***
a glacier is made of ice

furniture often is made of wood
objects are made of (materials ; substances ; matter)

n775
PROTO-PROP-STATESOFMATTER

***
Matter in the liquid phase has variable shape

n777
PROTO-PROP-STATESOFMATTER

***
Matter in the solid phase has definite shape

n751
PROTO-PROPERTIES-THINGS

***
the boiling point of water is (212F ; 100C ; 373K)

n755
SYNONYMY

***
boiling point is the highest temperature a liquid can reach

boiling point means temperature (at which a liquid boils ; above which a liquid boils)

n752
PROTO-PROPERTIES-THINGS

***
carbon dioxide is colorless

n756
SYNONYMY

***
colorless means no color

n1121
PROTO-LOCATIONS

***
natural resources are found in nature

ice is found in arctic environments

n1106
SYNONYMY

***
mL means milliliters

n822
ATTRIBUTE-VALUE-RANGE

***
cold means low in temperature

n824
CHANGE

***
something in a cold place becomes cold

n835
CAUSE

***
water vapor cooling causes that water vapor to condense

condensing causes a liquid to form

n840
CHANGE-VEC

***
(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

condensing is when gasses are cooled below their boiling point

n907
PARTOF

***
the eyes are part of the head used for seeing

n1128
CONTAINS

***
a beach ball contains gas

a balloon contains gas

n790
CONTAINS

***
a body of water contains water

n791
PROTO-PROP-STATESOFMATTER1

***
water is in the solid state , called ice , for temperatures between (0 ; -459 ; -273) and (273 ; 32 ; 0) (K ; F ; C)

water is in the gas state , called water vapor , for temperatures between (373 ; 212 ; 100) and 100000000000 (K ; F ; C)

n815
COUPLEDRELATIONSHIP

***
as the resistance to something increases , how easilty that something can be done will decrease

as the smoothness of something increases , the friction of that something will decrease when its surface moves against another surface
as moisture of an object decreases , the friction of that object against another object will increase

n817
COUPLEDRELATIONSHIP

***
as the thickness of an object increases , the resistance (to tearing ; to breaking) will increase

as moisture of an object decreases , the friction of that object against another object will increase
as the smoothness of something increases , the friction of that something will decrease when its surface moves against another surface

n802
PARTOF

***
a surface is a part of an object

a rough surface is a part of sandpaper

n803
PROPERTIES-GENERIC

***
texture is a property of (surfaces ; materials ; objects) and includes ordered values of (smooth ; rough)

n808
PROP-CONDUCTIVITY

***
metal is an (electrical ; electrical energy) conductor

wax is an (electrical ; electrical energy) insulator
rubber is an (electrical ; electrical energy ; thermal ; thermal energy) insulator

n809
VEHICLE

***
An electrical conductor is a vehicle for the flow of electricity

n1044
KINDOF

***
water is a kind of natural resource

n810
PROPERTIES-GENERIC

***
(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

size is a property of objects and includes ordered values of (microscopic ; tiny ; small ; medium ; large)

n812
PROTO-PROPERTIES-THINGS

***
a freezer is (cool ; cold) in temperature

a piece of an object is smaller in size than the whole object

n811
PROPERTIES-GENERIC

***
hardness is a property of a (material ; an object) and includes ordered values of (malleable ; rigid)

n813
PROTO-PROPERTIES-THINGS

***
different materials usually have different properties

n818
PROTO-ACTION

***
carpet absorbs sound

n820
PROTO-OPPOSITES

***
reflecting (light ; sound) is the opposite of absorbing (light ; sound)

n1075
PROTO-IF-THEN

***
if something does not have to be replaced for a long time then that something will save money

n968
PARTOF

***
legs are usually a part of an animal

eyes are usually part of an animal for seeing

n804
PROTO-PROPERTIES-THINGS

***
the melting point of iron is (2800F ; 1538C ; 1811K)

a desk is usually short (in height ; in width)
the melting point of oxygen is (-361.8F ; -218.8C ; 54.4K)

an insect has six legs

n806
PROTO-PROPERTIES-THINGS

***
the (freezing point of water ; melting point of water) is (32F ; 0C ; 273K)

a desk usually has a length with values between 50 and 250 cm
an insect usually has a small size

the melting point of oxygen is (-361.8F ; -218.8C ; 54.4K)

n867
ATTRIBUTE-VALUE-RANGE

***
moist means high in moisture
high means great in altitude

n871
COUPLEDRELATIONSHIP

***
as moisture of an object decreases , the friction of that object against another object will increase

as altitude increases , the temperature of the air will decrease

n981
PROTO-PROPERTIES-THINGS

***
ice is cold in temperature

wood is usually sturdy
different materials usually have different properties

n884
ATTRIBUTE-VALUE-RANGE

***
heaviest means greatest (mass ; weight)

cold means low in temperature
hot means high in (heat energy ; temperature)

n885
PROPERTIES-GENERIC

***
(mass ; weight) is a property of (matter ; objects ; materials)

(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

n887
PROTO-PROP-STATESOFMATTER

***
Matter in the solid phase has definite shape

Matter in the liquid phase has definite volume

n852
CAUSE

***
cooking causes a chemical reaction

n856
SYNONYMY

***
baking is similar to cooking

n1109
MAGNETISM

***
iron is always magnetic

n1004
ATTRIBUTE-VALUE-RANGE

***
distant means great in distance

n971
PROTO-PROPERTIES-THINGS

***
an insect has six legs

n898
MADEOF

***
a thermal conductor is made of materials that conduct thermal energy
a paper clip is often made of (magnetic metals ; ferromagnetic metals)

n902
PROTO-ACTION

***
a container contains (objects ; material ; substances)

a magnet attracts (magnetic metals ; ferromagnetic metals) through magnetism
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needs merging?
HYPERNYM(4) ↔ THING(2)

HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)

x
HYPERNYM(4) ↔ THING(2)

HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)

needs merging?
HYPERNYM(4) ↔ THING(2)

HYPERNYM(4) ↔ ADJ/QUANTIFIER(21)

x
HYPERNYM(4) ↔ THING(2)

HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)

x
HYPERNYM(4) ↔ THING(2)

HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)
HYPONYM(1) ↔ THING(2)

HYPONYM(1) ↔ ACTOR/AGENT/PROCESS(16)

SCOPE(8) ↔ PATIENT(7)

x
HYPERNYM(4) ↔ AGENT/THING WHO USES(9)

x
HYPERNYM(4) ↔ AGENT/THING WHO USES(9)

x
HYPERNYM(4) ↔ AGENT/OBJECT(2)

x
HYPERNYM(4) ↔ AGENT/OBJECT(2)

x
HYPERNYM(4) ↔ PATIENT(7)

x
HYPERNYM(4) ↔ PATIENT(7)

x
HYPERNYM(4) ↔ PATIENT(7)

x
HYPONYM(1) ↔ PATIENT(7)

x
HYPONYM(1) ↔ FOR/PURPOSE(6)

HYPONYM(1) ↔ AGENT/OBJECT(2)

x
HYPONYM(1) ↔ AGENT/OBJECT(2)

FOR/PURPOSE(6) ↔ FOR/PURPOSE(6)
FOR/PURPOSE(6) ↔ PATIENT(7)
[FOR/PURPOSE(6) ↔ SCOPE(12)]

missing links (e.g. solar
energy)

ACTION(6) ↔ ACTION(20)
OBJECT/PATIENT(9) ↔ OBJECT/PROPERTY(22)

THING(2) ↔ THING(2)
THING(2) ↔ ACTOR/AGENT/PROCESS(16)

ACTOR/AGENT/PROCESS(16) ↔ ACTOR/AGENT/PROCESS(16)

ACTION(6) ↔ ACTION(20)
THING(2) ↔ ACTOR/AGENT/PROCESS(16)

SCOPE(11) ↔ SCOPE(27)

THING(2) ↔ ACTOR/AGENT/PROCESS(16)
OBJECT/PROPERTY(10) ↔ ACTOR/AGENT/PROCESS(16)

THING(2) ↔ ACTOR/AGENT/PROCESS(16)
OBJECT/PROPERTY(10) ↔ OBJECT/PROPERTY(22)

metal spoon/conductor example
THING(2) ↔ ACTOR/AGENT/PROCESS(16)

missing links (e.g. solar
energy)

THING(2) ↔ ACTOR/AGENT/PROCESS(16)

THING(2) ↔ THING(2)
THING(2) ↔ ACTOR/AGENT/PROCESS(16)

ACTOR/AGENT/PROCESS(16) ↔ ACTOR/AGENT/PROCESS(16)

THING(2) ↔ THING(2)
THING(2) ↔ ACTOR/AGENT/PROCESS(16)

ACTOR/AGENT/PROCESS(16) ↔ ACTOR/AGENT/PROCESS(16)

metal spoon/conductor example
THING(2) ↔ THING(2)

THING(2) ↔ ACTOR/AGENT/PROCESS(16)
ACTOR/AGENT/PROCESS(16) ↔ ACTOR/AGENT/PROCESS(16)

(related but indirect
semantics)

THING(2) ↔ THING(2)
THING(2) ↔ ACTOR/AGENT/PROCESS(16)

x
X(0) ↔ X(0)
Y(2) ↔ X(4)

x
UNIT(0) ↔ AGENT/OBJECT(2)

PROPERTY(5) ↔ FOR/PURPOSE(6)

X (instrument) is used to
PROPERTY(5) ↔ PATIENT(7)

(Refactor: These should likely
be X is a source of heat
energy. Alternately, we

should work this through the
synonymy relations (heat means

heat energy)). Source of the
heat energy for Changing

States.
BY/THROUGH/HOW(14) ↔ WHAT IT PROVIDES(7)

Matter in the (phase) has
SCOPE(8) ↔ ATTRIBUTE(4)

Matter in the (phase) has
HYPONYM(1) ↔ PHASE(1)

Matter in the (phase) has
(definite/variable)

(shape/volume) <-> X is a kind
of (phase) (note, should be

refactored from KINDOF to the
STATESOFMATTER1 table?)
HYPERNYM(4) ↔ PHASE(1)

(messy edge because of the
WHOLE(5) ↔ OBJECT/PATIENT(9)

FOR/PURPOSE(7) ↔ OBJECT/PATIENT(9)
WHOLE(5) ↔ OBJECT/PROPERTY(22)

FOR/PURPOSE(7) ↔ ACTION(6)
FOR/PURPOSE(7) ↔ OBJECT/PROPERTY(22)

x
PART(1) ↔ THING(2)

PART(1) ↔ OBJECT/PATIENT(9)
PART(1) ↔ ACTOR/AGENT/PROCESS(16)

PATIENT(10) ↔ QUANTITY/MEASURE(1)
DIRECTION(7) ↔ CHANGE1(6)

PATIENT(10) ↔ QUANTITY/MEASURE(10)
DIRECTION(7) ↔ CHANGE2(18)

AGENT/OBJECT(3) ↔ QUANTITY/MEASURE(1)

DIRECTION(7) ↔ CHANGE2(18)
DIRECTION(7) ↔ CHANGE1(6)

AGENT/OBJECT(3) ↔ QUANTITY/MEASURE(1)

AGENT/OBJECT(3) ↔ AGENT/ATTRIBUTE(2)
AGENT/OBJECT(3) ↔ AGENT/ATTRIBUTE(11)

An insulator slows transfer
QUANTITY(9) ↔ ACTION(6)
PATIENT(10) ↔ THING(2)

AGENT/OBJECT(3) ↔ OBJECT/AGENT/PROCESS(2)
AGENT/OBJECT(3) ↔ SCOPE(10)

(COS) is when (state) is
PROCESS_NAME/ ACTION(0) ↔ ACTION(20)

(unclear if this is a good
PATIENT(10) ↔ OBJECT/PATIENT(9)

AGENT/OBJECT(3) ↔ THING(2)

(heating/cooling) means adding
PATIENT(10) ↔ OBJECT/PATIENT(9)

KIND OF CONDUCTIVITY(2) ↔ X(0)

X is made of Y <-> Y is a
ISMADEOF(6) ↔ OBJECT/AGENT(0)
[OBJECT(2) ↔ OBJECT/AGENT(0)]

(rough temperature of
environment)

THING(2) ↔ AGENT/OBJECT(2)
VALUE(7) ↔ FOR/PURPOSE(6)

related, but poor connection?
(small/smaller?)

THING(2) ↔ BY/THROUGH/HOW(11)
SCOPE/RELATIVETO(9) ↔ BY/THROUGH/HOW(11)

VALUE(7) ↔ PATIENT(7)

Object has (value) on property
being measured

VALUE(7) ↔ PATIENT(7)

(Should go to only one or the
HYPERNYM(4) ↔ SOURCE(6)

HYPERNYM(4) ↔ DESTINATION(8)

OBJECT/PROPERTY(22) ↔ BY/THROUGH/HOW(12)

(rain is a kind of *moving*
HYPERNYM(4) ↔ ACTOR/WHO(2)

CLASS(7) ↔ PROCESS_NAME(0)
CLASS(7) ↔ ACTOR/WHO(2)

CLASS(7) ↔ BY/THROUGH/HOW(12)

x
HYPONYM(1) ↔ ACTOR/WHO(2)

x
HYPONYM(1) ↔ PROCESS_NAME(0)

x
SCOPE(7) ↔ VALUE(3)

SCOPE(7) ↔ ATTRIBUTE(4)
[OBJECT/PROPERTY(10) ↔ ATTRIBUTE(4)]

Insulator/Conductor
(opposites)

CONDUCTOR/INSULATOR(3) ↔ THING/PROPERTY(1)

Result of specific COS (e.g.
CONDITION_AGENT/OBJECT(2) ↔ PROCESS_NAME(0)

(action) causes X to (change
RESULT_VERB(10) ↔ PROCESS_NAME(0)

(Change of state) causes a Y
CONDITION_VERB(3) ↔ PROCESS_NAME(0)

RESULT_AGENT(9) ↔ INTO(10)

X (e.g. temperature changes)
RESULT_AGENT(9) ↔ PROCESS_NAME(0)

[CONDITION_VERB(3) ↔ VERB(5)]

X (sun) is a source of energy
RESULT_PATIENT(11) ↔ BY/THROUGH/HOW(14)

(low quality connection? would
RESULT_VERB(10) ↔ BY/THROUGH/HOW(14)

(Change of state) means
FROM(8) ↔ STATEOFMATTER(2)

X is a kind of electrical
HYPERNYM(4) ↔ OBJECT/AGENT/PROCESS(2)

Cutting a material requires X
HYPERNYM(4) ↔ OBJECT/AGENT/PROCESS(2)

Building requires measuring
HYPERNYM(4) ↔ OBJECT(9)

FOR/PURPOSE(6) ↔ ACTION(6)
FOR/PURPOSE(6) ↔ OBJECT(9)

FOR/PURPOSE(6) ↔ ACTION(6)
HYPONYM(1) ↔ ACTION(6)

FOR/PURPOSE(6) ↔ ACTION(6)
HYPONYM(1) ↔ ACTION(6)

Determining/comparing requires
FOR/PURPOSE(6) ↔ ACTION(6)

x
HYPONYM(1) ↔ CONDUCTOR/INSULATOR(3)

X is a kind of metal <-> metal
is a (thermal/electrical)
(conductor/insulator)

HYPERNYM(4) ↔ OBJECT/AGENT(0)

X is a kind of material <-> X
is a (thermal/electrical)
(conductor/insulator)

HYPONYM(1) ↔ OBJECT/AGENT(0)

x
SCOPE(7) ↔ X(4)

OBJECT/PROPERTY(10) ↔ X(0)

x
ACTION(9) ↔ ACTION(1)

x
ACTION(9) ↔ ACTION(1)

x
ACTION(9) ↔ ACTION(1)

ACTION(9) ↔ Y(6)

(Essentially synonymy //
determining often requires

measuring)
VERB (requires)(5) ↔ VERB (requires)(5)

ACTION(6) ↔ ACTION(6)

x
CHANGE2(18) ↔ ACTION(5)

x
CHANGE2(18) ↔ ACTION(5)

X is made of
ISMADEOF(6) ↔ CONDUCTOR/INSULATOR(3)

KIND OF CONDUCTIVITY(2) ↔ OBJECT(9)

x
CHANGE2(18) ↔ ACTION(5)
CHANGE1(6) ↔ ACTION(5)

HYPONYM(1) ↔ PART(1)

x
AGENT/ATTRIBUTE(2) ↔ HYPERNYM(4)
AGENT/ATTRIBUTE(11) ↔ HYPERNYM(4)

SCOPE(12) ↔ HYPERNYM(4)

x
AGENT/ATTRIBUTE(2) ↔ HYPERNYM(4)

X is a kind of Y <-> A is a
HYPONYM(1) ↔ WHOLE(5)

x
AGENT/ATTRIBUTE(2) ↔ HYPERNYM(4)
AGENT/ATTRIBUTE(11) ↔ HYPERNYM(4)

(heat/heat energy -- non-ideal
connection)

ACTOR/AGENT/PROCESS(16) ↔ BY/THROUGH/HOW(11)

PROCESS_NAME/ ACTION(0) ↔ PATIENT(10)

AGENT/ATTRIBUTE(2) ↔ HYPERNYM(4)

x
QUANTITY/MEASURE(1) ↔ X(4)

x
CONDITION_AGENT/OBJECT(2) ↔ CONDITION_AGENT/OBJECT(2)

X is a kind of Y <-> A is a
HYPONYM(1) ↔ WHOLE(5)

X is a kind of Y <-> A is a
HYPERNYM(4) ↔ WHOLE(5)

HYPERNYM(4) ↔ FOR/PURPOSE(7)

X is a kind of Y <-> A is a
HYPERNYM(4) ↔ WHOLE(5)

something that causes harm is
RESULT_AGENT(9) ↔ RESULT_AGENT(9)

x
AGENT/ATTRIBUTE(2) ↔ HYPERNYM(4)
AGENT/ATTRIBUTE(11) ↔ HYPERNYM(4)

x
OBJECT/PROPERTY(22) ↔ PATIENT(7)

x
CONDITION_PATIENT(4) ↔ RESULT_AGENT(9)

x
CHANGE2(18) ↔ HYPONYM(1)

x
OBJECT/PROPERTY(22) ↔ PATIENT(7)

OBJECT/PATIENT(9) ↔ PATIENT(7)
ACTION(6) ↔ FOR/PURPOSE(6)

x
CONDITION_AGENT/OBJECT(2) ↔ RESULT_AGENT(9)

HYPERNYM(4) ↔ WHOLE(5)

x
SCOPE(7) ↔ HYPERNYM(4)
SCOPE(12) ↔ HYPERNYM(4)

OBJECT/PATIENT(9) ↔ BY/THROUGH/HOW(11)
SCOPE(11) ↔ AGENT/OBJECT(2)
ACTION(20) ↔ FOR/PURPOSE(6)

(bad link, should be indirect,
CONDITION_AGENT/OBJECT(2) ↔ RESULT_AGENT(9)

CONDITION_PATIENT(4) ↔ RESULT_AGENT(9)

X contains Y <-> Y is a kind
WHAT IT CONTAINS(5) ↔ HYPONYM(1)

x
AGENT/ATTRIBUTE(2) ↔ HYPERNYM(4)

x
CHANGE2(18) ↔ ACTION(5)

(causal chain)
CONDITION_VERB(3) ↔ RESULT_VERB(10)

x
OBJECT/PROPERTY(10) ↔ PATIENT(7)

ACTION(6) ↔ DIRECTION(7)

ACTION(20) ↔ ADJ(1)

HYPONYM(1) ↔ OBJECT/AGENT(0)

Phase change effect <-> X is a
VERB(5) ↔ HYPERNYM(4)

BY/THROUGH/HOW(14) ↔ HYPONYM(1)

x
HYPERNYM(4) ↔ WHEN/WHERE(11)

x
FOR/PURPOSE(6) ↔ X(0)

ACTOR/WHO(0) ↔ VALUE(7)

X means change from X to Y <->
ACTOR/WHO(3) ↔ HYPERNYM(4)

heat <-> heat energy (Note,
merge with others, but keep

bad connection profile)
BY/THROUGH/HOW(14) ↔ X(4)

[AGENT/OBJECT(3) ↔ X(4)]
AGENT/OBJECT(3) ↔ X(0)

AGENT/OBJECT(3) ↔ CLASS(7)

Generic "give off" means
VERB (sourceof, provide, etc)(6) ↔ ACTION(1)

PROCESS_NAME(0) ↔ PROCESS_NAME/ ACTION(0)
[PROCESS_NAME(0) ↔ QUANTITY/RANGE(16)]

FROM(8) ↔ AGENT/OBJECT(3)
BY/THROUGH/HOW(14) ↔ DIRECTION(7)

x
ACTION(20) ↔ ACTION(5)

x
THING(2) ↔ X(0)

DIRECTION(7) ↔ ACTION(5)

(Partial -- also needs receive
AGENT(2) ↔ Y(2)
AGENT(2) ↔ Y(6)

Generic "make/produce"
VERB (sourceof, provide, etc)(6) ↔ ACTION(5)

x
WHAT IT PROVIDES(7) ↔ X(0)

(Duplicate rows)
OBJECT/PROPERTY(22) ↔ Y(6)
OBJECT/PROPERTY(22) ↔ Y(2)

ACTION(20) ↔ ACTION(1)

x
AGENT/OBJECT(6) ↔ THING(2)

AGENT/OBJECT(6) ↔ ACTOR/AGENT/PROCESS(16)
ACTION(9) ↔ ACTION(20)

x
WHEN/WHERE(11) ↔ SCOPE(3)

(change) means
PATIENT(10) ↔ X(0)

x
HYPONYM(1) ↔ OBJECT/PROPERTY(10)

x
HYPERNYM(4) ↔ ADJ(5)

x
HYPERNYM(4) ↔ X(0)

(substance) in (phase) is
HYPONYM(1) ↔ STATEOFMATTER(2)

x
HYPONYM(1) ↔ X(4)

x
HYPONYM(1) ↔ HOW(13)

X (increases/decreases) Y <->
DIRECTION(7) ↔ X(0)

BY/THROUGH/HOW(14) ↔ KIND OF CONDUCTIVITY(2)

HYPONYM(1) ↔ WHEN/WHERE(11)

x
HYPONYM(1) ↔ ACTION(9)

ADJ(1) ↔ ACTION(1)
ADJ(1) ↔ ACTION(5)

x
X(0) ↔ ACTOR/AGENT/PROCESS(16)

x
HYPONYM(1) ↔ OBJECT/PROPERTY(10)

Properties of
HYPERNYM(4) ↔ Y(2)

x
AGENT/OBJECT(6) ↔ THING(2)

AGENT/OBJECT(6) ↔ ACTOR/AGENT/PROCESS(16)

x
ACTOR/AGENT/PROCESS(16) ↔ X(0)

THING(2) ↔ X(0)

RESULT_PATIENT(11) ↔ HYPONYM(1)

x
Y(2) ↔ OBJECT/PROPERTY(10)
Y(2) ↔ OBJECT/PROPERTY(22)

Y(2) ↔ THING(2)
Y(2) ↔ ACTOR/AGENT/PROCESS(16)

RESULT_PATIENT(11) ↔ HYPONYM(1)
CONDITION_PATIENT(4) ↔ HYPONYM(1)

x
HYPONYM(1) ↔ AGENT/OBJECT(6)

x
FOR/PURPOSE(6) ↔ X(0)

x
AGENT/OBJECT(6) ↔ ADJ/QUANTITY(8)

x
HYPONYM(1) ↔ AGENT/OBJECT(6)

x
THING(2) ↔ X(4)

ACTOR/AGENT/PROCESS(16) ↔ X(4)
ACTION(20) ↔ X(4)

x
ACTION(20) ↔ ACTION(5)

x
RESULT_AGENT(9) ↔ HYPERNYM(4)

DIRECTION(7) ↔ ACTION(1)

x
HYPONYM(1) ↔ AGENT/OBJECT(6)

x
OBJECT/PROPERTY(22) ↔ Y(6)

ACTION(6) ↔ ACTION(5)
OBJECT/PATIENT(9) ↔ Y(2)
OBJECT/PATIENT(9) ↔ Y(6)

OBJECT/PROPERTY(22) ↔ Y(2)

Adding/reducing <->
DIRECTION(7) ↔ ACTION(5)

(Strong semantics but bad
connection -- should connect

on electricity//electrical
energy)

OBJECT(9) ↔ ACTOR/WHO(1)

x
HYPERNYM(4) ↔ X(0)

HYPONYM(1) ↔ VALUES(6)

x
HYPONYM(1) ↔ AGENT/OBJECT(6)

x
HYPONYM(1) ↔ AGENT/OBJECT(6)

x
THING(2) ↔ X(4)

ACTOR/AGENT/PROCESS(16) ↔ X(4)
ACTION(6) ↔ X(4)

(ChangeOfState, e.g.
PROCESS_NAME(0) ↔ HYPONYM(1)

x
ACTION(20) ↔ ACTION(5)

x
CONDITION_AGENT/OBJECT(2) ↔ HYPERNYM(4)

KIND OF CONDUCTIVITY(2) ↔ X(4)

Alternate words for 'changing'
BY/THROUGH/HOW(14) ↔ ACTION(5)

x
CONDITION_AGENT/OBJECT(2) ↔ HYPERNYM(4)

x
OBJECT/PROPERTY(22) ↔ ACTION(5)
OBJECT/PROPERTY(22) ↔ ACTION(1)

x
ACTION(20) ↔ ACTION(5)

OBJECT/PROPERTY(22) ↔ Y(6)

Alternate words for a state of
VERB(5) ↔ ACTION(5)

x
CONDITION_AGENT/OBJECT(2) ↔ HYPONYM(1)

OBJECT(2) ↔ KIND OF CONDUCTIVITY(2)
ISMADEOF(6) ↔ KIND OF CONDUCTIVITY(2)
OBJECT(2) ↔ CONDUCTOR/INSULATOR(3)

(ChangeOfState, e.g.
PROCESS_NAME(0) ↔ HYPONYM(1)

x
HYPONYM(1) ↔ X(4)

(low quality?)
VERB(5) ↔ HYPONYM(1)

Y (colloquial name) is a kind
HYPERNYM(4) ↔ FORM NAME(5)

x
RESULT_AGENT(9) ↔ HYPONYM(1)

THING(2) ↔ PROCESS_NAME(0)
THING(2) ↔ ACTOR/WHO(2)

THING(2) ↔ BY/THROUGH/HOW(12)

HYPERNYM(4) ↔ FOR/PURPOSE(6)

x
RESULT_VERB(10) ↔ HYPONYM(1)

(bad row: synonymy is the
HYPERNYM(4) ↔ ACTION(5)

x
Y(2) ↔ THING(2)

x
RESULT_PATIENT(11) ↔ HYPERNYM(4)

standalone
HYPERNYM(4) ↔ X(4)

standalone
HYPERNYM(4) ↔ X(0)

x
ACTION(9) ↔ ACTION(20)

OBJECT/PROPERTY(10) ↔ OBJECT/PATIENT(9)
AGENT/OBJECT(6) ↔ OBJECT/PROPERTY(22)

X is a kind of Y <-> Y is made
HYPERNYM(4) ↔ OBJECT(2)

HYPONYM(1) ↔ ISMADEOF(6)
HYPONYM(1) ↔ OBJECT(2)

(shortforms should be in unit
HYPONYM(1) ↔ X(4)

ISMADEOF(6) ↔ OBJECT/AGENT(0)

CONDUCTOR/INSULATOR(3) ↔ X(0)
CONDUCTOR/INSULATOR(3) ↔ X(4)

KIND OF CONDUCTIVITY(2) ↔ ACTOR/WHO(2)
CONDUCTOR/INSULATOR(3) ↔ ACTOR/WHO(2)

QUANTITY(9) ↔ ACTION(6)
PATIENT(10) ↔ THING(2)

THING(2) ↔ WHAT(4)

x
THING(2) ↔ THING/PROPERTY(4)

ACTOR/AGENT/PROCESS(16) ↔ THING/PROPERTY(4)

x
RESULT_AGENT(9) ↔ HYPERNYM(4)

HYPERNYM(4) ↔ OBJECT/AGENT(0)

PATIENT(10) ↔ X(0)

AGENT/OBJECT(3) ↔ THING/PROPERTY(1)

(Better connection? there are
THING(2) ↔ PHASE(1)

ACTOR/AGENT/PROCESS(16) ↔ PHASE(1)

if/then rule for determining
OBJECT/PROPERTY(22) ↔ ATTRIBUTE(4)
OBJECT/PROPERTY(10) ↔ ATTRIBUTE(4)

ACTION(6) ↔ VALUE(3)

x
CHANGE1(6) ↔ ACTION(5)

x
CONDITION_AGENT/OBJECT(2) ↔ RESULT_AGENT(9)

AGENT/OBJECT(3) ↔ AGENT/OBJECT(3)

x
CONDITION_AGENT/OBJECT(2) ↔ RESULT_AGENT(9)

(causal chain)
CONDITION_VERB(3) ↔ RESULT_VERB(10)

PROCESS_NAME/ ACTION(0) ↔ AGENT/OBJECT(3)

matching issues (e.g.
PROCESS_NAME/ ACTION(0) ↔ QUANTITY/RANGE(16)

x
CHANGE1(6) ↔ X(0)

x
CHANGE2(18) ↔ ACTION(5)
CHANGE1(6) ↔ ACTION(5)

QUALIFIER(17) ↔ ACTION(5)

(causal chain)
PROCESS_NAME(0) ↔ RESULT_VERB(10)

PROCESS_NAME/ ACTION(0) ↔ DIRECTION(7)

X contains Y <-> A is a kind
WHAT IT CONTAINS(5) ↔ HYPERNYM(4)

(low quality?)
AGENT/ATTRIBUTE(2) ↔ X(0)
AGENT/ATTRIBUTE(11) ↔ X(0)
AGENT/ATTRIBUTE(2) ↔ X(4)
AGENT/ATTRIBUTE(11) ↔ X(4)

DIRECTION(7) ↔ PATIENT(10)

X contains Y <-> A is a kind
OBJECT/AGENT(1) ↔ HYPERNYM(4)

ACTION(0) ↔ ACTION(6)

X is a kind of property <->
HYPONYM(1) ↔ PROPERTY(5)

Object grounding
SOURCE(6) ↔ PATIENT(7)

DESTINATION(8) ↔ PATIENT(7)

x
OBJECT/PATIENT(9) ↔ THING/PROPERTY(1)
ADJ/QUANTIFIER(21) ↔ THING/PROPERTY(4)

x
CONDITION_AGENT/OBJECT(2) ↔ DEFINITION_NAME(0)

RESULT_AGENT(9) ↔ ADJ(5)

x
RESULT_VERB(10) ↔ ACTION(9)

(indirect connection, but
OBJECT/PROPERTY(22) ↔ ATTRIBUTE(4)

x
OBJECT/PROPERTY(22) ↔ THING/PROPERTY(4)

Phase changes do not change
WHAT(6) ↔ X(0)

X changes an object's shape
WHAT(6) ↔ X(0)

ACTOR/WHO(3) ↔ Y(2)
WHAT(6) ↔ Y(2)

(useful edge, but bad
PATIENT(10) ↔ WHAT(4)
QUANTITY(9) ↔ VERB(3)

Change of state means
BY/THROUGH/HOW(14) ↔ X(0)

x
Y(2) ↔ X(0)

(Change of state) means
changing from X to Y by

adding/removing heat energy
<-> temperature is a measure

of heat energy
BY/THROUGH/HOW(14) ↔ ATTRIBUTE(3)

x
AGENT/OBJECT(2) ↔ AGENT/OBJECT(2)

X(0) ↔ X(4)

ATTRIBUTE(4) ↔ KIND OF CONDUCTIVITY(2)

x
AGENT/OBJECT(6) ↔ THING(2)

AGENT/OBJECT(6) ↔ ACTOR/AGENT/PROCESS(16)
ACTION(9) ↔ ACTION(6)

OBJECT/PROPERTY(10) ↔ OBJECT/PATIENT(9)

x
RESULT_AGENT(9) ↔ HYPERNYM(4)

X means changing X into Z <->
[PROCESS_NAME(0) ↔ X(0)]

FROM(8) ↔ ACTION(5)
[PROCESS_NAME(0) ↔ ACTION(5)]

x
RESULT_AGENT(9) ↔ HYPONYM(1)

HYPONYM(1) ↔ ISMADEOF(6)
HYPONYM(1) ↔ OBJECT(2)

X is a kind of Y <-> A is made
HYPERNYM(4) ↔ ISMADEOF(6)

x
X(0) ↔ OBJECT/PATIENT(9)

Y(2) ↔ THING(2)
Y(2) ↔ ACTOR/AGENT/PROCESS(16)

VALUES(6) ↔ OBJECT/PROPERTY(22)

x
HYPERNYM(4) ↔ X(0)

x
HYPERNYM(4) ↔ Y(6)

Add/reduce <->
BY/THROUGH/HOW(14) ↔ ACTION(1)

BY/THROUGH/HOW(14) ↔ Y(2)

x
AGENT/OBJECT(6) ↔ THING(2)

AGENT/OBJECT(6) ↔ ACTOR/AGENT/PROCESS(16)
ACTION(9) ↔ ACTION(6)

x
OBJECT/PROPERTY(10) ↔ OBJECT/PROPERTY(22)

AGENT/OBJECT(6) ↔ THING(2)
AGENT/OBJECT(6) ↔ ACTOR/AGENT/PROCESS(16)

ACTION(9) ↔ ACTION(6)
OBJECT/PROPERTY(10) ↔ OBJECT/PATIENT(9)

x
RESULT_AGENT(9) ↔ HYPERNYM(4)

CONDITION_PATIENT(4) ↔ HYPERNYM(4)

x
RESULT_AGENT(9) ↔ HYPERNYM(4)

RESULT_AGENT(9) ↔ SCOPE(3)

x
RESULT_VERB(10) ↔ HYPONYM(1)

X (colloquial name) is a kind
HYPONYM(1) ↔ FORM NAME(5)

x
ACTION(9) ↔ ACTION(6)

x
CONDITION_AGENT/OBJECT(2) ↔ HYPERNYM(4)

CONDITION_PATIENT(4) ↔ HYPERNYM(4)

x
HYPERNYM(4) ↔ ACTION(5)

x
HYPERNYM(4) ↔ ACTION(1)

heat energy <-> thermal energy
PROCESS_NAME(0) ↔ ACTION(1)

Add/reduce <->
BY/THROUGH/HOW(14) ↔ ACTION(1)

x
OBJECT/PROPERTY(10) ↔ THING(2)

x
ACTION(20) ↔ ACTION(5)

X is a kind of Y <-> X is made
HYPONYM(1) ↔ OBJECT(2)

(Change of state) from X to Y
PROCESS_NAME(0) ↔ PROCESS_NAME/ ACTION(0)

FROM(8) ↔ AGENT/OBJECT(3)

x
HYPERNYM(4) ↔ X(4)

x
HYPERNYM(4) ↔ X(0)

(not clear if the semantics
OBJECT/PROPERTY(10) ↔ THING(2)

OBJECT/PROPERTY(10) ↔ ACTOR/AGENT/PROCESS(16)

heat <-> heat energy (Note,
merge with others, but keep

bad connection profile)
BY/THROUGH/HOW(14) ↔ X(0)

Different words for instrument
HYPERNYM(4) ↔ X(0)

x
HYPERNYM(4) ↔ X(0)

x
WHEN/WHERE(11) ↔ THING(2)

WHEN/WHERE(11) ↔ ACTOR/AGENT/PROCESS(16)
WHEN/WHERE(11) ↔ OBJECT/PATIENT(9)

WHEN/WHERE(11) ↔ ACTION(20)

x
OBJECT/PATIENT(9) ↔ X(0)

(substance) is a kind of X <->
HYPONYM(1) ↔ MATERIAL NAME(0)

HYPONYM(1) ↔ FORM NAME(5)

(Change of state) is when a
BY/THROUGH/HOW(14) ↔ DIRECTION(7)
BY/THROUGH/HOW(14) ↔ PATIENT(10)

(standalone?)
HYPONYM(1) ↔ X(4)

(low quality?)
FROM(8) ↔ HYPERNYM(4)

x
SCOPE(7) ↔ OBJECT/PROPERTY(22)

OBJECT/PROPERTY(10) ↔ OBJECT/PROPERTY(22)
WHEN/WHERE(11) ↔ THING(2)

WHEN/WHERE(11) ↔ ACTOR/AGENT/PROCESS(16)

INTO(10) ↔ HYPERNYM(4)

x
Y(2) ↔ THING(2)

Y(2) ↔ ACTOR/AGENT/PROCESS(16)
X(0) ↔ OBJECT/PROPERTY(22)

X means change from X to Y <->
INTO(10) ↔ HYPONYM(1)

x
HYPONYM(1) ↔ ACTION(5)

(These should not be synonymy
FROM(8) ↔ X(4)

X means change from X to Y <->
ACTOR/WHO(3) ↔ HYPERNYM(4)

x
ACTION(20) ↔ ACTION(5)

words for observe
FOR/PURPOSE(6) ↔ ACTION(1)

X means change from X ito Y
ACTOR/WHO(3) ↔ HYPERNYM(4)

WHAT(6) ↔ HYPERNYM(4)

x
HYPONYM(1) ↔ Y(2)
HYPONYM(1) ↔ Y(6)

(should be in
HYPONYM(1) ↔ X(4)

Phase change <-> X is kind of
FROM(8) ↔ HYPERNYM(4)
INTO(10) ↔ HYPERNYM(4)

standalone?
ACTION(20) ↔ ACTION(5)

x
ACTOR/AGENT/PROCESS(16) ↔ X(0)

x
OBJECT/PROPERTY(10) ↔ X(4)

x
ACTION(6) ↔ X(0)

x
ACTION(6) ↔ ACTION(5)

x
OBJECT/PROPERTY(10) ↔ ACTION(5)

x
ACTION(20) ↔ ACTION(5)
ACTION(20) ↔ ACTION(1)

x
ACTION(20) ↔ ACTION(5)

x
ACTION(20) ↔ ACTION(5)

OBJECT/PROPERTY(10) ↔ Y(2)
OBJECT/PROPERTY(10) ↔ Y(6)

x
ACTION(20) ↔ ACTION(5)

OBJECT/PROPERTY(22) ↔ Y(6)
OBJECT/PATIENT(9) ↔ Y(2)
OBJECT/PATIENT(9) ↔ Y(6)

OBJECT/PROPERTY(22) ↔ Y(2)

Taxonomic Traversal
HYPERNYM(4) ↔ FOR/PURPOSE(6)

x
HYPONYM(1) ↔ HYPONYM(1)

X is an instrument for
HYPERNYM(4) ↔ FOR/PURPOSE(6)

HYPONYM(1) ↔ THING(2)
HYPONYM(1) ↔ ACTOR/AGENT/PROCESS(16)

Sometimes it's important to
HYPONYM(1) ↔ HYPERNYM(4)

x
OBJECT/PROPERTY(3) ↔ OBJECT(2)

PATIENT(9) ↔ OBJECT(2)

(highly specific -- connection
VERB(2) ↔ ACTION(20)

OBJECT/PROPERTY(3) ↔ OBJECT/PROPERTY(22)

x
POSITIVE/NEGATIVE(6) ↔ X(0)

x
POSITIVE/NEGATIVE(6) ↔ X(4)

x
ACTOR/THING(2) ↔ PART(1)

FOR/PURPOSE(9) ↔ FOR/PURPOSE(7)

THING(0) ↔ FOR/PURPOSE(6)

(heat//heat energy connection
ATTRIBUTE(4) ↔ WHAT IT PROVIDES(7)

x
RESULT_VERB(10) ↔ VERB(3)
RESULT_AGENT(9) ↔ WHAT(5)

PATIENT(10) ↔ WHAT(4)

Example of a specific change
PROCESS_NAME(0) ↔ AGENT/OBJECT(2)

BY/THROUGH/HOW(14) ↔ BY/THROUGH/HOW(11)

unit/short form conversion
X(0) ↔ ABBREVIATION(2)

X(4) ↔ UNIT(0)

X contains Y <-> X has
OBJECT/AGENT(1) ↔ OBJECT(1)

X contains (state of matter)
<-> Matter in the (state of

matter) phase has
(definite/variable)
(shape/volume)

WHAT IT CONTAINS(5) ↔ PHASE(1)

x
QUANTITY/MEASURE(1) ↔ X(0)
AGENT/ATTRIBUTE(2) ↔ Y(2)

x
QUANTITY/MEASURE(10) ↔ MEASURE(0)

An example of collecting data
is (measuring) <-> X is used

to (measure) Y
VERB(6) ↔ FOR/PURPOSE(6)

(object) is a kind of X <->
HYPONYM(1) ↔ OBJECT(2)(object) is hard/soft <->

HYPONYM(1) ↔ HARD/SOFT(5)

(Expand/Contract) is a change
in volume <-> Expand/Contract

are opposites
HYPONYM(1) ↔ VERB(3)

X is a kind of Y <-> X
produces Z

HYPONYM(1) ↔ AGENT(2)

X is a kind of Y for Z <-> A
produces B for Z

FOR/PURPOSE(6) ↔ FOR/PURPOSE(13)

MadeOf Chaining (high
confidence rule)

OBJECT(2) ↔ ISMADEOF(6)

X is made out of Y <-> Y is
ISMADEOF(6) ↔ MATERIAL(0)

x
ISMADEOF(6) ↔ X(0)
[ISMADEOF(6) ↔ X(4)]

x
OBJECT(2) ↔ WHAT(4)

MAGNETIC/NONMAGNETIC/FERROMAGNETIC(3) ↔ OBJECT/PATIENT(9)

x
MAGNETIC/NONMAGNETIC/FERROMAGNETIC(3) ↔ OBJECT/PATIENT(9)

X is a part of Y <-> Y is a
part of Z (PartOf chaining)

PART(1) ↔ WHOLE(5)

X is a part of Y (specific), X
is a part of Z (more generic)

PART(1) ↔ PART(1)

(low quality edge?)
WHOLE(5) ↔ LOCATION(4)

x
WHOLE(5) ↔ AGENT(2)

core
KIND OF CONDUCTIVITY(2) ↔ X(0)

x
AGENT(4) ↔ FORM NAME(5)

x
OBJECT/AGENT(1) ↔ AGENT/OBJECT(5)

x
MEASURE(0) ↔ ATTRIBUTE(8)

x
QUANTITY/ADJ(2) ↔ ACTION(6)

x
THING/PROPERTY(4) ↔ VALUE(3)

x
THING/PROPERTY(1) ↔ ADJ(1)

THING/PROPERTY(1) ↔ VALUE(7)

x
THING/PROPERTY(4) ↔ OBJECT(9)
THING/PROPERTY(1) ↔ SCOPE(10)

(Abstract to environments <->
temperatures? (e.g. a freezer

environment is usually between
X and Y degrees?)

VALUE(7) ↔ SOURCE(6)
ATTRIBUTE(8) ↔ LINKING(15)

Materials have properties
ISMADEOF(6) ↔ THING(2)

x (Note, should also link to
UNIT/PROPERTIES-GENERIC?)

THING(0) ↔ PATIENT(7)

How temperature is measured.
AGENT/OBJECT(3) ↔ MEASURE(0)

(equating size/volume and
amount is likely not general)

ATTRIBUTE(4) ↔ X(4)

(low quality edge? or specific
table for X has (count) Y?)
PART(1) ↔ ATTRIBUTE(8)

x
ATTRIBUTE(3) ↔ FORM NAME(5)

X is a natural resource <->
natural resources are found in

nature
HYPERNYM(4) ↔ THING/PROCESS(2)

x
SCOPE(19) ↔ THING(2)

SCOPE(19) ↔ ACTION(6)
SCOPE(19) ↔ OBJECT/PATIENT(9)

SCOPE(19) ↔ ACTOR/AGENT/PROCESS(16)

x
CONDITION_AGENT/OBJECT(2) ↔ AGENT(4)

RESULT_AGENT(9) ↔ AGENT(4)
RESULT_VERB(10) ↔ VERB(5)

ACTOR/WHO(0) ↔ HYPERNYM(4)

KIND OF CONDUCTIVITY(2) ↔ PROCESS_NAME(0)
OBJECT/AGENT(0) ↔ ACTOR/WHO(2)

KIND OF CONDUCTIVITY(2) ↔ ACTOR/WHO(2)
CONDUCTOR/INSULATOR(3) ↔ ACTOR/WHO(2)
OBJECT/AGENT(0) ↔ BY/THROUGH/HOW(12)

KIND OF CONDUCTIVITY(2) ↔ BY/THROUGH/HOW(12)
CONDUCTOR/INSULATOR(3) ↔ BY/THROUGH/HOW(12)

X (common object) usually has
ATTRIBUTE(8) ↔ PROPERTY(5)
UNITS(14) ↔ ABBREVIATION(2)

x
ADJ/QUANTITY(8) ↔ VALUE(7)

x
OBJECT/PROPERTY(10) ↔ ATTRIBUTE(8)

x
OBJECT/PROPERTY(10) ↔ THING(2)

OBJECT/PROPERTY(22) ↔ ATTRIBUTE(8)

KIND OF CONDUCTIVITY(2) ↔ OBJECT(9)
CONDUCTOR/INSULATOR(3) ↔ OBJECT(9)

KIND OF CONDUCTIVITY(2) ↔ THING(2)
CONDUCTOR/INSULATOR(3) ↔ THING(2)

CONDUCTOR/INSULATOR(3) ↔ ACTOR/AGENT/PROCESS(16)

(Change of state) means
INTO(10) ↔ PHASE(1)

x
THING/PROPERTY(4) ↔ ACTION(5)

x
THING/PROPERTY(4) ↔ X(4)

AGENT/OBJECT(3) ↔ KIND OF CONDUCTIVITY(2)
AGENT/OBJECT(3) ↔ CONDUCTOR/INSULATOR(3)

X makes Y (modifier, e.g.
ACTION(6) ↔ ACTION(6)

X requires adding heat <->
DIRECTION(7) ↔ ACTION(6)
PATIENT(10) ↔ OBJECT(9)

x
ADJ(5) ↔ X(4)

x
ACTION(9) ↔ ACTION(5)

x
SCOPE(7) ↔ X(0)

x
SCOPE(8) ↔ FOR/PURPOSE(6)

x (note: some inconsistency in
connections as some rows have

arithmetic in them, with
knowledge placed in different

columns)
QUANTITY/ADJ(2) ↔ FOR/PURPOSE(6)

ATTRIBUTE(3) ↔ PATIENT(7)

x
RESULT_AGENT(9) ↔ OBJECT/PROPERTY(10)

x
CONDITION_PATIENT(4) ↔ THING(2)

CONDITION_PATIENT(4) ↔ ACTOR/AGENT/PROCESS(16)

x
SCOPE(16) ↔ ACTION(20)

x
CONDITION_VERB(3) ↔ ACTION(20)

CONDITION_PATIENT(4) ↔ ACTOR/AGENT/PROCESS(16)
SCOPE(16) ↔ ACTOR/AGENT/PROCESS(16)

ATTRIBUTE(4) ↔ QUANTITY/MEASURE(10)

x (merge these two
AGENT/OBJECT(6) ↔ VERB (sourceof, provide, etc)(6)

x (Parallel structure with
other row -- note missing

'property' link)
OBJECT/PATIENT(9) ↔ ADJ(6)

ACTOR/AGENT/PROCESS(16) ↔ CLASS(7)
ACTOR/AGENT/PROCESS(16) ↔ ADJ(6)

HYPONYM(1) ↔ MATERIAL(0)

HYPONYM(1) ↔ MATERIAL(0)

needs merging?
ISMADEOF(6) ↔ ACTION(9)

x
ISMADEOF(6) ↔ AGENT/OBJECT(6)

x
ISMADEOF(6) ↔ OBJECT/PROPERTY(10)

x
WHOLE(5) ↔ X(0)

X(0) ↔ ATTRIBUTE(4)
VALUES(6) ↔ VALUE(3)

PART(1) ↔ Y(2)
WHOLE(5) ↔ Y(2)

(should this edge connect in
ATTRIBUTE(4) ↔ BY/THROUGH/HOW(14)

RESULT_VERB(10) ↔ PROCESS_NAME/ ACTION(0)

issue -- cooling row in 840
CONDITION_VERB(3) ↔ PROCESS_NAME/ ACTION(0)

RESULT_AGENT(9) ↔ AGENT/OBJECT(3)

RESULT_VERB(10) ↔ PATIENT(10)

RESULT_VERB(10) ↔ DIRECTION(7)

(Better way of representing
this bidirectional

relationship?)
Increase/decrease are

opposites
DIRECTION(7) ↔ THING/PROPERTY(4)

Insulator/conductor are
opposites

AGENT/OBJECT(3) ↔ THING/PROPERTY(1)

x
CONDITION_VERB(3) ↔ ACTION(20)

x
CONDITION_VERB(3) ↔ ACTION(20)

CONDITION_PATIENT(4) ↔ OBJECT/PROPERTY(10)
RESULT_AGENT(9) ↔ THING(2)

RESULT_AGENT(9) ↔ ACTOR/AGENT/PROCESS(16)

x
RESULT_VERB(10) ↔ ACTION(20)

cool/heat are opposites
PROCESS_NAME/ ACTION(0) ↔ THING/PROPERTY(1)

X contains Y <-> Y is in the
WHAT IT CONTAINS(5) ↔ MATERIAL NAME(0)

(low quality/likely not strong
CHANGE1(6) ↔ CHANGE2(18)

QUANTITY/MEASURE(10) ↔ QUANTITY/MEASURE(10)

x
QUANTITY/MEASURE(1) ↔ QUANTITY/MEASURE(10)

CHANGE1(6) ↔ CHANGE2(18)

x
AGENT/OBJECT(6) ↔ THING/PROPERTY(1)
AGENT/OBJECT(6) ↔ THING/PROPERTY(4)

ACTION(9) ↔ VERB(0)

x
ACTION(9) ↔ VERB(3)

OBJECT/PROPERTY(10) ↔ THING/PROPERTY(1)
OBJECT/PROPERTY(10) ↔ THING/PROPERTY(4)

Standalone -- One item having
multiple properties

THING(2) ↔ THING(2)

x
CHANGE2(18) ↔ VERB(3)

increase/decrease (opposites)
CHANGE1(6) ↔ THING/PROPERTY(4)
CHANGE2(18) ↔ THING/PROPERTY(1)

increase/decrease (opposites)
CHANGE1(6) ↔ THING/PROPERTY(1)
CHANGE2(18) ↔ THING/PROPERTY(4)

increase/decrease (opposites)
CHANGE1(6) ↔ THING/PROPERTY(1)

core (TODO: should match full
KIND OF CONDUCTIVITY(2) ↔ ACTOR/WHO(1)

CONDUCTOR/INSULATOR(3) ↔ ACTOR/WHO(1)

x
X(0) ↔ MEASURE(0)
X(0) ↔ ATTRIBUTE(3)

Different materials have
Y(2) ↔ THING(2)

Instance X has property/value
X(0) ↔ ATTRIBUTE(8)

VALUES(6) ↔ VALUE(7)

x
AGENT/ATTRIBUTE(2) ↔ WHOLE(5)
AGENT/ATTRIBUTE(11) ↔ WHOLE(5)

SCOPE(12) ↔ WHOLE(5)

(break apart?)
QUANTITY/MEASURE(10) ↔ WHOLE(5)

(very similar to above edge,
SCOPE(19) ↔ PART(1)

x
AGENT/ATTRIBUTE(2) ↔ PART(1)

x
CONDITION_PATIENT(4) ↔ Y(2)

RESULT_AGENT(9) ↔ Y(2)
RESULT_PATIENT(11) ↔ X(0)

(is this a meaningful link, or
CONDITION_AGENT/OBJECT(2) ↔ Y(2)

CONDITION_PATIENT(4) ↔ Y(2)

x
RESULT_AGENT(9) ↔ X(0)
RESULT_AGENT(9) ↔ Y(2)

x
VALUES(6) ↔ OBJECT/PROPERTY(10)

X(0) ↔ HOW(13)

Generic "properties are used
Y(2) ↔ OBJECT/PROPERTY(10)

PATIENT(10) ↔ WHAT IT PROVIDES(7)

X means changing heat <-> A is
a source of heat

PATIENT(10) ↔ WHAT IT PROVIDES(7)

COS is when (state) is heated
<-> X is a source of heat

DIRECTION(7) ↔ WHAT IT PROVIDES(7)

(Connection should be to
conductor/insulator properties

table)
CLASS(7) ↔ THING/PROPERTY(1)

x
VERB(2) ↔ RESULT_AGENT(9)

X causes (harm) <-> (harm) has
VERB(2) ↔ RESULT_AGENT(9)

Dual properties (shape/volume)
PHASE(1) ↔ PHASE(1)

CONDITION_AGENT/OBJECT(2) ↔ FORM NAME(5)
RESULT_AGENT(9) ↔ FORM NAME(5)

(rough connection?
RESULT_AGENT(9) ↔ MATERIAL NAME(0)

RESULT_AGENT(9) ↔ STATEOFMATTER(2)

x
THING(2) ↔ X(4)

VALUE(7) ↔ X(0)

ATTRIBUTE(8) ↔ Y(2)
ATTRIBUTE(8) ↔ Y(6)

MAGNETIC/NONMAGNETIC/FERROMAGNETIC(3) ↔ OBJECT/PROPERTY(10)

X(4) ↔ ACTION(5)

(TODO: make robust to
KIND OF CONDUCTIVITY(2) ↔ THING(2)

CONDUCTOR/INSULATOR(3) ↔ THING(2)

HYPERNYM(4) ↔ ISMADEOF(6)

(TODO: make robust to
KIND OF CONDUCTIVITY(2) ↔ THING(2)

CONDUCTOR/INSULATOR(3) ↔ THING(2)
CONDUCTOR/INSULATOR(3) ↔ ACTOR/AGENT/PROCESS(16)

Distance is how far an object
HYPERNYM(4) ↔ AGENT(4)

(mixed bag of connections,
since encoding the knowledge

in the tablestore may have
been a little inconsistent)

FOR/PURPOSE(6) ↔ QUANTITY/ADJ(2)
FOR/PURPOSE(6) ↔ ATTRIBUTE(3)

x
X(0) ↔ BY/THROUGH/HOW(11)

x
ACTION(5) ↔ FOR/PURPOSE(6)

x
ACTION(5) ↔ FOR/PURPOSE(6)

x
ACTION(5) ↔ FOR/PURPOSE(6)

x
X(4) ↔ AGENT/OBJECT(2)

OBJECT(9) ↔ ACTOR/WHO(2)
OBJECT(9) ↔ BY/THROUGH/HOW(12)

THING/PROPERTY(4) ↔ ACTOR/WHO(2)
THING/PROPERTY(4) ↔ BY/THROUGH/HOW(12)

MATERIAL(0) ↔ OBJECT/PROPERTY(10)
MAGNETIC/NONMAGNETIC/FERROMAGNETIC(3) ↔ OBJECT/PROPERTY(10)

x
X(4) ↔ ACTOR/WHO(2)

X(0) ↔ WHAT(4)

x
ACTION(5) ↔ ACTOR/WHO(2)

ACTION(5) ↔ VERB(3)
Y(6) ↔ ACTOR/WHO(2)

HYPERNYM(4) ↔ ISMADEOF(6)

WHAT IT PROVIDES(7) ↔ WHAT(4)

THING(0) ↔ X(4)

x
VALUE(2) ↔ ACTION(1)

x
VALUE(2) ↔ X(4)

x
ACTION(5) ↔ VERB(3)

x
KIND OF CONDUCTIVITY(2) ↔ OBJECT(9)

x
VALUE(2) ↔ X(0)

(Should be one edge or the
WHOLE(5) ↔ SOURCE(6)

FOR/PURPOSE(7) ↔ SOURCE(6)
WHOLE(5) ↔ DESTINATION(8)

FOR/PURPOSE(7) ↔ DESTINATION(8)

x
OBJECT(2) ↔ AGENT/OBJECT(2)

FOR/PURPOSE(8) ↔ FOR/PURPOSE(6)

ATTRIBUTE(4) ↔ X(0)

x
ATTRIBUTE(4) ↔ X(4)

X(0) ↔ PATIENT(7)

heat/heat energy synonymy
BY/THROUGH/HOW(11) ↔ X(4)

x
VERB(6) ↔ FOR/PURPOSE(6)

AGENT/OBJECT(5) ↔ HYPERNYM(4)

x
ACTOR/THING(2) ↔ X(0)

PROPERTY/OBJECT(3) ↔ Y(2)
BY/THROUGH/HOW(11) ↔ Y(2)

SCOPE(10) ↔ X(0)
SCOPE(10) ↔ X(4)

(generic requires <->
VERB (requires)(5) ↔ ACTION(1)

(generic requires <-> to be
VERB (requires)(5) ↔ ACTION(5)

x
CONDITION_VERB(3) ↔ VERB(5)

(essentially duplicate rows in
ACTOR/THING(2) ↔ AGENT/OBJECT(2)
FOR/PURPOSE(9) ↔ FOR/PURPOSE(6)

VERB(6) ↔ BY/THROUGH/HOW(11)
PATIENT(7) ↔ BY/THROUGH/HOW(11)

x
FOR/PURPOSE(9) ↔ ACTION(5)

x
OBJECT(9) ↔ X(0)

x
OBJECT(9) ↔ X(4)

x
WHOLE(5) ↔ AGENT/THING WHO USES(9)

x
FOR/PURPOSE(7) ↔ FOR/PURPOSE(6)

PART(1) ↔ AGENT/OBJECT(2)

x
OBJECT/PROPERTY(3) ↔ HYPERNYM(4)

PATIENT(9) ↔ HYPERNYM(4)

x
BY/THROUGH/HOW(11) ↔ ACTION(1)

x
VERB(6) ↔ ACTION(5)

x
VERB(6) ↔ ACTION(5)

X is used for Y by
PATIENT(10) ↔ BY/THROUGH/HOW(11)

CONDITION_VERB(3) ↔ PROCESS_NAME/ ACTION(0)

x
OBJECT(2) ↔ AGENT/OBJECT(6)

x
RESULT_AGENT(9) ↔ ACTION(5)

x
CONDITION_VERB(3) ↔ ACTION(5)

Materials have properties
ISMADEOF(6) ↔ THING(2)

Matter has more than one
Y(2) ↔ Y(2)

(Should be a different/tighter
FROM(8) ↔ AGENT/ATTRIBUTE(2)
FROM(8) ↔ AGENT/ATTRIBUTE(11)

x
VALUE(3) ↔ X(0)

X(0) ↔ ATTRIBUTE(4)

x
ATTRIBUTE(4) ↔ PATIENT(7)

x
CONDITION_AGENT/OBJECT(2) ↔ ACTION(5)

(Phase change points should be
PROCESS_NAME(0) ↔ THING(2)

x
RESULT_VERB(10) ↔ X(0)

x
FOR/PURPOSE(8) ↔ FOR/PURPOSE(13)

Changing something into pieces
FROM(8) ↔ SCOPE/RELATIVETO(9)

INTO(10) ↔ THING(2)

x
ATTRIBUTE(8) ↔ AGENT(2)

x
ATTRIBUTE(8) ↔ NAME(9)

x
ATTRIBUTE(4) ↔ X(0)

THING(0) ↔ VALUES(6)

x
SCOPE(7) ↔ AGENT/OBJECT(2)

OBJECT/PROPERTY(10) ↔ PATIENT(7)

x
ATTRIBUTE(4) ↔ X(0)

x
OBJECT/PROPERTY(10) ↔ BY/THROUGH/HOW(11)

ATTRIBUTE(4) ↔ QUANTITY/MEASURE(1)

x
ACTION(20) ↔ ACTION(6)

OBJECT/PROPERTY(22) ↔ OBJECT(9)

x
X(0) ↔ LINKING(15)

Y(2) ↔ WHAT(4)
Y(2) ↔ LINKING(15)

VALUES(6) ↔ SOURCE(6)
VALUES(6) ↔ DESTINATION(8)

PROCESS_NAME/ ACTION(0) ↔ BY/THROUGH/HOW(11)
PATIENT(10) ↔ BY/THROUGH/HOW(11)

x
CONDITION_VERB(3) ↔ ACTION(6)

CONDITION_PATIENT(4) ↔ OBJECT(9)

x (merge these two
ACTION(9) ↔ VERB (sourceof, provide, etc)(6)

(heating/cooling) means
PROCESS_NAME/ ACTION(0) ↔ FOR/PURPOSE(6)

x (Parallel structure with
other row -- note missing

'property' link)
OBJECT/PATIENT(9) ↔ ADJ(6)

ACTOR/AGENT/PROCESS(16) ↔ CLASS(7)

PROCESS_NAME/ ACTION(0) ↔ VERB(5)

(non-ideal edge: heat//heat
energy)

ATTRIBUTE(3) ↔ WHAT IT PROVIDES(7)

PROCESS_NAME/ ACTION(0) ↔ VERB(5)
DIRECTION(7) ↔ VERB(5)

(needs better connection:
heated/heat energy). How heat

is measured.
PATIENT(10) ↔ ATTRIBUTE(3)

(Connection should be on
MATERIAL NAME(0) ↔ X(4)

x
PART(1) ↔ OBJECT/PROPERTY(10)

AGENT/OBJECT(2) ↔ WHAT(5)

AGENT(2) ↔ NAME(9)

SourceOf chaining (through
AGENT(2) ↔ NAME(9)

WHAT IT PROVIDES(7) ↔ WHAT IT PROVIDES(7)

(utility of this edge?)
KIND OF CONDUCTIVITY(2) ↔ AGENT(2)

KIND OF CONDUCTIVITY(2) ↔ WHAT IT PROVIDES(7)

Opposites (hot/cold)
VALUES(6) ↔ THING/PROPERTY(1)
VALUES(6) ↔ THING/PROPERTY(4)

(heat/heat energy?). Is this
edge meaningful, or should
this relationship be indirect?

X(0) ↔ WHAT IT PROVIDES(7)

(opposite relationship --
delete? or perhaps interesting
example of parallel structures
for opposites/comparisons)

AGENT/OBJECT(6) ↔ OBJECT/PROPERTY(10)

x
AGENT/OBJECT(6) ↔ WHEN/WHERE(11)

x
ACTION(9) ↔ MEASURE(0)

ACTION(9) ↔ ACTION(5)

DIRECTION(7) ↔ X(4)

(change) means
PATIENT(10) ↔ X(0)

OBJECT/PATIENT(9) ↔ THING/PROPERTY(1)
ACTION(20) ↔ THING/PROPERTY(1)

VERB (requires)(5) ↔ VERB (requires)(5)

x
ACTION(6) ↔ THING/PROPERTY(1)

x
FOR/PURPOSE(7) ↔ FOR/PURPOSE(6)

PART(1) ↔ AGENT/OBJECT(2)
WHOLE(5) ↔ PATIENT(7)

FOR/PURPOSE(7) ↔ PATIENT(7)

x
FOR/PURPOSE(7) ↔ FOR/PURPOSE(6)

X(0) ↔ WHAT(4)

THING(0) ↔ PROCESS_NAME/ ACTION(0)
ATTRIBUTE(4) ↔ AGENT/OBJECT(3)

ATTRIBUTE(4) ↔ PATIENT(10)

Ground the thing being changed
ATTRIBUTE(4) ↔ PATIENT(10)

see (small) things <->
VALUE(2) ↔ ACTION(6)

x
AGENT/ATTRIBUTE(11) ↔ AGENT/OBJECT(6)

[ACTION(14) ↔ ACTION(9)]

x
QUANTITY/MEASURE(10) ↔ AGENT/OBJECT(6)

AGENT/ATTRIBUTE(2) ↔ OBJECT/PROPERTY(10)
AGENT/ATTRIBUTE(11) ↔ OBJECT/PROPERTY(10)

SCOPE(12) ↔ OBJECT/PROPERTY(10)

x
QUANTITY/MEASURE(10) ↔ AGENT/OBJECT(6)

SCOPE(19) ↔ WHEN/WHERE(11)

x
OBJECT(2) ↔ Y(2)

Good link, but bad semantics
ISMADEOF(6) ↔ Y(2)

ISMADEOF(6) ↔ Y(2)

x
ISMADEOF(6) ↔ VALUES(6)

x
HYPONYM(1) ↔ INSTANCE(2)

X is a kind of element <-> an
HYPERNYM(4) ↔ INSTANCE(2)

X is a kind of alloy <-> an
HYPERNYM(4) ↔ INSTANCE(2)

HYPERNYM(4) ↔ CLASS(7)

*needs merging*, major merge
ISMADEOF(6) ↔ OBJECT/PROPERTY(10)
ISMADEOF(6) ↔ OBJECT/PROPERTY(22)

x
OBJECT(2) ↔ THING(2)

OBJECT(2) ↔ ACTOR/AGENT/PROCESS(16)
ISMADEOF(6) ↔ THING(2)

x
OBJECT(2) ↔ THING(2)

OBJECT(2) ↔ ACTOR/AGENT/PROCESS(16)
ISMADEOF(6) ↔ OBJECT/PROPERTY(10)
ISMADEOF(6) ↔ OBJECT/PROPERTY(22)

HYPONYM(1) ↔ ACTOR/WHO(2)
HYPONYM(1) ↔ BY/THROUGH/HOW(12)

x
FOR/PURPOSE(13) ↔ FOR/PURPOSE(6)

WHAT IT PROVIDES(7) ↔ BY/THROUGH/HOW(11)
AGENT(2) ↔ SCOPE(12)

x (needs
electricity/electrical energy

connection)

x
ATTRIBUTE(3) ↔ ACTION(5)

x
ATTRIBUTE(3) ↔ X(4)

x
RESULT_PATIENT(11) ↔ WHAT IT PROVIDES(7)

x
CONDITION_AGENT/OBJECT(2) ↔ AGENT(2)

(semantically valid but
CONDITION_PATIENT(4) ↔ AGENT(2)

CONDITION_VERB(3) ↔ ADJ(1)
SCOPE(16) ↔ AGENT(2)

x
RESULT_VERB(10) ↔ WHAT IT PROVIDES(7)

CONDITION_PATIENT(4) ↔ NAME(9)

phase change point <-> X is a
PROCESS_NAME/ ACTION(0) ↔ HYPONYM(1)

[QUANTITY/RANGE(16) ↔ HYPONYM(1)]

AGENT/OBJECT(3) ↔ HYPERNYM(4)

boiling/drying means volume of
AGENT/OBJECT(3) ↔ HYPERNYM(4)
[AGENT/OBJECT(3) ↔ HYPONYM(1)]

an X (thermal/electrical)
AGENT/OBJECT(3) ↔ KIND OF CONDUCTIVITY(2)

AGENT/OBJECT(3) ↔ CONDUCTOR/INSULATOR(3)

(Good link but bad connection)
PATIENT(10) ↔ X(0)

DIRECTION(7) ↔ X(0)

(Could be a link here, but it
BY/THROUGH/HOW(14) ↔ KIND OF CONDUCTIVITY(2)

(move this from PROTO-ACTION
QUALIFIER (rarely/sometimes/usually/always)(7) ↔ OBJECT/PROPERTY(10)

x
ACTION(5) ↔ LINKING(15)

x
ACTION(1) ↔ VERB(3)

OBJECT/PATIENT(9) ↔ WHAT(4) Y(2) ↔ BY/THROUGH/HOW(12)
Y(6) ↔ BY/THROUGH/HOW(12)

x
ACTION(20) ↔ ADJ(1)

ACTOR/AGENT/PROCESS(16) ↔ AGENT(2)

PATIENT(10) ↔ WHAT IT PROVIDES(7)

x
OBJECT/PROPERTY(10) ↔ AGENT(2)

OBJECT/PATIENT(9) ↔ WHAT IT PROVIDES(7)

x
OBJECT/PATIENT(9) ↔ WHAT IT PROVIDES(7)

OBJECT/PROPERTY(22) ↔ WHAT IT PROVIDES(7)

x
OBJECT/PATIENT(9) ↔ WHAT IT PROVIDES(7)

OBJECT/PROPERTY(22) ↔ ADJ(1)
ADJ/QUANTITY(8) ↔ VERB (sourceof, provide, etc)(6)

x
OBJECT(9) ↔ PATIENT(7)

x
OBJECT(9) ↔ PATIENT(7)

ACTION(6) ↔ FOR/PURPOSE(6)

x
ACTION(6) ↔ FOR/PURPOSE(6)

x
ACTION(0) ↔ FOR/PURPOSE(6)

OBJECT/AGENT/PROCESS(2) ↔ PATIENT(7)
OBJECT/AGENT/PROCESS(2) ↔ BY/THROUGH/HOW(11)

OBJECT/AGENT/PROCESS(2) ↔ AGENT/OBJECT(2)x
OBJECT/AGENT/PROCESS(2) ↔ AGENT/THING WHO USES(9)

(better table?)
SCOPE(8) ↔ THING(2)

x
HYPONYM(1) ↔ ATTRIBUTE(8)

Solid semantics, but
KIND OF CONDUCTIVITY(2) ↔ ACTOR/WHO(2)

KIND OF CONDUCTIVITY(2) ↔ X(4)

Electricity/Electrical Energy
KIND OF CONDUCTIVITY(2) ↔ X(4)

Heat Energy/Thermal Energy
KIND OF CONDUCTIVITY(2) ↔ X(4)

CONDUCTOR/INSULATOR(3) ↔ X(0)
CONDUCTOR/INSULATOR(3) ↔ X(4)

(needs work -- should be
tearing is a physical change)

INTO(10) ↔ THING(2)
PROCESS_NAME(0) ↔ ACTION(6)

INTO(10) ↔ ACTOR/AGENT/PROCESS(16)

(needs work -- should be
VERB(5) ↔ OBJECT/PATIENT(9)

not connected, but related --
indirect connection (should
be, e.g. tearing is a kind of

physical change)
VERB(5) ↔ OBJECT/PATIENT(9)

(specific)
BY/THROUGH/HOW(14) ↔ ACTION(6)

FROM(8) ↔ THING(2)
FROM(8) ↔ ACTOR/AGENT/PROCESS(16)

(Poor quality link? but
BY/THROUGH/HOW(14) ↔ OBJECT/PATIENT(9)

BY/THROUGH/HOW(14) ↔ OBJECT/PROPERTY(22)

[AGENT/OBJECT(3) ↔ X(4)]
AGENT/OBJECT(3) ↔ X(0)

x
OBJECT/PROPERTY(22) ↔ X(0)

X is a kind of Y <-> A is made
HYPONYM(1) ↔ ISMADEOF(6)

(Property grounding) X is a
HYPERNYM(4) ↔ THING(2)

(Property grounding) X is a
HYPONYM(1) ↔ THING(2)

C is for observing small
FOR/PURPOSE(6) ↔ VALUE(7)

x
ATTRIBUTE(4) ↔ MEASURE(0)

(utility of this edge?)
ATTRIBUTE(4) ↔ KIND OF CONDUCTIVITY(2)

x
OBJECT/PROPERTY(3) ↔ POSITIVE/NEGATIVE(6)

(needs better connection:
heated/heat energy). How heat

is measured.
DIRECTION(7) ↔ ATTRIBUTE(3)

ATTRIBUTE(4) ↔ QUANTITY/MEASURE(1)

x
THING(0) ↔ OBJECT/PROPERTY(22)
ATTRIBUTE(4) ↔ OBJECT/PATIENT(9)

(negation -- needs work)
FOR/PURPOSE(7) ↔ ACTION(5)

FORM NAME(5) ↔ X(4)

X is a kind of Y <-> Y is
HYPONYM(1) ↔ MATERIAL(0)

x
WHOLE(5) ↔ OBJECT/PROPERTY(10)

PART(1) ↔ WHEN/WHERE(11)

(Connection should be to
[CLASS(7) ↔ X(4)]
CLASS(7) ↔ X(0)

x
LOCATION(4) ↔ X(0)

X means (high/low) temperature
THING(0) ↔ QUANTIFIER/SCOPE(4)

THING(0) ↔ WHAT(6)

x
ISMADEOF(6) ↔ THING(2)

[X(0) ↔ ACTOR/WHO(2)]
X(4) ↔ ACTOR/WHO(2)

[X(0) ↔ BY/THROUGH/HOW(12)]
X(4) ↔ BY/THROUGH/HOW(12)

(low quality edge, but useful
connection? should be a TIME

table?)
HYPONYM(1) ↔ SCOPE(11)

Alternate heat source for
BY/THROUGH/HOW(14) ↔ WHAT(4)

(Connection should be to
CLASS(7) ↔ OBJECT/AGENT/PROCESS(2)

CLASS(7) ↔ SCOPE(10)

x
OBJECT(9) ↔ WHAT IT PROVIDES(7)

DIRECTION(7) ↔ WHAT IT PROVIDES(7)

(indirect semantics?)
AGENT/OBJECT(6) ↔ THING(2)

AGENT/OBJECT(6) ↔ ACTOR/AGENT/PROCESS(16)
OBJECT/PROPERTY(10) ↔ THING(2)

OBJECT/PROPERTY(10) ↔ ACTOR/AGENT/PROCESS(16)

x
ACTOR/AGENT/PROCESS(16) ↔ X(4)

object grounding
HYPONYM(1) ↔ DEFINITION_NAME(0)

specific
AGENT(2) ↔ ACTION(1)
NAME(9) ↔ ACTION(5)

x
HYPONYM(1) ↔ X(0)

x
RESULT_VERB(10) ↔ ACTION(9)

CONDITION_AGENT/OBJECT(2) ↔ ADJ(5)
CONDITION_PATIENT(4) ↔ ADJ(5)

RESULT_AGENT(9) ↔ AGENT/OBJECT(6)
RESULT_PATIENT(11) ↔ OBJECT/PROPERTY(10)

x
AGENT/OBJECT(2) ↔ AGENT/THING WHO USES(9)

x
X(0) ↔ X(0)

X is a kindof unit for
HYPONYM(1) ↔ UNIT(0)

FOR/PURPOSE(6) ↔ PROPERTY(5)

An X is an instrument for
FOR/PURPOSE(6) ↔ PROPERTY(5)

HYPERNYM(4) ↔ ACTOR/AGENT/PROCESS(16)
HYPERNYM(4) ↔ OBJECT/PATIENT(9)

KIND OF CONDUCTIVITY(2) ↔ X(4)

ISMADEOF(6) ↔ OBJECT/AGENT(0)

OBJECT/PROPERTY(22) ↔ WHAT(4)
OBJECT/PROPERTY(10) ↔ BY/THROUGH/HOW(12)

ATTRIBUTE(4) ↔ AGENT/OBJECT(2)

X is a kindof property of
matter <-> Y is a unit for

measuring X, generally between
A and B

X(0) ↔ PROPERTY(5)

x
THING(2) ↔ ACTOR/WHO(1)

x
THING/PROCESS(2) ↔ AGENT(2)

x
MEASURE(0) ↔ LINKING(15)

x
THING/PROPERTY(4) ↔ ACTOR/WHO(1)

grounding properties
FORM NAME(5) ↔ THING(2)

x
AGENT/ATTRIBUTE(11) ↔ FLEXIBLE;RIGID(5)

spatial grounding
OBJECT/PROPERTY(22) ↔ TYPE OF SUBDIVISION(4)

x
VALUES(6) ↔ VERB(5)

x
AGENT/ATTRIBUTE(2) ↔ ISMADEOF(6)

x
CHANGE1(6) ↔ LOCATION(4)

KIND OF CONDUCTIVITY(2) ↔ ATTRIBUTE(3)

Would need more connections
(e.g. source of, and light --

although light might be
indirect, e.g. sunlight is a

kind of light)
QUANTITY/MEASURE(1) ↔ VERB (sourceof, provide, etc)(6)

An example of X is Y <-> X
requires A

AGENT/OBJECT(2) ↔ OBJECT/AGENT/PROCESS(2)

HYPONYM(1) ↔ OBJECT(2)

x
OBJECT(2) ↔ CLASS(7)

X is made out of (common name)
<-> (substance) is in (state)
called (common name) for
temperatures between A/B

ISMADEOF(6) ↔ FORM NAME(5)

MAGNETIC/NONMAGNETIC/FERROMAGNETIC(3) ↔ VALUES(6)

x
PART(1) ↔ SCOPE(8)

x
FOR/PURPOSE(8) ↔ ACTION(0)

BY/THROUGH/HOW(11) ↔ WHAT(4)

x
PATIENT(15) ↔ PHASE(1)

x
THING/PROCESS(2) ↔ FORM NAME(5)

(Should be in
conductor/insulator properties

table)
CLASS(7) ↔ ACTOR/WHO(1)

An example of X is Y through Z
<-> the A is a source of Z

BY/THROUGH/HOW(11) ↔ WHAT IT PROVIDES(7)

x
PROPERTY(0) ↔ MEASURE(0)

HYPONYM(1) ↔ THING(2)

x
OBJECT/AGENT(0) ↔ MATERIAL NAME(0)

Grounding
ADJ/QUANTITY(1) ↔ FLEXIBLE;RIGID(5)

Specific kinds of measurements
VERB(6) ↔ QUANTITY/ADJ(2)

X is part of Y <-> X is made
of Z (A part is made out

of...)
OBJECT(2) ↔ PART(1)

(low quality row? should be in
different table? 'appearance

is sometimes a physical
property')

Y(2) ↔ INSTANCE(2)

X contains Y (SOM) <-> As A
WHAT IT CONTAINS(5) ↔ PATIENT(15)

COS is when (state) is
heated/cooled above/below
phase transition point <->

(substance) is in the (state)
state of matter called X

between temperatures Y and Z
AGENT/OBJECT(3) ↔ STATEOFMATTER(2)

(changed/unchanged) opposites
RESULT_VERB(10) ↔ THING/PROPERTY(1)

PROCESS_NAME(0) ↔ ACTOR/WHO(1)
ACTOR/WHO(2) ↔ ACTOR/WHO(1)

WHAT(4) ↔ WHAT(5)
BY/THROUGH/HOW(12) ↔ ACTOR/WHO(1)

x
RESULT_AGENT(9) ↔ AGENT/OBJECT(2)

(Infrequent) affordance --
INTO(10) ↔ SCOPE(7)

(infrequent) How dew forms
PROCESS_NAME(0) ↔ VERB(5)

(utility?)
VERB(5) ↔ THING/PROPERTY(1)

(is the semantics here direct
or indirect? I think

indirect)
RESULT_VERB(10) ↔ ACTION(14)

needs merging? (note,
alternate table for 'length is

a part of size'?)
ATTRIBUTE(4) ↔ PART(1)

(unclear that this is a
VERB(2) ↔ DIRECTION(7)

non-ideal connection
(water//amount of water), but

highly relevant
ATTRIBUTE(4) ↔ RESULT_AGENT(9)

(meaningful?)
ATTRIBUTE(4) ↔ ACTION(9)

increase/decrease (opposites)
VALUE(2) ↔ THING/PROPERTY(1)

x
THING(0) ↔ VALUE(7)

THING(2) ↔ PROPERTY/SCOPE(17)

x
ACTION(6) ↔ ACTION(20)

ADJ/QUANTITY(8) ↔ OBJECT/PATIENT(9)
ADJ/QUANTITY(8) ↔ OBJECT/PROPERTY(22)
OBJECT/PATIENT(9) ↔ OBJECT/PATIENT(9)

OBJECT/PATIENT(9) ↔ OBJECT/PROPERTY(22)

(related but indirect
semantics)

ACTION(6) ↔ ACTION(20)

ACTION(6) ↔ ACTION(20)
THING(2) ↔ OBJECT/PROPERTY(22)

ACTOR/AGENT/PROCESS(16) ↔ OBJECT/PROPERTY(22)

ACTION(6) ↔ ACTION(20)

(missing: touches)
ACTION(6) ↔ ACTION(20)

OBJECT/PATIENT(9) ↔ OBJECT/PATIENT(9)
OBJECT/PATIENT(9) ↔ OBJECT/PROPERTY(22)

OBJECT/PROPERTY(22) ↔ OBJECT/PROPERTY(22)

(heat/heat energy -- non-ideal
link)

OBJECT/PATIENT(9) ↔ ACTOR/AGENT/PROCESS(16)

OBJECT/PATIENT(9) ↔ ACTOR/AGENT/PROCESS(16)

OBJECT/PATIENT(9) ↔ OBJECT/PATIENT(9)
THING(2) ↔ THING(2)

THING(2) ↔ PROPERTY/SCOPE(17)
ACTION(6) ↔ ACTION(6)

PROPERTY/SCOPE(17) ↔ PROPERTY/SCOPE(17)

THING(2) ↔ OBJECT/PATIENT(9)
THING(2) ↔ OBJECT/PROPERTY(22)

ACTOR/AGENT/PROCESS(16) ↔ OBJECT/PROPERTY(22)

(missing: touches)
OBJECT/PATIENT(9) ↔ OBJECT/PROPERTY(22)

ACTION(6) ↔ ACTION(20)
THING(2) ↔ THING(2)

THING(2) ↔ ACTOR/AGENT/PROCESS(16)

ACTION(6) ↔ ACTION(20)
OBJECT/PATIENT(9) ↔ OBJECT/PROPERTY(22)

THING(2) ↔ OBJECT/PROPERTY(22)
ACTOR/AGENT/PROCESS(16) ↔ OBJECT/PROPERTY(22)

THING(2) ↔ THING(2)
THING(2) ↔ ACTOR/AGENT/PROCESS(16)

ACTOR/AGENT/PROCESS(16) ↔ ACTOR/AGENT/PROCESS(16)
THING(2) ↔ OBJECT/PROPERTY(10)

OBJECT/PATIENT(9) ↔ OBJECT/PROPERTY(10)

n1755
PROTO-IF-THEN

***
if something undergoes a physical change then the physical properties of that something will change

n1696
PROTO-IF-THEN

***
if something undergoes physical change then the chemical properties of that something will remain unchanged

n1714
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

n11
PROTO-IF-THEN

***
if something is places over a heat source then that something is exposed to that heat source

n69
PROTO-IF-THEN

***
if (one surface ; one substance ; one object) touches something then one is exposed to that something

n1415
PROTO-IF-THEN

***
if a magnet is attracted to a metal then that magnet will stick to that metal

n1733
PROTO-IF-THEN

***
if something contains a large amount of magnetic material then that something will attract magnets

n1686
PROTO-IF-THEN

***
if a hot (object ; substance) is (exposed to ; touches) a cold (object ; substance) then (that object ; that substance) will likely cool

n1687
PROTO-IF-THEN

***
if something is dropped into a container of something else then that something is touching that something else

n7
PROTO-IF-THEN

***
if a container contains something then that container touches that something

n1760
PROTO-IF-THEN

***
if food is cooked then heat energy is added to that food

n1772
PROTO-IF-THEN

***
if (a spoon ; an object) is used to stir a (liquid ; mixture) then (that spoon ; that object) is touching (that liquid ; that mixture)

n1774
PROTO-IF-THEN

***
if liquid is boiling then that liquid is hot

n1405
PROTO-IF-THEN

***
if something is made of (something ; a material) then that something contains (that something ; that material)

n1758
PROTO-IF-THEN

***
if something is outside during the day then that something will receive sunlight

n1770
PROTO-IF-THEN

***
if (an object ; something) is in the sunlight then (that object ; that something) will absorb solar energy

n1786
PROTO-IF-THEN

***
if something lasts longer then that something will not have to be replaced for a long time

n1784
PROTO-IF-THEN

***
if something does not have to be replaced for a long time then that something will save money

n1782
PROTO-IF-THEN

***
if (an object ; a substance) absorbs solar energy then (that object ; that substance) will increase in temperature

n1583
KINDOF

***
a graduated cylinder is a kind of instrument for measuring volume of liquids or objects

a meter stick is a kind of tool for (measuring length ; measuring distance)
a thermometer is a kind of instrument for measuring temperature

a stopwatch is a kind of tool for measuring time
a ruler is a kind of tool for measuring length

binoculars are a kind of instrument for observing distant objects
a tape measure is a kind of tool for (measuring distance ; measuring length)
a balance is a kind of instrument for (measuring mass ; measuring weight)

a magnifying glass is a kind of tool for observing small things
a compass is a kind of object
a calculator is a kind of tool

n1667
USEDFOR

***
a graduated cylinder is used to measure volume (of a liquid ; of an object)

a meter stick is used to measure (distance ; height ; length)
a thermometer is used to measure temperature

a stopwatch is used to measure time
a ruler is used for measuring the length of an object

binoculars are used for observing distant objects
a tape measure is used to measure (length ; distance)

a balance is used for measuring (mass ; weight) (of an object ; of a substance)
magnifying glass is used to see small things by making objects appear bigger

a compass is used for determining direction
a calculator is used for (adding ; subtracting ; multiplying ; dividing)

a compass is used to navigate (oceans ; seas)
a scale is used for measuring weight

n1580
KINDOF

***
a centimeter is a kind of unit of measurement
seconds are a kind of unit for measuring time

milliliters is a kind of unit for measuring volume of liquids
a gram is a kind of unit for measuring mass

a meter is a kind of unit for (measuring distance ; measuring length)

n1669
USEDFOR

***
a centimeter is used for measuring (short lengths ; short distances)

(meters ; centimeters ; kilometers) are used to (describe distance ; describe length)
seconds are used to measure time

n18
KINDOF

***
measuring is a kind of observing

n616
KINDOF

***
weight is a kind of property

n20
KINDOF

***
a pan is a kind of object

n29
USEDFOR

***
a handle is used for holding an object

n1386
KINDOF

***
a sleeping bag is a kind of product

n1387
USEDFOR

***
materials are used for making products by manufacturers

n21
KINDOF

***
a living thing is a kind of object

a piece of something is a kind of object
a coin is a kind of object

marble is a kind of (object ; material)
a rock is a kind of object
water is a kind of liquid

n1389
KINDOF

***
an electric toothbrush is a kind of electric device

n31
USEDFOR

***
electrical devices are used for (industrial purposes ; household purposes) by humans

n1388
KINDOF

***
down feathers are a kind of material

n23
KINDOF

***
a human is a kind of animal
an insect is a kind of animal

n1664
USEDFOR

***
eyes are used for seeing by animals by sensing light

n1390
USEDFOR

***
electricity is used as an energy source by electrical devices

n24
KINDOF

***
how long something takes is a kind of measurement of time

n34
KINDOF

***
a spoon is a kind of object

n106
KINDOF

***
a change is a kind of event

n1441
PROTO-IF-THEN

***
if an event occurs by adding something then that event requires that something

n1438
KINDOF

***
soup is a kind of food

n1436
KINDOF

***
water is a kind of liquid

n1434
KINDOF

***
a balloon is a kind of object

n1762
PROTO-IF-THEN

***
if an object reflects light toward the eye then that object can be seen

n1433
PROTO-IF-THEN

***
if a liquid disappears then that liquid probably evaporated

n1430
KINDOF

***
air is a kind of gas

n1431
PROTO-IF-THEN

***
if gas is heated then that gas will (expand ; rise)

n1571
KINDOF

***
a human is a kind of animal

n1613
PROTO-IF-THEN

***
when an animal eats or drinks something , that animal tastes that something

n1354
KINDOF

***
a (pan ; frying pan) is a kind of container for (cooking ; food)

n1424
KINDOF

***
a nail is a kind of object

a container is a kind of object
a spoon is a kind of object
a fork is a kind of object

a paper clip is a kind of object
a block is a kind of object

a burner is a kind of (object ; surface)
a prong is a kind of object

n1793
PROTO-IF-THEN

***
if an object is made of a material then that object has the properties of that material

n1422
KINDOF

***
water is a kind of substance

an ice cube is a kind of object

n1420
KINDOF

***
a spoon is a kind of object

a container is a kind of object
a burner is a kind of (object ; surface)

butter is a kind of substance

n1650
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

n35
KINDOF

***
material composition is a kind of chemical property

n1395
KINDOF

***
a human is a kind of animal

n77
PROTO-IF-THEN

***
if electricity (flows through ; is transferred through) the body of an animal then that animal is electrocuted

n1393
KINDOF

***
a living thing is a kind of object

n1510
PROTO-IF-THEN

***
if too much heat is transferred to an object then that object may burn

n36
KINDOF

***
taste is a kind of sense

n1406
KINDOF

***
sunlight is a kind of solar energy

solar energy is a kind of heat energy
sunlight is a kind of light

n1398
KINDOF

***
metal is a kind of material

n39
KINDOF

***
glass is a kind of open container

n1780
PROTO-IF-THEN

***
when a gas in an open container (evaporates ; boils) , that gas spreads out into the air

n40
KINDOF

***
water is a kind of liquid
soup is a kind of liquid

gas is a kind of substance
water is a kind of substance

a body of water is a kind of environment
water is a kind of natural resource

n1416
KINDOF

***
a pan is a kind of object

a living thing is a kind of object

n1417
PROTO-IF-THEN

***
if one is holding an object then one is touching that object

n1360
KINDOF

***
iron is a kind of metal

n1585
KINDOF

***
magnetism is a kind of physical property
conductivity is a kind of physical property

state of matter at room temperature is a kind of physical property

n1747
KINDOF

***
sunlight is a kind of solar energy

n1591
KINDOF

***
metal is a kind of material

wood is a kind of natural material

n41
KINDOF

***
an animal is a kind of organism

n1408
KINDOF

***
a container is a kind of object

n1581
KINDOF

***
liquid is a kind of state of matter
solid is a kind of state of matter
gas is a kind of state of matter

n55
KINDOF

***
an animal is a kind of living thing

metal is a kind of material
gas is a kind of substance

a beverage is a kind of food
water is a kind of liquid

a coin is a kind of object
precipitation is a kind of natural (occurrence ; cause)

liquid is a kind of state of matter
elements are a kind of substance

an insect is a kind of animal
solid is a kind of state of matter

a tool is a kind of object
a living thing is a kind of object
a plant is a kind of living thing

a bird is a kind of animal
a process is a kind of event

a fruit is a kind of object
an animal is a kind of organism

a human is a kind of animal
state of matter at room temperature is a kind of physical property

quail are a kind of bird
a tree is a kind of plant

a container is a kind of object

n62
KINDOF

***
a bird is a kind of animal
copper is a kind of metal

iron is a kind of metal
air is a kind of gas

tea is a kind of beverage
a puddle is a kind of body of water

a dime is a kind of coin
rain is a kind of precipitation

water is a kind of liquid
oxygen is a kind of element

iron is a kind of element
an ant is a kind of insect

an ice cube is a kind of solid
a meter stick is a kind of tool for (measuring length ; measuring distance)

a stopwatch is a kind of tool for measuring time
a calculator is a kind of tool

a plant is a kind of living thing
a tree is a kind of plant
quail are a kind of bird

aluminum is a kind of metal
melting is a kind of process

a butterfly is a kind of animal
gold is a kind of solid

an apple is a kind of fruit
a human is a kind of animal
a student is a kind of human

iron is a kind of solid
solid is a kind of state of matter
valley quail are a kind of quail

a redwood tree is a kind of tree
an animal is a kind of living thing

an insect is a kind of animal
a (pan ; frying pan) is a kind of container for (cooking ; food)

n56
KINDOF

***
paper is a kind of material

water is a kind of natural resource
soup is a kind of liquid

butter is a kind of substance
rain is a kind of water

water is a kind of liquid
ice is a kind of solid

an ice cube is a kind of solid
iron is a kind of solid

n63
KINDOF

***
a paper is a kind of object

water is a kind of substance
soup is a kind of food

butter is a kind of solid below 32 degrees celsius
rain is a kind of precipitation

water is a kind of matter
ice is a kind of food

an ice cube is a kind of object
iron is a kind of metal

water is a kind of liquid

n1353
KINDOF

***
ice is a kind of food

n78
SYNONYMY

***
to add means to increase

to reduce means to decrease

n1663
SYNONYMY

***
visible means able to be seen

n1764
PROTO-IF-THEN

***
if a container contains something then that container touches that something

n1765
SYNONYMY

***
being (on something ; placed in something ; placed over something) means touching that something

n1766
PROTO-IF-THEN

***
if a flexible container is pushed on then that container will change shape

n1767
SYNONYMY

***
variable means able to change

n1769
SYNONYMY

***
receiving sunlight is synonymous with absorbing sunlight

to receive sunlight means to absorb sunlight

n83
SYNONYMY

***
being (on something ; placed in something ; placed over something) means touching that something

n1775
SYNONYMY

***
to get hot means become hot

n1776
PROTO-IF-THEN

***
if an event occurs by adding something then that event requires that something

n1777
SYNONYMY

***
(to depend on ; to rely on ; to need) means to require

n1778
PROTO-IF-THEN

***
if something is definite in shape then that something will not change shape easily

n1779
SYNONYMY

***
staying means not changing

n1781
SYNONYMY

***
expand means spread out

n1783
SYNONYMY

***
adding heat means increasing temperature

n1740
SYNONYMY

***
heat means heat energy

n678
PROTO-IF-THEN

***
if an object is made of a material then that object has the properties of that material

n80
SYNONYMY

***
a property of something is a feature of that something

n1643
SYNONYMY

***
being in the sun is synonymous with being in the sunlight

n87
SYNONYMY

***
disappeared is similar to gone

n88
SYNONYMY

***
sunshine means sunlight

n89
SYNONYMY

***
heat energy is synonymous with thermal energy

n1787
SYNONYMY

***
replacement means something that is replaced

n1761
SYNONYMY

***
heat means heat energy

n90
SYNONYMY

***
to get hot means become hot

n1794
SYNONYMY

***
an object is an item

n91
SYNONYMY

***
electricity means electrical energy

n434
CHANGE

***
a phase change is when (matter ; a substance) changes from one state into another state

n109
KINDOF

***
water is a kind of substance

n1272
CHANGE

***
tearing an object changes that object 's shape
tearing means changing a whole into pieces

n1485
KINDOF

***
a pencil is a kind of object
a paper is a kind of object
a ball is a kind of object

railroad tracks are a kind of object
a sheet of sandpaper is a kind of object

carpet is a kind of material

n1284
CHANGE

***
phase changes do not change mass

n1277
KINDOF

***
melting is a kind of phase change

n1741
CHANGE

***
melting means changing from a solid into a liquid by adding heat energy

(boiling ; evaporation) means change from a liquid into a gas by adding heat energy
freezing means changing from a liquid into a solid by reducing heat energy

condensing means changing from a gas into a liquid by reducing heat energy

n104
KINDOF

***
water is a kind of liquid

ice is a kind of solid
dew is a kind of liquid

n108
KINDOF

***
melting is a kind of phase change

n655
KINDOF

***
condensing is a kind of process
evaporation is a kind of process

melting is a kind of process

n1275
KINDOF

***
adding something is a kind of change

reducing is a kind of change

n1569
KINDOF

***
water is a kind of liquid

an ice cube is a kind of solid
ice is a kind of solid

ice cream is a kind of solid
juice is a kind of liquid

butter is a kind of solid below 32 degrees celsius
gold is a kind of solid
dew is a kind of liquid

air is a kind of gas
an eraser is a kind of solid

n1598
PROTO-ACTION

***
friction acts to counter the motion of two objects when their surfaces are touching

n118
PROTO-IF-THEN

***
if one surface is (moved against ; moved over ; moved down) another surface then those surfaces are touching

n119
PROTO-IF-THEN

***
if (a thermal conductor ; an object) is exposed to a source of heat then (that conductor ; that object) may become (hot ; warm)

n1603
PROTO-IF-THEN

***
if (one surface ; one substance ; one object) touches something then one is exposed to that something

n112
PROTO-ACTION

***
humans drink beverages

n1752
PROTO-ACTION

***
a magnet attracts (magnetic metals ; ferromagnetic metals) through magnetism

n1610
PROTO-ACTION

***
a source of something (emits ; produces ; generates) that something

n1614
PROTO-ACTION

***
a container contains (objects ; material ; substances)

n1606
PROTO-ACTION

***
shiny (things ; objects) reflect light

n1612
PROTO-ACTION

***
animals taste flavors

n1618
PROTO-ACTION

***
matter with variable volume and shape (assumes ; expands to fill ; takes) the shape and size of its entire container

n1742
SYNONYMY

***
heat energy is synonymous with thermal energy

n135
SYNONYMY

***
tearing means ripping

n150
SYNONYMY

***
boiling point means temperature (at which a liquid boils ; above which a liquid boils)

boiling point is the highest temperature a liquid can reach
freezing point means temperature (at which a liquid freezes ; below which a liquid freezes)

n137
SYNONYMY

***
moisture means (liquid ; liquid water)

n138
SYNONYMY

***
becoming is similar to changing

staying means not changing
to turn means to change

stay the same means not changing

n139
SYNONYMY

***
transferring is similar to adding

n140
KINDOF

***
soft is a kind of touch sensation

n149
SYNONYMY

***
touching something means feeling that something

n1565
KINDOF

***
contract is a kind of change in volume
expand is a kind of change in volume

n151
SYNONYMY

***
(a hand lens ; a magnifying lens) is synonymous with a magnifying glass

n1567
KINDOF

***
color is a kind of (physical ; visual) property

n756
SYNONYMY

***
colorless means no color

n1570
SYNONYMY

***
ice crystals means ice

n1577
KINDOF

***
a human is a kind of animal

n1590
SYNONYMY

***
person is synonymous with human

n1576
SYNONYMY

***
mL means milliliters

n1380
KINDOF

***
rain is a kind of water

n1670
SYNONYMY

***
washing out means being moved from by water

n154
SYNONYMY

***
observe means see

(inspect ; observe) means examine

n146
KINDOF

***
an increase is a kind of change

n1535
SYNONYMY

***
to add means to increase

n147
KINDOF

***
walking is a kind of motion

n156
SYNONYMY

***
(motion ; movement) means (moving ; to move)

n1592
SYNONYMY

***
material means substance

n1589
KINDOF

***
a user is a kind of person

n1587
KINDOF

***
a nail is a kind of object
a hair is a kind of object

n1588
SYNONYMY

***
an object is an item

n1586
SYNONYMY

***
a property of something is a feature of that something

n1584
SYNONYMY

***
instrument means tool

an instrument is a piece of equipment

n1582
SYNONYMY

***
physical state means state of matter

n1593
KINDOF

***
gas is a kind of substance

n157
SYNONYMY

***
material means substance

n1492
PROPERTIES-GENERIC

***
(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

n160
PROPERTIES-GENERIC

***
(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

n1496
PROPERTIES-GENERIC

***
conductivity is a property of a (material ; substance)

(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

n1494
PROPERTIES-GENERIC

***
magnetism is a property of (materials ; objects) and includes ordered values of (nonmagnetic ; magnetic)

conductivity is a property of a (material ; substance)

n498
CHANGE-VEC

***
boiling is when liquids are heated above their boiling point
melting is when solids are heated above their melting point

condensing is when gasses are cooled below their boiling point

n258
CHANGE-VEC

***
heating means adding heat

(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

n490
CHANGE-VEC

***
boiling means the volume of a liquid decreases

drying means (amount of water ; amount of liquid ; wetness) decreases

n168
KINDOF

***
water is a kind of substance
a table is a kind of furniture

water is a kind of matter
marble is a kind of (object ; material)

a statue is a kind of object
a table is a kind of object

brass is a kind of alloy
metal is a kind of material

a living thing is a kind of object
an insulator is a kind of material

n172
MADEOF

***
(matter ; materials ; substances) are made of (atoms ; particles)

furniture often is made of wood
matter is made of molecules

objects are made of (materials ; substances ; matter)
alloys are made of two or more metals

substances are made of matter
materials are made of matter

n169
KINDOF

***
metal is a kind of material

water is a kind of substance
sugar is a kind of substance

n173
MADEOF

***
objects are made of *(materials ; substances ; matter) (6)*

a thermal conductor is made of *materials that conduct thermal energy (6)*
a solution is made of *one substance dissolved in another substance (6)*

n170
KINDOF

***
brass is a kind of alloy

a (pan ; frying pan) is a kind of container for (cooking ; food)
a burner is a kind of (object ; surface)

a sleeping bag is a kind of product
a paper clip is a kind of object

a pan is a kind of object
a nail is a kind of object

n174
MADEOF

***
brass is made of copper and zinc

(pot ; pan ; frying pan) is made of metal for cooking
a burner is made of metal

sleeping bags usually are made of insulators
a paper clip is often made of (magnetic metals ; ferromagnetic metals)

iron nails are made of iron

n1743
KINDOF

***
iron is a kind of metal

metal is a kind of material

n1746
MADEOF

***
iron nails are made of iron

n1745
KINDOF

***
iron is a kind of solid

n171
KINDOF

***
copper is a kind of metal
metal is a kind of material

wood is a kind of natural material
zinc is a kind of metal

n175
MADEOF

***
brass is made of copper and zinc

a paper clip is often made of (magnetic metals ; ferromagnetic metals)
a burner is made of metal

(pot ; pan ; frying pan) is made of metal for cooking
furniture often is made of wood

n176
KINDOF

***
water is a kind of liquid

water is a kind of substance
water is a kind of natural resource

water is a kind of matter

n577
PROTO-PROP-STATESOFMATTER1

***
water is in the gas state , called water vapor , for temperatures between (373 ; 212 ; 100) and 100000000000 (K ; F ; C)

water is in the solid state , called ice , for temperatures between (0 ; -459 ; -273) and (273 ; 32 ; 0) (K ; F ; C)
water is in the liquid state , called liquid water , for temperatures between (273 ; 32 ; 0) and (373 ; 212 ; 100) (K ; F ; C)

water is in the gas state , called water vapor , for temperatures between 373; 212; 100 and 100000000000 K; F; C

n177
KINDOF

***
ice is a kind of food

an ice cube is a kind of solid
ice is a kind of solid

n178
KINDOF

***
hail is a kind of (precipitation ; ice)

snow is a kind of ice

n1509
CAUSE

***
burning a living thing usually causes harm to that living thing

electrocution causes harm to an organism

n1518
CAUSE

***
friction causes the temperature of an object to increase

n194
KINDOF

***
a sheet of sandpaper is a kind of object

a block is a kind of object

n1517
CAUSE

***
an object being pushed across another object causes their surfaces to move against each other

n189
CAUSE

***
heating salt water causes the water to evaporate while the salt remains

n1292
KINDOF

***
water is a kind of liquid

n201
KINDOF

***
an animal is a kind of organism

n431
CAUSE

***
evaporation causes amount of water to decrease

n1328
CAUSE

***
fire causes burning

n196
KINDOF

***
fire is a kind of chemical reaction

n1329
KINDOF

***
burning is a kind of action

n1523
CAUSE

***
chemical reactions cause (new substances ; different substances) to form

n1521
CAUSE

***
chemical reactions cause chemical change

n1335
KINDOF

***
combustion is a kind of chemical change

n1336
CAUSE

***
sharpening an object causes that object to change shape

n1515
CAUSE

***
freezing causes a solid to form

condensing causes a liquid to form

n372
CAUSE

***
sugar causes food to taste sweet

n219
KINDOF

***
a beverage is a kind of food

n1538
KINDOF

***
sweet is a kind of flavor

n1343
CAUSE

***
the sun causes water to evaporate more quickly by adding heat

n1677
TRANSFER

***
a thermal energy conductor transfers heat from (warmer objects ; hotter objects) to cooler objects

n207
PROTO-IF-THEN

***
when an electrical conductor is plugged into an outlet , a circuit is completed

n216
KINDOF

***
tea is a kind of beverage

n1366
KINDOF

***
a leaf is a kind of object

n391
PROTO-ACTION

***
classifying means grouping (objects ; materials) by their properties

n1364
KINDOF

***
metal is a kind of material
gas is a kind of substance

n1545
PROTO-ACTION

***
a container contains (objects ; material ; substances)

n1548
KINDOF

***
a container is a kind of object

n1362
KINDOF

***
a ball is a kind of object

n1546
KINDOF

***
rolling is a kind of motion

n1549
KINDOF

***
a bird is a kind of animal

n1556
PROTO-ACTION

***
animals usually distance themselves from humans

n1551
KINDOF

***
a balloon is a kind of object

n1553
KINDOF

***
the floor is a kind of objectn1554

PROTO-ACTION

***
a white object reflects all visible light

n218
KINDOF

***
a prism is a kind of object

n228
PROTO-ACTION

***
a prism refracts light

n1561
KINDOF

***
carpet is a kind of material

n1562
PROTO-ACTION

***
carpet absorbs sound

n1559
KINDOF

***
a tectonic plate is a kind of object

n1560
PROTO-ACTION

***
a tectonic plate moves along a fault line

n1557
KINDOF

***
sugar is a kind of substance

n1558
PROTO-ACTION

***
sugar dissolves in water when they are combined

n1555
KINDOF

***
an animal is a kind of living thing

n1541
KINDOF

***
metal is a kind of material

n221
KINDOF

***
classifying is a kind of science process

n222
KINDOF

***
a block is a kind of object

a sheet of sandpaper is a kind of object

n1505
PROTO-ACTION

***
friction occurs when two object 's surfaces move against each other

n224
KINDOF

***
magnetism is a kind of physical property

n225
KINDOF

***
water is a kind of substance

n243
PROPERTIES-GENERIC

***
(mass ; weight) is a property of (matter ; objects ; materials)

color is a property of (an object ; a material)
conductivity is a property of a (material ; substance)

hardness is a property of a (material ; an object) and includes ordered values of (malleable ; rigid)
magnetism is a property of (materials ; objects) and includes ordered values of (nonmagnetic ; magnetic)

shape is a property of an object
shape is a property of the appearance of an object

size is a property of objects and includes ordered values of (microscopic ; tiny ; small ; medium ; large)
(temperature ; heat energy) is a property of (objects ; weather) and includes ordered values of (cold ; cool ; warm ; hot)

texture is a property of (surfaces ; materials ; objects) and includes ordered values of (smooth ; rough)
thickness is a property of an object and includes ordered values of (thin ; thick)

length is a property of the shape of an object

n237
KINDOF

***
a fruit is a kind of object

metal is a kind of material
wood is a kind of natural material

butter is a kind of substance
marble is a kind of (object ; material)

a statue is a kind of object
a table is a kind of object

a paper clip is a kind of object
a block is a kind of object
a nail is a kind of object

frosting is a kind of material
a rock is a kind of object

a sheet of paper is a kind of object
a leaf is a kind of object

a paper is a kind of object
a pencil is a kind of object

a paper bag is a kind of object
a spoon is a kind of object

a sheet of sandpaper is a kind of object

n238
KINDOF

***
smooth is a kind of texture

n803
PROPERTIES-GENERIC

***
texture is a property of (surfaces ; materials ; objects) and includes ordered values of (smooth ; rough)

n1318
CHANGE-VEC

***
climbing increases altitude

n262
SYNONYMY

***
increase means more

n257
CHANGE-VEC

***
(to slow ; to slow down) decreases speed

n263
SYNONYMY

***
less is similar to decrease

n1790
SYNONYMY

***
heat energy is synonymous with thermal energy

n1323
CHANGE-VEC

***
a thermal insulator (slows ; prevents) the transfer of heat

n1470
SYNONYMY

***
electricity means electrical energy

n259
CHANGE-VEC

***
(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

an electrical insulator (slows ; prevents) the (transfer of ; flow of) electricity
drying means (amount of water ; amount of liquid ; wetness) decreases

n265
SYNONYMY

***
take away means decreasing
to lower means to decrease

n1508
SYNONYMY

***
protecting something means preventing harm to that something

n863
SYNONYMY

***
insulator means good insulator

a good conductor is a conductor

n245
SOURCEOF

***
fire gives off (light ; heat ; smoke)

n251
SYNONYMY

***
to give off means to be the source of

n1791
SOURCEOF

***
the sun is a source of (radiation ; heat) called sunlight

sunlight produces heat

n252
SYNONYMY

***
make means produce

n255
SYNONYMY

***
to get hot means become hot

n284
PROTO-IF-THEN

***
if an event occurs by adding something then that event requires that something

n278
CHANGE

***
tearing an object changes that object 's shape

n411
PROP-CONDUCTIVITY

***
metal is an (electrical ; electrical energy) conductor

rubber is an (electrical ; electrical energy ; thermal ; thermal energy) insulator
wood is an (electrical ; electrical energy ; thermal energy) insulator

water is an (electrical ; electric energy ; thermal ; thermal energy) conductor
brick is an (electrical ; electrical energy) insulator
wax is an (electrical ; electrical energy) insulator

n288
KINDOF

***
wood is a kind of natural material

water is a kind of substance
oxygen is a kind of element

iron is a kind of element
an insect is a kind of animal

a hair is a kind of object
an ice cube is a kind of object
an ice cube is a kind of solid

water is a kind of liquid

n293
PROTO-PROPERTIES-THINGS

***
wood is usually sturdy

the (freezing point of water ; melting point of water) is (32F ; 0C ; 273K)
the melting point of oxygen is (-361.8F ; -218.8C ; 54.4K)

the melting point of iron is (2800F ; 1538C ; 1811K)
an insect has six legs

hair is thin
ice is cold in temperature

the boiling point of water is (212F ; 100C ; 373K)
an insect usually has a small size

n289
KINDOF

***
an ant is a kind of insect

a paper bag is a kind of object
marble is a kind of (object ; material)

a ladybug is a kind of insect
a living thing is a kind of object

n294
PROTO-PROPERTIES-THINGS

***
an insect usually has a small size

a piece of an object is smaller in size than the whole object
different materials usually have different properties

an insect has six legs
an part of an object is smaller than the entire object

n452
PROTO-PROPERTIES-THINGS

***
a fingerprint is small in size

an insect usually has a small size
a desk is usually short (in height ; in width)

a desk usually has a length with values between 50 and 250 cm

n296
PROTO-PROPERTIES-THINGS

***
a sunny day has lots of sunlight

n292
KINDOF

***
noon is a kind of time of day

n1375
REQUIRES

***
electric devices require electrical energy to function

n1788
REQUIRES

***
cooking food requires adding heat energy

n1639
USEDFOR

***
a (pan ; frying pan) is used for cooking food by heating food in it on a stove

n1631
REQUIRES

***
determining often requires (measuring ; observing)

comparing requires measuring

n1624
REQUIRES

***
cutting a material usually requires measuring length

n1627
USEDFOR

***
a tape measure is used to measure (length ; distance)

n302
REQUIRES

***
navigation requires knowing direction

n1666
USEDFOR

***
a compass is used for determining direction

n1651
SOURCEOF

***
fire gives off (light ; heat ; smoke)

a stove generates heat for cooking usually

n1655
PROTO-IF-THEN

***
when an electrical conductor is plugged into an outlet , a circuit is completed

n1656
SOURCEOF

***
a complete electrical circuit is a source of electrical energy

n334
TRANSFER

***
moving an object from a cool place to a warm place causes the object 's temperature to increase

n327
SYNONYMY

***
to conduct is similar to to transfer

n1671
TRANSFER

***
soil erosion is when (wind ; moving water ; gravity) move soil from (fields ; environments)

n338
SYNONYMY

***
(a hand lens ; a magnifying lens) is synonymous with a magnifying glass

n1662
USEDFOR

***
magnifying glass is used to see small things by making objects appear bigger

n339
SYNONYMY

***
not looking means not seeing

n1661
SYNONYMY

***
observe means see

n1298
USEDFOR

***
a stove is used for cooking by generating heat

n1594
PROTO-MEASUREMENTS

***
speed is a measure of distance travelled (over time ; divided by time)

diameter is a measure of length through the center of a circle
density is a measure of mass (over volume ; divided by volume)

temperature is a measure of heat energy
(distance moved ; distance travelled) is a measure of how far an object moves

n351
PROTO-MEASUREMENTS

***
(distance moved ; distance travelled) is a measure of how far an object moves

n355
SYNONYMY

***
high is similar to increase

n361
SYNONYMY

***
best means most positive

n373
CAUSE

***
absorbing sunlight causes objects to heat

n1511
CAUSE

***
completing a circuit causes (electricity ; electric current) to flow through that circuit

n482
CAUSE

***
ice wedging is when ice causes rocks to crack by expanding in openings

n380
PROTO-IF-THEN

***
when water freezes , that water expands

n375
CAUSE

***
cycles of freezing and thawing water cause ice wedging

n1514
PROTO-IF-THEN

***
if an object undergoes chemical change then that object will have new chemical properties

n405
USEDFOR

***
a calculator is used for (adding ; subtracting ; multiplying ; dividing)

n396
SYNONYMY

***
metallic is similar to shiny

n397
SYNONYMY

***
grouping means (putting ; placing) in different groups

n1599
SYNONYMY

***
counter means (reduce ; stop ; resist)

n398
SYNONYMY

***
(size ; amount) means volume

n406
KINDOF

***
metal is a kind of material

wood is a kind of natural material
down feathers are a kind of material

rubber is a kind of material

n407
KINDOF

***
iron is a kind of metal

copper is a kind of metal

n408
KINDOF

***
an insulator is a kind of material

n1372
KINDOF

***
a tape measure is a kind of tool for (measuring distance ; measuring length)

n1626
REQUIRES

***
building something often requires measuring the materials

n414
KINDOF

***
wood is a kind of natural material

n428
CAUSE

***
temperature changing can cause phase changes

n1516
CAUSE

***
water vapor cooling causes that water vapor to condense

n424
PROTO-OPPOSITES

***
an insulator is the opposite of a conductor

n598
PROTO-PROP-STATESOFMATTER

***
Matter in the gas phase has variable shape
Matter in the gas phase has variable volume
Matter in the solid phase has definite shape
Matter in the liquid phase has variable shape
Matter in the liquid phase has definite volume

n440
KINDOF

***
erosion is a kind of change

n1381
TRANSFER

***
raining is when rain falls from clouds to the (Earth ; ground) as a liquid

n441
KINDOF

***
metal is a kind of material

n443
KINDOF

***
solar energy is a kind of heat energy

n451
PROTO-PROPERTIES-THINGS

***
an part of an object is smaller than the entire object

n454
PROTO-PROPERTIES-THINGS

***
a freezer is (cool ; cold) in temperature

ice is cold in temperature
the boiling point of water is 212F; 100C; 373K

n459
USEDFOR

***
a freezer is used for cooling things

n460
MADEOF

***
a wax crayon is made of wax

a rubber eraser is made of rubber

n1442
MADEOF

***
(pot ; pan ; frying pan) is made of metal for cooking

n1443
MADEOF

***
a thermal conductor is made of materials that conduct thermal energy

n462
MADEOF

***
sleeping bags usually are made of insulators

n465
PROP-CONDUCTIVITY

***
down feathers are a (thermal ; thermal energy) insulator

metal is a (thermal ; thermal energy) conductor

n536
COUPLEDRELATIONSHIP

***
as the temperature of a liquid increases , that liquid will evaporate quicker

n471
SYNONYMY

***
warm means warm temperature

n467
COUPLEDRELATIONSHIP

***
as altitude increases , the temperature of the air will decrease

n472
SYNONYMY

***
to lower means to decrease

n1534
COUPLEDRELATIONSHIP

***
as the kinetic energy of a molecule increases , the temperature will increase

n1536
COUPLEDRELATIONSHIP

***
as the smoothness of something increases , the friction of that something will decrease when its surface moves against another surface

n475
SYNONYMY

***
to reduce means to decrease

n1530
COUPLEDRELATIONSHIP

***
as a source of light moves directly overhead of an object , the size of the shadow of that object will decrease

n1531
SYNONYMY

***
to lower means to decrease

n1528
COUPLEDRELATIONSHIP

***
as state of matter changes , mass will not change

n1529
SYNONYMY

***
stay the same means not changing

n815
COUPLEDRELATIONSHIP

***
as the resistance to something increases , how easilty that something can be done will decrease

n1537
COUPLEDRELATIONSHIP

***
as moisture of an object decreases , the friction of that object against another object will increase

n790
CONTAINS

***
a beach ball contains gas

a body of water contains water
a bubble contains gas
a balloon contains gas

n723
KINDOF

***
a puddle is a kind of body of water

n499
CHANGE-VEC

***
a thermal insulator (slows ; prevents) the transfer of heat

n493
CHANGE-VEC

***
heat means temperature increases

(warm ; becoming warm) means heat is added
heating means adding heat

n495
CHANGE-VEC

***
heat means temperature increases

boiling is when liquids are heated above their boiling point

n503
CHANGE-VEC

***
cooling means temperature decreases

boiling means the volume of a liquid decreases

n476
CAUSE

***
cracking something may cause that something to break apart

n973
CAUSE

***
adding heat to an object sometimes causes chemical reactions

n852
CAUSE

***
cooking causes a chemical reaction

n1522
CAUSE

***
combining two substances chemically causes chemical reactions

n1499
CAUSE

***
something dangerous can cause harm

n508
PROTO-IF-THEN

***
if one is holding an object then one is touching that object

n515
USEDFOR

***
a handle is used for holding an object

n1657
PROTO-IF-THEN

***
if a person is lost at sea then that person may not know the direction of land

n1665
USEDFOR

***
a compass is used to navigate (oceans ; seas)

n826
COUPLEDRELATIONSHIP

***
as heat increases , a flexible container containing gas will expand

n540
KINDOF

***
a flagpole is a kind of object

n1349
KINDOF

***
sunlight is a kind of light

n1482
COUPLEDRELATIONSHIP

***
as the temperature of an object increases , the size of that object will increase

n817
COUPLEDRELATIONSHIP

***
as the thickness of an object increases , the resistance (to tearing ; to breaking) will increase

n969
PARTOF

***
the head is a part of an animal

legs are usually a part of an animal

n523
KINDOF

***
an animal is a kind of living thing

n1392
PARTOF

***
a rough surface is a part of sandpaper

n524
KINDOF

***
a burner is a kind of (object ; surface)

n527
PARTOF

***
a burner is a part of a stove

n1013
PARTOF

***
a surface is a part of an object
a surface is a part of a material

n1455
PARTOF

***
a handle is a part of an object for holding that object

n545
CHANGE-VEC

***
cooling means temperature decreases

heat means temperature increases

n1352
COUPLEDRELATIONSHIP

***
as the temperature of an object increases , the size of that object will increase

n1309
CHANGE-VEC

***
(cooling ; colder) means (removing ; reducing ; decreasing) (heat ; temperature)

n1457
PARTOF

***
a handle is a part of an object for holding that object

n569
KINDOF

***
gas is a kind of substance

n582
UNIT

***
liters ( L ) is a unit used for measuring volume generally used for values between 1 and 50000000

kilograms ( kg ) are a unit used for measuring (mass ; weight) generally used for values between 1 and 50000000
milliliters ( mL ) is a unit used for measuring volume generally used for values between 1 and 1000

meters ( m ) are a unit used for measuring (length ; distance) generally used for values between 1 and 1000
centimeters ( cm ) are a unit used for measuring (length ; distance) generally used for values between 1 and 250

grams ( g ) are a unit used for measuring (mass ; weight) generally used for values between 1 and 2000

n580
SYNONYMY

***
texture means how an object feels

n1491
SYNONYMY

***
heat means heat energy

n579
PROPERTIES-GENERIC

***
magnetism is a property of (materials ; objects) and includes ordered values of (nonmagnetic ; magnetic)

n581
SYNONYMY

***
an object is an item

n604
PROTO-OPPOSITES

***
staying cool is the opposite of becoming hot

n602
PROTO-IF-THEN

***
if something is definite in shape then that something will not change shape easily

n606
PROTO-OPPOSITES

***
definite is the opposite of variable

n1681
PROTO-OPPOSITES

***
changed is the opposite of unchanged

n350
PROTO-MEASUREMENTS

***
temperature is a measure of heat energy

n591
CHANGE

***
tearing an object changes that object 's shape

crumple means change shape from smooth into (compacted ; irregular) by physical force

n1226
PROPERTIES-GENERIC

***
shape is a property of the appearance of an object

shape is a property of an object

n1285
PROPERTIES-GENERIC

***
(mass ; weight) is a property of (matter ; objects ; materials)

n1632
REQUIRES

***
measuring the hardness of minerals requires scratching those materials

n587
REQUIRES

***
building something often requires measuring the materials

cutting a material usually requires measuring length

n635
PROTO-ACTION

***
baking soda can react chemically with vinegar

n1792
SOURCEOF

***
the sun is a source of (light ; light energy) called sunlight

n671
SYNONYMY

***
moving is similar to travelling

n309
PROTO-INSTANCES

***
plastic is usually an electrical insulator

n1446
MADEOF

***
objects are made of (materials ; substances ; matter)

n1450
MADEOF

***
a thermal conductor is made of materials that conduct thermal energy

n1368
KINDOF

***
brass is a kind of alloy

n1193
PROTO-INSTANCES

***
an element is not an alloy

n663
KINDOF

***
aluminum is a kind of element

gold is a kind of element
lead is a kind of element

n1370
KINDOF

***
aluminum is a kind of metal

n1371
PROTO-INSTANCES

***
a metal is usually a solid

n664
KINDOF

***
plastic is a kind of material made by humans

n898
MADEOF

***
a paper clip is often made of (magnetic metals ; ferromagnetic metals)

n1444
PROPERTIES-GENERIC

***
conductivity is a property of a (material ; substance)

n714
MADEOF

***
(matter ; materials ; substances) are made of (atoms ; particles)

n717
PROPERTIES-GENERIC

***
composition is a property of (an object ; matter)

n690
ATTRIBUTE-VALUE-RANGE

***
thin means small in width

n693
CHANGE-VEC

***
magnifying makes seeing small things easier through (using a magnifying glass ; using a microscope)

n1317
ATTRIBUTE-VALUE-RANGE

***
high means great in altitude

n1737
ATTRIBUTE-VALUE-RANGE

***
warm means medium (heat energy ; temperature)

(colder ; cooler) means lower in temperature
cold means low in temperature

hot means high in (heat energy ; temperature)

n692
ATTRIBUTE-VALUE-RANGE

***
dry means low in (amount of water ; wetness ; moisture)

n1629
REQUIRES

***
electrical insulation requires wrapping a conductor in an insulator

n680
PARTOF

***
eyes are usually part of an animal for seeing
the eyes are part of the head used for seeing

n681
PARTOF

***
the head is a part of an animal

n1789
SYNONYMY

***
heat energy is synonymous with thermal energy

n1635
REQUIRES

***
wiring requires an electrical conductor

n1636
SYNONYMY

***
to be used for something means to be required by that something

n1637
REQUIRES

***
determining often requires (measuring ; observing)

n1638
SYNONYMY

***
to be required means to be necessary

n718
EXAMPLES

***
An example of evaporation is a body of water drying up by absorbing heat energy

n721
EXAMPLES

***
An example of collecting data is measuring

n1739
ATTRIBUTE-VALUE-RANGE

***
hot means high in (heat energy ; temperature)

n704
ATTRIBUTE-VALUE-RANGE

***
greater means (higher ; more) in value

n705
ATTRIBUTE-VALUE-RANGE

***
(colder ; cooler) means lower in temperature

n867
ATTRIBUTE-VALUE-RANGE

***
moist means high in moisture

n711
SYNONYMY

***
sticky is similar to moist

n1749
MAGNETISM

***
metal is sometimes magnetic

n1751
MAGNETISM

***
iron is always magnetic

n752
PROTO-PROPERTIES-THINGS

***
carbon dioxide is colorless

n757
SYNONYMY

***
CO2 means carbon dioxide

n1498
AFFECT

***
harming something has a negative (impact on ; effect on) that something

n1295
CHANGE-VEC

***
a thermal insulator (slows ; prevents) the transfer of heat

n376
CAUSE

***
sharpening an object causes that object to change shape

n738
COUPLEDRELATIONSHIP

***
as roughness of a surface increases , friction will increase

n1460
PARTOF

***
a surface is a part of an object

length is a part of size

n1459
COUPLEDRELATIONSHIP

***
as a source of light moves directly overhead of an object , the size of the shadow of that object will decrease

as the temperature of an object increases , the size of that object will increase

n812
PROTO-PROPERTIES-THINGS

***
a freezer is (cool ; cold) in temperature

a piece of an object is smaller in size than the whole object

n811
PROPERTIES-GENERIC

***
hardness is a property of a (material ; an object) and includes ordered values of (malleable ; rigid)

n813
PROTO-PROPERTIES-THINGS

***
different materials usually have different properties

n809
VEHICLE

***
An electrical conductor is a vehicle for the flow of electricity

n1527
PROTO-OPPOSITES

***
an increase is the opposite of a decrease

n831
PROTO-OPPOSITES

***
contract is the opposite of expand

n1678
PROTO-PROPERTIES-THINGS

***
a desk is usually short (in height ; in width)

an insect has six legs

n1679
PROTO-PROPERTIES-THINGS

***
a desk usually has a length with values between 50 and 250 cm

an insect usually has a small size

n818
PROTO-ACTION

***
carpet absorbs sound

n820
PROTO-OPPOSITES

***
reflecting (light ; sound) is the opposite of absorbing (light ; sound)

n819
PROTO-ACTION

***
echo is when sound reflects off of a surface

n822
ATTRIBUTE-VALUE-RANGE

***
cold means low in temperature

n824
CHANGE

***
something in a cold place becomes cold

n802
PARTOF

***
a surface is a part of an object

n886
PROPERTIES-GENERIC

***
(variability of shape ; variability of volume) is a property of matter and includes values of (variable ; definite)

n1487
PROPERTIES-GENERIC

***
volume is a property of matter

n906
PARTOF

***
the atmosphere is a part of (nature ; the environment)

n1032
SYNONYMY

***
nature means a natural environment

n900
MADEOF

***
materials are made of matter

n904
PROTO-ACTION

***
matter in the liquid state drips

n901
MADEOF

***
a solution is made of one substance dissolved in another substance

n1754
PROTO-INSTANCES

***
appearance is sometimes a physical property

n884
ATTRIBUTE-VALUE-RANGE

***
heaviest means greatest (mass ; weight)

n1474
ATTRIBUTE-VALUE-RANGE

***
cold means low in temperature

hot means high in (heat energy ; temperature)

n855
SYNONYMY

***
to combust means to catch fire

n856
SYNONYMY

***
baking is similar to cooking

n916
REQUIRES

***
studying something usually requires seeing that something

n858
AFFORDANCES

***
the shape of an object can be discovered through (feeling that object ; touching that object)

n727
REQUIRES

***
wiring requires an electrical conductor

n956
PROTO-PROPERTIES-THINGS

***
a string is usually short in length with values between 2 and 1000 cm

a desk usually has a length with values between 50 and 250 cm

n962
AFFECT

***
using sturdy materials to build furniture has a positive impact on the use of that furniture

n966
KINDOF

***
a table is a kind of furniture

n935
SYNONYMY

***
to identify means to discover

n1473
AFFORDANCES

***
the color of an object can be discovered by looking at that object

n934
AFFORDANCES

***
eyes can (sense ; detect) light energy for seeing

n1306
PROTO-FORMEDBY

***
dew is formed when water vapor (condenses ; cools) over night

n1044
KINDOF

***
water is a kind of natural resource

n1030
PROTO-LOCATIONS

***
natural resources are found in nature

n1049
PROTO-LOCATIONS

***
the sun is located directly overhead at noon

n348
PROTO-MEASUREMENTS

***
humidity is the amount of (water vapor ; moisture) (in the air ; in the atmosphere)

n1053
USEDFOR

***
the volume of an object can be used to describe the size of that object

n1016
PROPERTIES-GENERIC

***
volume is a property of matter

hardness is a property of a (material ; an object) and includes ordered values of (malleable ; rigid) n1017
PROPERTIES-GENERIC

***
(mass ; weight) is a property of (matter ; objects ; materials)

texture is a property of (surfaces ; materials ; objects) and includes ordered values of (smooth ; rough)
n971

PROTO-PROPERTIES-THINGS

***
an insect has six legs

n978
PROTO-PROPERTIES-THINGS

***
a piece of an object is smaller in size than the whole object

n751
PROTO-PROPERTIES-THINGS

***
the boiling point of water is (212F ; 100C ; 373K)

n975
REQUIRES

***
popping popcorn requires adding heat

n1004
ATTRIBUTE-VALUE-RANGE

***
distant means great in distance

n767
AFFECT

***
decreasing something negative has a positive impact on a thing

n1172
MADEOF

***
a glacier is made of ice

n1448
MADEOF

***
furniture often is made of wood

n1249
PROTO-PROPERTIES-THINGS

***
wood is usually sturdy

n1158
PROTO-OPPOSITES

***
different is the opposite of the same

n1166
PARTOF

***
a flame are a part of a fire

a burner is a part of a stove

n1080
PARTOF

***
a rough surface is a part of sandpaper

n1164
MADEOF

***
soil is made of very small (rocks ; minerals)

n1146
PROP-HARDNESS

***
down is soft

n1145
KINDOF

***
down is a kind of small feather

n1089
PROPERTIES-GENERIC

***
thickness is a property of an object and includes ordered values of (thin ; thick)

n1106
SYNONYMY

***
mL means milliliters

n1117
AFFECT

***
saving money has a positive impact on (a person ; a company)

n1119
SYNONYMY

***
a positive impact is a benefit

n1253
SOURCEOF

***
the sun is the source of solar energy called sunlight

n1031
PROTO-LOCATIONS

***
ice is found in arctic environments

n1228
PROTO-INTENSIVE-EXTENSIVE

***
density is an intensive property

n1203
PROTO-SUBDIVISION-GENERICSPATIAL

***
a shore is the land found at the edge of a body of water

n1199
PROTO-PROP-FLEX-RIGIDITY

***
a beach ball is flexible

a balloon is highly flexible

n1825
MADEOF

***
(pot ; pan ; frying pan) is made of metal for cooking

n1135
MADEOF

***
a burner is made of metal

n1242
EXAMPLES

***
An example of navigation is directing a boat

n1269
MADEOF

***
matter is made of molecules

n1190
CONTAINS

***
a balloon contains gas

n1259
PROTO-PROPERTIES-THINGS

***
hair is thin

n868
ATTRIBUTE-VALUE-RANGE

***
faster means (an increase ; higher) in speed

n1170
ATTRIBUTE-VALUE-RANGE

***
shortest means (least ; smallest) in length

n1795
KINDOF

***
an insect is a kind of animal

n1796
PROTO-PROPERTIES-THINGS

***
an insect usually has a small size

n1811
TRANSFER

***
electrical conduction is when (metals ; electrical conductors) conduct electricity through (a wire ; electrical conductor ; metal)

n1812
CHANGE-VEC

***
an electrical insulator (slows ; prevents) the (transfer of ; flow of) electricity

n1815
TRANSFER

***
the sun transfers (solar energy ; light energy ; heat energy) from itself to the (planets ; Earth) through sunlight

n1816
MADEOF

***
a burner is made of metal

n1817
KINDOF

***
a pan is a kind of object

a burner is a kind of (object ; surface)
a living thing is a kind of object

a nail is a kind of object

n1820
SOURCEOF

***
the sun is a source of (radiation ; heat) called sunlight

a stove generates heat for cooking usually
a (hot ; warm) something is a source of heat

sunlight produces heat
fire gives off (light ; heat ; smoke)

flowing liquid can push objects

n1823
MADEOF

***
alloys are made of two or more metals

n1824
KINDOF

***
copper is a kind of metal

zinc is a kind of metal

Before merging
and curation

After merging
and curation

Figure 4: (top) the graph generated by the preprocessing tool, before manual curation and editing by the tool (step 2 in Figure 1).
(bottom) the graph after manual curation and editing, and before inference patterns have been generated (step 3 in Figure 1).
Clusters in the bottom graph approximately correspond to high-level inference patterns. The set of inference patterns is not
shown for space, but each extracted pattern and it’s enumerations are included as separate files in our supplementary material.
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Enumerated
Inference Pattern Nodes Edges Instances in KB
Alloys - - -

Alloy (Core) 3 2 27
Alloy (Composition) 5 6 8
Alloys (Single Elem Not Alloy) 3 2 6

Altitude * 8 10 6
Benefits of long lasting vs replacement 5 4 2
Building requires measuring - Study materials - - -

Building requires measuring 6 7 19
Sturdy materials for building 6 7 3

Burning-Electrocution-Preventing Harm - - -
Harm caused by burning 9 10 546
Harm caused by electrocution 7 7 324

Change of State - - -
Change of State (Evaporating Liquids) 9 9 11
Phase Changes 4 3 7
State of Matter (changing between states of known substances) 8 13 3

Chemical Changes - - -
Chemical Changes (Core+Grounding Specific Chemical Change) 4 3 2
Chemical Reactions (Core) 4 5 15
Chemical Reactions (Core + Substance Grounding) 6 7 363
Chemical Reactions (e.g., acids) 4 3 3

Containers contain things - - -
Containers (Abstracted) 5 5 1000
Containers (Application) 6 6 15

Cooking Food - - -
Cooking (Core) 6 6 26
Cooking a particular food 7 7 338
Cooking (Containers for cooking) 6 6 1

Electrical Conductivity - - -
Dangers of Electric Shock 4 3 414
Electrical Insulation 15 23 46
Electrical Circuits in Devices 7 11 18

Friction - - -
Friction (core) 16 31 3

General Motion * 3 3 6
Ice Wedging * 4 4 2
Magnetism - - -

Magnetic Objects 5 4 10
Manufacturers use material for products - - -

Manufacturers use materials for products (core) 4 3 19
Measurements - - -

Measurement Tools 4 4 130
Observations (Celestial Bodies) 5 6 6
Observations (Distant Objects) 5 6 208
Observations (Microscopic Things) 6 6 4
Observations (Small Things) 6 6 94

Navigation-Direction-Being lost at sea - - -
Navigation (core) 3 2 1
Navigation (being lost/boat) 6 7 2

Physical Changes - - -
Physical Changes (Changing Shape) 9 10 832

Seeing - - -
Things that can see and what they can see 6 6 1000

Soil erosion * 6 6 28
Solutions - Dissolving substances * 4 5 1
Sources of Heat * 3 2 6
Sunlight as a source of energy * 14 30 80
Sunlight location and shadow size * 7 7 312
Taste * 9 11 26
Taxonomic Inheritance 2 1 1000
Texture * 4 3 2
Thermal Conductivity - - -

Thermal Conductivity (Core) 21 26 1000
Thermal Conductors 0 5 4 9
Thermal Conductors 1 5 4 8
Thermal Insulators 5 5 5

Touch-Hardness * 4 3 8

Table 5: An extended list of inference patterns discovered in the corpus of explanations for Matter science exam questions using
this tool. Indented inference patterns represent a subset of smaller, more generic sub-patterns extracted from the larger pattern.
“Enumerated instances in KB” represents the number of unique combinations of facts the pattern generates in our current KB
(note that for speed, this currently has a hard upper limit of 1,000 patterns). An asterisk (*) represents patterns that are partial or
otherwise limited in size because they overlap with questions (e.g. from Earth or Life Science) not examined in this preliminary
study.
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Abstract

This paper reports on the results of the shared
tasks of the COIN workshop at EMNLP–
IJCNLP 2019. The tasks consisted of two
machine comprehension evaluations, each of
which tested a system’s ability to answer ques-
tions/queries about a text. Both evaluations
were designed such that systems need to ex-
ploit commonsense knowledge, for example,
in the form of inferences over information that
is available in the common ground but not nec-
essarily mentioned in the text. A total of five
participating teams submitted systems for the
shared tasks, with the best submitted system
achieving 90.6% accuracy and 83.7% F1-score
on task 1 and task 2, respectively.

1 Introduction

Due to the rise of powerful pre-trained word and
sentence representations, automated text process-
ing has come a long way in recent years, with
systems that perform even better than humans on
some datasets (Rajpurkar et al., 2016a). How-
ever, natural language understanding also involves
complex challenges. One important difference be-
tween human and machine text understanding lies
in the fact that humans can access commonsense
knowledge while processing text, which helps
them to draw inferences about facts that are not
mentioned in a text, but that are assumed to be
common ground.

(1) Max: “It’s 1 pm already, I think we should
get lunch.”
Dustin: “Let me get my wallet.”

Consider the conversation in Example 1: Max
will not be surprised that Dustin needs to get his
wallet, since she knows that paying is a part of
getting lunch. Also, she knows that a wallet is
needed for paying, so Dustin needs to get a wallet

for lunch. This is part of the commonsense knowl-
edge about getting lunch and should be known by
both persons. For a computer system, inferring
such unmentioned facts is a non-trivial challenge.
The workshop on Commonsense Inference in NLP
(COIN) is focused on such phenomena, looking
at models, data, and evaluation methods for com-
monsense inference.

This report summarizes the results of the COIN
shared tasks, an unofficial extension of the Sem-
Eval 2018 shared task 11, Machine Comprehen-
sion using Commonsense Knowledge (Ostermann
et al., 2018b). The tasks aim to evaluate the
commonsense inference capabilities of text un-
derstanding systems in two settings: Common-
sense inference in everyday narrations (task 1) and
commonsense inference in news texts (task 2).
Framed as machine comprehension evaluations,
the datasets used for both tasks contain challeng-
ing reading comprehension questions asking for
facts that are not explicitly mentioned in the given
reading texts.

Several teams participated in the shared tasks
and submitted system description papers. All
systems are based on Transformer architectures
(Vaswani et al., 2017), some of them explicitly in-
corporating commonsense knowledge resources,
whereas others only use pretraining on other ma-
chine comprehension data sets. The best submit-
ted system achieves 90.6% accuracy and 83.7%
F1-score on task 1 and task 2, respectively. Still,
there are cases that remain elusive: Humans out-
perform this system by a margin of 7% (task 1)
and 8% (task 2). Our results indicate that while
Transformer models are able to perform extremely
well on the data used in our shared task, there are
still some remaining cases demonstrating that hu-
man level is not achieved yet. Still, we believe that
our results also imply the need for more challeng-
ing data sets. In particular, we need data sets that
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make it harder to benefit from redundancy in the
training data or large-scale pretraining on similar
domains.

In the following, we briefly describe the data
sets (§2), baselines and evaluation metrics of the
shared tasks (§3) and we present a summary of
the participating systems (§4), their results (§5) as
well as a discussion thereof (§6).

2 Data and Tasks

Text understanding systems are often evaluated by
means of a reading comprehension task, which is
also referred to as machine (reading) comprehen-
sion (MC). The central idea is that a system has to
process a text and then find a correct answer to a
question that is asked on the text. Our shared tasks
follow this paradigm and use machine comprehen-
sion settings to evaluate a model’s capability to
perform commonsense inferences. In contrast to
most existing MC datasets, the two datasets that
are used for our shared tasks, MCScript2.0 (Os-
termann et al., 2019) and ReCoRD (Zhang et al.,
2018), are focused on questions that cannot be
answered from the text alone, but that require a
model to draw inference over unmentioned facts.

(2) Text: Camping is one of my favorite sum-
mer vacations. (...) Once I have all my
gear and clothing I’ll pack it into my car,
making sure to leave room for myself,
my dog and anything my friends want to
bring. And then we are ready for our
camping vacation.
Question: What do they put the drinks in?
a. Cooler
b. Sleeping bag

Example 2 illustrates the main idea of the
shared tasks. It shows a reading text from MC-
Script2.0, together with a question and two can-
didate answers. For a human, it is trivial to find
that the drinks are put into a cooler rather than
the sleeping bag. This information is however not
mentioned in the text, so a machine needs to have
the capability to infer this fact from commonsense
knowledge.

The reading texts of MCScript2.0 are narra-
tions about everyday activities (task 1). Due to
its domain, MCScript2.0 has a focus on evalu-
ating script knowledge, i.e. knowledge about the
events and participants of such everyday activities
(Schank and Abelson, 1975). Task 2 utilizes the

ReCoRD corpus (Zhang et al., 2018), which con-
tains news texts, a more open domain. The infer-
ences that are required for finding answers to the
questions in ReCoRD are thus of a more general
type.

2.1 Task 1: Commonsense Inference in
Everyday Narrations

MCScript2.0 is a reading comprehension data set
comprising 19,821 questions on 3,487 texts. Each
of the questions has two answer candidates, one of
which is correct. Questions in the data were anno-
tated for reasoning types, i.e. according to whether
the answer to a question can be found in the text
or needs to be inferred from commonsense knowl-
edge. Roughly half of the questions do require in-
ferences over commonsense knowledge.

The texts in MCScript2.0 are short narrations
(164.4 tokens on average) on a total of 200 dif-
ferent everyday activities. All texts were crowd-
sourced on Amazon Mechanical Turk1, by ask-
ing crowd workers to tell a story about one of the
200 scenarios as if talking to a child (Modi et al.,
2016; Ostermann et al., 2018a), resulting in sim-
ple texts which explicitly mention many details of
a scenario. In the question collection, which was
also conducted via crowdsourcing, turkers were
then asked to write questions about noun or verb
phrases that were highlighted in the texts. After
collecting questions, the sentences containing the
noun or verb phrases were deleted from the texts.
During the answer collection, crowd workers thus
had to infer the information required for finding an
answer from background knowledge. Five turk-
ers wrote correct and incorrect answer candidates
for each question, and the most difficult incorrect
candidates were selected via adversarial filtering
(Zellers et al., 2018).

For our shared task, we use the same data split
as Ostermann et al. (2019): 14,191 questions on
2,500 texts for the training set, 2,020 questions on
355 texts for the development set and 3,610 ques-
tions on 632 texts for the test set. All texts for five
scenarios were reserved for the test set only to in-
crease difficulty.

2.2 Task 2: Commonsense Inference in News
Articles

ReCoRD is a large-scale dataset for reading com-
prehension, which consists of over 120,000 ex-

1https://www.mturk.com/
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Machine Filtering
(244k triples)

CNN/Daily Mail News Article Curation
(170k news articles)

ReCoRD

Human Filtering
(120k triples)

 Passage-Query-Answers Generation
(770k triples)

Co

Figure 1: ReCoRD data collection procedure.

Train Dev. Test Overall

queries 100,730 10,000 10,000 120,730
unique passages 65,709 7,133 7,279 80,121

passage vocab. 352,491 93,171 94,386 395,356
query vocab. 119,069 30,844 31,028 134,397

tokens / passage 169.5 168.6 168.1 169.3
entities / passage 17.8 17.5 17.3 17.8
tokens / query 21.3 22.1 22.2 21.4

Table 1: Statistics of ReCoRD

amples, most of which require commonsense
reasoning. ReCoRD was collected in a four-
stage process (Figure 1): (1) curating CNN/Daily
Mail news articles, (2) generating passage-query-
answers triples based on the news articles, (3) fil-
tering out the queries that can be easily answered
by state-of-the-art machine comprehension (MC)
models, and (4) filtering out the queries ambigu-
ous to human readers. All named entities in the
passages are possible answers to the queries. Ta-
ble 1 summarizes the data statistics.

3 Shared Task Setup

The baselines for our shared tasks were adapted
from Ostermann et al. (2019) and Zhang et al.
(2018), respectively.

3.1 Task 1 Baselines
Following Ostermann et al. (2019), we present re-
sults of three baseline models.

Logistic Regression Model. Merkhofer et al.
(2018) presented a logistic regression classifier for
the SemEval 2018 shared task 11, which used sim-
ple overlap features and word patterns on MC-
Script, a predecessor of the dataset used for this
task. Their model outperformed many neural net-
works in spite of its simplicity.

Attentive Reader. The second baseline model
is an attentive reader network (Hermann et al.,
2015). GRU units (Cho et al., 2014) are used to
process text, question and answer. A question-
aware text representation is computed based on
a bilinear attention function, which is then com-
bined with a GRU-based answer representation for
prediction. For details, we refer to Ostermann
et al. (2019), Ostermann et al. (2018a) and Chen
et al. (2016)

TriAN. As last model, we use the three-way
attentive network (TriAN) (Wang et al., 2018),
a recurrent neural network that scored the first
place in the SemEval 2018 task. They use LSTM
units (Hochreiter and Schmidhuber, 1997), sev-
eral attention functions, and self attention to com-
pute representations for text, question and answer.
ConceptNet (Speer et al., 2017), a large common-
sense knowledge base containing thousands of en-
tities and commonsense relations between them,
is used to enhance text representations with com-
monsense information, by computing relation em-
beddings and appending them to the text represen-
tations. For more information we refer to Wang
et al. (2018).

3.2 Task 2 Baselines

We present five baselines for ReCoRD:

BERT (Devlin et al., 2019) is a new language
representation model. Recently fine-tuning the
pre-trained BERT with an additional output layer
has created state-of-the-art models on a wide range
of NLP tasks. We formalized ReCoRD as an ex-
tractive QA task like SQuAD, and then reused the
fine-tuning script for SQuAD to fine-tune BERT
for ReCoRD.

KT-NET (Yang et al., 2019a) employs an at-
tention mechanism to adaptively select desired
knowledge from knowledge bases, and then fuses
selected knowledge with BERT to enable context-
and knowledge-aware predictions for machine
reading comprehension.

SAN (Liu et al., 2018) is a top-ranked MC
model. It shares many components with other MC
models, and employs a stochastic answer module.
As we used SAN to filter out queries in the data
collection, it is necessary to verify that the col-
lected queries are hard for not only SAN but also
other MC architectures.
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Rank Team Name Architecture Commonsense Other Resources Tasks

1 PSH–SJTU Transformer (XLNet) - RACE, SWAG 1, 2
2 IIT-KGP Transformer (BERT

+ XLNet)
- RACE 1

3 BLCU-NLP Transformer (BERT) - ReCoRD, RACE 1
4 JDA Transformer (BERT) ConceptNet,

Atomic, Webchild
Wikipedia 1

5 KARNA Transformer (BERT) ConceptNet - 1

Table 2: Overview of participating systems

DocQA (Clark and Gardner, 2018) is a strong
baseline model for extractive QA. It consists
of components such as bi-directional attention
flow (Seo et al., 2016) and self-attention, both of
which are widely used in MC models. We also
evaluated a variant of DocQA with ELMo (Peters
et al., 2018) to analyze the impact of ELMo on this
task.

Random Guess acts as the lower bound of the
evaluated models, which randomly picks a named
entity from the passage as the answer. The re-
ported results are averaged over 5 runs.

3.3 Evaluation

Task 1. The evaluation measure for task 1 is ac-
curacy, computed as the number of correctly an-
swered questions divided by the number of all
questions. We also report accuracy values on ques-
tions that crowd workers explicitly annotated as
requiring commonsense as well as performance on
the five held-out scenarios.

Task 2. We use two evaluation metrics, EM and
F1, similar to those used by SQuAD (Rajpurkar
et al., 2016b). Exact Match (EM) measures the
percentage of predictions that match a reference
answer exactly. (Macro-averaged) F1 measures
the average overlap between model predictions
and reference answers. For computing F1, we treat
prediction and reference answers as bags of to-
kens. We take the maximum F1 over all reference
answers for a given query, and then average over
all queries.

4 Participants

In total, five teams submitted systems in task 1,
and one team participated in task 2. All submit-
ted models were neural networks, and all made
use of pretrained Transformer language models

such as BERT (Devlin et al., 2019). The partic-
ipants used a wide range of external corpora and
resources to augment their models, ranging from
other machine comprehension data sets such as
RACE (Lai et al., 2017) or MCScript (Ostermann
et al., 2018a), up to commonsense knowledge
databases such as ConceptNet (Speer et al., 2017),
WebChild (Tandon et al., 2017) or ATOMIC (Sap
et al., 2019). Table 2 gives a summary of the par-
ticipating systems.

• PSH–SJTU (Li et al., 2019) participated in
both tasks with a Transformer model based
on XLNet (Yang et al., 2019b). For task 1,
they pretrain the model in several steps, first
on the RACE data (Lai et al., 2017) and then
on SWAG (Zellers et al., 2018). For task
2, they do not conduct specific pretraining
steps, but implement a range of simple rule-
based answer verification strategies to verify
the output of the model.

• IIT-KGP (Sharma and Roychowdhury,
2019) present an ensemble of different
pretrained language models, namely BERT
and XLNet. Both models are pretrained on
the RACE data (Lai et al., 2017), and their
output is averaged for a final prediction.

• BLCU-NLP (Liu et al., 2019) use a Trans-
former model based on BERT, which is fine-
tuned in two stages: they first tune the BERT-
based language model on the RACE andReCoRD datasets and then (further) train the
model for the actual machine comprehension
task.

• JDA (Da, 2019) use three different knowl-
edge bases, namely ConceptNet (Speer et al.,
2017), ATOMIC (Sap et al., 2019) and Web-
Child (Tandon et al., 2017). They extract
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relevant edges from the knowledge bases
and compute relation embeddings, which are
combined with BERT-based word representa-
tions with a diadic multiplication operation.

• KARNA (Jain and Singh, 2019) use a BERT
model, but they enhance the text representa-
tion with edges that are extracted from Con-
ceptNet. Following Wang et al. (2018), they
extract relations between words in the text
and the question/answer, and append them to
the text representation. Instead of computing
relational embeddings, they append a specific
string that describes the relation.

5 Results

Table 3 shows the performance of the participating
systems and the baselines on the task 1 data. We
tested for significance using a pairwise approxi-
mate randomization test (Yeh, 2000) over ques-
tions. Except for the two top scoring systems, each
system performs significantly better than the next
in rank. All systems significantly outperform the
baselines. All systems show a lower performance
on commonsense-based questions as compared to
the average on all questions, with the difference
for the two top-scoring systems being smallest.
Surprisingly, all models are able to perform better
on the questions from held-out scenarios as com-
pared to their performance on all questions. This
indicates that all models are able to generalize well
from the training material.

Table 5 shows the systems’ performance on sin-
gle question types for task 1. Question types are
determined automatically, as described in (Oster-
mann et al., 2019). As can be seen, both top-
scoring systems perform well over all different
question types, indicating that both systems are
able to model a wide range of phenomena. Inter-
estingly, when questions seem to be the most chal-
lenging question type for all systems, indicating
difficulties when it comes to model event order-
ing information. Also, where questions seem to be
challenging, at least for some systems.

Table 4 shows EM (%) and F1 (%) of hu-
man performance, the PSH-SJTU system as well
as baselines on the development and test sets of
task 2. Compared with the best baseline, KT-
NET (Yang et al., 2019a), PSH-SJTU achieves sig-
nificantly better scores. On the hidden test set,
they improve EM by 10.08%, and F1 by 8.98%.

# Team Name acc acccs accOOD
1 PSH–SJTU 0.906 0.903 0.915
2 IIT-KGP 0.905∗ 0.894 0.931
3 BLCU-NLP 0.842∗ 0.812 0.838
4 JDA 0.807∗ 0.775 0.796
5 KARNA 0.733∗ 0.697 0.729

- TriAN 0.715 0.666 0.673
- Attentive

Reader
0.651 0.634 0.619

- Logistic 0.608 0.562 0.544

- Human 0.97

Table 3: Performance of participating systems and
baselines for task 1, in total (acc), on commonsense-
based questions (acccs), and on out-of-domain ques-
tions that belong to the five held-out scenarios
(accOOD). Significant differences in results between
two adjacent lines are marked by an asterisk (* p<0.05)
in the upper line. The best model performance per col-
umn is marked in bold print.

Dev. Test

EM(%) F1(%) EM(%) F1(%)

Human 91.28 91.64 91.31 91.69

PSH-SJTU 82.72 83.38 83.09 83.74
KT-NET 71.60 73.61 73.01 74.76
BERT-Large 66.11 68.49 67.61 70.01
SAN 48.86 50.08 50.43 51.41
DocQA 44.13 45.39 45.44 46.65
Random 18.41 19.06 18.55 19.12

Table 4: Performance (EM and F1) of human, partici-
pating systems and baselines for task 2.

Consequently, PSH-SJTU has reduced the gap be-
tween human and machine performance, with hu-
man performance being only 8% higher than PSH-
SJTU.

6 Discussion

Pretrained Transformer language models. A
main finding of our shared tasks is that large
pretrained Transformer language models such as
BERT or XLNet perform well even on challeng-
ing commonsense inference data. Strikingly, all
models generalize well, as can be seen from the
good performance on held-out scenarios. On
task 1, XLNet-based systems perform best. The
difference to the models purely based on BERT
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# Team Name what when where who how

1 PSH–SJTU 0.918 0.891 0.890 0.921 0.890
2 IIT-KGP 0.915 0.897 0.890 0.921 0.925
3 BLCU-NLP 0.874 0.800 0.815 0.857 0.870
4 JDA 0.844 0.777 0.744 0.794 0.829
5 KARNA 0.755 0.683 0.734 0.750 0.788

- TriAN 0.749 0.647 0.712 0.730 0.801
- AttentiveReader 0.700 0.578 0.620 0.659 0.726
- Logistic 0.644 0.546 0.573 0.663 0.685

Table 5: Performance of participating systems and baselines for task 1 on the 5 most common question types.

can mostly be attributed to the performance on
commonsense-based questions: While the perfor-
mance of XLNet-based models on such questions
is almost on par with their average performance,
models based on BERT underperform on com-
monsense questions. An interesting observation
was made by Li et al. (2019), who found that in-
cluding WordNet into a BERT model boosts per-
formance, while there is no such boost for an XL-
Net model. This seems to indicate that XLNet is
able to cover (at least partially) some form of lex-
ical background knowledge, as encoded in Word-
Net, without explicitly requiring access to such a
resource.

Still, when inspecting questions that were not
answered correctly by the best scoring model,
we found a large number of commonsense-based
when questions that ask for the typical order of
events. This indicates that XLNet-based models
are only to a certain extent able to model complex
phenomena such as temporal order.

Commonsense knowledge databases. Only
two participants made use of commonsense
knowledge, in the form of knowledge graphs
such as ConceptNet. Both participants conducted
ablation tests indicating the importance of includ-
ing commonsense knowledge. In comparison to
ATOMIC and WebChild, Da (2019) report that
ConceptNet is most beneficial for performance
on the task 1 data, which can be explained with
its domain: The OMCS (Singh et al., 2002) data
are part of the ConceptNet database, and OMCS
scenarios were also used to collect texts for the
task 1 data.

All in all, powerful pretrained models such as
XLNet still outperform approaches that make use
of structured knowledge bases, which indicates
that they are (at least to some extent) capable of

performing commonsense inference without ex-
plicit representations of commonsense knowledge.

Pretraining and finetuning on other data.
Several participants reported effects of pretrain-
ing/finetuning their models on related tasks. For
instance, Liu et al. (2019) experimented with dif-
ferent pretraining corpora and found results to
be best when pretraining the encoder of their
BERT model on RACE and ReCoRD. Similarly,
Li et al. (2019) report improved results when us-
ing larger data sets from other reading comprehen-
sion (RACE) and commonsense inference tasks
(SWAG) for training before fine-tuning the model
with the actual training data from the shared task.

7 Related Work

Evaluating commonsense inference via machine
comprehension has recently moved into the focus
of interest. Existing datasets cover various do-
mains:

Web texts. TriviaQA (Joshi et al., 2017) is a cor-
pus of webcrawled trivia and quiz-league websites
together with evidence documents from the web.
A large part of questions requires a system to make
use of factual commonsense knowledge for find-
ing an answer. CommonsenseQA (Talmor et al.,
2018) consists of 9,000 crowdsourced multiple-
choice questions with a focus on relations between
entities that appear in ConceptNet (Speer et al.,
2017). Evidence documents were webcrawled
based on the question and added after the crowd-
sourcing step.

Fictive texts. NarrativeQA (Kočiský et al.,
2018) provides full novels and other long texts
as evidence documents and contains approx. 30
crowdsourced questions per text. The questions
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require a system to understand the whole plot of
the text and to conduct many successive compli-
cated inference steps, under the use of various
types of background knowledge.

News texts. NewsQA (Trischler et al., 2017)
provides news texts with crowdsourced questions
and answers, which are spans of the evidence doc-
uments. The question collection procedure for
NewsQA resulted in a large number of questions
that require factual commonsense knowledge for
finding an answer.

Other tasks. There have been other attempts at
evaluating commonsense inference apart from ma-
chine comprehension. One example is the Story
cloze test and the ROC dataset (Mostafazadeh
et al., 2016), where systems have to find the cor-
rect ending to a 5-sentence story, using different
types of commonsense knowledge. SWAG (Zellers
et al., 2018) is a natural language inference dataset
with a focus on difficult commonsense inferences.

8 Conclusion

This report presented the results of the shared
tasks at the Workshop for Commonsense Inference
in NLP (COIN). The tasks aimed at evaluating the
capability of systems to make use of common-
sense knowledge for challenging inference ques-
tions in a machine comprehension setting, on ev-
eryday narrations (task 1) and news texts (task 2).
In total, 5 systems participated in task 1, and one
system participated in task 2. All submitted mod-
els were Transformer models, pretrained with a
language modeling objective on large amounts of
textual data. The best system achieved 90.6% ac-
curacy and 83.7% F1-score on task 1 and 2, re-
spectively, leaving a gap of 7% and 8% to human
performance.

The results of our shared tasks suggest that ex-
isting models cover a large part of the common-
sense knowledge required for our data sets in the
domains of narrations and news texts. This does
however not mean that commonsense inference
is solved: We found a range of examples in our
data that are not successfully covered. Further-
more, data sets such as HellaSWAG (Zellers et al.,
2019) show that commonsense inference tasks can
be specifically tailored to be hard for Transformer
models. We believe that modeling true language
understanding requires a shift towards text types
and tasks that test commonsense knowledge go-

ing beyond information that can be obtained by
exploiting the redundancy of large-scale corpora
and/or pretraining on related tasks.
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Abstract
This paper describes our model for COmmon-
sense INference in Natural Language Process-
ing (COIN) shared task 1: Commonsense In-
ference in Everyday Narrations. This paper
explores the use of Bidirectional Encoder Rep-
resentations from Transformers(BERT) along
with external relational knowledge from Con-
ceptNet to tackle the problem of commonsense
inference. The input passage, question and an-
swer are augmented with relational knowledge
from ConceptNet. Using this technique we are
able to achieve an accuracy of 73.3 % on the
official test data.

1 Introduction

Commonsense refers to the skill of making
presumptions regarding the physical form, use,
behaviour, interaction with other objects etc. that
is derived from the naive physics as well as the
humans’ folk psychology that develops because
of the frequent experience that we have as a result
of our day to day interaction with these entities.

The task of making commonsense inferences
about everyday world is an unsolved and worked
upon milestone in the path of Artificial General
Intelligence. The approach of attaining this task
in the field of Natural Language Processing
has seen some advancement in the recent times
with the advent of standard Data sets and Tasks
like SWAG, Event2Mind and Winograd Schema
Challenge.

The general approach followed in natural
language processing to judge performance in
commonsense inference task is to provide a
excerpt of the situation/ event and then some
questions are asked relating to the aforementioned
paragraph. The model is expected to answer
the question which is of the form that cannot be

answered by simple extraction of text from the
passage but requires certain information that has
to be inferred from outside general commonsense
resources i.e. by the use of commonsense.

Commonsense knowledge is usually exploited
by the use of explicit relations (positional, of form
etc.) stored in the form of knowledge graphs
or binary entity wise relations. Some examples
of these databases include Never Ending Lan-
guage Learner (NELL)(T. Mitchell, 2015), Con-
ceptNet(Liu and Singh, 2004), WebChild(Tandon
et al., 2017) etc.

2 Previous Work

Work in development of N.L.P. models that can
go beyond simple pattern recognition and use the
world knowledge has made progress lately.
Following are some of the major Corpus which
have helped make significant progress towards this
task:

• Event2Mind: (Rashkin et al., 2018) which
has 25,000 narrations about everyday activ-
ities and situations has been. The best per-
forming model is ConvNet (Rashkin et al.,
2018)

• SWAG: (Zellers et al., 2018) It is a dataset
of 113k highly varied grounded situations for
commonsense application. BERT Large (De-
vlin et al., 2018) gives 86.3 percent accuracy
on it, which is the current state of the art

• Winograd and Winograd NLI schema
Challenge: (Mahajan, 2018) Employs Wino-
grad Schema questions that require the reso-
lution of anaphora i.e. the model should iden-
tify the antecedent of an ambiguous pronoun.

The commonsense information in the form of
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various relations is stored in the form of the fol-
lowing knowledge bases:

• ConceptNet: It is a freely-available multi-
lingual language base from crowd sourced
resources like Wikitionary and Open Mind
Common Sense. It is a knowledge graph with
words and phrases as the nodes and relation
between them as the edges.

• WebChild: It is a large collection of
commonsense knowledge, automatically ex-
tracted from Web contents. WebChild con-
tains triples that connect nouns with adjec-
tives via fine-grained relations. The argu-
ments of these assertions, nouns and adjec-
tives, are disambiguated by mapping them
onto their proper WordNet senses.

• Never Ending Language Learner:It is
C.M.U.’s learning agent that actively learns
relations from the web and keeps expand-
ing it’s knowledge base 24/7 since 2010. It
has about 80 million facts from the web with
varying confidences. It continuously learns
facts and also keeps improving it’s reading
competence and thus learning accuracy.

3 Model

Before getting into the details of our model we first
briefly describe the problem statement. Given a
scenario, a short context about the narrative texts
and several questions about the context, we are re-
quired to build a system to solve the question by
choosing the correct answer from the choices. We
are allowed to use external knowledge to improve
our model’s common sense inference. For more
details, please refer. (Ostermann et al., 2018)
. In our system, we have used BERT(Devlin
et al., 2018), a pre-trained representation of un-
labelled text conditioned on both right and left
sequences. To incorporate commonsense in our
model we have used relation knowledge between
phrases and words from ConceptNet(Liu and
Singh, 2004), a knowledge graph that connects
words and phrases of natural language (terms)
with labeled, weighted edges (assertions).
Passage, questions and answers were extracted
from XML files. Each training example contains
a passage {Pi}|P |

i=1, a question {Qi}|Q|
i=1 and an an-

swer {Ai}|A|i=1 . Each passage is concatenated with

Edge Relation Event Phrase
RelatedTo A is related to B
FormOf A is a form of B
PartOf A is a part of B
UsedFor A is used for B
AtLocation A is at B
Causes A causes B
Synonym A is synonym of B
Antonym A is antonym of B

DerivedFrom A is derived from B

Table 1: Event Phrases

edge relation from ConceptNet. Method of query-
ing from ConceptNet is inspired from (Wang,
2018), but instead of using a relational vector we
convert those relations into event phrases and ap-
pend them to the passage. The conversion from
edge relation to event phrases is given in Table
1. This step is important as edge relations in
ConceptNet are not present in vocabulary of pre-
trained BERT(Devlin et al., 2018). Event phrases
convert the intent of edge relation into words that
are present in the vocabulary of pre-trained BERT
Since it is a multiple choice task, every training

sample, after augmenting with relational knowl-
edge from ConceptNet is formatted as proposed in
(Radford, 2018). Each choice will correspond to
a sample on which we run the inference. For a
given Swag example, we will create the 4follow-
ing inputs:
−[CLS]context[SEP ]choice1[SEP ]
−[CLS]context[SEP ]choice2[SEP ]
−[CLS]context[SEP ]choice3[SEP ]
−[CLS]context[SEP ]choice4[SEP ]
context contains passage concatenated with ques-
tion and relational knowledge from ConceptNet
The model outputs a single value for each input.
To get the final decision of the model, we run a
softmax over these 4 outputs.

4 Experiments

The training data includes 2500 passages with
14,190 questions while development data has 355
passages and 2019 questions in total. We have
used (Pyt) along with Pytorch to read and fine tune
pretrained BERT. We have listed the hyperparam-
eters in Table 2. We have tried model and selected
the one with best score in development data. We
have pretrained the model with Race Dataset (Lai
et al., 2017) for 1 epoch. The model is trained on
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Figure 1: Model Overview

Paramter Value
learningrate 2e-5
maxseqlength 210
batchsize 4
epochs 3

Optimizer ADAM

Table 2: Hyperparameters

Google Colab GPU for 2 epochs. We have used
BERT uncased base pretrained model. Gradients
are clipped to have a maximum L2 norm of 10.

5 Results

The experimental results are shown in Table 3.
The evaluation metric used is accuracy. We have
experimented with different variants of context.
Description of models are given below:

• w/oRACE : Model without pretraining
with RACE and context contains passage,
question , relation between passage and an-
swer and relation between question and an-
swer.

• w/oQ : Model with context containing pas-
sage, relation between passage and answer
and relation between question and answer.

Model Dev-set Test-set
w/oQ 83.6% 73.3%

w/oRACE 81.2% -
w/oQandPARel 76.7% -
w/oQandQARel 79.8% -

w/oPARel andQARel 74.1% -

Table 3: Results

• w/oQandPARel : Model with context
containing passage and relation between
question and answer.

• w/oQandQARel : Model with context
containing passage and relation between
question and answer.

• w/oPARel andQARel : Model with
context containing only passage and ques-
tion.

6 Error Analysis

The reason for difference in accuracy of test set
and dev set might be due to the fact that we
are using a subset of ConceptNet. The subset
was selected based on the vocabulary of train-
ing data and development data. The vocabulary
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of test data might not be in the selected sub-
set of ConceptNet. There might be few or even
no edges for the test data in the selected subset.
Thus the accuracy of test data for model w/oQ
is pretty close to accuracy of dev data for model
w/oPARel andQARel.

7 Conclusion

We conculde from our experiments that:

• Pre-Trained Models work better with fine-
tuning when the target task for which we are
training for is brought into the same domain
as the training task. We thus tried with out ap-
proach to convert the COIN task as the ques-
tion anwering task for which BERT was pre
trained.

• The addition of ConceptNet derived event
phrases increased the model accuracy on the
dev set by 9 percent. This is a positive feed-
back towards the exploitation of the various
Knowledge Graphs and Corpora (as men-
tioned in the introduction). The improve-
ment of accuracy of this method of use of
commonsense relations would improve along
the the progress of Natural Language Under-
standing.

• We were not able to use the event phrases
on the test set as the edges that we had ex-
tracted out of ConceptNet were not inclusive
of the test dataset. This problem could be
solved if there were enough compute power
made available to build and use the whole of
ConceptNet or call it from it’s web API in
the presence of an active internet connection
during model evaluation and with sufficient
number of call instances of the API available.

8 Scope and Future Work

The Development in Commonsense Inference is
detrimental to the progress towards truly general
purpose A.I. It’s application can be easily be
found in development of smarter chat bots and
search engines. It delimits the inference systems
from using only the provided contextual informa-
tion from the question asked and hence makes the
system more human-like.

Possible developments in this task can come
with the use of word embeddings made from

ConceptNet and other commonsense corporas and
graphs (cite) like Conceptnet Numberbatch em-
beddings. The accuracy can further be improved
by making more grammatically correct and
composite sentences from the relations. Further
tuning of the Hyperparameters of the model and
larger training sample collection would also go
long way in helping this field develop.
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Abstract

In this paper, we describe our system for
COIN 2019 Shared Task 1: Commonsense
Inference in Everyday Narrations Ostermann
et al. (2019). We show the power of leverag-
ing state-of-the-art pre-trained language mod-
els such as BERT (Bidirectional Encoder Rep-
resentations from Transformers) Devlin et al.
(2018) and XLNet Yang et al. (2019) over
other Commonsense Knowledge Base Re-
sources such as ConceptNet Speer et al. (2018)
and NELL Mitchell et al. (2015) for model-
ing machine comprehension. We used an en-
semble of BERTLarge and XLNetLarge. Experi-
mental results show that our model gives sub-
stantial improvements over the baseline and
other systems incorporating knowledge bases
and got the 2nd position on the final test set
leaderboard with an accuracy of 90.5%.

1 Introduction

Machine Reading Comprehension (MRC) re-
cently has been one of the most explored topics
in the field of natural language processing. MRC
consists of various sub-tasks Chen et al. (2018),
such as cloze-style reading comprehension Her-
mann et al. (2015); Hill et al. (2015); Cui et al.
(2018), span-extraction reading comprehension
Rajpurkar et al. (2016) and open-domain reading
comprehension Chen et al. (2017), etc. Earlier
approaches to machine reading and comprehen-
sion have been based on either hand engineered
grammars Riloff and Thelens (2000), or informa-
tion extraction methods of detecting predicate ar-
gument triples that can later be queried as a rela-
tional database Poon et al. (2010). These methods
show effectiveness, but they rely on feature extrac-
tion and language tools. Recently, with the ad-
vances and huge success of neural networks over
traditional feature based models, there have been
great interests in building neural architectures for

various NLP task Li and Zhou (2018), including
several pieces of work on machine comprehension
Hermann et al. (2015); Hill et al. (2015); Yin et al.
(2016); Kadlec et al. (2016); Cui et al. (2018),
which have gained significant performance in ma-
chine comprehension domain.

Machine comprehension using commonsense
reasoning is required to answer multiple-choice
questions based on narrative texts about daily ac-
tivities of human beings Yuan et al. (2018). The
answer to many questions does not appear di-
rectly in the text, but requires simple reasoning to
achieve. In terms of the nature of the problem,
this task can be considered as a binary classifica-
tion. That is, for each question, the candidate an-
swers are divided into two categories: the correct
answers and the wrong answers.

In this paper, we show that pretrained Language
Models alone can model commonsense reasoning
better than the other models incorporating com-
monsense knowledge base resources like Concept-
Net, NELL, etc integrated with deep neural ar-
chitectures. We propose to use an ensemble ar-
chitecture consisting of BERT and XLNet for this
task which achieves an accuracy of 91.0% on the
dev set and 90.5% on the test set outperforming
the Attentive Reader baseline by a large margin of
25.4%.

2 Task Description & Dataset

Formally, this Shared Task: Commonsense In-
ference in Everyday Narrations Ostermann et al.
(2019), organized within COIN 2019 is a multiple-
choice machine comprehension task that can be
expressed as a quadruple: < D, Q, A, a > Sheng
et al. (2018). Where D represents a narrative text
about everyday activities, Q represents a question
for the content of the narrative text, A is the can-
didate answer choice set to the question(this task
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T My backyard was looking a little empty,
so I decided I would plant something. I
went out and bought tree seeds. I found a
spot in my yard that looked like it would
get enough sunshine. There, I dug a hole
for the seeds. Once that was done, I took
my watering can and watered the seeds .

Q1 Why was the tree planted in that spot?
to get enough sunshine 3

there was no other space 7

Q2 What was used to dig the hole?
a shovel 3

their bare hands 7

Q3 Who took the watering can?
the grandmother 7

the gardener 3

Figure 1: Example text from SemEval ’18 Task 11

contains two candidate answers choice a0 and a1)
and a represents the correct answer. The system is
expected to select an answer from A that best an-
swers Q according to the evidences in document D
or commonsense knowledge.

This task assesses how the inclusion of com-
monsense knowledge in the form of script knowl-
edge would benefit machine comprehension sys-
tems. Script knowledge is defined as the knowl-
edge about everyday activities, i.e. sequences of
events describing stereotypical human activities
(also called scenarios), for example baking a cake,
taking a bus, etc. In addition to what is mentioned
in the text, a substantial number of questions re-
quire inference using script knowledge about dif-
ferent scenarios, i.e. answering the questions re-
quires knowledge beyond the facts mentioned in
the text.

Answers are short and limited to a few words.
The texts used in this task cover more than 100 ev-
eryday scenarios, hence include a wide variety of
human activities. While for question A, it is easy
to find the correct answer (”to get enough sun-
shine”) from the text, questions B and C are more
complicated to answer. For a person, it is clear that
the most plausible answers are ”a shovel” and ”the
gardener”, although both are not explicitly men-
tioned in the texts.

Recently, a number of datasets have been pro-
posed for machine comprehension. One example
is MCTest Richardson et al. (2013), a small cu-
rated dataset of 660 stories, with 4 multiple choice

questions per story. The stories are crowdsourced
and not limited to a domain. Answering ques-
tions in MCTest requires drawing inferences from
multiple sentences from the text passage. An-
other recently published multiple choice dataset
is RACE Lai et al. (2017), which contains more
than 28,000 passages and nearly 100,000 ques-
tions. The dataset is collected from English exam-
inations in China, which are designed for middle
school and high school students.

3 System Overview

We created an ensemble of two systems BERT
Devlin et al. (2018) and XLNet Yang et al. (2019),
each of which independently calculates the proba-
bilities of all options for a correct answer.

3.1 Finetuned BERT

BERT is designed to train deep bidirectional
representations by jointly conditioning on both
left and right context in all layers. We chose
BERTLarge, uncased as our underlying BERT model.
It consists of 24-layers, 1024-hidden, 16-heads,
and 340M parameters. It was trained on the Book-
Corpus (800M words) and the English Wikipedia
(2,500M words). The context, questions and op-
tions were first tokenized with BertTokenizer to
perform punctuation splitting, lower casing and in-
valid characters removal. The sequence which is
fed into the model is generated in form of [CLS]
+ context + [SEP] + question + answer + [SEP]
for every possible answer and sequence was as-
signed label 1 for correct answer and 0 otherwise.
The maximum sequence length was set as 500 on
COIN dataset, with shorter sequences padded and
in longer sequences context were truncated to ad-
just context + question + answer to this length. We
first fine-tuned BERT on the RACE dataset using
a maximum sequence length of 350 for 2 epochs.

We used the PyTorch implementation of BERT
from transformers1 which had the BERT tok-
enizer, positional embeddings, and pre-trained
BERT model. Following the recommendation for
fine-tuning in the original BERT approach Devlin
et al. (2018), we trained our model with a batch
size of 8 for 8 epochs. The dropout probability
was set to 0.1 for all layers, and Adam optimizer
was used with a learning rate of 1e-5.

1https://github.com/huggingface/
transformers
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3.2 Semi-Finetuned XLNet
Both RACE and COIN dataset contains rel-
atively long passages with average sequence
length greater than 300. Since the use of the
Transformer-XL architecture improves the capa-
bility of modeling long sequences besides the
AR objective as mentioned in Yang et al. (2019).
Hence we focused our attention on XLNet model
which is a pre-trained language model built upon
the Transformer-XL architecture. We used the
XLNetLarge, Cased model which has 24-layer, 1024-
hidden and 16-heads. The input to XLNet model
is similar to BERT : [A, SEP, B, SEP, CLS], with
a small difference that [CLS] token is used at the
end instead of the beginning. Here A and B are the
two segments, A represents the context and B rep-
resents the question + answer. We call our model
semi-finetuned because we used the Google Co-
lab TPU for fine-tuning XLNet but we had to
limit the maximum sequence length to 312 ow-
ing to the huge computational capacity required by
XLNetLarge, Cased. We used the Tensorflow imple-
mentation of XLNet from zihangdai/xlnet2. So we
couldn’t properly fine-tune XLNet on RACE. Af-
ter fine-tuning on RACE dataset for a few epochs,
we fine-tuned further on the COIN dataset keep-
ing maximum sequence length close to 400. The
maximum train steps was set to 12000, batch size
as 8 and Adam optimizer was used with a learning
rate of 1e-5.

3.3 Ensemble

BERT XLNet

Context Ques + Ans

probability probability+

0   1 output

Figure 2: Ensemble Model

Ensemble learning is an effective approach to
improve model generalization, and has been used

2https://github.com/zihangdai/xlnet

to achieve new state-of-the-art results in a wide
range of natural language understanding (NLU)
tasks Devlin et al. (2018); Liu et al. (2019b, 2018).
For the COIN 2019 shared task, we adopt a sim-
ple ensemble approach, that is, averaging the
softmax outputs from both BERTLarge, uncased and
XLNetLarge, cased, and make predictions based on
these averaged class probabilities. Our final sub-
mission follow this ensemble strategy.

4 Additional Experiments

We applied several approaches to the problem that
did not generalize as well to the development data
and were not included in the final ensemble. Due
to space constraints we don’t describe the simpler
models which include simple rule-based, feature-
based classification models, etc.

TriAN: We started with the previous state-
of-the-art model for SemEval ’18 Task-11 :
TriAN Wang et al. (2018) as our baseline. We
used both SemEval’18 Task 11 and COIN 2019
datasets for training. The Input layer uses GloVe
word embeddings concatenated with the part-of-
speech tag, named-entity and relation embed-
dings. It then consists of a Attention Layer
which models three way attention between con-
text, question and answer. Question-aware pas-
sage representation {wq

Pi
}|P |
i=1 can be calculated

as: wq
Pi

= Attseq(E
glove
Pi

, {EgloveQi
}|Q|
i=1). Simi-

larly, we can get passage-aware answer represen-
tation {wp

Ai
}|A|i=1 and question-aware answer rep-

resentation {wq
Ai
}|A|i=1. These Question-aware pas-

sage representation, Passage-aware answer repre-
sentation and Question-aware answer representa-
tion obtained from above are concatenated and fed
into 3 BiLSTMs to model the temporal depen-
dency. Then three BiLSTMs are applied to the
concatenation of those vectors to model the tem-
poral dependency:

hq = BiLSTM({wQi}
|Q|
i=1)

hp = BiLSTM({[wPi ;w
q
Pi
]}|P |
i=1)

ha = BiLSTM({[wAi ;w
p
Ai
;wq

Ai
]}|A|i=1)

hp,hq,ha are the new representation vec-
tors that incorporates more context information.
Then we have question representation q =

Attself ({hqi }
|Q|
i=1), answer representation a =

Attself ({hai }
|A|
i=1) and passage representation p =
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Attseq(q, {hpi }
|P |
i=1). The final output y is based on

their bilinear interactions:

y = σ(pTW3a+ qTW4a) (1)

Question sequence and answer sequence repre-
sentation are summarized into fixed-length vectors
with self-attention

5 Results and Discussion

This section discusses regarding the results of var-
ious approaches we applied in this task. First,
as a starting point we ran the best performing
model on the SemEval ’18 Task 11 - TriAN us-
ing the same hyper-parameters settings as stated
in the paper (Wang et al., 2018). It achieved an
accuracy close to 69.0%. We fine-tuned the sin-
gle BERTLarge, uncased model on the COIN + Se-
mEval ’18 Task 11 dataset and that achieved an
accuracy of 83.4% on the dev set. We further fine-
tuned it on the commonsense dataset RACE for a
few epochs which increased the accuracy by 1%.
We also fine-tuned the XLNetLarge, cased model on
the COIN + SemEval ’18 dataset which alone
achieved an accuracy of 90.6% on the dev set. But
we couldn’t fully fine-tune it on the RACE dataset
as mentioned earlier in Section 3.2. We finally
submitted our ensemble system which achieves an
accuracy of 91.0% on the dev set and 90.5% on the
hidden test set.

We can see there isn’t much difference in the ac-
curacy of our final ensemble model on the hidden
Test set compared to the Dev set which shows that
our model generalizes well to new/unseen data.

Model Dev Accuracy
TriAN 69.0
BERTlarge, uncased 84.4
XLNetlarge, cased 90.6
Ensemble 91.0

Table 1: Accuracy results for various models.

The main problem with commonsense knowl-
edge bases is that they are hard-coded Wang et al.
(2018) and they do not generalize well to hidden
dataset. This is also evident from Table 2 as the
top 3 systems (unofficial leaderboard)3 do not use
any kind of commonsense knowledge bases.

3https://coinnlp.github.io/task1.html

Rank Team Acc. Knowle-
dge Base

1 PSH-SJTU 90.6 No
(Li et al., 2019)

2 IIT-KGP (ours) 90.5 No

3 BLCU-NLP 84.2 No
(Liu et al., 2019a)

4 JDA 80.7 Yes
(Da, 2019)

5 KARNA 73.3 Yes
(Jain and Singh, 2019)

Table 2: Performance comparison among participants
of the COIN Shared Task 1, depicting use of common-
sense knowledge bases.

6 Conclusion & Future Work

In this paper, we present our system for the
Commonsense Inference in Everyday Narrations
Shared Task at COIN 2019. We built upon the re-
cent success of pre-trained language models and
apply them for reading comprehension. Our Sys-
tem achieves close to state-of-art performance on
this task.

As future work, we will try to explore the in-
depth layer by layer analysis of BERT and XLNet
attention similar to Clark et al. (2019) and how the
attention helps in commonsense reasoning.
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Abstract

We introduce a simple yet effective method of
integrating contextual embeddings with com-
monsense graph embeddings, dubbed BERT
Infused Graphs: Matching Over Other em-
beDdings. First, we introduce a preprocess-
ing method to improve the speed of querying
knowledge bases. Then, we develop a method
of creating knowledge embeddings from each
knowledge base. We introduce a method of
aligning tokens between two misaligned tok-
enization methods. Finally, we contribute a
method of contextualizing BERT after com-
bining with knowledge base embeddings. We
also show BERTs tendency to correct lower
accuracy question types. Our model achieves a
higher accuracy than BERT, and we score fifth
on the official leaderboard of the shared task
and score the highest without any additional
language model pretraining.

1 Introduction

Recently, wide-scale pre-training and deep con-
textual representations have taken the world by
storm. Peters et al. (2018) underscored the im-
portance of bidirectional contextual representa-
tions by using traditional neural networks trained
on a large corpus of text. Devlin et al. (2018)
used transformers (Vaswani et al., 2017) and word
masking to pre-train on another large corpus of
data, reporting human-level performance on one
commonsense dataset (Zellers et al., 2018). Yang
et al. (2019) achieves state-of-the-art on RACE
(Lai et al., 2017) with a Transformer-XL based
model (Dai et al., 2019).

The key to success in the performance of many
of these models is their ability to train on ex-
tremely large datasets. BERT (Devlin et al., 2018),
for example, trains on the BooksCorpus (Zhu
et al., 2015) and English Wikipedia, for a com-
bined 3,200M words. Other iterations increased

the amount of knowledge used during pre-training,
such as RoBERTa (Liu et al., 2019). Training
large-scale models on these massive datasets has
drawbacks, such as significantly increased carbon
pollution and harm to the environment (Schwartz
et al., 2019; Strubell et al., 2019).

We present a methodology of combining
queries from commonsense knowledge bases with
contextual embeddings, BIG MOOD - BERT
Infused Graphs: Matching Over Other embeD-
dings, and abbreviated for its relationship to hu-
man knowledge awareness. Our methodology
achieves a increase without significant additional
fine-tuning or pre-training. Instead, it learns a sep-
arate representation from commonsense graphical
knowledge bases, and augments the BERT rep-
resentation with this learned explicit representa-
tion. We introduce several methods of combining
and querying knowledge base embeddings to in-
troduce them to the BERT embedding layers.

2 Related Work

2.1 Knowledge Graphs

Significant research has been put into represent-
ing human knowledge in various ways (Lenat
and Guha, 1989; Auer et al., 2007; Cham-
bers and Jurafsky, 2008). ConceptNet (Speer
and Havasi, 2013) contains various aspects of
commonsense knowledge through a knowledge
graph.The knowledge is collected from crowed-
sourced resources (Meyer and Gurevych, 2012;
Havasi et al., 2010; von Ahn et al., 2006) and
expert-created resources (Miller, 1992; Breen,
2004). WebChild (Tandon et al., 2017) is a col-
lection of commonsense knowledge automatically
extracted from web contents. The database is con-
structed similarly to ConceptNet, and intended to
cover concepts that ConceptNet does not cover.
ATOMIC (Sap et al., 2018) focuses on inferential
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Passage: I had decided that I wanted to visit
my friend Paul whom lives quite a distance
away. With this and my fear of air travel in
mind I decided to take a train. After research-
ing and finding one online I was well on my
way to going to see my friend Paul. I drive
to the station and decide that I am going to
purchase a round trip ticket as this would be
cheaper than just buying both tickets sepa-
rately. Whenever my train arrives I have to
get in line as they process our tickets. After
all this is done I decide to take a seat by the
window. I sit and fall asleep a bit as I ride on
the train for hours. After a couple hours we
finally reach the destination and I get off the
train, excited to see my friend.
When did they wait for their train?
a) before buying the ticket
b) after buying a ticket

Table 1: Example of a prompt from the shared task
dataset, an everyday commonsense reasoning dataset.
Questions often require script knowledge that extends
beyond referencing the text.

If − Then relations, built for everyday common-
sense reasoning.

2.2 Knowledge Integration
Knowledge graphs have been applied in various
natural language processing applications, such as
reading comprehension (Lin et al., 2017; Yang and
Mitchell, 2017) and machine translation (Zhang
et al., 2017). ERNIE: Enhanced Representation
through Knowledge Integration (Sun et al., 2019)
appends knowledge to the input of the model and
learns via knowledge masking, as well as entity-
level masking and phrase-level masking. TriAN
(Wang, 2018), the top public model on the MC-
Script (Ostermann et al., 2018) shared task, uses
ConceptNet embeddings to highlight relationships
between the question, text, and answer.

3 Model

We present our model for this shared task. Our
model has three major components: language
model adaptation, knowledge graph embeddings,
and attention for classification.

3.1 Data Preprocessing
Before model usage, we preprocess the data in
two ways to make it easier for the model to un-

derstand. For language modeling, we create train-
ing data similar to those in BERT (Devlin et al.,
2018). For knowledge graph use, we preprocess
language to create commonsense object and rela-
tionship vocabulary and to match as many related
commonsense objects as possible.

3.1.1 Language Model Preprocessing
We prepossess each passage for training. We use
this process for each training epoch, since it allows
for the most dense pretraining framework.

Commonly known as a cloze task, Devlin
et al. (2018) introduced a framework that pre-
trained transformers (Vaswani et al., 2017) based
on masked token prediction. First, we prepro-
cess the tokens with WordPiece embeddings (Wu
et al., 2016). Then, we append special [CLS] and
[SEP ] to each datum. We append [CLS] to the
beginning of each datum, and [SEP ] to separate
the question with the answer, as such:

[CLS] passage question [SEP ] ans. [SEP ]

Then, we randomly mask 15% of all WordPiece
embeddings. Unlike Devlin et al. (2018), we run
the randomization script once per each training
epoch. Otherwise, we follow the procedure in De-
vlin et al. (2018). 80% of the time, we replace the
word with the [MASK] prediction, to be replaced
through cloze task prediction. 10% of the time, we
replace the word with a random word. 10% of the
time, we keep the word unchanged.

Combined with the above cloze task, we pro-
cess the data for next sentence prediction. We do
this process after the cloze task masking, similar
to Devlin et al. (2018). For each datum, we ran-
domly pick either a sentence labeled correctly as
the next sentence 50% of the time, or a random
sentence 50% of the time. We ensure that the ran-
dom sentence is not the next sentence.

3.1.2 Knowledge Graph Processing
We preprocess the data in the shared task along
with knowledge graph preprocessing. The purpose
of this procedure is to reduce the number of items
in the knowledge graph, to speed up fine-tuning
since the knowledge graphs are extremely large,
and also to ensure matching between as many dif-
ferent types of knowledge graph edges that are rel-
evant as possible.

First, we create an index of (start, end, edge)
relationships that match vocabulary within the
shared task prompt. For each (start, end, edge), we
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Figure 1: Our model architecture. Our design mimics (Vaswani et al., 2017). Since the queries work on whole
words only, one knowledge base embeddings may be integrated with one or more language embedding. Several
self-attention encoding layers are used.

Algorithm 1: Knowledge Graph Vocab Cre-
ation
for prompt in dataset do

for KG in knowledge graphs do
for (start, end, edge) in KG do

if start in prompt & end in prompt
then

add((start, end, edge))
index as relationship(edge)

end if
end for

end for
end for

check to see if there are any matching prompts in
which start is present in the text and end is present
in the text. If so, we store the (start, end, edge),
and note the edge as a relationship. We also index
the relationship (edge), giving an index for each
unique relationship.

For longer sequences, we allow matches be-
tween any trigram, and store an index for each tri-
gram matched. In addition, we stem words before-
hand, to ensure that the different word endings do
not effect the result of the matches. We use the
Porter Stemmer (Porter, 1980) to stem each word
in both the text and the knowledge graph. Note
that we only use the stemming to match differ-
ent words, and do not keep the stemmed words for
later use in the process, as to keep comparability

between embedding types. We also stem words in
knowledge bases, to allow for comprasion. Algo-
rithm 1 shows our process for matching sequences.

3.2 Knowledge Graph Usage

We query each of three knowledge bases to cre-
ate an embedding layer, for each word, for each
knowledge graph. Here, we describe our proce-
dure for querying each knowledge graph. We stem
words beforehand, to allow for matches agnostic
of linguistic postfixes (Merkhofer et al., 2018).

3.2.1 ConceptNet
ConceptNet (Speer and Havasi, 2013) represents
everyday words and phrases, with edges be-
tween the commonsense relationships between
them. We first preprocess ConceptNet, keep-
ing only the vocabulary present in the shared
task. Then, for each edge, we store a tu-
ple (agent, dependent, relationship) that de-
scribes the commonsense relationship mentioned
in the knowledge graph.

During fine-tuning, we check the text for any
present agent, dependent pairs. If any word in
the text is an agent, and the dependent is present
in the text, we add that relationship index as in-
put into the embedding layer. (For agents that
span more than one word, such as the phrase ”ap-
ple pie”, we apply the index to the first word, as
long as the entire phrase is found in the text). We
randomly generate a length 10 embedding for each
relationship, and if more than one relationship is
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matched, we randomly pick one.

3.2.2 WebChild

WebChild (Tandon et al., 2017) is a large collec-
tion of commonsense knowledge collected from
various sources on the web. The format is similar
to ConceptNet, which allows us to follow a simi-
lar process. WordNet instances are split into cat-
egories part − whole, comparative, property,
activity, and spatial. For each category, we cap-
ture the (agent, dependent, relationship) tu-
ple, which is usually defined as properties such
as xdisambi, ydisambi, and sub − relation, but is
slightly different for each category. We ignore the
WordNet (Miller, 1992) relation (some categories
will contain subjects such as bike#n#1, and take
only the stemmed word. For fine-tuning, we fol-
low the same procedure as ConceptNet, creating
an additional 10-length embedding for each word.

3.2.3 ATOMIC

ATOMIC (Sap et al., 2018) is a resource that fo-
cuses on inferential knowledge via If − Then re-
lations. ATOMIC separates its relationships into
nine different types (xNeed, xIntent, xAttr,
xEffect, xReact, xWant, oEffect, oWant).
For each of the nine categories, for each datum in
the given category, we search our text for relation-
ships that match the defined If − Then relation-
ship. Since each relationship is nearly a full sen-
tence, we allow a match to be any trigram matched
between the given datum and the text. Then, we
append an index [0, 8] to the embedding layer of
the first word in the selected trigram based on the
type of relationship matched. For fine-tuning, we
follow the same procedure as ConceptNet and We-
bChild, creating an additional 10-length embed-
ding for each word.

3.3 Architecture

Out modeling procedure consists of three parts.
First, we query each knowledge graph, allowing
us to create embeddings for each specific graph.
Then, we describe our word-level knowledge fu-
sion procedure, creating augmented embeddings
for each word. Finally, we describe our fine-tuning
procedure for the shared task dataset. We modify
pytorch-transformers1.

1https://github.com/huggingface/pytorch-transformers

3.3.1 Language Model Fine-Tuning
Contrary to Devlin et al. (2018), we do language
model fine-tuning in addition to classification fine-
tuning. We find that this generally provides better
results, and allows for more stable accuracy since
the shared task involves a small dataset. For each
prompt, we use the previous preprocessed data to
create tasks for our model to predict. We do this
before token realignment, so this happens before
any extra knowledge graph embeddings are added
to the model architecture. For masked tokens, we
predict that token through bidirectional context,
the same as Devlin et al. (2018). For next sentence
prediction, we use the unbiased method previously
introduced as well as in Devlin et al. (2018).

3.3.2 Token Realignment
We do a word-level fusion to incorporate knowl-
edge embeddings into the BERT model. First, we
collect word embeddings from BERT. We sum the
last four layer of BERT together, as suggested by
”The Illustrated BERT, ELMo, and co.” 2. We fuse
these embeddings with the embeddings gathered
from querying each of the three databases. For
each word, we take the dyadic product, or linear
fusion, of the contextual BERT embeddings with
the concatenation of the three graph embeddings.
When there is no related embedding (if the word
did not match any edges during querying, or if the
word is a BERT-specific token such as [CLS], we
do not do any dyadic fusion. Finally, to get a sin-
gle linear layer, we concatenate each dimension
of the result of the dyadic fusion with the original
BERT embedding. Algorithm 2 shows a detailed
explanation of our token realignment process.

3.3.3 Re-Attention
To get a final result, we do a few more neces-
sary steps. First, we do a single layer of self-
attention over the text, allowing each of the word-
level embeddings to interact with one another.
For this self-attention, we follow the same pro-
cess as in (Vaswani et al., 2017). We compare
each token with each other and do token-level fu-
sion with each other to learn an attention embed-
ding layer. Then, we use the sequence embed-
ding for classification. We add a simple linear
layer over the sequence embedding for classifica-
tion, and softmax over the given choices. Note
that we do not freeze any weights along the pro-
cess, allowing the transformer and perceptron to

2http://jalammar.github.io/illustrated-bert/
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Algorithm 2: Psuedocode for the token realignment algorithm, a method of finding token alignments
between two different sequences.

token realignment(seq 1, seq 2):
alignment dict = dict
seq 1 i = 0
seq 2 i = 0
while seq 1 i <len(seq 1) & seq 2 i <len(seq 2) do

if seq 1[seq 1 i] is seq 2[seq 2 i] then
alignment dict[seq 1 i].append(seq 2 i)
seq 1 i++
seq 2 i++

end if
if seq 1[seq 1 i] in seq 2[seq 2 i] then

alignment dict[seq 1 i].append(seq 2 i)
seq 1 i++

end if
if seq 2[seq 2 i] in seq 1[seq 1 i] then

alignment dict[seq 1 i].append(seq 2 i)
seq 2 i++

end if
end while
return alignment dict

be fine-tuned during this process. We also allow
the knowledge embeddings to be modified through
this back-propagation. Hyperparameters are noted
in Section 4.1. We also ablate our use of this
extra attention layer, showing that it is important
to learn comparisons between knowledge embed-
dings. For BERT baselines, we use the process
in Devlin et al. (2018), and use the [CLS] token,
without attention, for classification.

4 Analysis

4.1 Hyperparameter Tuning

For hyperparameter tuning with BERT, we find
that grid search is the best method. We tune var-
ious hyperparameters, including batch size, learn-
ing rate, warmup, and epoch count (for hyperpa-
rameter details, see appendix). Graph 2 shows
the results of several hyperparameters on BERT
with our additional knowledge bases. We find
that B. MOOD seems to correct its deficiencies
as it gets closer to the maxima. Interestingly, B.
MOOD seems to be naturally good “What” ques-
tions, which commonly require commonsense in-
ference. This could be explained by the effect of
the commonsense knowledge graphs, showing that
is picking up on commonsense attributes. How-

Figure 2: Example of B. MOOD accuracy across cat-
egories during hyperparameter turning. Values to the
right are closer to the maxima.

ever, for “Where” questions, which it requires
more information from the text, B. MOOD needs
to learn and thus experiences a greater gain as the
accuracy gets closer to its maxima.

We also compare to TriAN (Wang, 2018), the
previous state-of-the-art. Table shows our results.
For the majority of categories, it seems to be-
gin to be 50/50 between TriAN and MOOD, with
TriAN showing more strength in commonsense
categories. However, B. MOOD begins to get
large jumps in accuracy in categories that it is beat
in (such as “Who” and “Where”). For knowledge
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System
Accuracy

Dev Test
Human 97.4 98.0
Logistic Baseline - 60.8
TriAN (Wang, 2018) 76.1 -
BERTLARGE 82.3 -
B. MOOD (with ConceptNet) 83.1 -
B. MOOD (with WebChild) 82.7 -
B. MOOD (with ATOMIC) 82.5 -
B. MOOD (w/o final attention) 82.4 -
B. MOOD (with all KB) 83.3 80.7

Table 2: Results with B. MOOD on task dev and test
set. “with all KB” describes results using all Concept-
Net, WebChild, and ATOMIC embeddings. “Human”
and “Regression Baseline” accuracy is from the shared
task paper (Ostermann et al., 2018). TriAN (Wang,
2018) uses ConceptNet as features.

Category
System Accuracy

TriAN BERT B. MOOD
What 79.3 81.6 84.5
When 69.4 80.0 81.3
Where 75.1 77.3 78.3
Who 79.4 86.5 86.6
How 76.8 83.2 83.4
Overall 76.1 82.3 83.3

Table 3: Question type comparison between different
models on the shared task: previous state-of-the-art
TriAN (Wang, 2018), BERTLARGE , and B. MOOD
(with all 3 knowledge bases).

embeddings, we use a size of 10 for each knowl-
edge graph, combining for a size 30 knowledge
graph embedding. We randomly init each embed-
ding, and if there is more than one embedding for
token, we pick one at random (Wang, 2018). For
BERT fine-tuning, we use a maximum sequence
length of 450, a train batch size of 32, four epochs,
1e− 5 learning rate, and a 20% warmup.

4.2 Results
We show our results and give analysis for MOOD.
We show that each of the knowledge bases help the
accuracy of our model, and our strongest model
involves the union of all three knowledge bases.
ConceptNet gives the largest increase, likely be-
cause there are the most matches between the
prompts and ConceptNet, since ConceptNet cov-
ers everyday concepts that are relatively more
common. WebChild gives a boost also, but not
as large as ConceptNet. ATOMIC gives the small-

est boost, likely because 1) ATOMIC queries are
the longest, and thus, least likely to match, and
2) there is not as much inferential commonsense
present.

We also note that the base B. MOOD accuracy
is higher than the base TriAN (Wang, 2018) accu-
racy, the previous state of the art. By appending
similar knowledge embeddings, we find that we
can bring the TriAN accuracy up to 77.8%, which
is more comparable with MOOD. This shows that
the additional knowledge bases (ATOMIC, We-
bChild) contribute to the overall accuracy even
without the contextual embeddings. However,
we find that the knowledge bases combined with
TriAN still do not provide an improvement above
that of MOOD, and thus, the knowledge bases
alone are not enough to capture the necessary in-
formation. Instead, the knowledge graphs must be
used through combination with contextual embed-
dings for the most effective model. This shows
that BERT may lack the complete amount of infor-
mation needed to understand this dataset. We also
show that the attention is needed to understand
the knowledge graphs alongside BERT, showing
the importance of learning the different knowledge
base embeddings within the text. This highlights
the fact that using the knowledge base embeddings
is helpful, and also comparisons between different
sections of text is helpful for reading comprehen-
sion tasks.

5 Conclusion

We introduce a method of fine-tuning with graphi-
cal embeddings alongside contextual embeddings,
MOOD. Our method uses three different knowl-
edge bases, and introduces ways of improving
both learning speed and knowledge embedding
effectiveness. First, we preprocess the dataset,
showing that both language model preprocessing
and knowledge graph preprocessing is important
to the final result. Then, we tune our language
model on the shared task, stabilizing the hyperpa-
rameter search. We create knowledge graph em-
beddings and concatenate the embeddings via to-
ken realignment. Then, we introduce a final layer
of attention that learns both contextual and explicit
graph embeddings through contextualization. We
show the effect of various knowledge bases, and
show our accuracy across various question types.
Our model gets fifth on the task leaderboard and
outperforms BERT across all question types. We

90



hope that this investigation motivates and furthers
additional research in combining commonsense
knowledge awareness with transformers.
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A Appendices

A.1 Hyperparameters
Seen in Table 4 is a list of hyperparameters for our
experiments. We use the same parameters for both
uses of explicit knowledge embeddings.

Explicit Knowledge Embeddings
Embedding size 10
Knowledge bases used 3

BERT Fine-Tuning
Maximum sequence length 450
Train batch size 32
Learning rate 1e-5
Epochs 4
Warmup 20%

TriAN Parameters
Optimizer adamax
Learning rate 2e-3
Batch size 32
Hidden size 96
RNN type lstm
Embedding dropout 0.4

Table 4: Hyperparameters used throughout experi-
ments. TriAN parameters are used for TriAN compari-
son only.
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Abstract
To solve the shared tasks of COIN: COmmon-
sense INference in Natural Language Process-
ing) Workshop in EMNLP-IJCNLP 2019, we
need explore the impact of knowledge repre-
sentation in modeling commonsense knowl-
edge to boost performance of machine reading
comprehension beyond simple text matching.
There are two approaches to represent knowl-
edge in the low-dimensional space. The first is
to leverage large-scale unsupervised text cor-
pus to train fixed or contextual language repre-
sentations. The second approach is to explic-
itly express knowledge into a knowledge graph
(KG), and then fit a model to represent the
facts in the KG. We have experimented both
(a) improving the fine-tuning of pre-trained
language models on a task with a small dataset
size, by leveraging datasets of similar tasks;
and (b) incorporating the distributional repre-
sentations of a KG onto the representations of
pre-trained language models, via simply con-
catenation or multi-head attention. We find
out that: (a) for task 1, first fine-tuning on
larger datasets like RACE (Lai et al., 2017)
and SWAG (Zellers et al., 2018), and then fine-
tuning on the target task improve the perfor-
mance significantly; (b) for task 2, we find
out the incorporating a KG of commonsense
knowledge, WordNet (Miller, 1995) into the
Bert model (Devlin et al., 2018) is helpful,
however, it will hurts the performace of XL-
NET (Yang et al., 2019), a more powerful pre-
trained model. Our approaches achieve the
state-of-the-art results on both shared task’s
official test data, outperforming all the other
submissions.

1 Introduction

Machine reading comprehension (MRC) tasks
have always been the most studied tasks in the

∗ Equal contribution.
† Corresponding email: michaelwzhu91@gmail.com;

zhuwei972@pingan.com.cn.

field of natural language understanding. Common
forms of reading comprehension tasks involve
question answer (QA) , cloze-style and multiple-
choice questions. Many models have achieved
excellent results on MRC datasets such as (Ra-
jpurkar et al., 2016; Nguyen et al., 2016; Lai et al.,
2017; Zhang et al., 2018a). However, Kaushik and
Lipton (2018) demonstrate that most questions in
previous MRC tasks can be answered by simply
matching the patterns in the textual level even with
passage or question only, but existing models per-
form badly on questions that require incorporating
knowledge in more sophisticated ways. In con-
trast, human beings can easily reason with knowl-
edge from contexts or commonsense knowledge
when doing MRC task. Thus, it is of significance
for models to be able to reason with knowledge,
especially commonsense knowledge.

Various deep learning models have been pro-
posed and shown pretty good performance on
MRC tasks (Parikh et al., 2019; Zhu et al., 2018;
Sun et al., 2018; Xu et al., 2017). Majority of
these approaches utilize sequence relevant neu-
ral networks such as GRU (Cho et al., 2014),
LSTM (Hochreiter and Schmidhuber, 1997) and
Attention mechanism (Vaswani et al., 2017) to
model the implicit relation among passages, ques-
tions and answers.

As pre-trained language models have shown
miraculous performance on several NLP tasks, a
large number of methods utilize this pre-trained
language model to extract textual level features
in MRC tasks. (Zhang et al., 2019; Ran et al.,
2019) compute the contextual representation of
passages, questions and options separately with
BERT and match the representation in down-
stream networks. They achieved the best results
on RACE dataset at their submission time.

Shared task 1 in COIN workshop is a two-
choice question task with short narrations about
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everyday scenarios, which is an extended ver-
sion of SemEval 2018 Task 11 (Ostermann
et al., 2018). Shared task 2 uses the ReCoRD
dataset (Zhang et al., 2018a), a machine reading
comprehension dataset in news articles. It anno-
tates named entities in the news articles and ad-
ditionally provides some brief bullet points that
summarize the news. It then asks for cloze-style
answers, filling in a blank in a sentence related to
the news article. Accomplishing these tasks re-
quires both the capability of reading comprehen-
sion and commonsense knowledge inference.

Our system is based on XLNet (Yang et al.,
2019), a generalized auto-regressive pretraining
method which achieves state-of-the-art results on
many NLP tasks. For task 1, We first pre-train
the model on multiple-choice question dataset
RACE (Lai et al., 2017) to gain certain reading
comprehension abilities. Afterwards, we mine
commonsense knowledge by fine-tuning grounded
commonsense inference dataset SWAG (Zellers
et al., 2018) on XLNet instead of introduc-
ing knowledge graph of general knowledge such
as ConceptNet (Speer et al., 2017) or Word-
Net (Miller, 1995). For task 2, other than utiliz-
ing XLNet’s representation power, we also exper-
iment on enhancing the representation and regu-
larizing predicted prior of named entities, by con-
catenating the pre-trained embedding of WordNet
of contextual word embedding. We finally im-
plement a series of post-processing strategies to
improve the model prediction results. Our sys-
tem achieves state-of-the-art performance on the
both shared tasks’ official test data, even though
we only train on the train sets and only submit sin-
gle models.

2 Model settings

In this section, we present the system designs we
experimented for the two shared tasks.

2.1 Pretrained language model Fine-tuning

As shown in Devlin et al. (2018) and Yang et al.
(2019), the usual way to employ pre-trained lan-
guage models in representing multiple text input is
concatenation of text inputs in certain orders. For
this section, the denotations mainly follow Yang
et al. (2019) since we mainly use XLNet as the
text encoder. Since the notations for Bert will be
quite similar, which will not be included in this
work.

For task 1, the inputs are a context passage (de-
noted as P ), two queries (denoted as Qi, i = 1, 2),
and two answer options for each query, Ai,j , for
j = 1, 2. Following Yang et al. (2019)’s solution
on the RACE dataset, we concatenate the inputs as
follows:

Concat 2i=1[P, [SEP ], QAi, [SEP ], [CLS]],
(1)

where QAi is the concatenation of the query-
answer pairs:

QAi = Concat 2j=1[Qi, Ai,j ]. (2)

As for Task 2, the inputs are a context passage (de-
noted as P ), which in this case is a piece of a news-
paper article, and a assertive sentence (denoted as
S) part of which is masked out, thus they are con-
catenated as follows:

Concat [P, [SEP ], S, [SEP ], [CLS]]. (3)

After the text inputs are concatenated accord-
ingly, they will go through XLNet to get a contex-
tual representation. The output layer for the two
tasks are different. For task 1, a fully-connected
layer is put on the [CLS] token’s representation
two give out the likelihood of which answer op-
tion is the answer. For task 2, the answer is se-
lected from the context passage, thus we have to
predict the start position and end position. Thus
two fully-connected layers are needed, where the
first is to estimate the likelihood of being the start
position for each token, and the second combines
the encoded representation and the output of the
first fully-connected layer and predicts the end po-
sition.

2.2 Multi-funetuning
Finetuning a pre-trained language model on a
small target task dataset has shown significant per-
formance gains, as is shown in Devlin et al. (2018)
and Yang et al. (2019). However, directly fine-
tuning is proven not to be the most effective way,
since although pre-trained LMs are known to gen-
eralize well, overfitting problem is still inevitable.
Thus, related corpus or similar datasets are often
used, such as Wang et al. (2019) and Phang et al.
(2018), to form a multi-stage fine-tuning proce-
dure. For example, Wang et al. (2019) first fine-
tune on the MultiNLI datset before training the
CB, RTE, and BoolQ tasks. The intuition behind
why this multi-stage fine-tuning strategy works is
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Dataset Options Sentence A Sentence B
RACE 4 passage query+option
SWAG 4 query option
Task 1 2 passage query+option

Table 1: Structure of inputs for the two supplementary
tasks and the target task dataset

Dataset Train Dev
RACE 87866 4887
SWAG 73546 20006
Task 1 14191 2020

Table 2: Basic statistics for the three datasets involved
in solving task 1

that (a) to let the pre-trained LMs to adopt to the
similar contextual environment, (b) and make the
model more suitable for this specific task forma-
tion.

Due to the fact that task 1 dataset is small and
during fine-tuning the original XLNet model over-
fits very quickly, we experimented on a multi-
stage fine-tuning strategy. The first additional
dataset we choose is RACE, which is relatively
larger. Then we choose to fune-tune on SWAG,
whose queries are similar to our target task and
requires commonsense reasoning. Then we fine-
tune till convergence on the task 1 train set.

Table 1 presents the structure of the inputs for
the three datasets, where k is the number of op-
tions for each query. After each stage before
the final fine-tuning, we disregard the final fully-
connected output layer and use the updated XLNet
layers to fine-tune on the next dataset.

2.3 Knowledge fusing

Besides the original basic fine-tuning architecture
adopted by the XLNet, we also experiment on in-
volving commonsense knowledge for context en-
coding, as is depicted in Figure 1.

The commonsense knowledge graph we use is
the WordNet (Miller, 1995). The KG embedding
is trained using DistMult (Yang et al., 2014a).
First, we will match the phrases in the passage to
entities in the WordNet, using Aho-Corasick algo-
rithm (Arudchutha et al., 2014).1 Then each to-
ken in the entity will be given the same embed-

1If a phrase is matched to multiple entities in the KG, we
will take the average of all entity embeddings as the entity
embedding for the phrase.

Figure 1: The architecture of our KG infusing model
with XLNet as text encoder

ding vector, which is the embedding of the en-
tity in WordNet. Tokens not in any entity will be
given a zero vector as embedding. The KG en-
coded text input will be incorporated with the en-
coded output of XLNet using a multi-head atten-
tion layer (Vaswani et al., 2017), where the XLNet
encoded output acts as the query and the KG en-
coded output acts the key and value. Then the out-
put layer is the same with answer span prediction
layers described in the previous subsection.

2.4 Answer Verification
To improve the prediction results of a model, we
implement a series of answer verification strate-
gies, which are the following:

• as there are additional entity information pro-
vided with the dataset, at the span predict
stage, we filter invalid predicted spans ac-
cording to whether it match a named entity

• if we can not find any entities in all predic-
tions, we randomly select one from the enti-
ties provided to us

• some entity is a part of the ‘-‘ concatenation
span, then we match the answer by its left or
right concatenated contexts

3 Experiment

3.1 Dataset
Statistics for the datasets involved in training for
task 1, which are RACE, SWAG and the official
task 1 dataset are shown in Table 2. The statistics
represent the total number of queries in the corre-
sponding dataset. The final submission result on
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the leader-board is calculated on official test data,
which will not be published. Only training and de-
velopment data for the task are available to us.

Task 2, which is the ReCoRD dataset (Zhang
et al., 2018b) has 65, 000 queries on the train set
and 10, 000 queries on the dev set. The answer for
the ReCoRD dataset is not unique, since an entity
is likely to be mentioned multiple times in a news
article. Thus, we take each passage-query-answer-
span as one sample during training, which can also
be seen as a kind of data augmentation.

For both tasks, we only submit the models
trained on the train sets of the target tasks.

3.2 Experimental setting

We use XLNet (large, cased) as the pre-trained
language model. For task 1 dataset, we truncate
the query-answer pair to a maximum length of
128, and set the maximum length of the passage-
query-answer pair to 384. So the max length of
the whole text inputs of one sample is 768. With a
Tesla V100-PCIE-16GB GPU card, the batch size
can only be set to be 2 on each card, thus we em-
ploy 8 GPUs for training. Firstly we fine-tune the
original XLNet on RACE for 100,000 steps with
the sequence length of 192, query-answer length
of 96 and Adam optimizer leaning rate of 1e-6.
Afterwards, we fine-tune the model on SWAG for
12,500 steps with the same parameters as RACE’s.
Eventually, the model is fine-tuned on the task 1
dataset till convergence, where the learning rate is
set as 8e-6.

For task 2, the maximum length of the passage-
querypair is set to be 384, in which the maximum
length for the query is 64. During training the
learning rate is 5e-6 and batch size is 4 on each
GPU card.

When we try to infuse the KG into the XL-
Net, we use the OpenKE library (Han et al., 2018)
to train the KG representions of WordNet. We
choose DistMult (Yang et al., 2014b) as the em-
bedding model, set the embedding size as 100,
epoches as 10, batch size as 32 and the learning
rate as 1e-4. The multi-head attention betwen the
XLNet encoded output and the entity encoded out-
put has the same number of attention head as the
XLNet large model. During training, we will keep
the KG embedding trainable. Besides multi-head
attention, we also experiment using a whole trans-
former block, i.e., a multi-head attention layer fol-
lowed by a position-wise feed-forward network,

Model Dev Test
Human - 97.4%

Final submission 91.44% 90.6%
XLNet 91.09% -

XLNet+RACE 92.46% -
XLNet+SWAG 89.36% -

XLNet+RACE+SWAG 92.76% -

Table 3: Main results on the task 1.

and combining the entity encoding by simply con-
catenating it onto the XLNet encoded output. For
comparison, we switch XLNet with Bert (large
model), and repeat the above experiments.

3.3 Results

The main experimental accuracy results for task
1 are shown in Table 3, in which human perfor-
mance is provided by task organizers. Our sys-
tem consists of fine-tuning XLNet on RACE and
SWAG. We also conduct an ablation experiment to
investigate the effects of the two external dataset.
As a result, Table 3 illustrates that pre-training on
RACE plays a significant role in the system. Ori-
gin XLNet achieves an accuracy of 91.09%, indi-
cating its powerful text representation ability, es-
pecially in the reading comprehension task. Pre-
training on SWAG without RACE does not im-
prove the accuracy perhaps because SWAG mis-
leads the model to better adjust its task forma-
tion, thus making it worse on the machine reading
comprehension. Meanwhile, combining SWAG
together with RACE makes sense, indicating the
model can improve its commonsense inference
ability.

We achieved the best performance on the offi-
cial dev dataset with the training steps described in
section 3.2 while our submission result on the offi-
cial leader-board was obtained with fewer training
steps due to queue submission time impact on Co-
dalab. Despite being not fully trained, our system
still achieve the best result with the accuracy of
90.6%, outperforming other participating teams.

For task 2, the results are presented on Table 4,
where the bolded models are our submissions on
the test leaderboard. Due to limited resources and,
the results are not run multiple times, thus the re-
sults may be affected by random effects. We find
out the original XLNet performs the best, signif-
icantly outperforming the Bert models. While it
seems adding a commonsense KG is beneficial for
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Model Dev EM Dev F1 Test EM Test F1
Human - - 91.31 % 91.69 %

Bert 69.83 % 71.05 % - -
Bert + KG (multi-head attn) 71.08 % 72.69 % - -

Bert + KG (transformer) 70.36 % 71.84 % - -
Bert + KG (concat) 70.74 % 72.09 % - -

XLNet 80.64 % 82.10 % 81.46 % 82.66 %
XLNet + KG (multi-head attn) 80.31 % 81.62 % - -

XLNet + KG (transformer) 80.16 % 81.55 % - -
XLNet + KG (concat) 80.25 % 81.67 % - -

XLNet + answer verification 82.72 % 83.38 % 83.09 % 83.74 %

Table 4: The main results on task 2.

Bert, it does not help improving XLNet models.
For the models with KG, regardless of what the
underlying pre-trained langugae model is, multi-
head attention works best on infusing the knowl-
edge, and simple concatenation works better than
adding a whole transformer block.

For task 2, implementing the answer verifica-
tion process after we obtain the predictions of
XLNet model boost the performance significantly,
both on the dev set and the test set. Since we did
not see significant improvements by adding KG
into the model, we did not submit results from KG
infused models.

Conclusions

To conclude, we have shown that XLNet, a re-
cently proposed pre-trained language model, is
powerful in text representation for machine read-
ing tasks. Simply fine-tuning XLNet on the shared
tasks already outperforms the other models which
use Bert as text encoder. However, we demon-
strate on task 1 that multi-stage fine-tuning on sim-
ilar tasks can help providing more stable conver-
gence and improve the final results significantly.
For task 2, we also show that the model predic-
tions can be improved by adding human designed
post-processing strategies. We also experiments
on incorporating commonsense KG into the archi-
tecture of XLNet, however, due to our limited ex-
periments, we haven’t obtain significant improve-
ments by adding KG into the model, especially
models based on XLNet. However, it is a direc-
tion worth further research.
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Abstract

This paper describes our system for COIN
Shared Task 1: Commonsense Inference in
Everyday Narrations. To inject more exter-
nal knowledge to better reason over the narra-
tive passage, question and answer, the system
adopts a stagewise fine-tuning method based
on pre-trained BERT model. More specifi-
cally, the first stage is to fine-tune on addi-
tional machine reading comprehension dataset
to learn more commonsense knowledge. The
second stage is to fine-tune on target-task
(MCScript2.0) with MCScript (2018) dataset
assisted. Experimental results show that
our system achieves significant improvements
over the baseline systems with 84.2% accuracy
on the official test dataset.

1 Introduction

The COIN Shared Task1 aims to evaluate a sys-
tem’s commonsense inference ability in everyday
narrations by selecting an appropriate answer from
two candidates for each question, which also can
be seen as a multiple-choice reading comprehen-
sion (MCRC) task. The most difficult part of this
task lies in about 50% of the questions cannot be
answered directly from the passage, because com-
monsense knowledge required to answer questions
is not missing. Commonsense knowledge is essen-
tial but challenging to acquire and represent be-
cause of its invisible and implicit proprieties. Ac-
cordingly, the key solution to this problem is how
to introduce world knowledge contained in addi-
tional databases or datasets into the system.

Neural networks have gained amazing results
in various machine reading comprehension tasks.
Typical strategy adapts neural encoder such as
LSTM (Long Short-Term Memory) (Hochreiter
and Schmidhuber, 1997) or CNN (Convolutional
Neural Network)(LeCun and Bengio, 1998) to en-
code a passage, a question and a candidate an-

swer separately and then employs attention mech-
anism to model interactions among them. This
kind of method performs well on questions that
can be answered from given passage texts but
shows limited performance on questions demand-
ing external knowledge to answer. Recently, the
approach of the pre-training language model on
large-scale free-texts to acquire external knowl-
edge and then transferring learned background
knowledge to a downstream task has displayed
promising improvements in a variety of natural
language processing tasks.

Compared with existing pre-trained language
models, like ELMo (Peters et al., 2018) and GPT
(Alec Radford, 2018), BERT stands out in lan-
guage representation and understanding by intro-
ducing masked language model and next sentence
prediction task. Hence, we choose BERT as the
basic model to explore how much a pre-trained
language model can help to solve the common-
sense inference problem. In this process, two pri-
mary questions are guiding this work:

• How much gains can a pre-trained language
model bring for the commonsense inference
task?

• How to add more commonsense knowledge
to a pre-trained language model to assist
commonsense inference?

For the first question, we designed several
groups of experiments to compare the perfor-
mance of BERTbase and BERTlarge on three
types of questions provided in the target task,
including text-based, script-based (also called
commonsense-based), and text-or-script.

For another question, we present a two-staged
fine-tuning approach to add more commonsense
knowledge to the model. This first stage is to
fine-tune on pre-trained encoder with additional
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corpus beyond English Wikipedia and BooksCor-
pus Some other genre corpus, like news-wire texts,
English examine texts, and everyday narrations are
considered in this phase. This way empowers the
encoder to learn and store more knowledge about
the world and thus improve its commonsense in-
ference ability. The second stage is to fine-tune
the updated encoder with a top classification layer
on target-task with the support of additional com-
monsense datasets.

2 BERT for COIN-Everyday Narrations

2.1 How to Fine-tune BERT?

BERT is a bidirectional transformer encoder
trained on the task of masked language model and
next sentence prediction, equipping with powerful
language encoding capacity. Devlin et al. (2018)
provides two pre-trained model sizes: BERTbase
and BERTlarge with the different parameters, such
as layers {12, 24}, self-attention heads {12, 16},
and hidden size {768, 1024}. BERT can encode
any sequence less than 512 tokens, like a sentence
or a paragraph. Generally, the final hidden outputs
of the first token [CLS] is considered as the overall
representation of the whole input sequence.

When applying BERT to MCRC task, the input
token sequence is the concatenation of each candi-
date answer with the corresponding question and
passage in the following format:
[CLS] Passage [SEP] Question Candidate [SEP].
So, the final hidden state of [CLS] represents
the comprehensive understanding of the passage,
question and candidate answer. Additionally, a
classification layer is required to stack on the top
of the BERT model to score for each candidate an-
swer. The candidate who has the highest score
would be regarded as the correct answer. When
fine-tuning, the weight of both the BERT and clas-
sification layer are modified to adapt to the target
task with the goal of minimizing the cross-entropy
loss.

2.2 How powerful is BERT?

In this part, BERTbase and BERTlarge model are
fine-tuned as above described. Figure 1 show
the gap between baseline model Attentive Reader
(Hermann et al., 2015) re-implemented by Os-
termann et al. (2019) and two pre-trained BERT
models. The pre-trained models brings about
12.2% to 15.6% improvements, which obviously
outperform the baseline system.

Figure 1: Comparing pre-trained models with baseline
model.

Moreover, in order to compare the difference
between BERTbase and BERTlarge, we give the
statistics of their performance on three question
labels. Figure 2 illustrates that 1) Both models
are good at answering questions whose answer are
given in the corresponding passages. 2) Even text-
script questions can be answered based on either
given passages or external commonsense, it’s still
hard for BERTbase model to answer. 3) Com-
pared with BERTbase, BERTlarge shows signifi-
cant improvements in both script-based questions
and text-script questions. These observations re-
veal that training more texts with a larger model
is more likely to learn more commonsense knowl-
edge. So, we use BERTlarge model in the follow-
ing experiments.

Figure 2: Comparing two BERT models on three ques-
tion labels.

3 Stagewise Fine-tuning BERT

The overview of stage-wise fine-tuning BERT pre-
sented in this work is shown in Figure 3. It consists
of two phases: encoder fine-tuning stage, classifier
and encoder fine-tuning stage.
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Figure 3: A view of two fine-tuning stages.

Dataset Name Content #Passages
RACE (Lai et al., 2017) Mid/High Exam 25K
ReCoRD (Zhang et al., 2018) News articles 80K
ROCStories (Mostafazadeh et al., 2016) Narrations 3K (dev + test)
MCScript (Ostermann et al., 2018) Narrations 2.1K
MCScript2.0 (Ostermann et al., 2019) Narrations 3.5K
Inscript (Modi et al., 2017) Narrations 1K
DES (Wanzare et al., 2019) Narrations 0.5K

Table 1: Datasets used in this paper for fine-tuning.

3.1 Encoder Fine-tuning

In this work, we denote the pre-trained BERTlarge
model including the embedding part as well as the
12 layers of transformer blocks as a whole and
name them as the encoder.

The encoder is responsible for sequence repre-
sentation by transforming raw input tokens into a
fixed representation. Weights in the encoder de-
cide how one token is represented and how one
token in a sequence interacts with another. There-
fore, allowing the encoder to witness more and
train longer can enhance its representation abil-
ity and thus able to encode new input with a wide
range of structures, writing styles and expressions.

Hence, in this phase, the key lies in how to find
more applicable data to train the encoder further,
also called fine-tune the encoder based on the pre-
trained BERTlarge. When choosing new data, we
take two aspects, the task form pertaining to the
MCRC and the content relating to everyday narra-
tions into consideration. In addition, based on the
number of datasets used for training, the encoder
fine-tuning can be classified into two categories:
single-dataset fine-tuning and multi-datasets fine-

tuning. The former means to fine-tune the encoder
using only a single dataset. The latter fine-tunes
the encoder by taking data from multiple datasets
as input. Table 1 lists datasets selected in this pa-
per.

For most datasets, only paragraphs or passages
are used as training data, whose questions and
answers are ignored. But to add more question-
answering information, we add some questions
and their answers to the passages, which is mo-
tivated by the task of the next sentence predic-
tion. For dataset like RACE, whose questions and
candidate answer is free-text, we randomly pick a
question for the passage as well as its answer and
then append it to the end of the passage. In this
way, the question is treated as the next sentence
for the final sentence of the passage, and similarly,
the answer can be seen as the next sentence for the
question. This technique makes it possible for the
encoder to learn the potential questioning and its
answer.

When fine-tuning, the model is still jointly
trained on the task of masked language model and
next sentence prediction. All weights are modified
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Datasets for first stage Datasets for second stage Dev-acc(%) Test-acc(%)

- 84.8
MCScript2.0 84.8
MCScript 83.6
RACE MCScript2.0 84.9 -
ReCoRD 85.9
ROCStories 83.5
Inscript 83.6
DES 83.9

RACE MCScript2.0 + MCScript 85.1 -
RACE MCScript2.0 + MCScript-w/o-who-how 85.7 -

RACE+ReCoRD MCScript2.0 85.0 -
RACE+ReCoRD MCScript2.0 + MCScript 86.0 -
RACE+ReCoRD MCScript2.0 + MCScript-w/o-who-how 86.6 84.2
RACE+ReCoRD MCScript2.0 + SWAG 85.9 -
All Datasets MCScript2.0 + MCScript-w/o-who-how 84.7 -

Table 2: Main results.

when fine-tuned.

3.2 Classifier and Encoder Fine-tuning

The fist stage fine-tuning endows the encoder with
more new knowledge, while the second stage fine-
tuning focuses on adjusting weights in the encoder
to adapt to the target task. This phase is carried on
the fine-tuned encoder with the support of addi-
tional commonsense datasets, like MCScript (Os-
termann et al., 2018), SWAG (Zellers et al., 2018).
The most benefits come from the MCScript, which
is the dataset used for evaluation of SemEval 2018
Task 11. When doing experiments, an interest-
ing discovery is found that using the entire MC-
Script is not the best choice. Filtering some types
of questions leads to better results on the devel-
opment set of MCScript2.0. During fine-tuning,
a classification layer is also added on the top of
BERT and the training is guided by minimizing
the cross-entropy loss.

4 Experiments and Results

4.1 Data

COIN Shared Task 1 uses MCScript2.0 corpus,
which consists of three kinds of question labels,
including text-based, script-based, and text-script.
For text-based question, the answer can be de-
duced from the information provided in passages,
while script-based question can only be answered
with the support of external commonsense knowl-
edge. The text-script question can be answered ei-
ther depends on passages or external script knowl-

edge.

4.2 Experiment Setup

We use the Pytorch version of pre-trained BERT
implemented by huggingface1. Adam Optimizer
(Kingma and Ba, 2014) is used to optimize the
model, which is trained on TITAN RTX with 2
GPUs. Important hyper-parameters for training
are listed in Table 3.

Description first
stage

second
stage

t: tokens max length 350 300
e: fine-tune epoch {3,4} {3,4}
α: learning rate 3e-5 1e-5
b: batch size 32 64
g:gradient accumulation step 4 8

Table 3: Hyper-parameters settings used during train-
ing.

4.3 Results and Analysis

Table 2 demonstrates results of various trained
models, consisting of three groups. This first
group experiment is designed for first stage fin-
tune, so only the target dataset, which refers to
the MCScript2.0, is used in the second stage. The
second group is conducted to help find the most
suitable dataset to assist second-stage fine-tuning.
The last group is a combination of the previous
two groups.

1https://github.com/huggingface/pytorch-transformers
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By observing the results in the first group, we
can see that using the dataset from target task to
first fine-tune the encoder didn’t bring any im-
provements, indicating that using the same data to
train model twice is unnecessary. Also, instead of
raising the accuracy, training with some datasets
even damage the model and diminish the accuracy.
This can be attributed to many reasons, for exam-
ple, the passage in ROCStories is too short com-
pared with the target task, the data size of Inscript
and DES is too small. However, with the prop of
RACE and ReCoRD, the model has secured some
advances. So, in the next phase fine-tuning, the
two datasets are mixed to fine-tune the encoder in
the first stage.

The second group of results points out that re-
moving the question types with who and how in
the MCScript can surprisingly increase the accu-
racy compared with using the whole set of MC-
Script. This is possibly caused by the different
data distribution in the two datasets.

Our final submitted model is first fine-tuned on
both RACE and ReCoRD and then fine-tuned with
data in MCScript without the question type of who
and how in MCScript2.0, which achieves the accu-
racy of 86.6% and 84.2% on the development set
and test set separately and ranks fourth on the final
test leaderboard.

5 Conclusion

This paper depicts our system that fine-tunes the
pre-trained BERT model with two stages, which
outperforms far further than the baseline model
and achieves the accuracy of 84.2% in the offi-
cial test dataset. Experimental results indicate that
both stages fine-tuning bring benefits to the model.
Besides, experiments reveal that BERTlarge excels
at commonsense inference task.
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Abstract
Natural language communication between ma-
chines and humans are still constrained. The
article addresses a gap in natural language un-
derstanding about actions, specifically that of
understanding commands. We propose a new
method for commonsense inference (ground-
ing) of high-level natural language commands
into specific action commands for further ex-
ecution by a robotic system. The method al-
lows to build a knowledge base that consists
of a large set of commonsense inferences. The
preliminary results have been presented.

1 Introduction

There is a significant progress in movement from
early natural language understanding computer
programs like SHRDLU (Winograd, 1972) with
its deterministic actions in the virtual world to
modern cognitive robots operating in the physical
world and mapping language to actions. Artificial
agents enter our lives and the end users of such
systems are not technical experts. The only way
for them to communicate with AI is to use natural
language. For example, humans can give a natural
language command expecting a follow-up action
by the agent.

Nowadays in robotics, in order to execute a nat-
ural language command which is considered as
a high-level instruction, an agent needs to trans-
form it to a sequence of lower-level primitive ac-
tions (Figure 1.). For example, the industrial
arm SCHUNK has three primitives: open-gripper,
close-gripper, move-to and for this agent any high-
level command should be transformed into a se-
quence of these 3 actions to be performed (Kress-
Gazit et al., 2008). For smarter agents with more
primitives, complicated commands like fill up the
cup with water can be executed by transforma-
tion into a long sequence of the lower-level ac-
tions: pick up the cup, move to your left, put the

Figure 1: Transformation of high-level command for
an agent.

cup under the faucet, turn on the faucet, turn off
the faucet, etc. In other words, natural language
command decomposition is a necessary step for an
agent to be capable of executing.

To make such transformations possible, pre-
vious works (Misra et al., 2015; She and Chai,
2016) explicitly model verbs with predicates de-
scribing the resulting states of actions. Their em-
pirical evaluations have demonstrated how incor-
porating result states into verb representations can
link language with underlying planning modules
for robotic systems (Gao et al., 2016). Recent in-
vestigations use reinforcement learning to trans-
form language commands into primitive actions
(Misra et al., 2017) or representation of actions
(Arumugam et al., 2017).

The current studies in human-robot communi-
cation (She and Chai, 2017; Chai et al., 2018)
show that natural language understanding of com-
mands is difficult for machines because commands
in human-human communications are usually ex-
pressed through a desired change of state.

2 Problem Statement

As Rappaport Hovav and Levin (2010) pointed
out, any action can be expressed in two different
ways. Firstly, there are manner verbs that describe
how actions are carried out – i.e. manners of do-
ing: hit, stab, scrub, sweep, wipe, yell, etc. Sec-
ondly, there are verbs that describe results of an
action or a change of state: break, clean, crush,
destroy, shatter, etc.

Further we will use a term “action verb” as a
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synonym for a manner verb and a term “result
verb” as a synonym for a verb that describes a re-
sult of an action or a change of state.

For commands in human-human communica-
tion, people mostly use result verbs. We say open
the door, not push the door; clean the table, not
wipe the table.

It should be underlined that result verbs don’t
express any concrete action. For instance, the
command open the door represents a particular
kind of change of state in an entity but it is silent
about how this change comes about. The verb
clean doesn’t indicate whether it was done by
sweeping, wiping, washing or sucking; the same
way the verb kill does not indicate how a killing
was done1.

On the contrary, the action verbs in the com-
mands pull the door, push the door, kick the door,
etc. represent different kinds of action necessary
to implement the change of state open the door.

The obvious question arises: if a command is
expressed through a desired change of state, how
humans know what actions to do? The point is that
humans derive the information about the concrete
actions related to the desired change from shared
background knowledge about the world. There is
no need to explicitly represent it in human com-
munication. It is commonsense knowledge that
enables us to understand each other (Clark, 1996;
Tomasello, 2008) and to know how to open the
door or how to clean the table (see Figure 2.).

AI systems, even new generations of cognitive
agents, have significantly less knowledge about
the world and are not able to ground result-verb
commands into action-verb commands. A com-
mand with a result verb does not give AI any in-
formation on what actions should be performed to
achieve the disable change of state. As a result
of that, commands to robots are directly linked to
primitive actions implemented by a robot without
the intermediate step of identifying them with ac-
tion verbs (see Figure 1.).

The straightforward approach “command →
primitive actions” fails to achieve two significant

1The separation of verbs on action verbs and result verbs
got further elaboration in cognitive science where an event
representation is considered to be based on 2-vector struc-
ture model: a force vector representing the cause of a change
and a result vector representing a change in object properties
(Gardenfors, 2017; Gardenfors and Warglien, 2012; Warglien
et al., 2012). It is argued that this framework gives a cognitive
explanation for manner verbs as force vectors and for result
verbs as result vectors.

Figure 2: Transformation of high-level command for a
human.

points.
First, a result verb being applied to the same ob-

ject can be executed by different action-verb com-
mands. For instance, the command with the result
verb fill up (the cup with water) can be executed
by the action verb pour (water into the cup) or by
the action verb scoop (water from the bucket).

Second, a result verb being applied to differ-
ent objects assumes different action verbs. For
instance, the following commands with the same
result verb open require different action verbs to
be executed: open the door; open the book; open
the refrigerator; open the can; open the envelope,
etc. Even for the similar commands open the door
and open the refrigerator there is a difference that
must be noted: the last command cannot be imple-
mented by pushing.

The general problem of overcoming the gap
in human-robot natural language understanding
being applied to the high-level natural language
commands can be formulated the following way.
How can AI systems transform high-level natural
language commands with result verbs into com-
mands with action verbs2?

3 Related Work

Although commonsense inference between ac-
tion verbs and result verbs has been described in
linguistic studies (Rappaport Hovav and Levin,
2010), there is still a lack of detailed account of
potential causality that could be denoted by an ac-
tion verb (Gao et al., 2016).

From the AI domain, there were investigations
2In the article we do not consider the follow-up step in

the transformation of action verbs into action primitives for
further execution by AI agent. This kind of transformation
depends on the type of the agent.
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devoted to learning the physics of the world from
videos (Fire and Zhu, 2016) and simulations (Wu
et al., 2017). However, except for a few works that
explored the physical properties of verbs (Forbes
and Choi, 2017; Zellers and Choi, 2017), how
verbs and their corresponding actions affect the
state of the physical world is still largely under-
explored.

Well-known knowledge bases like Freebase,
YAGO or DBPedia, even being automatically pop-
ulated by modern NLP methods, do not contain
commonsense inferences we are going to create.

Crowd-sourcing resources such as ConceptNet
have an incomplete coverage, which is its main
drawback. A human knowledge engineer may not
list all possible events related to a particular action
verb or a result verb. For example, the inference
scrub → clean might be listed while others such
as mop → clean, suck → clean, or sweep → clean
might be missed.

Existing linguistic resources such as Propbank,
FrameNet or VerbNet provide important informa-
tion about verb classification, its arguments and
semantic roles, but they do not distinguish action
verbs and result verbs. For instance, in the largest
domain-independent computational verb lexicon
VerbNet (Kipper Schuler, 2005), that provides se-
mantic role representation for 6394 verbs (version
3.2b), the action verb hit and the result verb break
have the same structure: [Agent, Instrument, Pa-
tient, Result]. Even if the semantic representation
for a verb may indicate that a change of state is in-
volved, it does not provide the specifics associated
with the verb’s meaning (e.g., to what attribute of
its patient the changes might occur) (Gao et al.,
2016).

WordNet, manually created by professional lin-
guists, to the best of our knowledge, is the only
linguistic resource that partly provides informa-
tion about causal links between action verbs and
result verbs. As we will indicate below, these links
overlap with the hypernym-hyponym relations in
WordNet.

Finally, the broad-coverage resource VerbO-
cean (Chklovski and Patel, 2004) set a seman-
tic relation “enablement” between verbs using the
following 4 patterns: “Xed * by Ying the”; “Xed
* by Ying or”; “to X * by Ying the” and “to X
* by Ying or”, where “X” and “Y” are verbs; (*)
matches any single word. The patterns are similar
to the one we are going to use. The only signifi-

Figure 3: Transformation of high-level command.

cant difference is that all of them do not include a
noun after a verb “X”. As it was mentioned in the
section 3 (2nd point), a result verb being applied
to different objects assumes different action verbs.

4 Proposed Approach

We consider the transformation formulated in sec-
tion 3 as a process of grounding where a high-level
command representing a desired change of state is
grounded to an action(s) command.

The following two assumptions will be made to
formalize the process of grounding.

1) The commands in human-robot interactions
can occur in various forms and patterns. Some
of them can be rather complicated. Our work ad-
dresses the simplest case where a command is rep-
resented by the structure V+NP, where V is a verb,
NP is a noun phrase.

2) The grounding of a result-verb command
into an action-verb command is represented as:
Vr+NP1+by+Va+NP2, where Vr is a result verb;
Va is an action verb3.

Since a result verb being applied to the same ob-
ject can be executed by different action-verb com-
mands, the schema on the Figure 2. will be un-
folded as one-to-multi relations between a result-
verb command and an action-verb command (see
Figure 3.).

The key point here is how to extract one-to-
multi relations. In reality, these relations are com-
monsense inferences that allow humans easily to

3NP1 can be the same or different from NP2.. Compare:
open the door by pulling the door and open the door by push-
ing the button
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transform result-verb commands into action-verb
commands. These commonsense inferences are
so obvious and so well-known to everybody that
are very rarely expressed anywhere in a written
form. It makes it hard to find and extract from
any source of information. As a consequence of
that, we cannot apply deep learning techniques for
extraction of above-mentioned one-to-multi rela-
tions. Deep learning has proved incredibly pow-
erful and effective for many practical tasks from
perceptual classification to self-driving cars. But
we have to acknowledge the data-hungry nature of
systems based on deep learning. The side-effect of
that is a long tail of low-frequency data that cannot
be treated the same way. Our research deals with
such data.

The method suggested for one-to-multi rela-
tions extraction is based on 3 non-related ap-
proaches and includes three steps accordingly.

1. Getting 2 sets of verbs: a set of result verbs
{Vr} and a set of action verbs {Va};

2. Getting a set of the most frequent pairs
{Vr+NP};

3. Getting a set of commonsense inferences
{Vr+NP1+by+Va+NP2}.

In the first step, result verbs (Vr) and ac-
tion verbs (Va) are separated. The separation is
based on analysis of Wordnet; this is a domain-
independent step that aims to cover generally re-
sult and action verbs representing the physical
world. In the second step, the set of the most
frequent pairs {Vr+NP} are extracted using the
N-gram approach to form result-verb commands:
clean the floor, cool the beer, etc. In the third step,
we use a search engine to check all around the web
if there is a commonsense inference between an
action-verb command and a result-verb command
(open the door by pressing the button). If a com-
monsense inference exists in the web it is consid-
ered as being validated and added to the set.

4.1 Step #1: Getting Two Sets of Verbs

The output of the step #1 is two sets of verbs: a
set of action verbs {Va} and a set of result verbs
{Vr}. The separation is based on the analysis of
the entire set of verbs through Princeton Word-
Net (WN) (Fellbaum, 1998) which is widely used
in a variety of tasks related to extraction of se-
mantic relations. The verb part of WN contains

11529 unique verbs (version WN 3.0)4. They
are organized in verb synsets ordered mainly by
troponym-hypernym hierarchical relations (Fell-
baum and Miller, 1990). According to the def-
initions, a hypernym is a verb with a more gen-
eralized meaning, while a troponym replaces the
hypernym by indicating a manner of doing some-
thing. The closer a verb is to the bottom of
a verb tree, the more specific the manners that
are expressed by troponyms: communicate-talk-
whisper5.

Meanwhile, action verbs are hidden in the WN
verb structure since troponyms are not always ac-
tion verbs. In some troponym-hypernym relations
the verbs are in fact action verbs like in {kill}-
{drown}. However, there are no explicit ways to
extract them yet.

The idea is that action verbs can be extracted
from WN if at least one of four conditions, applied
to a verb is valid6 :

1. A verb in WN is an action verb if its gloss
contains the following template: “V + by
[...]ing”, where V=hypernym. Example:
{sweep} (clean by sweeping);

2. A verb in WN is an action verb if its gloss
contains the following template: “V + with
+ [concrete object]”, where V=hypernym.
Example: {brush} (clean with a brush).
Restriction on the concrete object is made
to avoid cases like with success (pleasure,
preparation, etc).

3. A verb in WN is an action verb if it repre-
sents movement in any direction: lift, turn,
descend, etc.

4. A verb in WN is an action verb if its hyper-
nym is an action verb. In other words, once
a verb is an action verb, all branches located
below consist of action verbs as well, regard-
less of their glosses.

The procedure of using conditions 1-4 goes
from all top verbs to the bottom verbs. For ex-

4 https://wordnet.princeton.edu/documentation/wnstats
7wn. The following paper (McCrae et al., 2019) outlines a
roadmap for adding new entries to WordNet, so the number
of verbs is not fixed, but increasing over time.

5Note that these are defined on verb-senses, not verbs.
For example, the verb see “perceive: I see the picture” will
behave differently from the verb see “understand: I see the
problem”.

6These 4 conditions elaborate the approach developed in
(Huminski and Zhang, 2018a,b)
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ample, we start from the top synset {change, alter,
modify} (gloss: cause to change; make different;
cause a transformation). It doesn’t satisfy the 1st
or the 2nd condition, so we go down on 1 level
and examine one of its troponyms: {clean, make
clean} (make clean by removing dirt, filth, or un-
wanted substances from). It is still not an action
verb synset: in the pattern from the 1st condition
– “V + by [...]ing” – the verb make clean is not
a hypernym. On the next level there are synsets
with glosses that satisfy either the 1st or the 2nd
condition:

• {sweep} (clean by sweeping);

• {brush} (clean with a brush);

• {steam, steam clean} (clean by means of
steaming).

So, the verbs sweep, brush, steam, steam clean are
action verbs. Applying the 3rd condition on them,
one can state that all synsets located below these 3
synsets (if any) are action verb synsets. The frame-
work is the basis of the procedure for action ex-
traction.

We implemented the procedure following the
conditions 1.-4. and got the following results:

1. 191 verb synsets have been extracted by
matching the template “V + by [...]ing”;

2. 329 verb synsets have been extracted by
matching the template “V + with + (a/an)? +
...” ;

3. 1408 verb synsets have been extracted from
the motion lexicographer file;

4. a total of 3063 verb synsets have been ex-
tracted as a total number of action verbs in-
cluding all the verb synsets that are located
under the hypernyms as action verbs; 3063
extracted verb synsets contain 3294 unique
action verbs.

All other verbs are potentially result verbs. Also
some restrictions need to be applied to consider
only the result and action verbs that are repre-
sented in the physical world and necessary for
robot actions.

We will evaluate the results intrinsically (a lin-
guist will judge the validity), and extrinsically,
i.e. for English verbs also found in Levin’s En-
glish Word Classes and Alternations (1992) we

will compare our results to her classes. For exam-
ple, class 10.3 “clear” verbs (clean, clear, drain,
empty) are result verbs while 10.4.1 “wipe” verbs
(bail, buff, dab, distill, dust, erase, expunge, flush,
leach, lick ..) are action verbs.

4.2 Step #2: Getting Set of Pairs {Vr+NP}
The output of the step #2 is a set of the most fre-
quent (commonly used) pairs {Vr+NP}. The pur-
pose of this step is based on the observation that
a result verb being applied to different objects as-
sumes different action-verb commands.

To generate the set {Vr+NP} we use N-grams
(which are a contiguous sequence of n items from
a given text) extracted from the largest publicly-
available, genre-balanced corpus of English: the
Corpus of Contemporary American English7 with
about 430 million words in size. With this N-
grams data (2, 3, 4, 5-word sequences, with their
frequency), the subset of N-grams are extracted
where the 1st word is a result verb in any grammat-
ical form. A threshold was set for the frequency.
For example, for the result verb open we extracted
all 3-grams that look like the following (with fre-
quency at the beginning):

3459 opened the door
2611 open the door
.......
201 open the window
169 opened the window
......
130 opened the box
89 open the box
etc.

If the data from N-grams is insufficient we use
larger, noisier corpora such as the common crawl8.

4.3 Step #3: Getting a Set of Commonsense
Inferences

The output of the final step #3 is a set of common-
sense inferences between an action-verb command
and a result-verb command validated by a search
engine from the web. The search engine is used to
check (validate) if a commonsense inference ex-
ists in the web. Each commonsense inference for
the checking has a structure Vr+NP1+by+Va+NP2
(open the door by pressing the button).

The procedure is the following:

7https://www.ngrams.info/
8https://commoncrawl.org/
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1. make a cartesian multiplication of pairs
{Vr+NP} and action verbs {Va}: {(Vr+NP),
Va};

2. create a sequence for each element from 1.:
Vr+NP+by+Va (fill the cup by pouring);

3. run the sequence from 2. on the
search engine looking for the sequence
Vr+NP1+by+Va+NP2(concrete object) in the
web. Estimate the frequency (or getting no
result).

4. If we do not find sufficient action-verb tem-
plates Va+NP2(concrete object), we will use
the learned combinations to learn new tem-
plates, extending the approach (Snow et al.,
2006) to learning wordnet relations.

All validated commonsense inferences will be
added to the set with frequencies and stored.

5 Implementation and Preliminary
Results

The flowchart (Fig. 4) shows the general approach
of causal relations extraction from text. Three
modules on the bottom in grey color represent
three steps from section 5. The details of the ap-
proach are given below.

Raw data. WordNet is used as raw data.
Algorithm of separation. For getting prelimi-

nary results, commonly used result verbs and ac-
tion verbs were taken from the linguistic literature.
We extracted 12 result verbs and 50 action verbs.

Result verbs: break, clean, clear, close, raise,
cut, fill, heat, kill, lift, open, remove.

Action verbs: blow, brush, chip, chop, clip,
comb, compress, drown, flap, grab, grasp, grind,
grip, hack, hammer, hit, kick, knead, lever, mow,
pound, pour, press, pull, push, rinse, rub, saw,
scoop, scrape, scratch, scribble, scrub, shake,
shave, shoot, shovel, slap, slash, smear, soap,
splash, sponge, squeeze, stab, steam, sweep,
touch, wash, wipe.

N-gram approach. For each of 12 result verbs,
we extracted five 3-grams Vr+NP. Each 3-gram
contains the most frequent noun phrase with the
corresponding verb. Totally 60 3-grams were ex-
tracted (see Table 1 for details).

Web-search. Cartesian multiplication of 60 3-
grams and 50 action verbs produces 3000 combi-
nations “Vr+NP by Va”. We use search engine
Bing for running the template “Vr+NP by Va...”.

Accordingly, 3000 searches were made. The re-
sults were taken and analyzed from the first 10
web pages that appeared. We were looking for
the results corresponding the template “Vr+NP by
Va+NP/Pronoun”.

Results. As a result we got 497 causal relations.
Sample of 20 extracted causal relations is given in
Table 2.

Examples of causal relations for the 3-gram
“open the window” is given in Table 3.

6 Evaluation

The evaluation was based on a sample of 100
causal relations randomly taken from extracted
497 ones.

Due to the restrictions applied on event and
causal relation between events we can not evalu-
ate the recall of the extraction.

The precision (validity) of extracted causal rela-
tions were evaluated by five human judges. They
were given instructions to rate the causal relations
by marking each relation with a number from 1
(very bad) to 5 (very good). Examples of invalid
(break the ice by seeing it) and valid (opened the
box by pulling on the handle) causal extractions
were provided.

6.1 Simple Average

After 5 judges put their marks, the simple average
was calculated by dividing the sum of all marks by
500. We got 3.1.

6.2 Extraction of valid causal relations

We calculated the average between judges for each
causal relation and extracted 62 causal relations
(among 100 randomly taken) with average score
more or equal 3.

6.3 Analysis of invalid causal relations

38 causal relations with the average score lower
than 3 were preliminarily analyzed for detecting
the reasons. We found the following:

a) bad parsing or bad POS tagging (kill the bac-
teria by pouring a half cup; fill the hole by push-
ing thousands; open the window by grabbing the
opening);

b) unusual causal relations that require a con-
text: heat the oil by pressing the palms; cut the
engine by pulling both paddles.

c) meaningless causal relations: break the ice by
seeing it; killing each other by slashing the rate;
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Figure 4: Flowchart of causal relations extraction from text

Table 1: Most frequent 3-grams for extracted result verbs

Table 2: Samples of extracted causal relations

7 Conclusion and Further Work

Commonsense inferences allow us to equip and
empower cognitive robots with an ability to under-
stand high-level natural language commands (or
instructions). We present a method for acquir-

Table 3: Examples of causal relations for the 3-gram
“open the window”

ing the knowledge needed to transform high-level
result-verb commands into action-verb commands
for further implementation into primitive actions.

In the future, to improve the results and increase
the quality of retrieved actions we are planning to:

• improve the instruction for judges to decrease
the deviation in evaluation;
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• use better NLP tools for POS tagging and
parsing;

• develop more elaborated procedure for com-
monsense inferences, for example, to exclude
search results with negation (“don’t open the
window by throwing the stone”) that produce
wrong commonsense inferences;

• use metrics for calculation of consistency (re-
liability) of the results (for example, Krippen-
dorff’s alpha coefficient);

• enlarge the set of verbs used for com-
monsense inferences using resource such as
WordNets.

• build multilingual commonsense inferences
(starting with Chinese and Indonesian) based
on (Bond and Foster, 2013; Bond et al.,
2014), (Wang and Bond, 2013).
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Abstract

Typical event sequences are an important
class of commonsense knowledge. Formal-
izing the task as the generation of a next
event conditioned on a current event, previous
work in event prediction employs sequence-to-
sequence (seq2seq) models. However, what
can happen after a given event is usually di-
verse, a fact that can hardly be captured by de-
terministic models. In this paper, we propose
to incorporate a conditional variational autoen-
coder (CVAE) into seq2seq for its ability to
represent diverse next events as a probabilis-
tic distribution. We further extend the CVAE-
based seq2seq with a reconstruction mecha-
nism to prevent the model from concentrat-
ing on highly typical events. To facilitate
fair and systematic evaluation of the diversity-
aware models, we also extend existing eval-
uation datasets by tying each current event
to multiple next events. Experiments show
that the CVAE-based models drastically out-
perform deterministic models in terms of pre-
cision and that the reconstruction mechanism
improves the recall of CVAE-based models
without sacrificing precision.1

1 Introduction

Typical event sequences are an important class
of commonsense knowledge that enables deep
text understanding (Schank and Abelson, 1975;
LoBue and Yates, 2011). Following previous
work (Nguyen et al., 2017), we work on the task
of generating a next event conditioned on a cur-
rent event, which we call event prediction. For
example, we want a computer to recognize that
the event “board bus” is typically followed by an-
other event “pay bus fare” and to generate the lat-
ter word sequence given the former.

1The source code and the new test sets are pub-
licly available at https://github.com/hkiyomaru/
diversity-aware-event-prediction.

Early studies memorized event sequences ex-
tracted from a corpus and inevitably suffered
from low generalization capability and a scala-
bility problem. A promising approach to mod-
eling wide-coverage knowledge is to general-
ize events by representing them in a continu-
ous space (Granroth-Wilding and Clark, 2016;
Nguyen et al., 2017; Hu et al., 2017). Nguyen et al.
(2017) generate a next event using the sequence-
to-sequence (seq2seq) framework, which was first
proposed for machine translation (Bahdanau et al.,
2014) and subsequently applied to various NLP
tasks including text summarization (Rush et al.,
2015; Chopra et al., 2016) and dialog genera-
tion (Sordoni et al., 2015; Serban et al., 2016).

One limitation of the simple seq2seq models,
which are deterministic in nature, is their inabil-
ity to take into account an important characteristic
of events: What can happen after a current event
is usually diverse. For the example of “board bus”
mentioned above, “get off bus” as well as “pay bus
fare” is a valid next event. The inherent diversity
makes it difficult to train deterministic models, and
during testing, they can hardly generate multiple
next events that are both valid and diverse.

To address this problem, we first propose to
incorporate a conditional variational autoencoder
(CVAE) into seq2seq models (Kingma et al., 2014;
Sohn et al., 2015). As a probabilistic model,
the CVAE draws a latent variable, representing
the next event, from a probabilistic distribution,
and this distribution encodes the diversity of next
events.

Through experiments, we found that, as indi-
cated by high precision, the CVAE made learn-
ing from diverse training data more effective.
However, the outputs of the CVAE-based seq2seq
model concentrated on a small number of highly
typical events (i.e., low recall), possibly due to
the mode-seeking property of variational infer-
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ence (Bishop, 2006, pp. 466–470). This tendency
is also reminiscent of seq2seq models’ preference
to generic outputs (Sordoni et al., 2015; Serban
et al., 2016).

We alleviate this problem by extending the
CVAE-based seq2seq model with a reconstruction
mechanism (Tu et al., 2017). During training, the
reconstruction mechanism forces the model to re-
construct the input from the hidden states of the
decoder. This has an effect of restraining the
model from outputting highly typical next events
because they make the reconstruction more diffi-
cult.

We evaluate the proposed models using two
event pair datasets provided by Nguyen et al.
(2017). One problem with these datasets is that
each current event in the test sets is tied to only
one next event. For a fair evaluation of diversity-
aware models, we extend the test sets so that each
given event has multiple next events.

Experiments show that the CVAE-based
seq2seq models consistently outperformed the
simple seq2seq models in terms of precision (i.e.,
validity) without hurting recall (i.e., diversity)
while forcing the simple seq2seq models to gen-
erate diverse outputs yielded low precision. The
reconstruction mechanism consistently improved
recall of the CVAE-based models while keeping
or even increasing precision. We also confirmed
that the original test sets failed to detect the clear
differences between the models.

2 Related Work

2.1 Event Prediction

There is a growing body of work on learning
typical event sequences (Chambers and Jurafsky,
2008; Jans et al., 2012; Pichotta and Mooney,
2014; Granroth-Wilding and Clark, 2016; Pichotta
and Mooney, 2016; Hu et al., 2017; Nguyen et al.,
2017). While early studies explicitly store event
sequences in a symbolic manner, a recent ap-
proach to this task is to train neural network mod-
els that implicitly represent event sequence knowl-
edge as continuous model parameters. In both
cases, models are usually evaluated by how well
they restore a missing portion of an event se-
quence. We collectively refer to this task as event
prediction.

Event prediction can be categorized into two
tasks: classification and generation. In the clas-
sification task, a model is to choose one from a

pre-defined set of candidates for a missing event.
A popular strategy is to rank candidates by similar-
ity with the remaining part of the event sequence.
Similarity measures include pointwise mutual in-
formation (Chambers and Jurafsky, 2008), condi-
tional bigram probability (Jans et al., 2012), and
cosine similarities based on latent semantic in-
dexing and word embeddings (Granroth-Wilding
and Clark, 2016). For its reliance on pre-defined
candidates, however, the classification approach is
constrained by its limited flexibility.

In the generation task, a model is to directly
generate a missing event, usually in the form of
a word sequence (Pichotta and Mooney, 2016;
Hu et al., 2017; Nguyen et al., 2017), although
one previous study adopted a predicate-argument
structure-based event representation (Weber et al.,
2018). Nguyen et al. (2017) worked on the task
of generating a next event given a single event,
which we follow in this paper. They adopted the
seq2seq framework (Sutskever et al., 2014) and
investigated how recurrent neural network (RNN)
variants, the number of RNN layers, and the pres-
ence or absence of an attention mechanism (Bah-
danau et al., 2014) affected the performance. Hu
et al. (2017) gave a sequence of events to the
model to generate the next one. Accordingly, they
worked on hierarchically encoding the given event
sequence using word-level and event-level RNNs.

All of these models are deterministic in nature
and do not take into account the fact that there
could be more than one valid next event. For ex-
ample, both “get off bus” and “pay bus fare” seem
to be appropriate next events of “board bus”. The
inherent diversity makes it difficult to train deter-
ministic models. During testing, they can hardly
generate multiple next events that are both valid
and diverse.

2.2 Conditional Variational Autoencoders

Variational autoencoders (VAEs) are a neural
network-based framework to learn probabilistic
generation (Kingma and Welling, 2013; Rezende
et al., 2014). The basic idea of VAEs is to recon-
struct an input y via a latent representation z in
a way similar to autoencoders (AEs). While AEs
learn the process as deterministic transformation,
VAEs adopt probabilistic generation: a VAE en-
codes y into the probability distribution of z, in-
stead of a point in a low-dimensional vector space.
It then reconstructs the input y from z drawn from
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the posterior distribution. z is assumed to have a
prior distribution, for which a multivariate Gaus-
sian distribution is often used. As straightforward
extensions of VAEs, conditional VAEs (CVAEs)
let probabilistic distributions be conditioned on a
common observed variable x (Kingma et al., 2014;
Sohn et al., 2015). In our case, x is a current event
while y is a next event to predict.

Bowman et al. (2016) applied VAEs to text gen-
eration. They constructed VAEs using RNNs as its
components and found that VAEs with an RNN-
based decoder failed to encode meaningful infor-
mation to z. To alleviate this problem, they pro-
posed simple but effective heuristics: KL cost an-
nealing and word dropout. We also employ these
techniques.

If a VAE-based text generation model is con-
ditioned on text, it can be seen as a CVAE-based
seq2seq model (Zhao et al., 2017; Serban et al.,
2017; Zhang et al., 2016). Since a CVAE learns
probabilistic generation, it is suitable for tasks
where the output is not uniquely determined ac-
cording to the input. One of the representative ap-
plications of CVAE-based text generation is dia-
logue response generation, or the task of gener-
ating possible replies to a human utterance (Zhao
et al., 2017; Serban et al., 2017). Applying CVAEs
to next event prediction is a natural choice because
the task is also characterized by output diversity.

2.3 Diversity-Promoting Objective Functions

In dialogue response generation, seq2seq is known
to suffer from the generic response problem: The
model often ends up blindly generating uninfor-
mative responses such as “I don’t know”. A popu-
lar approach to this problem is to rerank the candi-
date outputs, which are usually produced by beam
search, according to the mutual information with
the conversational context (Li et al., 2016).

We notice that the reconstruction mecha-
nism (Tu et al., 2017) serves the same purpose
in a more straightforward manner, albeit stem-
ming from a different motivation. The reconstruc-
tion mechanism forces the model to reconstruct
the input from the hidden states of the decoder.
Although it was originally proposed for machine
translation to prevent over-translation and under-
translation, it could counteract the event prediction
model’s tendency to concentrate on highly typical
outputs.

Figure 1: The neural network architecture of our event
prediction model. ⊕ denotes vector concatenation.

3 Problem Setting

Given a current event x, we are to generate a vari-
ety of events, each of which, y, often happens af-
ter x. x and y are represented by word sequences
like “board bus” and “get off bus”. Our goal is to
learn from training data an event prediction model
pθ(y|x), where θ is the set of model parameters.

4 Conditional VAE with Reconstruction

Figure 1 illustrates an overview of our model.
To capture the diversity of next events, we use a
conditional variational autoencoder (CVAE) based
seq2seq model. The CVAE naturally represents
diverse next events as a probability distribution.
Additionally, we extend the CVAE with a recon-
struction mechanism (Tu et al., 2017) to allevi-
ate the model’s tendency to concentrate on a small
number of highly typical events.

4.1 Objective Function

We introduce a probabilistic latent variable z and
assume that y depends on both x and z. The con-
ditional log likelihood of y given x is written as:

log p(y|x) = log

∫

z
pθ(y, z|x)dz (1)

= log

∫

z
pθ(y|z, x)pθ(z|x)dz. (2)

We refer to pθ(z|x) and pθ(y|z, x) as the prior net-
work and the decoder, respectively. Eq. 2 involves
an intractable marginalization over the latent vari-
able z. The CVAE circumvents this problem by
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maximizing the evidence lower bound (ELBO) of
Eq. 2. To approximate the true posterior distri-
bution pθ(z|y, x), we introduce a recognition net-
work qφ(z|y, x), where φ is the set of model pa-
rameters. The ELBO is then written as:

LCVAE(θ, φ; y, x) = −KL(qφ(z|y, x) ‖ pθ(z|x))
+ Eqφ(z|y,x)[log pθ(y|z, x)] (3)

≤ log p(y|x). (4)

We extend the CVAE with a reconstruction mech-
anism pψ(x|y), where ψ is the set of model pa-
rameters. During training, it forces the model to
reconstruct x from y drawn from the posterior dis-
tribution. Adding the corresponding term, we ob-
tain the following objective function:

L(θ,φ, ψ; y, x) = LCVAE(θ, φ; y, x)

+ λEqφ(z|y,x)[log pψ(x|y)pθ(y|z, x)], (5)

where λ is the weight for the reconstruction term.
Because outputting highly typical next events
makes the reconstruction more difficult, the recon-
struction mechanism counteracts the model’s ten-
dency to do so.

4.2 Neural Network Architecture
We first assign distributed representations to
words in x and y using the same encoder. The
encoder is a bi-directional LSTM (Hochreiter and
Schmidhuber, 1997) with two layers. We concate-
nate the representations of the first and last words
to obtain hx and hy, the representations of x and
y, respectively.

We assume that z is distributed according to
a multivariate Gaussian distribution with a diago-
nal covariance matrix. During training, the recog-
nition network provides the posterior distribution
qφ(z|y, x) ∼ N (µ,σ2I):

[
µ

log(σ2)

]
=W 1

[
hy

hx

]
+ b1. (6)

During testing, the prior network gives the prior
distribution pθ(z|x) ∼ N (µ′,σ′2I):

[
µ′

log(σ′2)

]
=W 2h

x + b2. (7)

We employ the reparametrization trick (Kingma
and Welling, 2013) to sample z from the posterior
distribution so that the error signal can propagate
to the earlier part of the networks.

We use a single-layer LSTM as the decoder.
When the decoder predicts yi, the i-th word of
y, it receives its previous hidden state, the word
embedding of yi−1, the latent variable z, and the
context representation calculated by an attention
mechanism (Bahdanau et al., 2014).

We use a single-layer LSTM as the reconstruc-
tor. When the reconstructor predicts xj , the j-
th word of x, the inputs are its previous hidden
state, the word embedding of xj−1, and the context
representation calculated by an attention mecha-
nism. The parameters of the reconstructor’s atten-
tion mechanism are different from those used in
the decoder.

As indicated by Eqs. 3 and 5, we sum up three
terms to get the loss: the cross entropy loss of the
decoder, the cross entropy loss of the reconstruc-
tor, and the KL divergence between the posterior
and prior. Since these loss terms are differentiable
with respect to the model parameters θ, φ and ψ,
we can optimize them in an end-to-end fashion.

4.3 Optimization Techniques

Encoding meaningful information in z using
CVAEs with an RNN decoder is known to be
hard (Bowman et al., 2016). We employ two com-
mon techniques to alleviate the issue: (1) KL cost
annealing (gradually increasing the weight of the
KL term) and (2) word dropout (replacing target
words with unknown words with a certain prob-
ability). For KL cost annealing, we increase the
weight of the KL term using the sigmoid function.
For word dropout, we start with no dropout, and
gradually increase the dropout rate by 0.05 every
epoch until it reaches a predefined value.

5 Datasets

We used the following two datasets provided by
Nguyen et al. (2017).
Wikihow: Wikihow2 organizes on a large scale
descriptions of how to accomplish tasks. Each
task is described by sub-tasks with detailed de-
scriptions. Nguyen et al. (2017) created an event
pair dataset by extracting adjacent sub-task de-
scriptions.
Descript: The original DESCRIPT corpus is a
collection of event sequence descriptions created
through crowdsourcing (Wanzare et al., 2016).
Nguyen et al. (2017) built a new corpus of event

2https://www.wikihow.com
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Figure 2: The workflow of test data construction.

pairs by extracting the contiguous two event de-
scriptions in the DESCRIPT corpus. Descript is
of higher quality but smaller than Wikihow.

5.1 Construction of New Test Sets
One problem with these datasets is that each cur-
rent event in their test sets is tied to only one next
event. As discussed by Nguyen et al. (2017), test
sets for event prediction should have reflected the
fact that there could be more than one valid next
event.

Inspired by Zhao et al. (2017), we addressed
this problem by extending the test sets through an
information retrieval technique and crowdsourc-
ing. Figure 2 illustrates the overall workflow. For
each of the two test sets, we first randomly chose
200 target event pairs. Our goal was to add multi-
ple next events to each of the current events. For
each event pair, we focused on the current event
and retrieved 20 similar current events in the train-
ing set. As a similarity measure, we used cosine
similarity based on the averaged word2vec3 em-
beddings of constituent words. We then used the
corresponding 20 next events of the retrieved event
pairs as candidates for the next events of the target
current event.

We asked crowdworkers to check if a given
event pair was appropriate. Note that our crowd-
sourcing covered not only the automatically re-
trieved event pairs but also the original event pairs.
To remove a potential bias caused by wording,
we presented a current event and a candidate next
event as A and B, respectively. Each event pair
was given one of the following five labels:

l1: Strange expression.
l2: No relation.
l3: A and B are related, but one does not happen

after the other.
l4: A happens after B.
l5: B happens after A.

3https://code.google.com/archive/p/
word2vec/

l1 l2 l3 l4 l5

Wikihow (orig.) 7.3% 20.2% 30.6% 6.5% 35.5%
Wikihow (cand.) 6.9% 37.4% 25.4% 10.0% 20.3%

Descript (orig.) 0.0% 4.5% 8.0% 3.5% 84.1%
Descript (cand.) 1.7% 19.7% 12.0% 13.3% 53.2%

Table 1: The result of crowdsourcing. Each number
indicates the ratio of events with the corresponding la-
bel. The labels were selected by taking the majority. In
no majority cases, we gave priority to the labels with
smaller subscripts.

Train Dev Test New Test

Wikihow 1,287,360 26,820 26,820 858 (174)
Descript 23,320 2,915 2,915 2,203 (199)

Table 2: Statistics of the datasets. The training, de-
velopment and test sets are the original ones provided
by Nguyen et al. (2017). For each dataset, we built
new test sets with multiple next events. The numbers
of unique current events are in parentheses.

Event pairs with label l5 were desirable. We dis-
tributed each event pair to five workers and aggre-
gated the five judgments by taking the majority.
We used the Amazon Mechanical Turk platform
and employed crowdworkers living in the US or
Canada whose average work approval rates were
higher than 95%. The total cost was $240.

Table 1 shows the ratio of event pairs with each
label. We selected event pairs with label l5 to build
new test sets. The sizes of the resultant datasets are
listed in Table 2. One current event in Wikihow
and Descript had 4.9 and 11.0 next events on aver-
age, respectively. Note that the number of unique
current events in our test sets was not equal to 200
because some current events happened to have no
next event with label l5.

5.2 The Quality of Original Datasets

As shown in Table 1, only 84.1% of the original
event pairs of Descript were given label l5. Even
worse, the majority of the original event pairs of
Wikihow were given labels other than l5. We
had two possible explanations for this. First, be-
cause Wikihow was an open-domain dataset, it
contained descriptions with which crowdworkers
were not necessarily familiar (e.g., creating a web-
site). Second, the event pairs were sometimes hard
to interpret because they were extracted from ad-
jacent descriptions out of context. The results sug-
gest that further studies in this area should use
Wikihow with caution.
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6 Experiments

6.1 Model Setup
We initialized word embeddings by pre-trained
word2vec embeddings. Specifically, we used the
embeddings with 300 dimensions trained on the
Google News corpus. The encoder, decoder,
and reconstructor had hidden vectors with size
256. The prior network and the recognition net-
work consisted of a linear map to 256-dimensional
space. The latent variable z had a size of 256.
We used the Adam optimizer (Kingma and Ba,
2015) for updating model parameters. The learn-
ing rate was selected from {0.0001, 0.001, 0.01}.
For CVAEs, we selected the word dropout ratio
from {0.0, 0.1, 0.3}. To investigate the effect of
the weight parameter for the reconstruction loss,
we trained and compared models with different
λ ∈ {0.1, 0.5, 1.0}. Hyper-parameter tuning was
done based on the original development sets.

6.2 Baselines
We compared eight seq2seq models: deterministic
models (S2S) (Nguyen et al., 2017) and CVAE-
based models (CVAE) with and without the atten-
tion mechanism (att) and the reconstruction mech-
anism (rec). The hyper-parameters were the same
as those reported in Section 6.1. The models with-
out the attention mechanism calculated the context
representation by concatenating the forward and
backward last hidden states of the encoder.

To stochastically generate next events using de-
terministic models, we sampled words at each de-
coding step from the vocabulary distribution.4 For
CVAE-based models, we sampled the latent vari-
able z and then decoded y greedily.

6.3 Quantitative Evaluation
Following Zhao et al. (2017), we evaluated preci-
sion and recall. For a given current event x, there
were Mx reference next events rj , j ∈ [1,Mx].
A model generated N hypothesis events hi, i ∈
[1, N ]. The precision and recall were as follows:

precision(x) =

∑N
i=1maxj∈[1,Mx] BLEU(rj , hi)

N

recall(x) =

∑Mx
j=1maxi∈[1,N ] BLEU(rj , hi)

Mx

4We did not employ a beam search algorithm because it
was not easy to compare the results with those of the prob-
abilistic models. Beam search yields a specified number of
distinct events while the probabilistic models can generate
duplicate events.

where BLEU is the sentence-level variant of a
well-known metric that measures the geomet-
ric mean of modified n-gram precision with the
penalty of brevity (Papineni et al., 2002). The final
score was averaged over the entire test set. We re-
fer to the precision and recall as P@N and R@N,
respectively. F@N is the harmonic mean of P@N
and R@N. We report the scores with N = 5 and
10, in accordance with the average number of next
events in our new test sets.

For comparison, we also followed the experi-
mental procedure of Nguyen et al. (2017), where
event prediction models deterministically output
a single next event using greedy decoding. For
CVAEs, we did this by setting z at the mean of
the predicted Gaussian prior. The outputs were
evaluated by BLEU. We refer to the criterion as
greedy-BLEU. We used the original test sets for
this experiment.

Table 3 lists the evaluation results. In terms of
precision (i.e., validity), the CVAE-based models
consistently outperformed the deterministic mod-
els with large margins. The deterministic mod-
els achieved better recall (i.e., diversity) than the
CVAE-based models, but this came with a cost
of drastically low precision. The results may be
somewhat surprising because our focus is on gen-
erating diverse next events. However, generating
valid next events is a precondition of success, and
we found that the CVAE-based models were able
to satisfy the two requirements while the determin-
istic models were not.

For both deterministic and probabilistic mod-
els, the attention mechanism exhibited tendencies
to improve precision and recall on Wikihow but
to lower the scores on Descript. Our results were
consistent with those of Nguyen et al. (2017). We
conjecture that Descript was so small that the at-
tention mechanism led to overfitting.

For CVAEs, the reconstruction mechanism
mostly improved recall without hurting precision,
regardless of the presence or absence of the atten-
tion mechanism. Note that the best F-scores were
consistently achieved by CVAEs with reconstruc-
tion. Such consistent improvements were not ob-
served for the deterministic models. The recon-
struction mechanism had evidently no effect on
mitigating the difficulty of deterministic models in
learning from diverse data.

In terms of greedy-BLEU, our deterministic
models were competitive with the previously re-
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P@5 R@5 F@5 P@10 R@10 F@10 greedy-BLEU

S2S (Nguyen et al., 2017) - - - - - - 2.69 ± 0.00
S2S+att (Nguyen et al., 2017) - - - - - - 2.81 ± 0.00

S2S 2.75 ± 0.19 3.10 ± 0.16 2.91 ± 0.17 2.69 ± 0.12 4.22 ± 0.16 3.28 ± 0.14 2.62 ± 0.23
S2S+att 2.66 ± 0.05 3.10 ± 0.11 2.86 ± 0.08 2.74 ± 0.08 4.15 ± 0.11 3.30 ± 0.06 2.64 ± 0.07
S2S+rec (λ = 0.1) 2.68 ± 0.22 3.05 ± 0.15 2.85 ± 0.19 2.61 ± 0.15 4.08 ± 0.31 3.18 ± 0.20 2.63 ± 0.08
S2S+rec (λ = 0.5) 2.44 ± 0.16 2.86 ± 0.19 2.63 ± 0.17 2.56 ± 0.06 4.12 ± 0.14 3.16 ± 0.09 2.43 ± 0.13
S2S+rec (λ = 1.0) 2.44 ± 0.18 2.97 ± 0.26 2.68 ± 0.21 2.61 ± 0.17 3.99 ± 0.19 3.15 ± 0.18 2.32 ± 0.06
S2S+att+rec (λ = 0.1) 2.63 ± 0.09 3.05 ± 0.05 2.82 ± 0.06 2.72 ± 0.24 4.32 ± 0.09 3.33 ± 0.19 2.64 ± 0.09
S2S+att+rec (λ = 0.5) 2.63 ± 0.02 3.04 ± 0.10 2.82 ± 0.05 2.60 ± 0.07 4.08 ± 0.15 3.17 ± 0.09 2.48 ± 0.06
S2S+att+rec (λ = 1.0) 2.50 ± 0.14 2.97 ± 0.07 2.71 ± 0.10 2.59 ± 0.07 4.08 ± 0.13 3.17 ± 0.09 2.35 ± 0.07

CVAE 4.94 ± 0.11 2.07 ± 0.08 2.92 ± 0.10 4.92 ± 0.08 2.09 ± 0.07 2.93 ± 0.08 2.62 ± 0.03
CVAE+att 5.35 ± 0.25 2.33 ± 0.11 3.25 ± 0.15 5.35 ± 0.21 2.33 ± 0.09 3.25 ± 0.13 2.60 ± 0.07

CVAE+rec (λ = 0.1) 5.52 ± 0.42 2.50 ± 0.21 3.44 ± 0.25 5.50 ± 0.43 2.50 ± 0.22 3.44 ± 0.27 2.79 ± 0.11
CVAE+rec (λ = 0.5) 5.71 ± 0.08 2.44 ± 0.13 3.42 ± 0.14 5.70 ± 0.12 2.48 ± 0.10 3.46 ± 0.11 2.52 ± 0.15
CVAE+rec (λ = 1.0) 5.11 ± 0.41 2.24 ± 0.19 3.11 ± 0.26 5.13 ± 0.41 2.28 ± 0.17 3.16 ± 0.24 2.48 ± 0.01
CVAE+att+rec (λ = 0.1) 5.86 ± 0.53 2.40 ± 0.10 3.40 ± 0.02 5.87 ± 0.53 2.42 ± 0.11 3.42 ± 0.02 2.63 ± 0.07
CVAE+att+rec (λ = 0.5) 5.48 ± 0.13 2.61 ± 0.27 3.54 ± 0.27 5.41 ± 0.06 2.60 ± 0.26 3.50 ± 0.25 2.52 ± 0.14
CVAE+att+rec (λ = 1.0) 5.32 ± 0.28 2.86 ± 0.28 3.71 ± 0.28 5.23 ± 0.19 3.01 ± 0.24 3.82 ± 0.23 2.48 ± 0.04

(a) Results on Wikihow.

P@5 R@5 F@5 P@10 R@10 F@10 greedy-BLEU

S2S (Nguyen et al., 2017) - - - - - - 5.42 ± 0.00
S2S+att (Nguyen et al., 2017) - - - - - - 5.29 ± 0.00

S2S 7.21 ± 0.68 5.34 ± 0.32 6.13 ± 0.46 7.59 ± 0.59 7.81 ± 0.36 7.70 ± 0.48 5.09 ± 0.31
S2S+att 7.59 ± 0.46 5.78 ± 0.49 6.56 ± 0.49 7.84 ± 0.33 7.99 ± 0.35 7.91 ± 0.33 4.87 ± 0.19
S2S+rec (λ = 0.1) 9.04 ± 0.42 6.12 ± 0.26 7.30 ± 0.32 8.91 ± 0.31 8.58 ± 0.25 8.74 ± 0.28 5.49 ± 0.22
S2S+rec (λ = 0.5) 8.00 ± 0.38 5.71 ± 0.30 6.66 ± 0.31 8.07 ± 0.29 8.09 ± 0.34 8.08 ± 0.30 5.14 ± 0.22
S2S+rec (λ = 1.0) 6.92 ± 0.11 5.19 ± 0.04 5.93 ± 0.06 6.91 ± 0.16 7.08 ± 0.07 6.99 ± 0.06 4.92 ± 0.12
S2S+att+rec (λ = 0.1) 8.27 ± 0.18 5.78 ± 0.21 6.80 ± 0.20 8.51 ± 0.16 8.39 ± 0.31 8.45 ± 0.24 5.15 ± 0.32
S2S+att+rec (λ = 0.5) 8.40 ± 0.77 6.04 ± 0.52 7.02 ± 0.62 8.05 ± 0.28 7.95 ± 0.18 8.00 ± 0.22 5.73 ± 0.29
S2S+att+rec (λ = 1.0) 7.58 ± 0.49 5.58 ± 0.23 6.43 ± 0.31 7.35 ± 0.20 7.51 ± 0.27 7.43 ± 0.23 5.34 ± 0.16

CVAE 17.27 ± 0.94 4.77 ± 0.12 7.47 ± 0.22 17.35 ± 0.95 5.01 ± 0.12 7.77 ± 0.21 5.03 ± 0.18
CVAE+att 16.13 ± 1.91 4.51 ± 0.20 7.04 ± 0.42 15.99 ± 2.21 4.75 ± 0.33 7.32 ± 0.61 4.65 ± 0.33

CVAE+rec (λ = 0.1) 18.19 ± 0.69 5.40 ± 0.24 8.33 ± 0.36 18.44 ± 0.33 5.89 ± 0.17 8.92 ± 0.22 5.50 ± 0.24
CVAE+rec (λ = 0.5) 17.33 ± 0.61 5.10 ± 0.42 7.87 ± 0.48 17.35 ± 0.57 5.67 ± 0.40 8.55 ± 0.47 5.34 ± 0.09
CVAE+rec (λ = 1.0) 17.20 ± 2.05 5.03 ± 0.26 7.78 ± 0.52 17.10 ± 2.41 5.42 ± 0.33 8.23 ± 0.63 5.24 ± 0.11
CVAE+att+rec (λ = 0.1) 16.96 ± 1.09 5.19 ± 0.12 7.95 ± 0.10 17.44 ± 1.00 5.78 ± 0.12 8.67 ± 0.10 5.18 ± 0.26
CVAE+att+rec (λ = 0.5) 18.57 ± 1.41 5.45 ± 0.36 8.42 ± 0.55 18.52 ± 1.59 5.91 ± 0.34 8.96 ± 0.53 5.58 ± 0.37
CVAE+att+rec (λ = 1.0) 16.47 ± 1.30 5.35 ± 0.24 8.07 ± 0.38 16.27 ± 1.38 5.89 ± 0.36 8.65 ± 0.53 5.33 ± 0.32

(b) Results on Descript.

Table 3: Event prediction performance evaluated by automatic evaluation metrics. Each model is trained three
times with different random seeds. The scores are the average and standard deviation. The bold scores indicate the
highest ones over models.

ported models of Nguyen et al. (2017), though
our models were optimized based on the loss
while the previous models were tuned according to
greedy-BLEU. Curiously enough, greedy-BLEU
indicated no big difference between the determin-
istic and probabilistic models, while our new test
sets yielded large gaps between them in terms of
precision and recall. As we will see in the next sec-
tion, these differences were not spurious and did
demonstrate the limitation of a single pair-based
evaluation.

6.4 Qualitative Analysis
Table 4 shows next events generated by the deter-
ministic and probabilistic models, with Table 4a
being an example from Wikihow. The determin-
istic model generated events without any duplica-
tion, leading to a high recall. However, most of
the generated events, such as “choose high speed

goals”, look irrelevant to the current event. This
suggests that, as indicated by low precision, the
deterministic model fails to generate valid next
events when being forced to diversify the outputs.

The CVAE without the reconstruction mecha-
nism appears to have generated next events that
were generally valid and, at a first glance, diverse.
However, a closer look reveals that they expressed
a small number of highly typical events and that
their semantic diversity was not large. For ex-
ample, “consider the risks of psychotherapy” was
semantically identical with “consider the risk fac-
tors” in this context. Compared with the vanilla
CVAE, the CVAEs with reconstruction success-
fully generated semantically diverse next events.
We would like to emphasize that the diversity was
improved without sacrificing precision.

Table 4b shows an example from Descript. As
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Current event: talk to mental health professional
Reference next events: [1] find support group, [2] reestablish your sense of safety, [3] spend time facing why you distrust
people, [4] talk to your doctor about medication, [5] try cognitive behavioral therapy cbt, and [6] visit more than one
counselor

S2S CVAE CVAE+att+rec (λ = 0.1) CVAE+att+rec (λ = 1.0)

1. adjust your support 1. seek therapy (11) 1. consider the possibility 1. get referral to
system (1) of medical treatment (14) therapist (8)

2. choose high speed 2. consider psychotherapy (5) 2. ask your doctor about 2. ask your doctor about
goals (1) medications (4) medication (8)

3. join support group (1) 3. consider your therapist (2) 3. ask your family (2) 3. get support (4)
4. understand your parent 4. consider the risks of 4. be aware of your 4. get an overview of the

lifestyle (1) psychotherapy (2) depressive symptoms (2) various topics (2)
5. listen to someone 5. consider the risk factors (2) 5. be aware of your own 5. be aware of the benefits

knowledgeable (1) mental health (2) of testosterone (1)

(a) Frequently generated events by models trained on Wikihow.

Current event: board bus
Reference next events: [1] buy a ticket, [2] find a seat if available or stand if necessary, [3] give bus driver token or money,
[4] pay driver or give prepaid card or ticket, [5] pay fare or give ticket if needed, [6] pay for the bus [7] pay the driver,
[8] place your luggage overhead or beneath seat, [9] reach the destination, [10] sit down, [11] sit down and ride, [12] sit
in your seat, [13] sit on the bus, and [14] take a seat in the bus

S2S CVAE CVAE+rec (λ = 0.1) CVAE+rec (λ = 1.0)

1. pay for ticket (1) 1. get off bus (9) 1. find seat (10) 1. pay fare (29)
2. delivery driver (1) 2. pay bus fare (7) 2. pay fare (5) 2. pay the fare (1)
3. get on train (1) 3. get on bus (6) 3. get off bus (4) 3. -
4. sit down (1) 4. pay fare (4) 4. put bag in overhead compartment (2) 4. -
5. check mirrors (1) 5. pay for ticket (2) 5. wait for bus to stop (2) 5. -

(b) Frequently generated events by models trained on Descript.

Table 4: Next events generated by the deterministic and probabilistic models. We sampled 30 next events for each
current event. Note that the samples can be duplicate. The numbers in parentheses indicate the frequencies.

with Wikihow, the deterministic model generated
next events that were diverse but mostly invalid.
The vanilla CVAE also lacked semantic diversity
as with the case of Wikihow. The CVAE with re-
construction (λ = 0.1) alleviated the problem and
was able to produce next events that were both
valid and diverse. However, care must be taken in
tuning λ, as the model with λ = 1.0 ended up con-
centrating on a small number of next events, which
was indicated by low recall. With a too large λ,
the model was strongly biased toward next events
that had one-to-one correspondences with current
events. Note that we could tune λ if we had new
development sets with multiple next events, in ad-
dition to new test sets.

Finally, we have to acknowledge that there is
still room for improvement in the new test sets. Al-
though we successfully collected valid and diverse
next events, the data construction procedure pro-
vided no guarantee of typicality. For the reference
next events of “board bus” (Table 4b), “pay for the
bus” and its variants dominate, but we are unsure
if they are truly more typical than “place your lug-
gage overhead or beneath seat”. One way to take
typicality into account is to ask a large number of

crowdworkers to type next events given the cur-
rent event, rather than to check the validity of a
given event pair. Although we did not do this for
the high cost and difficulty in quality control, it is
worth exploring in the future.

7 Conclusion

We tackled the task of generating next events given
a current event. Aiming to capture the diversity
of next events, we proposed to use a CVAE-based
seq2seq model with a reconstruction mechanism.
To fairly evaluate diversity-aware models, we built
new test sets with multiple next events. The
CVAE-based models drastically outperformed de-
terministic models in terms of precision and that
the reconstruction mechanism improved the recall
of CVAE-based models without sacrificing preci-
sion. Although we focused on event pairs in the
present work, the use of longer sequence of events
would be a promising direction for future work.
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Abstract

Modeling semantic plausibility requires com-
monsense knowledge about the world and has
been used as a testbed for exploring vari-
ous knowledge representations. Previous work
has focused specifically on modeling physi-
cal plausibility and shown that distributional
methods fail when tested in a supervised set-
ting. At the same time, distributional mod-
els, namely large pretrained language models,
have led to improved results for many natu-
ral language understanding tasks. In this work,
we show that these pretrained language mod-
els are in fact effective at modeling physi-
cal plausibility in the supervised setting. We
therefore present the more difficult problem of
learning to model physical plausibility directly
from text. We create a training set by extract-
ing attested events from a large corpus, and
we provide a baseline for training on these at-
tested events in a self-supervised manner and
testing on a physical plausibility task. We be-
lieve results could be further improved by in-
jecting explicit commonsense knowledge into
a distributional model.

1 Introduction

A person riding a camel is a common event, and
one would expect the subject-verb-object (s-v-o)
triple person-ride-camel to be attested in a large
corpus. In contrast, gorilla-ride-camel is un-
common, likely unattested, and yet still seman-
tically plausible. Modeling semantic plausibility
then requires distinguishing these plausible events
from the semantically nonsensical, e.g. lake-ride-
camel.

Semantic plausibility is a necessary part of
many natural language understanding (NLU) tasks
including narrative interpolation (Bowman et al.,
2016), story understanding (Mostafazadeh et al.,
2016), paragraph reconstruction (Li and Juraf-
sky, 2017), and hard coreference resolution (Peng

Event Plausible?
bird-construct-nest !

bottle-contain-elephant %

gorilla-ride-camel !

lake-fuse-tie %

Table 1: Example events from Wang et al. (2018)’s
physical plausibility dataset.

et al., 2015). Furthermore, the problem of model-
ing semantic plausibility has itself been used as a
testbed for exploring various knowledge represen-
tations.

In this work, we focus specifically on modeling
physical plausibility as presented by Wang et al.
(2018). This is the problem of determining if a
given event, represented as an s-v-o triple, is phys-
ically plausible (Table 1). We show that in the
original supervised setting a distributional model,
namely a novel application of BERT (Devlin et al.,
2019), significantly outperforms the best exist-
ing method which has access to manually labeled
physical features (Wang et al., 2018).

Still, the generalization ability of supervised
models is limited by the coverage of the train-
ing set. We therefore present the more difficult
problem of learning physical plausibility directly
from text. We create a training set by parsing
and extracting attested s-v-o triples from English
Wikipedia, and we provide a baseline for train-
ing on this dataset and evaluating on Wang et al.
(2018)’s physical plausibility task. We also exper-
iment training on a large set of s-v-o triples ex-
tracted from the web as part of the NELL project
(Carlson et al., 2010), and find that Wikipedia
triples result in better performance.
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2 Related Work

Wang et al. (2018) present the semantic plausi-
bility dataset that we use for evaluation in this
work, and they show that distributional methods
fail on this dataset. This conclusion aligns with
other work showing that GloVe (Pennington et al.,
2014) and word2vec (Mikolov et al., 2013) em-
beddings do not encode some salient features of
objects (Li and Gauthier, 2017). More recent work
has similarly concluded that large pretrained lan-
guage models only learn attested physical knowl-
edge (Forbes et al., 2019).

Other datasets which include plausibility ratings
are smaller in size and missing atypical but plau-
sible events (Keller and Lapata, 2003), or concern
the more complicated problem of multi-event in-
ference in natural language (Zhang et al., 2017;
Sap et al., 2019).

Complementary to our work are methods of
extracting physical features from a text corpus
(Wang et al., 2017; Forbes and Choi, 2017;
Bagherinezhad et al., 2016).

2.1 Distributional Models

Motivated by the distributional hypothesis that
words in similar contexts have similar meanings
(Harris, 1954), distributional methods learn the
representation of a word based on the distribution
of its context. The occurrence counts of bigrams
in a corpus are correlated with human plausibility
ratings (Lapata et al., 1999, 2001), so one might
expect that with a large enough corpus, a distri-
butional model would learn to distinguish plausi-
ble but atypical events from implausible ones. As
a counterexample, Ó Séaghdha (2010) has shown
that the subject-verb bigram carrot-laugh occurs
855 times in a web corpus, while manservant-
laugh occurs zero.1 Not everything that is phys-
ically plausible occurs, and not everything that oc-
curs is attested due to reporting bias2 (Gordon and
Van Durme, 2013); therefore, modeling semantic
plausibility requires systematic inference beyond
a distributional cue.

We focus on the masked language model BERT
as a distributional model. BERT has led to im-
proved results across a variety of NLU bench-

1This point was made based on search engine results.
Some, but not all, of the carrot-laugh bigrams are false posi-
tives.

2Reporting bias describes the discrepancy between what
is frequent in text and what is likely in the world. This is in
part because people do not describe the obvious.

marks (Rajpurkar et al., 2018; Wang et al., 2019),
including tasks that require explicit commonsense
reasoning such as the Winograd Schema Chal-
lenge (Sakaguchi et al., 2019).

2.2 Selectional Preference

Closely related to semantic plausibility is selec-
tional preference (Resnik, 1996) which concerns
the semantic preference of a predicate for its argu-
ments. Here, preference refers to the typicality of
arguments: while it is plausible that a gorilla rides
a camel, it is not preferred. Current approaches to
selectional preference are distributional (Erk et al.,
2010; Van de Cruys, 2014) and have shown lim-
ited performance in capturing semantic plausibil-
ity (Wang et al., 2018).

Ó Séaghdha and Korhonen (2012) have inves-
tigated combining a lexical hierarchy with a dis-
tributional approach, and there have been related
attempts at grounding selectional preference in
visual perception (Bergsma and Goebel, 2011;
Shutova et al., 2015).

Models of selectional preference are either eval-
uated on a pseudo-disambiguation task, where at-
tested predicate-argument tuples must be disam-
biguated from pseudo-negative random tuples, or
evaluated on their correlation with human plau-
sibility judgments. Selectional preference is one
factor in plausibility and thus the two should cor-
relate.

3 Task

Following existing work, we focus on the task
of single-event, physical plausibility. This is the
problem of determining if a given event, repre-
sented as an s-v-o triple, is physically plausible.

We use Wang et al. (2018)’s physical plausibil-
ity dataset for evaluation. This dataset consists
of 3,062 s-v-o triples, built from a vocabulary of
150 verbs and 450 nouns, and containing a diverse
combination of both typical and atypical events
balanced between the plausible and implausible
categories. The set of events and ground truth la-
bels were manually curated.

3.1 Supervised

In the supervised setting, a model is trained and
tested on labelled events from the same distribu-
tion. Therefore, both the training and test set cap-
ture typical and atypical plausibility. We follow
the same evaluation procedure as previous work
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Wikipedia
male-have-income

village-have-population
event-take-place

NELL
login-post-comment

use-constitute-acceptance
modules-have-options

Table 2: Most frequent s-v-o triples for each corpus.

and perform cross validation on the 3,062 labeled
triples (Wang et al., 2018).

3.2 Learning from Text

We also present the problem of learning to model
physical plausibility directly from text. In this new
setting, a model is trained on events extracted from
a large corpus and evaluated on a physical plausi-
bility task. Therefore, only the test set covers both
typical and atypical plausibility.

We create two training sets based on separate
corpora: first, we parse English Wikipedia using
the StanfordNLP neural pipeline (Qi et al., 2018)
and extract attested s-v-o triples. Wikipedia has
led to relatively good results for selectional pref-
erence (Zhang et al., 2019), and in total we extract
6 million unique triples with a cumulative 10 mil-
lion occurrences. Second, we use the NELL (Carl-
son et al., 2010) dataset of 604 million s-v-o triples
extracted from the dependency parsed ClueWeb09
dataset. For NELL, we filter out triples with non-
alphabetic characters or less than 5 occurrences,
resulting in a total 2.5 million unique triples with
a cumulative 112 million occurrences.

For evaluation, we split Wang et al. (2018)’s
3,062 triples into equal sized validation and test
sets. Each set thus consists of 1,531 triples.

4 Methods

4.1 NN

As a baseline, we consider the performance of a
neural method for selectional preference (Van de
Cruys, 2014). This method is a two-layer artificial
neural network (NN) over static embeddings.

Supervised. We reproduce the results of Wang
et al. (2018) using GloVe embeddings and the
same hyperparameter settings.

Self-Supervised. We use this same method for
learning from text (Subsection 3.2). To do so, we
turn the training data into a self-supervised train-

ing set: attested events are considered to be plau-
sible, and pseudo-implausible events are created
by sampling each word in an s-v-o triple indepen-
dently by occurrence frequency. We do hyperpa-
rameter search on the validation set over learning
rates in {1e−3, 1e−4, 1e−5, 2e−5}, batch sizes
in {16, 32, 64, 128}, and epochs in {0.5, 1, 2}.

4.2 BERT
We use BERT for modeling semantic plausibility
by simply treating this as a sequence classification
task. We tokenize the input s-v-o triple and in-
troduce new entity marker tokens to separate each
word.3 We then add a single layer NN to classify
the input based on the final layer representation of
the [CLS] token. We use BERT-large and fine-
tune the entire model in training.4

Supervised. We do no hyperparameter search
and simply use the default hyperparameter con-
figuration which has been shown to work well for
other commonsense reasoning tasks (Ruan et al.,
2019). BERT-large sometimes fails to train on
small datasets (Devlin et al., 2019; Niven and Kao,
2019); therefore, we restart training with a new
random seed when the training loss fails to de-
crease more than 10%.

Self-Supervised. We perform learning from text
(Subsection 3.2) by creating a self-supervised
training set in exactly the same way as for the NN
method. The hyperparameter configuration is de-
termined by grid search on the validation set over
learning rates in {1e − 5, 2e − 5, 3e − 5}, batch
sizes in {8, 16}, and epochs in {0.5, 1, 2}.

5 Results

5.1 Supervised
For the supervised setting, we follow the same
evaluation procedure as Wang et al. (2018): we
perform 10-fold cross validation on the dataset of
3,062 s-v-o triples, and report the mean accuracy
of running this procedure 20 times all with the
same model initialization (Table 3).

BERT outperforms existing methods by a large
margin, including those with access to manu-
ally labeled physical features. We conclude from

3Our input to BERT is of the form: [CLS] [SUBJ]
<subject> [/SUBJ] [VERB] <verb> [/VERB]
[OBJ] <object> [/OBJ] [SEP].

4We use Hugging Face’s PyTorch implementation
of BERT, https://github.com/huggingface/
pytorch-transformers.
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Model Accuracy
Random 0.50
NN (Van de Cruys, 2014) 0.68
NN+WK (Wang et al., 2018) 0.76
Fine-tuned BERT 0.89

Table 3: Mean accuracy of classifying plausible events
for models trained in a supervised setting. NN+WK
combines the NN approach with manually labeled
world knowledge (WK) features describing both the
subject and object.

Event
Plausible?

BERT GT

dentist-capsize-canoe ! !

stove-heat-air % !

sun-cool-water ! %

chair-crush-water % %

Table 4: Interpreting log-likelihood as confidence, ex-
ample events for which BERT was highly confident and
either correct or incorrect with respect to the ground
truth (GT) label.

these results that distributional data does provide
a strong cue for semantic plausibility in the super-
vised setting of Wang et al. (2018).

Examples of positive and negative results for
BERT are presented in Table 4. There is no
immediately obvious pattern in the cases where
BERT misclassifies an event. We therefore con-
sider events for which BERT gave a consistent es-
timate across all 20 runs of cross-validation. Of
these, we present the event for which BERT was
most confident.

We note that due to the limited vocabulary size
of the dataset, the training set always covers the
test set vocabulary when performing 10-fold cross
validation. That is to say that every word in the test
set has been seen in a different triple in the train-
ing set. For example, every verb occurs within 20
triples; therefore, on average a verb in the test set
has been seen 18 times in the training set.

Supervised performance is dependent on the
coverage of the training set vocabulary (Moosavi
and Strube, 2017), and it is intractable to have
18 plausibility labels for all verbs across English.
Furthermore, supervised models are susceptible to
annotation artifacts (Gururangan et al., 2018; Po-
liak et al., 2018) and do not necessarily even learn

Model Wikipedia NELL
Valid Test Valid Test

Random 0.50 0.50 0.50 0.50
NN 0.53 0.52 0.50 0.51
BERT 0.65 0.63 0.57 0.56

Table 5: Accuracy of classifying plausible events for
models trained on a corpus in a self-supervised manner.

the desired relation, or in fact any relation, be-
tween words (Levy et al., 2015).

This is our motivation for reframing semantic
plausibility as a task to be learned directly from
text, a new setting in which the training set vocab-
ulary is independent of the test set.

5.2 Learning from Text

For learning from text (Subsection 3.2), we report
both the validation and test accuracies of classify-
ing physically plausible events (Table 5).

BERT fine-tuned on Wikipedia performs the
best, although only partially captures semantic
plausibility with a test set accuracy of 63%. Per-
formance may benefit from injecting explicit com-
monsense knowledge into the model, an approach
which has previously been used in the supervised
setting (Wang et al., 2018).

Interestingly, BERT is biased towards labelling
events as plausible. For the best performing
model, for example, 78% of errors are false pos-
itives.

Models trained on Wikipedia events consis-
tently outperform those trained on NELL which
is consistent with our subjective assessment of the
cleanliness of these datasets. The baseline NN
method in particular seems to learn very little from
training on the NELL dataset.

6 Conclusion

We show that large, pretrained language models
are effective at modeling semantic plausibility in
the supervised setting. Supervised models are lim-
ited by the coverage of the training set, however;
thus, we reframe modeling semantic plausibility
as a self-supervised task and present a baseline
based on a novel application of BERT.

We believe that self-supervised results could be
further improved by incorporating explicit com-
monsense knowledge, as well as further incidental
signals (Roth, 2017) from text.
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Abstract

Understanding common sense is important for
effective natural language reasoning. One type
of common sense is how two objects com-
pare on physical properties such as size and
weight: e.g., ‘is a house bigger than a per-
son?’. We probe whether pre-trained repre-
sentations capture comparisons and find they,
in fact, have higher accuracy than previous ap-
proaches. They also generalize to comparisons
involving objects not seen during training. We
investigate how such comparisons are made:
models learn a consistent ordering over all the
objects in the comparisons. Probing models
have significantly higher accuracy than those
baseline models which use dataset artifacts:
e.g., memorizing some words are larger than
any other word.

1 Introduction

Pre-trained word representations or embeddings
(Mikolov et al., 2013) such as GloVe (Penning-
ton et al., 2014) underpin modern NLP. To un-
derstand what information is encoded, supervised
models probe (Adi et al., 2016; Linzen et al.,
2016; Conneau et al., 2018) a particular prop-
erty, for example, part-of-speech (Belinkov et al.,
2017), morphology (Peters et al., 2018a), etc. in
these representations. With the advent of con-
textualized word embeddings such as ELMo (Pe-
ters et al., 2018a) and BERT (Devlin et al., 2018),
efforts to understand the information encoded in
representations learned by neural model have in-
creased (Peters et al., 2018b; Tenney et al., 2019;
Liu et al., 2019). Apart from linguistic proper-
ties, what do these representations learn about the
world? Commonsense reasoning over language
that incorporates world knowledge such as ‘an ele-
phant is heavier than a person’ can help agents
make better decisions and understand ‘complex’
phenomena like humor and irony. However, ex-

tracting common sense from text corpora is chal-
lenging since we rarely state obvious things di-
rectly (Van Durme, 2010; Gordon and Van Durme,
2013; Misra et al., 2016; Zhang et al., 2017).

This paper asks if pre-trained representations
encode a specific type of common sense: phys-
ical comparisons between objects.1 The super-
vised classification task takes a pair of words being
compared on a physical attribute such as size or
speed, with the system’s objective to decide which
is ‘bigger’ or ‘faster’ (§ 2.1). We use a linear or
a one-layer fully-connected neural network prob-
ing model with only a combination (concatena-
tion or subtraction) of the frozen pre-trained em-
beddings for the words to be compared as input
(§ 2.2). This probing model achieves better ac-
curacy than previous approaches (§ 2.3) which
use extra information other than the words (such
as the verbs connecting the words) on the Verb
Physics dataset (Forbes and Choi, 2017) (§ 3): it
encodes physical commonsense comparisons.2 It
generalizes to objects not present in the training
set (§ 3.1) with higher accuracy than baselines ex-
ploiting dataset artifacts (§ 4). We use a ‘simple’
probing model since more complex models make
it difficult to disentangle the major contributing
factor to results - model or embeddings (as in other
probing studies like Liu et al. (2019)). Our other
major contribution is analyzing how models com-
pare objects. The output logits for labels (indicat-
ing model confidence) order objects consistently
across orderings or rankings built around different
objects (§ 4.1.1). Models also learn an ordering
over all the objects and use this learned ordering
for comparisons (§ 4.1.2).

1Note: Concurrent work by Forbes et al. (2019) also
finds neural representations are proficient at capturing physi-
cal properties of objects (focus of this work) but not at tack-
ling the relationship with actions applicable to objects.

2This work aims to probe representations for physical
commonsense comparisons; better accuracy is a byproduct.
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2 Experimental Setup

2.1 Probing Task & Data

We use Verb Physics (Forbes and Choi, 2017) and
follow their setup. Given a pair of words or ob-
jects, a system predicts if word1 </>/≈ word2
when compared on an attribute, for example,
bed >weight hand or mouth ≈size fist. Verb
Physics consists of five different datasets compar-
ing objects on size, weight, strength, rigidness, and
speed.3 The train:dev:test split is 5:45:50 resulting
in about 100 and 1000 comparisons in the train-
ing and dev sets respectively, with similar statis-
tics for all attributes. This is the split used in the
previous works and hence we use the same split in
order to benchmark results. To test generalization
to words not seen during training, we also use a
different evaluation set released by Bagherinezhad
et al. (2016) with 486 size-based comparisons of
objects (§ 3.1).4

2.2 Our Probing Model

The probing model is a simple setup to assess
if pre-trained representations capture physical ob-
ject comparisons. We concatenate or subtract the
word embeddings for the two words and pass it
to a fully-connected neural network with zero (in
which case, linear) or one hidden layer. Our pri-
mary experiments use GloVe (Pennington et al.,
2014), ELMo (Peters et al., 2018a), and BERT
(Devlin et al., 2018) embeddings. Training de-
tails (including the specific pre-trained models and
training parameters) are presented in Appendix A.
Following Yang et al. (2018), we pass the reversed
combination of the two embeddings through the
network, and align and combine the outputs for
both input pairs (word1 − word2 and word2 −
word1) for the final output. If word1 < word2
then word1 > word2 as well. Unlike Yang et al.
(2018), we pass the reversed pair at training. This
‘reversal’ trick is visualized in Figure 2, and the
empirical results showing its effect in increasing
accuracy are discussed in Appendix B.

2.3 Baselines

Majority Class: This baseline predicts the la-
bel for a comparison on the dev set based on the
highest-frequency label for both the words as per
training set. If the two labels agree, e.g., word1

3https://github.com/uwnlp/verbphysics
4http://grail.cs.washington.edu/projects/size/

Figure 1: The Probing Model: We combine the pre-
trained word embeddings of the two words being com-
pared (via concatenation or subtraction) and pass it
though zero (linear) or one hidden layer.

is ‘bigger’ and word2 is ‘smaller’ in most train-
ing comparisons, this baseline predicts word1 >
word2. If the two majority labels disagree (both
words tend to be ‘bigger’ most of the times), this
baseline uses the ratio of frequency of the majority
label with the total number of comparisons involv-
ing the word to decide.

We also compare with the previous state-of-the-
art approaches on the Verb Physics dataset:

Verb-centric Frame Semantics: (Forbes and
Choi, 2017, F&C) use probabilistic graphical
modeling for joint inference over objects as well
as actions/verbs that can imply physical relation-
ship their arguments (for example, ‘x entered y’
implies y is bigger than x).

Property Comparisons from Embeddings:
(Yang et al., 2018, PCE) use a one-layer neural
network over concatenated word embeddings and
compare the projection with the embeddings of
‘poles’: words exemplifying a physical relation
(‘big’, ‘small’ for size; ‘fast’, ‘slow’ for speed,
etc.). Classification is the closest ‘pole’. This use
of poles is the main difference with our approach.

Apart from these baseline models, we devise ad-
ditional baselines to test for possible artifacts in
the dataset, such as using only one of the words as
input to the model, in Section 4.

3 Results and Discussion

The probing model (Figure 1) with pre-trained
representations has better accuracy than previous
approaches which use extra information in addi-
tion to the words being compared (Table 1). This
indicates that representations themselves capture
physical commonsense comparisons.

GloVe is almost as accurate as ELMo and more
accurate than BERT contrary to results seen on
many NLP tasks (Peters et al., 2018a; Devlin et al.,
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Figure 2: The Reversal Trick: As done by Yang et al. (2018) at test time, the reversed embedding is also passed
through the network and the output logits for both pairs (word1 concatenated with word2 and word2 concatenated
with word1) are aligned and combined for the final output. We try doing this at training time as well which leads
to an improvement in accuracy.

2018). This task has no context to exploit and Ten-
ney et al. (2019) also observe that contextualized
embeddings win over non-contextual models on
syntactic tasks but less for semantic tasks.

We also used BERT-large but saw similar ac-
curacies as BERT-base. Concatenating word em-
beddings usually achieved slightly better accuracy
(Appendix B) but subtracting gave more stable re-
sults across different random initializations. The
reversed input pair embeddings (§ 2.2) at training
and testing improves accuracy (Appendix B).

3.1 Generalization to New Objects

In Verb Physics, ∼99% of the words or objects
involved in comparisons in the dev set are seen
at training. If word embeddings capture com-
mon sense well, they should compare two words
not seen during training. To test this, we use the
Verb Physics training set for the ‘size’ attribute
and evaluate on a different test set (Bagherinezhad
et al., 2016): EB evaluation set (§ 2.1) where
only ∼33% of the words are seen during training.

Since this evaluation set contains only < and >
comparisons, we use comparisons in Verb Physics
training set with just these two labels. Unlike
Bagherinezhad et al. (2016) who use visual and
textual cues, our model use only pre-trained text
representations. Yet the probing model achieves at
least 4% higher accuracy (Table 2).

4 Analysis

Levy et al. (2015) find that in models for hyper-
nymy detection: the accuracy gap between the full
model using both the words as input and using just
one of the words is less than 10%. Their training
set contains prototypical hypernyms: single word
in a pair that models can latch onto to detect hy-
pernymy. The unsupervised method of using the
cosine similarity of the two words is also a strong
baseline in that work. We experiment with these
same baselines for our task.

On the Verb Physics dataset: Only word2
seems to be a strong baseline (much like the ma-

Majority Class
Baseline F&C PCE Probing Model

(GloVe)
Probing Model

(ELMo)
Probing Model
(BERT-base)

Size 0.66 0.75 0.80 0.82 0.82 0.80
Weight 0.67 0.74 0.81 0.82 0.82 0.80

Strength 0.66 0.71 0.77 0.78 0.79 0.75
Rigidness 0.60 0.68 0.71 0.71 0.72 0.71

Speed 0.59 0.66 0.72 0.72 0.76 0.71

Overall 0.64 0.71 0.76 0.77 0.78 0.75

Table 1: Accuracy of the probing model compared with the baselines including previous approaches on the at-
tributes in the Verb Physics dataset. The simple probing model achieves better accuracy indicating that the frozen
pre-trained representations capture commonsense physical comparisons.
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Model Accuracy

The Visual+Textual Model
by Bagherinezhad et al. (2016)

0.835

Probing Model (GloVe) 0.879
Probing Model (ELMo) 0.905
Probing Model (BERT) 0.893

Table 2: The probing model trained on the Verb Physics
size dataset and evaluated on (Bagherinezhad et al.,
2016). Only ∼33% of the objects in this test set are
present in training set: our model generalizes to new
objects and gives better accuracy using the frozed pre-
trained representations of the words alone.

jority class baseline for this dataset), but the drop
in accuracy is higher than 10% for GloVe and
ELMo (Table 3): Our model is not simply rely-
ing on lexical memorization. Randomly selecting
a label gives ∼33% accuracy while using the ma-
jority label for all comparisons gives ∼50% accu-
racy. The unsupervised model gives low accuracy
which suggests supervision is helpful.

On the EB Evaluation Set (Bagherinezhad
et al., 2016): Using just one word when training
and evaluating sees a drop of about 12 to 15% in
accuracy (Table 4). This baseline is fairly strong in
comparison to a random baseline (50% accuracy),
but the difference in accuracy again indicates the
model doing more than just lexical memorization.

4.1 Do Models Learn a Consistent Ordering?

Pre-trained representations encode commonsense
physical comparisons, and do not rely on mere
lexical memorization. One explanation is models
could learn to rank or order the objects.

Using
the given

Verb Physics
training set

word1
-

word2

ONLY
word2

Baseline

Unsupervised
Baseline

GloVe 0.78 0.66 0.49
ELMo 0.78 0.67 0.52
BERT 0.75 0.66 0.52

Table 3: Accuracy of probing models (averaged across
the five attributes) on the Verb Physics dev sets. Un-
supervised baseline takes cosine similarity of the em-
beddings and uses a threshold tuned on the dev set to
classify. Using just one word when training and evalu-
ating helps investigate possible lexical memorization.

On the
Complete EB

Evaluation Set;
∼33% ‘overlap’

word1
-

word2
word1 word2

GloVe 0.88 0.74 0.73
ELMo 0.89 0.74 0.72
BERT 0.87 0.65 0.68

Table 4: Evaluation on Bagherinezhad et al. (2016).
Accuracy drops by 15 to 20% when compared with the
only one word baselines.

Examples of Orders Formed Around a Word

head < knee < meal < chair < back < place <
street < world < gate < air < floor < room

eye < chair < child < king < daughter < wife <
boy < messenger < father < coach < horse < door <

house < gate < train < room < sun

Table 5: Two examples for orderings formed around
the words chair and gate for the size attribute using
GloVe. Comparisons between words occurring in both
these orderings (italicized) are consistent.

4.1.1 Local Ordering formed via Logit
Difference

A particular word gets compared with many other
words in data. We can order those words to form
a ‘local’ ordering, e.g., ordering around chair (Ta-
ble 5). Orderings are consistent if the same pair
of words in different local orderings hold the same
relationship, e.g., chair < room in both orderings
in Table 5. It is conceivable humans are more con-
fident about a comparison when the difference in
objects in terms of the property is large (a house
is bigger than a chair). Larger difference in out-
put logits (for label 0 (<) and 1 (>)) can indicate
more model confidence and hence, objects being
farther apart in an ordering. We form local order-
ings around a word using logit difference between
the labels when compared with the other word.

All the local orderings formed around all words
on Verb Physics are completely consistent for
GloVe and BERT. For ELMo, more than 90%
comparisons were usually consistent across any
two orderings. Models seem to learn to arrange
all the words in some sort of consistent ordering.
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Linear Neural Net with 1
or 2 hidden layers

GloVe 0.76 0.77
ELMo 0.77 0.78
BERT 0.74 0.75

Table 6: The best accuracies obtained by a Linear
Model compared with the best accuracies obtained by a
shallow Neural Network. For all three representations,
the linear model gives similar accuracy and hence we
often use it for our analysis. Since good accuracy is
achieved by a simple linear model from the frozen word
representations alone, we can reasonably conclude that
pre-trained embeddings encode information required to
compare words for physical common sense.

4.1.2 Global Ordering over all Words Using
Learned Weights

We use a linear model (0 hidden layers in Fig-
ure 1) to order all the objects in one of the Verb
Physics dev sets. Per Table 6, linear modela are
almost at par (accuracy within 1%) with shal-
low fully connected neural networks on the Verb
Physics dev set. A score for a word is its embed-
ding multiplied with the weight learned for map-
ping the input to the label 1 which would be higher
if word1 > word2. We use this score to rank
the objects. Appendix C shows an example of a
learned ordering over all the words in the dev set
using GloVe. Using this ordering to classify the
comparisons of pair of words achieves accuracy at
par with the original models on a subset of the dev
set containing only 0/1 labels. This suggests the
models assign an absolute value to every word
to rank all the objects and then use this global
ranking to compare any two objects. Using the
weight corresponding to the label 0 achieves sim-
ilar results. An ordering can be used directly for
> or < comparisons but is not that indicative for
≈ comparisons. This might explain the relative
struggles GloVe, ELMo, and BERT face classify-
ing comparisons labeled 2 (Table 7).

5 Conclusion

A linear or a small fully connected neural net-
work probing model can compare two words
on commonsense physical attributes using frozen
pre-trained representations (GloVe, ELMo, and
BERT) of the words alone with higher accuracy
than previous approaches which use extra infor-
mation in addition to the objects being compared.

0 (<) 1 (>) 2 (≈)

GloVe 0.79 0.77 0.33
ELMo 0.81 0.80 0.18
BERT 0.77 0.78 0.12

Table 7: Label-Wise Accuracy: The GloVe, ELMo, and
BERT representations (fed to a linear model) struggle
to capture the relationship word1 ≈ word2 (label 2).
This is likely due to the class imbalance in the dataset,
with the rough distribution of the labels across all at-
tributes in the Verb Physics training set being 41% for
the label 0, 49% for the label 1, and just 10% for the
label 2. The representations seem to learn an order-
ing over all the words and use it to compare objects
(§4.1.2). This is also one possible explanation for com-
paratively poor accuracy on the label 2 since judging
≈ relationship between words is hard while the < or >
relation can be inferred directly from an ordering. Ac-
curacies here are averaged across the results for all the
five attributes.

They also generalize to objects not seen during
training and get significantly higher accuracy than
using just one word: embeddings encode physi-
cal common sense. Models learn an ordering over
of all the words involved in the comparisons and
embeddings could be using this ordering to com-
pare any two objects. The difference in the output
logit values corresponding to the labels serves as a
surprisingly good proxy to form completely con-
sistent orderings around different words. One di-
rection of future work would be to move beyond
comparisons or relative information towards di-
rectly probing for size estimates for various physi-
cal properties for objects (without the setting be-
ing relative), using the recently released large-
scale resource containing ‘distributions over phys-
ical quantities associated with objects, adjectives,
and verbs’ (Elazar et al., 2019).
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